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Preface

primitive Mathematik
hohe Kunst

Thomas Bernhard

Un chercheur universitaire
est un individu qui en sait toujours plus

sur un sujet toujours moindre,
en sorte qu’il finit par savoir tout de rien.

Simon Leys

Three of the main questions that motivate the present book are the
following:

� Is there a transcendental real number α such that ‖αn‖ tends to 0
as n tends to infinity?

� Is the sequence of fractional parts {(3/2)n}, n ≥ 1, dense in the
unit interval?

� What can be said on the digital expansion of an irrational algebraic
number?

The latter question amounts to the study of the sequence (ξ10n)n≥1

modulo one, where ξ is an irrational algebraic number. More generally,
for given real numbers ξ �= 0 and α > 1, we are interested in the distri-
bution of the sequences ({ξαn})n≥1 and (‖ξαn‖)n≥1, where {·} (resp.,
‖ · ‖) denotes the fractional part (resp., the distance to the nearest in-
teger). The situation is very well understood from a metrical point of
view. However, for a given pair (ξ, α), our knowledge on ({ξαn})n≥1 is
extremely limited, except in very few cases. For instance when ξ = 1

ix
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and α is a Pisot number, that is, an algebraic integer (an algebraic in-
teger is an algebraic number whose minimal defining polynomial over Z

is monic) all of whose Galois conjugates (except itself) are lying in the
open unit disc, it is not difficult to show that ‖αn‖ tends to 0 as n tends
to infinity. A classical example is given by α = (1 +

√
5)/2.

The first chapter is devoted to basic results from the theory of uniform
distribution modulo one. We state Weyl’s criterion and use it to establish
several classical metrical statements. We show that, if α > 1 is fixed,
then (ξαn)n≥1 is uniformly distributed modulo one for almost all (unless
otherwise specified, almost all always refers to the Lebesgue measure)
positive real numbers ξ. Likewise, if ξ �= 0 is fixed, then (ξαn)n≥1 is
uniformly distributed modulo one for almost all real numbers α > 1.
We conclude this chapter with a few words on uniform distribution of
multidimensional sequences.

Chapter 2 starts with a sufficient condition, proved by Pisot in 1938,
on the sequence (‖ξαn‖)n≥1 which implies that the real number α is
a Pisot number. We show that this condition can be weakened if α is
assumed to be an algebraic number. The chapter continues with various
constructions of pairs (ξ, α) such that (ξαn)n≥1 is not dense modulo one.
Among other results, we follow a method introduced by Peres and Schlag
in 2010 to establish, for every given real number α > 1, the existence
of real numbers ξ for which infn≥1 ‖ξαn‖ is positive. Furthermore, we
prove that, for every positive real number ε, there exist uncountably
many real numbers α > 1 such that ‖αn‖ < ε for every n ≥ 1. When
α is an integer, say b, there are plenty of irrational real numbers ξ such
that (ξbn)n≥1 is not dense modulo one, take for example any irrational
real number ξ whose b-ary expansion has no two consecutive zeros. This
is no longer true when the sequence (bn)n≥1 is replaced by the sequence
(rmsn)m,n≥0, where r and s are multiplicatively independent positive
integers. Then, Furstenberg established in 1967 that, for every irrational
number ξ, the set of real numbers {rmsnξ}, m,n ≥ 0, is dense in [0, 1].
We end this section with a short survey on a still open conjecture of
de Mathan and Teulié, who asked whether, for every real number ξ and
every prime number p, we have

inf
q≥1

q · ‖qξ‖ · |q|p = 0,

where |.|p denotes the usual p-adic absolute value normalized in such a
way that |p|p = p−1.
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The special case where α is an algebraic number is investigated in
Chapter 3. In 1968, Mahler asked for the existence of positive real num-
bers ξ for which {ξ(3/2)n} < 1/2 for every n ≥ 0. He proved that there
are at most countably many real numbers with the latter property and
we still do not know whether there is at least one such number. Chapter
3 is partly devoted to the study of the sequences ({ξ(p/q)n})n≥1 and
(||ξ(p/q)n||)n≥1, for a non-zero real number ξ and coprime integers p, q

with p > q ≥ 1. Among other results, it is established that, assuming
that q ≥ 2 or that ξ is irrational, we always have

lim sup
n→+∞

{
ξ
( p

q

)n}
− lim inf

n→+∞

{
ξ
( p

q

)n}
≥ 1

p
·

This result was proved in 1995 by Flatto, Lagarias and Pollington, and
reproved in 2006 by Dubickas, by means of a different, simpler approach.
We further establish that, for every non-zero real number ξ, the sequence
(||ξ(3/2)n||)n≥1 has a limit point greater than 0.238117 and a limit point
smaller than 0.285648, as was shown by Dubickas in 2006. The proof
involves combinatorics on words and properties of the Thue–Morse in-
finite word. We complement these results with various constructions of
Pollington and Dubickas of real numbers ξ for which ||ξ(3/2)n|| < 1/3
for every n ≥ 1 and of real numbers ξ for which infn≥1 ||ξ(3/2)n|| is
quite large.

In Chapter 4, we introduce the notion of normality to an integer base
in accordance with Émile Borel’s original definition given in 1909 and es-
tablish his fundamental theorem that almost all real numbers are normal
to all integer bases. We show that Borel’s definition is redundant in part
and state several equivalent definitions. For an integer b ≥ 2 and positive
integers r and s, we show that normality to base br is equivalent to nor-
mality to base bs. Furthermore, we prove that a real number ξ is normal
to base b if, and only if, the sequence (ξbn)n≥1 is uniformly distributed
modulo one. Combined with one of the metrical results established in
Chapter 1, this gives an alternative proof of Borel’s theorem. Replacing
b by a real number α > 1, the above criterion allows us to define the
notion of normality to a non-integer base α. The first explicit example
of a normal number was given in 1933 by Champernowne, who proved
that the real number (now usually called the Champernowne number)

0.1234567891011121314 . . . ,

whose sequence of decimals is the increasing sequence of all positive
integers, is normal to base 10. This statement has been extended in
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1946 by Copeland and Erdős. Their result implies in particular that the
real number

0.235711131719232931 . . . ,

whose sequence of decimals is the increasing sequence of all prime num-
bers, is also normal to base 10. We further introduce the notions of
block complexity, richness and entropy, which are useful to measure the
complexity of the b-ary expansion of a real number. The chapter ends
with the study of the rational approximation to a family of real numbers
including the Champernowne number.

Further explicit examples of numbers normal to a given base are con-
structed in Chapter 5, following a method, developed in 2002 by Bailey
and Crandall, which rests on estimates for exponential sums. We discuss
the problem of the construction of real numbers which are absolutely
normal, that is, normal to every integer base. Furthermore, we present
an explicit example of a real number which is normal to no integer base.
This chapter ends with a few words on a theory of Bailey and Crandall
to explain random behaviour for the digits in the integer expansions of
fundamental mathematical constants.

The general question investigated in Chapter 6 is: What can be said
on the expansions of a given real number to several bases? The existence
of real numbers being normal to some integer base and non-normal to
other integer bases was confirmed by Cassels and, independently, by
W.M. Schmidt in the years 1959–1960. We reproduce Cassels’ proof es-
tablishing that almost all elements of the middle third Cantor set (in
the sense of the Cantor measure) are normal to every integer base which
is not a power of 3. For non-integer bases, we follow works of Brown,
Moran and Pollington to establish various results on the existence of
real numbers normal to some base α > 1, but not normal to another
base β > 1. Their method uses suitable Riesz product measures. We
then show that, given two coprime integers r ≥ 2 and s ≥ 2, any ir-
rational real number cannot have too many zeros both in its r-ary and
in its s-ary expansion. The chapter ends with a short discussion on the
representation of integers in two different bases.

In Chapter 7, for an integer b ≥ 2, we introduce exponents of Dio-
phantine approximation to measure the accuracy with which a given real
number ξ is approximated by rational numbers whose denominators are
integer powers of b or are of the form br(bs −1) for integers r ≥ 0, s ≥ 1.
Such rational numbers occur naturally when one searches for good ra-
tional approximations to ξ by simply looking at its b-ary expansion. We
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use the (α, β)-games introduced by W. M. Schmidt in 1966 to prove the
existence of real numbers, all of whose integer expansions have blocks of
zeros of bounded length. We further give several results on Diophantine
approximation on the middle third Cantor set, including a construction
of real numbers lying in this set and having a prescribed irrationality ex-
ponent. We conclude this chapter with the computation of the Hausdorff
dimension of sets of real numbers with specific digital properties.

Chapter 8 is mainly concerned with digital expansions of algebraic,
irrational real numbers ξ. We first show, following Adamczewski and
Bugeaud, that the number of distinct subblocks of n digits occurring in
the b-ary expansion of ξ, viewed as an infinite word on {0, 1, . . . , b − 1},
cannot be bounded by a constant times n. The proof combines elementary
combinatorics on words with deep tools from Diophantine approxima-
tion that are gathered in Appendix E. Next, we follow a skilful approach
of Bailey, Borwein, Crandall and Pomerance to get a lower bound for the
number of non-zero digits in the b-ary expansion of ξ. The chapter ends
with a discussion on a problem of Mahler on the digits of the integer
multiples of a given irrational real number.

In Chapter 9, we discuss analogous questions for continued fraction ex-
pansions and for β-expansions. We present the construction of a normal
continued fraction and mention several transcendence criteria for contin-
ued fractions. We survey without proof various results on β-expansions.

Chapter 10 offers a list of open questions. We hope that these will
motivate further research.

The ten chapters are completed by six appendices, which, mostly with-
out proofs, gather classical results from combinatorics on words, measure
theory, continued fractions, Diophantine approximation, among others.

The chapters are largely independent of each other.
The purpose of the exercises is primarily to give complementary re-

sults, thus many of them are an adaptation of an original research work
to which the reader is directed.

We have tried, in the end-of-chapter notes, to be as exhaustive as
possible and to quote less-known papers. Of course, exhaustivity is an
impossible task, and it is clear that the choice of the references con-
cerning works at the border of the main topic of this book reflects the
personal taste and the limits of the knowledge of the author.

There exist already many textbooks dealing, in part, with the sub-
ject of the present one, e.g., by Koksma [389], Niven [543], Salem [619],
Kuipers and Niederreiter [411], Rauzy [605], Schmidt [635], Bertin et al.
[80], Drmota and Tichy [232], Harman [335], Strauch and Porubský [678].
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However, the intersection never exceeds one or two chapters. Most of the
results presented here were proved after the year 2000 and have not yet
appeared in a book, as is also the case for many of the older results.

Many colleagues sent me comments, remarks and suggestions. I am
very grateful to all of them. Special thanks are due to Toufik Zäımi, who
very carefully read several parts of this book.

The present book will be regularly updated on my institutional web
page:
http://www-irma.u-strasbg.fr/~bugeaud/Book2.html



Frequently used notation

�x� : greatest integer ≤ x.
	·
 : smallest integer ≥ x.
�x
 : greatest integer < x.
{·} : fractional part.
‖ · ‖ : distance to the nearest integer.
positive : strictly positive.
logb : logarithm with respect to the base b; in particular, loge = log.
An empty sum is equal to 0 and an empty product is equal to 1.
T : the torus [0, 1) with 0 and 1 identified.
x, y : d-dimensional vectors with real or integral entries.
Card : the cardinality (of a finite set).
r, s: (often) two multiplicatively independent integers, which means that

r, s ≥ 2 and (log r)/(log s) is irrational.
DN : discrepancy, Ch. 1.
deg : degree of a polynomial or of an algebraic number.
Tr(α) : trace of the algebraic number α, Ch. 2.
H(α) : näıve height of the algebraic number α, App. E.
L(α), �(α) : length, reduced length of the algebraic number α, Ch. 3.
| · |p : p-adic absolute value, Ch. 2 and App. E.
(tn)n≥1, (mn)n≥1 : increasing sequence of positive real numbers, of

positive integers, Ch. 2.
Z-number, Zα(s, s + t) : Ch. 3.
b : an integer ≥ 2 (the base).
A : a finite or infinite alphabet, often equal to {0, 1, . . . , b − 1}.
(c)b, �b(c) : the word d�d�−1 . . . d1d0 on {0, 1, . . . , b− 1} representing the

positive integer c in base b, that is, such that c = d�b
� + · · ·+ d1b + d0

and d� �= 0; then, �b(c) = �.
U, V,W, . . . ,a,d : finite words.

xv



xvi Frequently used notation

a,w,x, . . . : infinite words.
a = a1a2a3 . . . : the b-ary expansion of a real number ξ, thus ξ = �ξ� +∑

k≥1 akb−k = �ξ� + 0 · a1a2 . . . , Ch. 3, 4, 6, 7 & 8.
Dio(a) : the Diophantine exponent of the word a, App. A.
t = abbabaabbaababba . . . : the Thue–Morse infinite word on {a, b},

App. A.
Ab(d,N, ξ), Ab(Dk, N, ξ) : Ch. 4.
pb(n, k) : Ch. 4.
p(·,a, b), p(·, ξ, b), p(·, ξ), p∞(·, ξ, b) : complexity function, Ch. 4, 9 & 10,

App. A.
E(a, b), E(ξ, b), E(ξ) : entropy, Ch. 4 & 9.
ξc = 0.123456789101112 . . . : the Champernowne number, Ch. 4.
N (b),N (α) : set of real numbers normal to base b, to base α, Ch. 4 & 6.
V (ξ, b), Vb(ξ) : Ch. 4 & 6.
DC(·, ξ, b), DC(·, b) : Ch. 6 & 8.
NZ(·, ξ, b), NZ(·, b) : Ch. 6 & 8.
λ : the Lebesgue measure on the real line.
λ(I) = |I| : the Lebesgue measure of an interval I.
B(x, ρ) : the open interval (x − ρ, x + ρ), Ch. 7 and App. C.
K : the middle third Cantor set, Ch. 7 and App. C.
μK : the standard measure on K, App. C.
μ : a measure (not the Lebesgue one).
μ̂ : the Fourier transform of the measure μ.
v1, vb, v

′
b, v

′
T : Ch. 7 & 9.

Λb(ξ) : Ch. 8 & 10.
TG , μG : Gauss map, Gauss measure, Ch. 9.
Tb, Tβ : Ch. 9.
Aβ(D,N, x) : Ch. 9.
D(β) : Ch. 9.
ordp(a), ord(a, ph) : App. B.
dim : Hausdorff dimension, App. C.
Hs : s-dimensional Hausdorff measure, App. C.
μ : irrationality exponent, App. E.
wn(ξ), w∗

n(ξ) : App. E.
A-, S-, T -, U -, A∗-, S∗-, T ∗-, U∗-number : App. E.



1

Distribution modulo one

In this chapter, we give a brief account of the theory of uniform distri-
bution modulo one. For complements, and for additional bibliographic
references, the reader is directed to the monographs [232, 411].

1.1 Weyl’s criterion

In the years 1909–1910 there appeared three papers by Bohl [109], Sier-
piński [653] and Weyl [731] devoted partly to the distribution of real
sequences. A few years later, Weyl [732, 733] developed the results of
these papers, giving birth to the study of uniform distribution.

Definition 1.1. The sequence (xn)n≥1 of real numbers is dense modulo
one if every interval of positive length included in [0, 1] contains at least
one element of ({xn})n≥1. The sequence (xn)n≥1 is uniformly distributed
modulo one if, for every real numbers u, v with 0 ≤ u < v ≤ 1, we have

lim
N→+∞

Card{n : 1 ≤ n ≤ N,u ≤ {xn} < v}
N

= v − u.

Weyl developed his theory and stated various criteria ensuring that a
given sequence is uniformly distributed modulo one. The last statement
of Theorem 1.2 is often referred to as ‘Weyl’s criterion’.

Theorem 1.2. The sequence (xn)n≥1 of real numbers is uniformly dis-
tributed modulo one if, and only if, for every complex-valued, 1-periodic
continuous function f we have

lim
N→+∞

1
N

N∑
n=1

f(xn) =
∫ 1

0

f(x) dx,

1



2 Distribution modulo one

that is, if, and only if,

lim
N→+∞

1
N

N∑
n=1

e2iπhxn = 0 holds for every non-zero integer h.

Proof. The first statement follows from the definition of the Riemann
integral. The second one is an immediate application of the approxima-
tion theorem of Stone–Weierstrass stating that, for the supremum norm,
finite linear combinations of functions x �→ e2iπhx, h ∈ Z, with complex
coefficients, are dense in the space of step functions.

We display an immediate application of Theorem 1.2.

Theorem 1.3. For any irrational real number α, the sequence (nα)n≥1

is uniformly distributed modulo one.

Proof. This follows from Theorem 1.2 and the inequalities

∣∣∣
N∑

n=1

e2iπhnα
∣∣∣ ≤ ∣∣∣ e2iπhNα − 1

e2iπhα − 1

∣∣∣ ≤ ∣∣∣ 2
e2iπhα − 1

∣∣∣, (1.1)

valid for every non-zero integer N and h.

Proofs of Theorem 1.3 which do not involve the exponential function
were previously given in [109, 653, 731]; see also [605].

The next result is an extension of Theorem 1.3. It was first proved by
Weyl [732, 733].

Theorem 1.4. Let P (X) = adX
d + · · ·+a1X +a0 be a real polynomial

of degree d ≥ 1. If at least one coefficient among a1, . . . , ad is irrational,
then the sequence (P (n))n≥1 is uniformly distributed modulo one.

We present a proof of Theorem 1.4 based on van der Corput’s lemma
[205]. We begin with stating and proving the van der Corput inequality.

Lemma 1.5. Let a and N be positive integers. Let u1, . . . , uN be complex
numbers and L be an integer with 1 ≤ aL ≤ N . Then we have

L2
∣∣∣

N∑
n=1

un

∣∣∣2 ≤ L
(
N + a(L − 1)

) N∑
n=1

|un|2

+ 2
(
N + a(L − 1)

)L−1∑
�=1

(L − �)Re
N−a�∑
n=1

unun+a�,

where Re denotes the real part.
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Proof. Setting un = 0 for n ≤ 0 and for n > N , we have

L

N∑
n=1

un =
N+a(L−1)∑

p=1

L−1∑
�=0

up−a�.

The Cauchy–Schwarz inequality then gives

L2
∣∣∣

N∑
n=1

un

∣∣∣2 ≤ (N + a(L − 1)
)N+a(L−1)∑

p=1

∣∣∣
L−1∑
�=0

up−a�

∣∣∣2

=
(
N + a(L − 1)

)N+a(L−1)∑
p=1

( L−1∑
�=0

up−a�

)(L−1∑
j=0

up−aj

)

=
(
N + a(L − 1)

)N+a(L−1)∑
p=1

L−1∑
�=0

|up−a�|2

+ 2
(
N + a(L − 1)

)
Re

N+a(L−1)∑
p=1

L−1∑
�=1

�−1∑
j=0

up−a�up−aj

= L
(
N + a(L − 1)

) N∑
n=1

|un|2 + 2
(
N + a(L − 1)

)
Σ1,

where we have set

Σ1 := Re
N+a(L−1)∑

p=1

L−1∑
�=1

up−a�(up + · · · + up−a(�−1)).

We check that, for � = 1, . . . , L − 1 and p = a� + 1, . . . , N , the product
up−a�up occurs exactly L−� times in the latter double sum. This proves
the lemma.

Lemma 1.5 is the key tool for the proof of the next theorem of Korobov
and Postnikov [403], which generalizes a fundamental result of van der
Corput [205] treating the case a = b = 1.

Theorem 1.6. Let (xn)n≥1 be a given sequence of real numbers. Let
a and b be positive integers. If for every positive integer � the sequence
(xn+a� − xn)n≥1 is uniformly distributed modulo one, then (xbn)n≥1 is
uniformly distributed modulo one.

Proof. Let h be a non-zero integer. Let N be a positive integer and
observe that

N∑
n=1

e2iπhxbn =
1
b

b∑
j=1

bN∑
n=1

e2iπhxn e2iπ(jn/b), (1.2)
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thus,

∣∣∣
N∑

n=1

e2iπhxbn

∣∣∣ ≤ max
1≤j≤b

∣∣∣
bN∑
n=1

e2iπhxn e2iπ(jn/b)
∣∣∣.

Let j = 1, . . . , b. Fix a positive integer L and assume that N exceeds aL.
We apply Lemma 1.5 with un = e2iπ(hxn+jn/b) to obtain, after division
by b2L2N2, that

∣∣∣ 1
bN

bN∑
n=1

e2iπ(hxn+jn/b)
∣∣∣2 ≤ bN + a(L − 1)

bLN

+ 2
L−1∑
�=1

(bN + a(L − 1))(L − �)(bN − a�)
b2L2N2

×
∣∣∣ 1
bN − a�

bN−�∑
n=1

e2iπ(h(xn+a�−xn)−ja�/b)
∣∣∣.

Let � be a positive integer. Since the sequence (xn+a� − xn)n≥1 is uni-
formly distributed modulo one, we get by Theorem 1.2 that

lim
N→+∞

1
bN − aL

bN−a�∑
n=1

e2iπh(xn+a�−xn) = 0,

which implies that

lim sup
N→+∞

∣∣∣ 1
bN

bN∑
n=1

e2iπ(hxn+jn/b)
∣∣∣2 ≤ 1

L
·

Since the latter inequality is true for any arbitrary L and j = 1, . . . , b,
we get from (1.2) that

lim
N→+∞

∣∣∣ 1
N

N∑
n=1

e2iπhxbn

∣∣∣ = 0,

and it follows from Weyl’s criterion (Theorem 1.2) that (xbn)n≥1 is uni-
formly distributed modulo one.

Proof of Theorem 1.4. The case d = 1 reduces to Theorem 1.3.
Assume that d ≥ 2 and that a2, . . . , ad are all rational numbers. Set
R(X) = P (X) − a1X − a0. Let D be a positive integer such that
Da2, . . . , Dad are integers. Observe that {R(Dk+t)} = {R(t)} for k ≥ 0
and t ≥ 1. Consequently, for every non-zero integer h, we have
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1
N

N∑
n=1

e2iπhP (n) =
1
N

N∑
n=�N/D	D+1

e2iπhP (n)

+
1
N

D∑
t=1

�N/D	−1∑
k=0

e2iπh(R(Dk+t)+a1(Dk+t)+a0)

=
1
N

N∑
n=�N/D	D+1

e2iπhP (n)

+
( D∑

t=1

e2iπh(R(t)+a1t+a0)
)
·
( 1

N

�N/D	−1∑
k=0

e2iπha1Dk
)
.

(1.3)

Since a1 is irrational, arguing as in the proof of Theorem 1.3, we get that
the last sum is bounded. Consequently, the left-hand side of (1.3) tends
to 0 as N tends to infinity. By Theorem 1.2, this proves that (P (n))n≥1

is uniformly distributed modulo one.
To complete the proof for an arbitrary polynomial

P (X) = adX
d + · · · + a1X + a0,

we proceed by induction on the largest index � such that a� is irrational.
We have already established the case � = 1. Let P (X) be a real polyno-
mial of degree d ≥ 2 and assume that the largest index � such that a� is
irrational satisfies � ≥ 2. Let h be a positive integer and set

Qh(X) = P (X + h) − P (X)

= ad

(
(X + h)d − Xd

)
+ · · · + a�

(
(X + h)� − X�

)
+ · · · + a1h.

The coefficients of Xd−1, . . . , X� in Qh(X) are rational numbers, but
the coefficient of X�−1 is irrational. Applying the inductive assumption
shows that (Qh(n))n≥1 is uniformly distributed modulo one. It then
follows from Theorem 1.6 applied with a = b = 1 that (P (n))n≥1 is
uniformly distributed modulo one.

1.2 Metrical results

In this section, we present several metrical statements on the distribution
of sequences of real numbers.

Theorem 1.7. Let (xn)n≥1 be a sequence of real numbers satisfying

lim inf
n→+∞(xn+1 − xn) > 0.



6 Distribution modulo one

Then, for almost all real numbers ξ, the sequence (ξxn)n≥1 is uniformly
distributed modulo one.

We establish Theorem 1.7, proved by Weyl [733], by means of an
auxiliary lemma of Davenport, Erdős and LeVeque [216].

Lemma 1.8. Let S be a set and μ a measure on S. Let (Xn)n≥1 be a
bounded sequence of measurable functions defined on S. If the series

∑
N≥1

1
N

∫
S

∣∣∣ 1
N

∑
1≤n≤N

Xn

∣∣∣2 dμ

converges, then μ-almost all elements s of S satisfy

lim
N→+∞

1
N

∑
1≤n≤N

Xn(s) = 0.

Proof. For a positive real number ε < 1
2

and a positive integer N , set

AN (ε) :=
{

s ∈ S :
∣∣∣ 1
N

∑
1≤n≤N

Xn(s)
∣∣∣ ≥ ε

}
.

Since

ε2μ(AN (ε)) ≤
∫

S

∣∣∣ 1
N

∑
1≤n≤N

Xn

∣∣∣2 dμ,

the assumption implies that the series
∑
N≥1

μ(AN (ε))
N

converges. Set N1 = 1 and

Nk+1 =
⌈
Nk/(1 − ε)

⌉
+ 1, for k ≥ 1.

For any positive integer k, let Mk be an integer satisfying

Nk ≤ Mk < Nk+1,
μ(AMk

(ε))
Mk

= min
Nk≤N<Nk+1

μ(AN (ε))
N

·

We deduce from
∑

Nk≤N<Nk+1

μ(AN (ε))
N

≥ (Nk+1 − Nk)
μ(AMk

(ε))
Mk

≥ εμ
(
AMk

(ε)
)

that the series ∑
k≥1

μ
(
AMk

(ε)
)
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converges. Lemma C.1 then implies that μ-almost all elements of S be-
long to only finitely many sets AMk

(ε). This means that, for μ-almost
all elements s of S, we have

∣∣∣ 1
Mk

∑
1≤n≤Mk

Xn(s)
∣∣∣ < ε,

as soon as k is sufficiently large.
Let s be in S and N be a positive integer. Let k be the unique integer

defined by the inequalities Nk ≤ N < Nk+1. Let c be a common upper
bound for all the functions |Xn|. Since

1
N

∑
1≤n≤N

Xn(s) − 1
Mk

∑
1≤n≤Mk

Xn(s)

=
1
N

( ∑
1≤n≤N

Xn(s) −
∑

1≤n≤Mk

Xn(s)
)

+
( 1

N
− 1

Mk

) ∑
1≤n≤Mk

Xn(s),

we get that

∣∣∣ 1
N

∑
1≤n≤N

Xn(s) − 1
Mk

∑
1≤n≤Mk

Xn(s)
∣∣∣ ≤ 2c

Nk+1 − Nk

Nk

≤ 2cε

1 − ε
+

4c

Nk
≤ 5cε,

if k is large enough. Consequently, for μ-almost all elements s of S, we
have

∣∣∣ 1
N

∑
1≤n≤N

Xn(s)
∣∣∣ < (1 + 5c)ε,

as soon as N is sufficiently large. This proves the lemma.

Proof of Theorem 1.7. Let a, b be real numbers with a < b. Let h

be a non-zero integer. Without any loss of generality, we assume that
there exists a positive real number c such that xn+1 − xn ≥ c for n ≥ 1.
Since, for any integer N ≥ 3, we have
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∫ b

a

∣∣∣ 1
N

N∑
n=1

e2iπhξxn

∣∣∣2 dξ ≤ b − a

N
+

1
N2

∫ b

a

N∑
n=1

n−1∑
m=1

e2iπhξ(xn−xm) dξ

≤ b − a

N
+

1
N2

·
N∑

n=1

n−1∑
m=1

1
π|h|(xn − xm)

≤ b − a

N
+

1
N2

·
N∑

n=1

n−1∑
m=1

1
π|h|(n − m)c

≤ b − a

N
+

1
π|h|cN2

·
(
N +

N

2
+ · · · + N

N − 1

)

≤ b − a

N
+

2 log N

π|h|cN
,

it follows that the series

∑
N≥1

1
N

∫ b

a

∣∣∣ 1
N

N∑
n=1

e2iπhξxn

∣∣∣2 dξ

converges. We then deduce from Lemma 1.8 and the Weyl criterion (The-
orem 1.2) that (ξxn)n≥1 is uniformly distributed modulo one for almost
all ξ in [a, b]. This completes the proof of the theorem.

We display an immediate consequence of Theorem 1.7.

Corollary 1.9. Let α be a real number greater than 1. Then, for
almost all real numbers ξ, the sequence (ξαn)n≥1 is uniformly distributed
modulo one.

We complement this corollary by a metrical result of Koksma [388].

Theorem 1.10. Let ξ be a non-zero real number. Then, for almost
all real numbers α greater than 1, the sequence (ξαn)n≥1 is uniformly
distributed modulo one.

Proof. Let a, b,m, n be integers with 1 ≤ a < b and 1 ≤ m < n. Let h

be a non-zero integer and set

Ih,m,n =
∫ b

a

e2iπhξ(αn−αm) dα.

The function Φ : x �→ xn − xm is strictly increasing on [a, b], and let Ψ
be its reciprocal function. Observe that

Ih,m,n =
∫ bn−bm

an−am

e2iπhξuΨ′(u) du,



1.3 Discrepancy 9

where, for u ∈ [an − am, bn − bm],

Ψ′(u) =
1

nΨ(u)n−1 − mΨ(u)m−1
≤ 1

n − m
· (1.4)

Since Ψ′ is positive, decreasing on [an − am, bn − bm], we get from (1.4)
and the extended mean value theorem that there exists c in the interval
[an − am, bn − bm] such that

|Ih,m,n| = Ψ′(an − am)
∣∣∣
∫ c

a

e2iπhξu du
∣∣∣ ≤ 1

πhξ(n − m)
·

For a positive integer N , we then have

IN :=
∫ b

a

∣∣∣ 1
N

N∑
n=1

e2iπhξαn
∣∣∣2 dα ≤ b − a

N
+

2
N2

∣∣∣ ∑
1≤m<n≤N

Ih,m,n

∣∣∣

≤ b − a

N
+

3
πhξ

· log N

N
·

Thus, the sum of IN/N over the positive integers N converges, and we
deduce from Lemma 1.8 that

lim
N→+∞

1
N

∑
1≤n≤N

e2iπhξαn

= 0, for almost all α ∈ [a, b].

The theorem follows from Weyl’s criterion (Theorem 1.2).

Consequently, the sequence (ξαn)n≥1 is uniformly distributed modulo
one for almost all real pairs (ξ, α) with α > 1 and ξ in R.

1.3 Discrepancy

In the first sections of this chapter, we have considered uniform dis-
tribution from a qualitative point of view and were merely interested
in deciding whether a given sequence is or is not uniformly distributed
modulo one. However, a quick look at several sequences shows that the
rate of convergence in Definition 1.1 can vary greatly. To measure the
deviation of a uniformly distributed sequence from an ‘ideal’ distribu-
tion, the notion of discrepancy was introduced. According to [411], the
first paper in which this concept is studied in its own right was published
in 1936 by Bergström [76]. However, investigations for several uniformly
distributed sequences had been carried out earlier. The first extensive
study of discrepancy was undertaken in 1939 by van der Corput and
Pisot [206].
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Here, we content ourselves to state the definition and some basic re-
sults. The interested reader is directed to the monographs [232, 411].

Definition 1.11. Let N be a positive integer. Let x1, . . . , xN be real
numbers. The number

DN (x1, . . . , xN )

:= sup
0≤u<v≤1

∣∣∣Card{n : 1 ≤ n ≤ N,u ≤ {xn} < v}
N

− (v − u)
∣∣∣

is called the discrepancy of x1, . . . , xN . For an infinite sequence x of real
numbers, the discrepancy DN (x) is the discrepancy of the first N terms
of x.

The concept of discrepancy gives a natural criterion to decide whether
or not a given sequence is uniformly distributed modulo one, whose proof
is left as an exercise.

Theorem 1.12. The sequence x is uniformly distributed modulo one if,
and only if, limN→+∞ DN (x) = 0.

The discrepancy of a real sequence x cannot be too small and it sat-
isfies

1
N

≤ DN (x) ≤ 1 (N ≥ 1). (1.5)

The left-hand side inequality of (1.5) can be considerably improved for
arbitrarily large values of N , as was proved by W. M. Schmidt [634].

Theorem 1.13. For any infinite sequence x of real numbers, there are
arbitrarily large integers N such that

DN (x) ≥ log N

25N
.

Theorem 1.13 was proved in [634] with 25 replaced by a larger numer-
ical constant; see [232, 411] for a proof. The van der Corput sequence v,
defined below, shows that Theorem 1.13 is best possible up to the
numerical constant 25. Indeed, for n ≥ 1, let n − 1 =

∑m
j=0 aj2j be

the representation of n − 1 in base 2 and set

vn :=
m∑

j=0

aj2−j−1.
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The sequence v = (vn)n≥1 is then contained in the unit interval and its
discrepancy satisfies

DN (v) ≤ log(N + 1)
(log 2)N

(N ≥ 1). (1.6)

The special case of the sequence (nα)n≥1 has been thoroughly studied;
see [232, Section 1.4] and the references given therein. The discrepancy
of many sequences x of real numbers satisfies

DN (x) = O
(
N−1/2(log log N)1/2

)
;

see [232, 411].

1.4 Distribution functions

For the sake of completeness, we briefly give the definition of a distribu-
tion function, following [411].

Definition 1.14. A distribution function f is any non-decreasing func-
tion which satisfies f(0) = 0 and f(1) = 1 and maps the unit interval
into itself. Let (xn)n≥1 be a sequence of points in the unit interval and
f a distribution function. We say that (xn)n≥1 has f as its asymptotic
distribution function if, for every a in [0, 1], we have

lim
N→+∞

1
N

N∑
n=1

χ[0,a](xn) = f(a),

where χ[0,a] is the characteristic function of the interval [0, a]. If the
indicated limit fails to exist for some a, then the sequence (xn)n≥1 does
not have an asymptotic distribution function.

If the sequence (xn)n≥1 has the function f(x) = x as its asymptotic
distribution function, then it is uniformly distributed modulo one. The
converse is obviously true.

Definition 1.15. If (xn)n≥1 is a sequence of points in the unit interval
and f is a distribution function, we say that f is a distribution function
of (xn)n≥1 if there exists an increasing sequence N1, N2, . . . of positive
integers such that, for every a in [0, 1], we have

lim
j→+∞

1
Nj

Nj∑
n=1

χ[0,a](xn) = f(a).
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Any sequence (xn)n≥1 of points in the unit interval has at least one
distribution function.

1.5 The multidimensional case

The definition of uniform distribution modulo one for real sequences
extends in a natural way to sequences in Rd, by replacing intervals [u, v)
by d-dimensional parallelepipeds.

Definition 1.16. The sequence (xn)n≥1 = ((xn,1, . . . , xn,d))n≥1 of ele-
ments of Rd is said to be uniformly distributed modulo one if, for every
real number u1, . . . , ud, v1, . . . , vd with 0 ≤ uj < vj ≤ 1 for j = 1, . . . , d,
we have

lim
N→+∞

Card{n : 1 ≤ n ≤ N,uj ≤ {xn,j} < vj for j = 1, . . . , d}
N

=
d∏

j=1

(vj − uj).

The scalar product of the d-dimensional real vectors x = (x1, . . . , xd)
and y = (y1, . . . , yd) is

〈x, y〉 = x1y1 + · · · + xdyd.

Theorem 1.17 extends Theorem 1.2 and its proof is similar to that of
Theorem 1.2; see e.g. [232].

Theorem 1.17. The sequence (xn)n≥1 of elements of Rd is uniformly
distributed modulo one if, and only if, for every complex-valued, 1-perio-
dic continuous function f defined on Rd we have

lim
N→+∞

1
N

N∑
n=1

f(xn) =
∫

[0,1]d
f(x) dx,

that is, if, and only if, for every non-zero integer vector h, one has

lim
N→+∞

1
N

N∑
n=1

e2iπ〈h,x
n
〉 = 0.

As an easy application of Theorem 1.17, Weyl [733] obtained a new
proof (and a strengthening) of Kronecker’s approximation theorem.

Theorem 1.18. Let α1, . . . , αd be real numbers such that 1, α1, . . . , αd

are linearly independent over the field of rational numbers. Then, the



1.5 The multidimensional case 13

sequence (nα1, . . . , nαd)n≥1 is uniformly distributed (thus, in particular,
dense) modulo one.

Proof. Our assumption implies that, for every non-zero integer vector
(h1, . . . , hd), the real number α := h1α1 + · · · + hdαd is irrational. We
conclude by applying Theorem 1.17 and using (1.1) with h = 1.

For later use, we display the following easy result.

Theorem 1.19. Let (xn)n≥1 = ((xn,1, . . . , xn,d))n≥1 be a sequence of
elements of Rd which is uniformly distributed modulo one. Let φ be a
1-periodic, continuous, real function. Then, the sequence

(
φ(xn,1) + · · · + φ(xn,d)

)
n≥1

is uniformly distributed modulo one if, and only if,

∫ 1

0

e2iπhφ(x) dx = 0

holds for every non-zero integer h.

Proof. Since (xn)n≥1 is uniformly distributed modulo one and the
function φ is continuous, we get from Theorem 1.17 that

lim
N→+∞

1
N

N∑
n=1

e2iπh(φ(xn,1)+···+φ(xn,d)) =
(∫ 1

0

e2iπhφ(x) dx
)d

holds for every non-zero integer h. We conclude by using Theorem 1.2.

We end this section by the definition of complete uniform distribution,
a notion introduced by Korobov [396].

Definition 1.20. The sequence (xn)n≥1 of real numbers is completely
uniformly distributed modulo one if, for every d ≥ 1, the d-dimensional
sequence ((xn+1, . . . , xn+d))n≥1 is uniformly distributed modulo one.

Constructions of completely uniformly distributed sequences are given
in [396, 399, 426, 661, 662]; see also the survey [583] and the monograph
[402]. Franklin [312] established that, for almost all real numbers α > 1,
the sequence (αn)n≥1 is completely uniformly distributed.
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1.6 Exercises

Exercise 1.1. Let (xn)n≥1 be a sequence uniformly distributed modulo
one. Let (yn)n≥1 be a converging sequence of real numbers. Prove that
the sequence (xn + yn)n≥1 is uniformly distributed modulo one.

Exercise 1.2. Let α be a real number smaller than −1. Prove that, for
almost all real numbers ξ, the sequence (ξαn)n≥1 is uniformly distributed
modulo one.

Exercise 1.3. Prove Theorem 1.12.

Exercise 1.4. Prove (1.5) and (1.6).

1.7 Notes

� Theorem 1.18 was originally proved by Kronecker [410]; see [389,
p. 83] for further references and [334] for alternative proofs.

� It follows from the pointwise ergodic theorem and the ergodicity
of the multiplication by an integer b ≥ 2 in the torus that for almost all
positive real numbers ξ the sequence (ξbn)n≥1 is uniformly distributed
modulo one; see e.g. [726] and Section C.4.
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On the fractional parts of powers of
real numbers

We established in the previous chapter several metrical statements on
the distribution modulo one of sequences (ξαn)n≥1. However, very little
is known for given real numbers ξ and α. This chapter and the next one
are mainly concerned with the following general questions.

(Hardy, 1919) Do there exist a transcendental real number α > 1 and
a non-zero real number ξ such that ||ξαn|| tends to 0 as n tends to
infinity?

(Mahler, 1968) Given a real number α > 1 and an interval [s, s +
t) included in [0, 1), is there a non-zero real number ξ such that s ≤
{ξαn} < s + t for all integers n ≥ 0? What is the smallest possible t for
which such a ξ does exist?

The second of these questions was asked by Mahler in the particular
case where α = 3/2 and [s, s + t) = [0, 1/2).

Section 2.1 is devoted to classical results of Pisot and of Vijayaragha-
van, which are also presented in Salem’s monograph [619] and in [80].
In the next two sections, we investigate the set of pairs (ξ, α) for which
the sequence ({ξαn})n≥1 avoids an interval of positive length included
in [0, 1]. Among other results, we show in Section 2.3 that, however close
to 1 the real number α > 1 can be, there always exist non-zero real num-
bers ξ such that the sequence ({ξαn})n≥1 enjoys the latter property. The
situation is opposite for the sequence ({ξ2m3n})m,n≥0, which is dense in
[0, 1] for every irrational number ξ, by a celebrated result of Furstenberg
presented in Section 2.5. We conclude this chapter with a few words on
a conjecture of de Mathan and Teulié, also called the mixed Littlewood
conjecture.

2.1 Thue, Hardy, Pisot and Vijayaraghavan

Let α > 1 and ξ �= 0 be real numbers. In 1912, Thue [686] proved
that if there exist real numbers C and ρ with 0 < ρ < 1 such that

15



16 On the fractional parts of powers of real numbers

||ξαn|| < Cρn for every n ≥ 1, then α must be an algebraic number. His
proof rests on a clever application of the Schubfachprinzip; see Exercise
2.1. The same result was stated without proof by Hardy [333, Theorem
C], who wrote that this is a special case of a theorem of Borel [113]. In
addition, Hardy established that α must be an algebraic integer (that
is, an algebraic number whose minimal defining polynomial over Z is
monic), all of whose Galois conjugates (except α itself) are lying in
the open unit disc. Hardy’s result was independently rediscovered by
Pisot [563], who was not aware of Thue’s and Hardy’s works. It was
subsequently considerably improved by Pisot [564, 565] in 1937.

Theorem 2.1. Let α > 1 and ξ �= 0 be real numbers such that
∑
n≥0

||ξαn||2 converges. (2.1)

Then, α is an algebraic integer and all its Galois conjugates (except α

itself) are lying in the open unit disc. Furthermore, ξ lies in the number
field Q(α).

Before giving the proof of Theorem 2.1, we state a very useful auxiliary
lemma. Throughout this section, we need several results on recurrence
sequences gathered in Appendix F.

Lemma 2.2. Let α > 1 and ξ �= 0 be real numbers. For n ≥ 0, write
ξαn = an + εn, where an is an integer and |εn| ≤ 1/2. Assume that
there is a non-negative integer n0 such that the sequence (an)n≥n0 is a
recurrence sequence. Then, α is an algebraic integer all of whose Galois
conjugates (except α itself) are lying in the closed unit disc and ξ is
an element of Q(α). If, furthermore, the minimal defining polynomial
Q(X) = Xd + qd−1X

d−1 + · · · + q1X + q0 of α over Z satisfies q0an +
· · · + qd−1an+d−1 + an+d = 0 for n ≥ n0 and if

lim sup
n→+∞

|εn| <
minσ |σ(ξQ′(α))|

2dα
, (2.2)

where the minimum is taken over all the Galois embeddings σ �= Id of
Q(α) into C, then α has no Galois conjugates on the unit circle.

In view of Theorem 3.9, we cannot remove the dependence on ξ

in (2.2).

Proof. Since (an)n≥n0 is a recurrence sequence of integers, it fol-
lows from a lemma of Fatou [300] (see Theorem F.2) that there are
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coprime polynomials U(X) and V (X) with integer coefficients such that
V (0) = 1 and

∑
n≥n0

anzn =
zn0U(z)

V (z)
.

Writing V (X) = 1 + vk−1X + · · · + v0X
k, we have

f(z) :=
∑

n≥n0

εnzn =
∑

n≥n0

ξαnzn −
∑

n≥n0

anzn

=
ξαn0zn0

1 − αz
− zn0U(z)

1 + vk−1z + · · · + v0zk
.

Since the radius of convergence of f is at least equal to 1, the polynomial
V (X) has only one root in the open unit disc, namely 1/α. Consequently,
the reciprocal polynomial XkV (1/X) = Xk + vk−1X

k−1 + · · · + v0 has
a single root, namely α, with modulus greater than 1, all its other roots
being in the closed unit disc. The computation of the residue of f at
1/α shows that ξαn0 = −αU(1/α)/V ′(1/α), in particular we get that ξ

is in Q(α).
We establish the last assertion of the lemma. Let α = α1, α2, . . . , αd

denote the Galois conjugates of α and define the algebraic integers
δ0, . . . , δd−2 by

S(X) := (X −α)(X −α2) · · · (X −αd−1) = Xd−1 + δd−2X
d−2 + · · ·+ δ0.

Our assumption implies that k = d and Q(X) = XdV (1/X). It then
follows from the partial fraction decomposition of f(z) that

an = ξαn + ξ2α
n
2 + · · · + ξdα

n
d , for n ≥ n0,

where ξ2, . . . , ξd are the respective Galois conjugates of ξ. Let ε be a
positive real number and n1 be an integer exceeding n0 and such that
|εn| ≤ ε for every n ≥ n1. We then combine S(α) = S(α2) = · · · =
S(αd−1) = 0 with the fact that every Galois conjugate of α has modulus
at most 1 to deduce from the equality

ξαnS(α) − (εn+d−1 + δd−2εn+d−2 + · · · + δ0εn)

= ξαnS(α) + ξ2α
n
2S(α2) + · · · + ξdα

n
dS(αd),

that

|ξdα
n
dS(αd)| = |εn+d−1 + δd−2εn+d−2 + · · · + δ0εn|

≤ ε(1 + |δ0| + · · · + |δd−2|) ≤ ε2dα,
(2.3)
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for every n ≥ n1. With ε smaller than the right-hand side of (2.2), we
get from (2.3) that |αn

d | < 1 for every large n, since Q′(αd) = S(αd). The
same holds for all the other Galois conjugates of α, except α itself. Con-
sequently, none of the Galois conjugates of α lies on the unit circle.

Proof of Theorem 2.1. For n ≥ 0, write ξαn = an+εn, where an is
a rational integer (sometimes, we use the terminology rational integer,
rather than integer, to denote an element of Z) and |εn| ≤ 1/2, and
consider the Hankel determinant

Δn =

∣∣∣∣∣∣∣∣

a0 a1 . . . an

a1 a2 . . . an+1

. . . . . . . . . . . .

an an+1 . . . a2n

∣∣∣∣∣∣∣∣
.

For m ≥ 1, set

ηm = am − αam−1 = αεm−1 − εm,

and observe that

Δn =

∣∣∣∣∣∣∣∣

a0 η1 . . . ηn

a1 η2 . . . ηn+1

. . . . . . . . . . . .

an ηn+1 . . . η2n

∣∣∣∣∣∣∣∣
. (2.4)

We get from the definition of ηm that

η2
m ≤ (α + 1)2(ε2

m−1 + ε2
m),

and the assumption (2.1) implies that
∑

n≥1 η2
n converges. For h ≥ 1, set

Rh =
∑

n≥h η2
n. Bounding |Δn| by means of the Hadamard inequality,

we derive from (2.4) that

Δ2
n ≤

( n∑
m=0

a2
m

)(n+1∑
m=1

η2
m

)
. . .
( 2n∑

m=n

η2
m

)

≤ Cα2nR1 . . . Rn ≤ C

n∏
h=1

(α2Rh),

for a positive real number C depending only on ξ and α. Since Δn is
a rational integer and α2Rh tends to zero as h tends to infinity, the
Hankel determinant Δn is equal to 0 for every large integer n, say for
n ≥ n0. Theorem F.3 then implies that the sequence (an)n≥n0 is a
recurrence sequence of integers. By Lemma 2.2 we first deduce that α is



2.1 Thue, Hardy, Pisot and Vijayaraghavan 19

an algebraic integer. Let Xd + qd−1X
d−1 + · · · + q0 denote its minimal

polynomial over Z. Then, for n ≥ 0, we have

0 = ξ(αn+d + qd−1α
n+d−1 + · · · + q0α

n)

= an+d + qd−1an+d−1 + · · · + q0an

+ (εn+d + qd−1εn+d−1 + · · · + q0εn).

(2.5)

Since
∑

n≥0 ε2
n converges, we have limn→+∞ εn = 0 and

|εn+d + qd−1εn+d−1 + · · · + q0εn| < 1

for every sufficiently large integer n. We thus get from (2.5) that an+d +
qd−1an+d−1 + · · · + q0an = 0 for every sufficiently large integer n and,
since (2.2) is satisfied, the theorem is then a direct consequence of the
last assertion of Lemma 2.2.

Gelfond [319] proved that Pisot’s assumption (2.1) can be replaced by
an inequality of the type

lim sup
n→+∞

√
n ||ξαn|| ≤ c, (2.6)

for a suitable positive constant c; see Exercise 2.2. Decomps-Guilloux
and Grandet-Hugot [224] showed that one can take c = 1/(2

√
2(1+α)2).

This was improved by Hata [337] to c = 0.9026/α2.
Let α be a real algebraic integer of degree d ≥ 1, with Galois conju-

gates α = α1, α2, . . ., αd corresponding respectively to the embeddings
σ1, σ2, . . . , σd of the field Q(α) into C. Let Xd+qd−1X

d−1+· · ·+q1X+q0

be its minimal defining polynomial over the integers. Let ξ be an alge-
braic number in the field Q(α) and N a non-negative integer such that
the traces (recall that the trace Tr(η) of an algebraic number η in Q(α)
is the sum σ1(η) + · · · + σd(η))

Tr(ξαN ),Tr(ξαN+1), . . . ,Tr(ξαN+d−1)

are all rational integers. Using the linearity of the trace function, we see
that, for every integer n ≥ N + d, we have

0 = Tr(ξαn−d(αd + qd−1α
d−1 + · · · + q1α + q0))

= Tr(ξαn) + qd−1Tr(ξαn−1) + · · · + q0Tr(ξαn−d).

By induction, we derive that, for every n ≥ N , the trace of ξαn is a
rational integer and

||ξαn|| ≤ |ξαn − Tr(ξαn)| ≤ |σ2(ξ)αn
2 | + · · · + |σd(ξ)αn

d |.
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Consequently, if we assume that α2, . . . , αd are all lying in the open unit
disc, we deduce that

lim
n→+∞ ||ξαn|| = 0. (2.7)

This observation and Lemma 2.2 motivate the following definitions.

Definition 2.3. A Pisot number is a real algebraic integer α greater
than 1 all of whose Galois conjugates, except α itself, have their modulus
strictly smaller than 1.

Definition 2.4. A Salem number is a real algebraic integer α greater
than 1 all of whose Galois conjugates, except α itself, have their modulus
at most equal to 1, one at least having a modulus equal to 1.

We claim that if α is a Salem number, then 1/α is a Galois conjugate of
α and all its other Galois conjugates are lying on the unit circle. Indeed,
by definition, α has a Galois conjugate, say β, on the unit circle. Hence,
β−1, the complex conjugate of β, is also a root of the minimal defining
polynomial Q(X) of α over Z. This shows that Q(X) = XdQ(1/X),
where d is the degree of Q(X), and proves the claim.

Pisot [564] used the terminology ‘nombre ρ’ (literally, ρ-number) to
denote algebraic integers whose Galois conjugates are all in the open unit
disc. Vijayaraghavan [708] denoted by S the set of these numbers and
proved that S contains algebraic integers of every degree, a result which
was independently established in [686]. These numbers were previously
considered by Thue [686] and by Hardy [333] and are usually termed
‘Pisot–Vijayaraghavan numbers’, or ‘PV-numbers’, or ‘S numbers’ (do
not confuse these with one of the four classes in Mahler’s classification re-
called in Definition E.13), or ‘Pisot numbers’. Perhaps, it would be more
accurate to speak of ‘Thue–Hardy–Pisot–Vijayaraghavan numbers’. . .

The strategy for proving Theorem 2.1 was firstly to establish that
α is algebraic and, secondly, to get precise information on its Galois
conjugates. It is reasonable to think that the assumption in Theorem
2.1 could be relaxed if α is assumed to be algebraic. This is indeed the
case. Theorem 2.5 below shows that (2.7) does not hold if α is algebraic
but not Pisot. This was proved by Hardy [333] and reproved by Pisot
[565], independently; see also [607, 708]. The weaker assumption in the
last assertion of Theorem 2.5 comes from Vijayaraghavan’s paper [708];
see also [566].

Theorem 2.5. Let α > 1 be an algebraic number and ξ be a non-zero
real number such that
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lim
n→+∞ ||ξαn|| = 0.

Then, α is a Pisot number and ξ lies in the field Q(α). The same con-
clusion holds if the sequence ({ξαn})n≥1 has only finitely many limit
points.

Proof. Let qdX
d + · · · + q1X + q0 be the minimal defining poly-

nomial of α over the integers. Let ε be a positive real number with
0 < ε < 1/(|q0| + · · · + |qd|). Assume that the sequence ({ξαn})n≥1 has
only finitely many limit points, denoted by ζ1, . . . , ζr. By Theorem 1.18,
there exists a positive integer q such that ||qζi|| < ε/2 for i = 1, . . . , r.
Consequently, there exists n0 such that, for every n ≥ n0, we have
||qξαn|| ≤ ε.

Let n ≥ n0 be an integer. Write qξαn = an+εn, where an is a rational
integer and |εn| ≤ ε. Since

qξαn(q0 + q1α + · · · + qdα
d) = 0,

we get

|q0an + q1an+1 + · · · + qdan+d| = |q0εn + q1εn+1 + · · · + qdεn+d|
≤ ε(|q0| + · · · + |qd|) < 1,

and, as the left-hand side of the latter inequality is a rational integer,
we deduce that

q0an + q1an+1 + · · · + qdan+d = 0.

Consequently, the sequence (an)n≥n0 is a linear recurrence sequence and
we apply the first assertion of Lemma 2.2 to conclude that α is a Pisot
or a Salem number, and ξ lies in the field Q(α). Furthermore, the last
assertion of Lemma 2.2 implies that, by choosing ε sufficiently small, we
get the stronger conclusion that α is a Pisot number.

We display an immediate consequence of Theorem 2.5.

Corollary 2.6. Let ξ be a non-zero real number. Let p and q be co-
prime integers satisfying p > q ≥ 2. Then the sequence ({ξ(p/q)n})n≥1

has infinitely many limit points.

Corollary 2.6 for ξ = 1 has been established independently by Pisot
[565], Vijayaraghavan [707] and Rédei [606]; see Exercise 2.5. An alter-
native proof of Corollary 2.6 can be found in [237]; see also [708].

In the course of the proof of Theorem 2.5, we have established the
following statement, which was noticed by Pisot [565].
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Theorem 2.7. Let α > 1 be an algebraic number and ξ be a non-zero
real number. Let qdX

d+· · ·+q1X+q0 be the minimal defining polynomial
of α over the integers. If

lim sup
n→+∞

||ξαn|| <
1

|q0| + · · · + |qd| , (2.8)

then α is either a Pisot or a Salem number, and ξ lies in the field Q(α).

Refinements of Theorem 2.7 are given in Section 3.5.

2.2 On some exceptional pairs (ξ, α)

Following Pisot [564], we show that there are few pairs (ξ, α) such that
||ξαn|| tends to 0 as n tends to infinity.

Theorem 2.8. There are only countably many pairs (ξ, α) of real num-
bers such that ξ �= 0, α > 1, and

lim sup
n→+∞

||ξαn|| <
1

2(1 + α)2
. (2.9)

Proof. Let ξ �= 0 and α > 1 be real numbers. For n ≥ 1, write

ξαn = an + εn,

where |εn| ≤ 1/2 and an is an integer. If (2.9) holds, then there exist
an integer n0 and a positive real number ε with 2(1 + α)2ε < 1 and
|εn| < ε for every n ≥ n0. Since, for n ≥ n0, we have

an+2 −
a2

n+1

an
=

εnεn+2 − ε2
n+1

an
− ξαn

an
(εn+2 − 2εn+1α + εnα2),

it follows that

lim sup
n→+∞

∣∣∣an+2 −
a2

n+1

an

∣∣∣ ≤ ε(1 + 2α + α2) <
1
2
.

Consequently, there exists an integer n1 such that |an+2 − a2
n+1/an| <

1/2 for n ≥ n1. This implies that an+2 is the nearest integer to a2
n+1/an

for n ≥ n1.
Let then Φ be the map which associates to every pair (ξ, α), with

ξ �= 0, α > 1 and such that (2.9) holds, the triple (m, v,w) of integers,
where m is the smallest integer for which |an+2 − a2

n+1/an| < 1/2 for
n ≥ m, and where (v, w) = (am, am+1). It remains for us to prove that
Φ is injective. To do this, let (m, v,w) be a given triple of integers and
assume that (m, v,w) = Φ(ξ, α) for some ξ �= 0 and α > 1. There exists
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exactly one sequence (a′
n)n≥m of integers satisfying (v, w) = (a′

m, a′
m+1),

and |a′
n+2 − a′2

n+1/a′
n| < 1/2 for n ≥ m. This sequence coincides with

the sequence (an)n≥m defined as above. It is thus uniquely determined
by (m, v,w), and we have

α = lim
n→+∞

a′
n+1

a′
n

and ξ = lim
n→+∞

a′
n

αn
.

Consequently, the pair (ξ, α) is also uniquely determined by (m, v,w).
This concludes the proof.

Independently, Vijayaraghavan [709] proved that there are only count-
ably many real numbers α such that the sequence ({αn})n≥1 has only
finitely many limit points. A stronger result follows from Theorem 2.8.

Corollary 2.9. There are only countably many pairs (ξ, α) of real
numbers such that ξ �= 0, α > 1, and the sequence ({ξαn})n≥1 has only
finitely many limit points.

Proof. Let ξ �= 0 and α > 1 be real numbers such that ({ξαn})n≥1

has only finitely many limit points, denoted by ζ1, . . . , ζr. By Theorem
1.18, there exists a positive integer q such that ||qζi|| < 1/(3(1+α)2) for
i = 1, . . . , r. Consequently, we get lim supn→+∞ ||qξαn|| < 1/(2(1+α)2)
and the pair (qξ, α) satisfies the assumption of Theorem 2.8. This proves
the corollary.

The first assertion of the next result was proved by Pisot [566], using
Thue’s method [686]; see Exercise 2.1.

Theorem 2.10. Let ξ and α be real numbers with ξ ≥ 1 and α > 1. If

sup
n≥0

||ξαn|| ≤ 1
2eα(1 + α)(1 + log ξ)

, (2.10)

then α is either a Pisot or a Salem number, and ξ lies in the field Q(α).
Conversely, if α is either a Pisot or a Salem number, then there exists
ξ in Q(α) such that (2.10) holds.

Before proceeding with the proof of Theorem 2.10, we state a useful
auxiliary lemma. Note that Thue [686] proved that there exist Pisot
numbers of arbitrary degree all of whose Galois conjugates are real.

Lemma 2.11. Let K be a real number field of degree d. Then there exist
Pisot numbers of degree d in K.

Proof. Let α be an algebraic integer such that K = Q(α). Let α =
α1, α2, . . . , αr, αr+1, . . . , αr+s, αr+1, . . . , αr+s be the Galois conjugates
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of α, where α2, . . . , αr are real numbers. Let M > 1 and δ < 1 be positive
real numbers. By Minkowski’s first theorem (see e.g. [181, p. 151] or [146,
Theorem B.2]), if M is sufficiently large, then there are rational integers
m0, . . . ,md−1, not all zero, such that

∣∣∣
d−1∑
i=0

miα
i
∣∣∣ ≤ M and

∣∣∣
d−1∑
i=0

miα
i
j

∣∣∣ ≤ δ, 2 ≤ j ≤ r + s.

Setting θ := m0+m1α+ · · ·+md−1α
d−1, we see that θ is a real algebraic

integer, all of whose Galois conjugates (except θ itself) are of modulus
at most δ. Since the norm of θ is at least equal to 1, we get immediately
that θ or −θ is greater than 1. Consequently, θ or −θ is a Pisot number
of degree d in K.

Proof of Theorem 2.10. Let ξ ≥ 1 and α > 1 be such that (2.10)
holds. Set s = �log ξ� + 1, v = 	2αξ1/s
 − 1, and check that

(s + 1)ξ1/s < e(1 + log ξ). (2.11)

For n ≥ 0, write ξαn = an + εn, where |εn| ≤ 1/2 and an is an integer.
Set ε = (2eα(1 + α)(1 + log ξ))−1 and observe that, by (2.10),

1/|εn| ≥ 1/ε = 2eα(1 + α)(1 + log ξ).

For a tuple v = (v0, . . . , vs) of rational integers from [0, v], setting

uv,n = v0an + v1an+1 + · · · + vsan+s,

we deduce from (2.11) that

0 ≤ uv,0 ≤ (s + 1)v(ξαs + ε) ≤ (s + 1)vξαs +
1

α + 1
< (s + 1)(v + 1)ξαs − 1.

Our choices of s and v imply also that

(v + 1)s+1 ≥ 2s(v + 1)ξαs,

thus it follows from the Schubfachprinzip that there are integers v′0, . . . ,
v′s in [−v, v], not all zero, such that

v′0a0 + v′1a1 + · · · + v′sas = 0. (2.12)
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For n ≥ 1, we have

|v′0an+v′
1an+1 + · · · + v′san+s

− α(v′
0an−1 + v′1an + · · · + v′

san+s−1)|
= |v′

0(αεn−1 − εn) + v′
1(αεn − εn+1) + · · ·+
+ v′s(αεn+s−1 − εn+s)|

≤ (s + 1)(α + 1)vε < 1,

(2.13)

by (2.11). Since (an)n≥0 is a sequence of integers, an immediate induction
based on (2.12) and (2.13) shows that v′

0an + v′1an+1 + · · ·+ v′
san+s = 0

for n ≥ 0. Applying Lemma 2.2, we get the first assertion of the theorem.
We deal now with the second assertion. Let α be a Pisot or a Salem

number of degree d ≥ 2. By Lemma 2.11, there exists a Pisot number
μ such that Q(α) = Q(μ). Let δ be such that 0 < δ < 1 and the
remaining Galois conjugates of α and μ satisfy |αj | ≤ 1 and |μj | ≤ δ,
for j = 2, . . . , d. Let m be a positive integer and set ξ = μm. For n ≥ 1,
the number ξαn + ξ2α

n
2 + · · · + ξdα

n
d , where ξj = μm

j for j = 2, . . . , d, is
a rational integer and |ξ2α

n
2 + . . .+ ξdα

n
d | ≤ (d−1)δm. Selecting m large

enough such that

(d − 1)δm ≤ 1
2eα(1 + α)(1 + m log μ)

,

we get (2.10). This finishes the proof of the theorem.

Pisot [566] applied Theorem 2.10 to establish that, if the sequence
({ξαn})n≥1, where ξ �= 0 and α > 1, has only finitely many limit points,
and if the speed of convergence to these limit points is in o(n−k−1),
where k denotes the number of irrational limit points of ({ξαn})n≥0,
then α is a Pisot or a Salem number.

The assumption (2.10) was weakened by Cantor [177] to

sup
n≥0

||ξαn|| ≤ 1
e(1 + α)2(2 +

√
log ξ)

,

by means of an improved criterion for an integer sequence to satisfy a lin-
ear recurrence; see also [223, 224]. This is a special case of a more general
result, which includes Theorems 2.1 and 2.10. Cantor’s main statement
answers a question of Pisot and Salem posed at the end of [567].

In the opposite direction to Theorem 2.10, Boyd [127] established
that there are uncountably many pairs (ξ, α) such that all the numbers
||ξαn||, n ≥ 0, are quite small.
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Theorem 2.12. Let u, v be real numbers such that 3 < u < v, and
let a0 be an integer satisfying a0 > (u + 1)(u − 1)−1(v − u)−1. Then,
there exist uncountably many α in [u, v] for which there is a positive real
number ξα in (a0 − 1/2, a0 + 1/2) with

sup
n≥0

||ξααn|| ≤ 1
(u − 1)(α − 1)

.

We stress the following corollary of Theorem 2.12, which shows that,
in some sense, Theorem 2.10 is not far from being best possible.

Corollary 2.13. For any c > 1, there are α > 1 and ξ ≥ 1 with α

transcendental and

sup
n≥0

||ξαn|| ≤ c + log 2
α(1 + α)(1 + log ξ)

. (2.14)

Proof. Let u ≥ 4 be an integer. Set v = u + 2 and a0 = 2. By
Theorem 2.12, there exist a transcendental real number αu in [u, v] and
a real number ξu such that ||ξu|| = |ξu − 2| ≤ (αu − 1)−1(u − 1)−1. In
particular, we have ξu > 1 and the product (u− 1)−1(αu − 1)−1(αu(1 +
αu)(1 + log ξu)) tends to 1 + log 2 as u tends to infinity. Consequently,
α = αu and ξ = ξu satisfy (2.14) when u is large enough in terms of c.

Proof of Theorem 2.12. The assumption on a0 implies that

(a0v − (u − 1)−1) − (a0u + (u − 1)−1) > 1.

Therefore, the integer a1 = �a0u + (u − 1)−1� + 1 satisfies

a0u + (u − 1)−1 < a1 < a0v − (u − 1)−1. (2.15)

For n ≥ 1, write

an+1 = �a2
n/an−1� and ρn = an/an−1. (2.16)

We get from (2.16) that

|ρn+1 − ρn| =
|an+1an−1 − a2

n|
anan−1

≤ 1
an

(2.17)

and

a−1
n ≤

n∑
k=1

a−1
k = a−1

0

n∑
k=1

(ρkρk−1 . . . ρ1)−1. (2.18)
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It follows from (2.15) that u < ρ1 < v. Let n be a positive integer such
that u < ρj < v for j = 1, . . . , n. Then, (2.17) and (2.18) give that

|ρn+1 − ρ1| < a−1
0

n∑
k=1

u−k < a−1
0 (u − 1)−1,

hence,

ρ1 − a−1
0 (u − 1)−1 < ρn+1 < ρ1 + a−1

0 (u − 1)−1.

Combined with (2.15), this gives that u < ρn+1 < v, since ρ1 = a1/a0.
Thus, we have u < ρn < v for n ≥ 1.

For positive integers n,m with n < m, we get from (2.18) that

|ρm − ρn| ≤
m−1∑
j=n

|ρj+1 − ρj |

≤
m−1∑
j=n

a−1
j ≤

m−1∑
j=n

u−j+n−1a−1
n−1 < a−1

n−1(u − 1)−1.

(2.19)

Since an = ρn . . . ρ1a0 ≥ una0, the sequence (an)n≥1 tends to infinity.
Thus, the sequence (ρn)n≥1 is a Cauchy sequence. Its limit, denoted by
α, satisfies u ≤ α ≤ v. Letting m tend to infinity in (2.19), we get

|α − ρn| < a−1
n−1(u − 1)−1, (2.20)

hence, by multiplying both sides of (2.20) by an−1α
−n,

|an−1α
−(n−1) − anα−n| < α−n(u − 1)−1. (2.21)

Since α > 1, the sequence (anα−n)n≥1 is a Cauchy sequence. Let ξ

denote its limit. We infer from (2.21) that

|ξ − anα−n| < (u − 1)−1
∑
m≥n

α−m−1 = α−n(α − 1)−1(u − 1)−1, (2.22)

for n ≥ 0. Since 3 < u ≤ α, we have (α − 1)−1(u − 1)−1 < 1/4, thus

||ξαn|| ≤ (α − 1)−1(u − 1)−1,

as asserted. We further observe that (2.22) for n = 0 implies that |ξ −
a0| < 1/4 since α ≥ u > 3, proving that a0 is the nearest integer to ξ.

To finish the proof, it remains to explain how to modify this con-
struction to get uncountably many α with the same property. It suf-
fices to replace the definition of an+1 given in (2.16) for n ≥ 1 by
an+1(f) = �a2

n(f)/an−1(f)� + f(n), where f(n) ∈ {0, 1}. For a func-
tion f : {n : n ≥ 1} → {0, 1}, proceeding as above gives a real number
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α(f) and it remains to show that α(f) and α(g) are different if f and g

are different functions. This is left as Exercise 2.6.

2.3 On the powers of real numbers close to 1

In this section, we consider the following problem:
Let α > 1 be a given real number. Do there exist a positive real number

ξ and an interval I in [0, 1] such that {ξαn} avoids I for all n ≥ 0? How
large can I be?

This question is easier to answer when α is not too close to 1. We
start with a result of Tijdeman [687] dealing with powers of real numbers
greater than 2.

Theorem 2.14. Let α be a real number such that α > 2 and let m be
a positive integer. Then, there exists a real number ξ in (m,m + 1) such
that

{ξαn} ∈ [0, 1/(α − 1)], for all n ≥ 0.

Proof. Set x0 = m and xn+1 = �αxn� + 1, for every integer n ≥ 0.
Observe that

0 < xn+1 − αxn ≤ 1, for n ≥ 0. (2.23)

For every non-negative integer n and k with n > k, we have

αk−nxn − xk =
n∑

j=k+1

αk−j(xj − αxj−1)

thus, by (2.23),

0 < αk−nxn − xk ≤
n∑

j=k+1

αk−j <
1

α − 1
.

Consequently, the sequence (α−nxn)n≥0 is increasing (take k = n − 1)
and bounded (take k = 0). Denote by ξ its limit and observe that, since
α > 2, we have

m = x0 < ξ ≤ x0 +
1

α − 1
< m + 1.

Let k be a non-negative integer. Since

ξαk − xk = lim
n→+∞ (αk−nxn − xk) is in [0, 1/(α − 1)]

and xk is an integer, the fractional part {ξαk} belongs to the interval
[0, 1/(α − 1)]. This proves the theorem.
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The idea of the proof of Theorem 2.14 can be applied to get various
related statements, see e.g. [293, 308, 363, 687] and Exercise 2.7.

The problem posed at the beginning of this section is related to a
question of Erdős, addressed near to the end of [279]:

Let m1 < m2 < . . . be an infinite sequence of integers satisfying
mn+1/mn > c > 1 for n ≥ 1. Is it true that there is always an irra-
tional ξ for which the sequence (ξmn)n≥1 is not dense modulo one?

A positive answer to Erdős’ question was given independently by de
Mathan [481, 482] and Pollington [570]; see also [679] for a weaker result.
These authors were not aware of a remarkably rich paper of Khintchine
[379] which had appeared in 1926 and in which Erdős’ question was
solved by means of a beautiful nested intervals construction; see Exercise
2.10. In all these papers, the existence of real numbers ξ such that the
sequence ({ξmn})n≥1 avoids an interval of [0, 1] of positive length is
proved.

We put forward a classical definition.

Definition 2.15. An increasing sequence (tn)n≥1 of positive real num-
bers is called a lacunary sequence if

lim inf
n→+∞

tn+1

tn
> 1.

Clearly, for any real numbers α > 1 and ξ > 0, the sequence (ξαn)n≥1

is lacunary. Several results on the latter sequence can be proved as well,
and without additional difficulties, for lacunary sequences.

Peres and Schlag [556] developed a method based upon the Lovász
local lemma in order to answer Erdős’ question. As noted in [527], their
method is very flexible and, unlike Khintchine’s method, it applies to
lacunary sequences of real numbers (not only of integers).

Theorem 2.16. Let ε be a real number with 0 < ε ≤ 1/20. Let (ηn)n≥1

be a sequence of real numbers and (tn)n≥1 be a sequence of real numbers
greater than 1 satisfying

tn+1

tn
≥ 1 + ε, for n ≥ 1.

Then, there exists a positive real number ξ such that

‖ξtn + ηn‖ > 3 · 10−3 ε | log ε|−1, for n ≥ 1. (2.24)

Theorem 2.16 asserts in particular that, for every ε with 0< ε ≤ 1/20
and for every lacunary sequence (mn)n≥1 of positive integers satisfying
mn+1/mn ≥ 1 + ε for n ≥ 1, there exists a real number ξ such that



30 On the fractional parts of powers of real numbers

inf
n≥1

||ξmn|| > 3 · 10−3 ε | log ε|−1. (2.25)

Inequality (2.25) cannot be improved up to the factor 3·10−3 log(1/ε), as
was shown by Peres and Schlag [556], using a connection, due to Katznel-
son [373] (see also [730, Chapter 5]), between this problem and a prob-
lem of Erdős on chromatic numbers. From a quantitative point of view,
Khintchine’s result [379] is stronger (regarding the dependence on ε,
when ε is close to 1) than the results obtained in [482, 570]; see also [30,
243, 373] for slight improvements, none of them being as strong as (2.25).

Proof. Without any loss of generality, we assume that −1/2 ≤ ηj <

1/2 for j ≥ 1. Set

δ := 3 · 10−3 ε | log ε|−1 and h := 	5ε−1| log ε|
. (2.26)

Observe that
tj+h

tj
≥ (1 + ε)h ≥ ε−4 ≥ 1

δ
, for j ≥ 1. (2.27)

Let j ≥ 1 be an integer and set

�j := �(log(tj/(2δ))/ log 2)�,
in such a way that

2�j+1δ ≤ tj < 2�j+2δ. (2.28)

For an integer a, set

E(j, a) :=
{

ξ ∈ (1, 2) :
∣∣∣ξ − a

tj
+

ηj

tj

∣∣∣ < δ

tj

}
.

Since the length of E(j, a) is at most equal to 2δ/tj , it follows from
(2.28) that there exists an integer ba such that E(j, a) is included in the
open dyadic interval ( ba

2�j
,
ba + 2

2�j

)
.

Denote by Aj the union of such intervals that covers

E(j, �tj�) ∪ E(j, �tj� + 1) ∪ . . . ∪ E(j, 	2tj
).
Note that

λ(Aj) ≤ 21−�j (	2tj
 − �tj� + 1)

≤
(8δ

tj

)
(	2tj
 − �tj� + 1) ≤ 24δ,

(2.29)

since 	2tj
 − �tj� + 1 ≤ 3tj .
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Let i be an integer with i ≥ 1. Write⋂
1≤j≤i

Ac
j = I1 ∪ . . . ∪ IUi

,

where I1, . . . , IUi
are distinct closed intervals of the form [b/2�i , (b +

1)/2�i ] with b an integer. Then, we have

Ai+h ∩
⋂

1≤j≤i

Ac
j =

Ui⋃
ν=1

(Ai+h ∩ Iν). (2.30)

Assume that the intersection ∩j≤i Ac
j has positive Lebesgue measure.

Then, Ui ≥ 1. Let J be an open dyadic interval of length 2−�i+h and
whose endpoints have denominator 2�i+h . Let Iν = [b/2�i , (b + 1)/2�i ]
be an interval occurring in (2.30) such that λ(J ∩ Iν) is positive. This
implies that J is contained in Iν . Assume that the intersection of J and
Ai+h has positive Lebesgue measure. Then, J is included in Ai+h and
there exists an integer a with �tj� ≤ a ≤ 	2tj
 such that

a

ti+h
− ηi+h

ti+h
∈
( b

2�i
− δ

ti+h
,
b + 1
2�i

+
δ

ti+h

)
.

By (2.28) the same integer a can be associated to at most two different
intervals J . Furthermore, the number Wν of different possible values of
a satisfies

Wν ≤ ti+h

( 1
2�i

+
2δ

ti+h

)
+ 1 ≤ 2−�iti+h + 2 ≤ 2 · 2−�iti+h,

since

ti+h ≥ (1 + ε)5| log ε|/εti ≥ ε−4ti ≥ δε−42�i+1 ≥ 2�i+1,

by (2.27) and (2.28). This shows that

λ
( Ui⋃

ν=1

(Ai+h ∩ Iν)
)
≤ 2UiWν2−�i+h

≤ Ui22−�i−�i+hti+h ≤ Ui24−�iδ.

However, by assumption,

λ
( ⋂

1≤j≤i

Ac
j

)
= Ui2−�i .

Consequently, we get

λ
(

Ai+h ∩
⋂

1≤j≤i

Ac
j

)
≤ 16δλ

( ⋂
1≤j≤i

Ac
j

)
. (2.31)
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This is the key result for the last step of the proof, which consists in
proving by induction that

λ
( ⋂

0≤j≤mh

Ac
j

)
≥ 1

2
λ
( ⋂

0≤j≤(m−1)h

Ac
j

)
> 0, (2.32)

for m ≥ 1, where we agree that Ac
0 = [1, 2].

We first check that (2.32) holds for m = 1. To see this, note that

λ
( ⋂

0≤j≤h

Ac
j

)
≥ 1 −

h∑
j=1

λ(Aj)

≥ 1 − 24δh ≥ 1/2,

by (2.29) and (2.26).
Let m ≥ 1 be an integer such that (2.32) holds and write⋂
0≤j≤(m+1)h

Ac
j =

(
. . .
(( ⋂

0≤j≤mh

Ac
j

)
\ Amh+1

)
\ . . .

)
\ A(m+1)h,

thus, by (2.31),

λ
( ⋂

0≤j≤(m+1)h

Ac
j

)
≥ λ
( ⋂

0≤j≤mh

Ac
j

)

−
h∑

u=1

λ
(

Amh+u ∩
( ⋂

0≤j≤mh

Ac
j

))

≥ λ
( ⋂

0≤j≤mh

Ac
j

)
−

h∑
u=1

λ
(

Amh+u ∩
( ⋂

0≤j≤(m−1)h+u

Ac
j

))

≥ λ
( ⋂

0≤j≤mh

Ac
j

)
− 16δ

h∑
u=1

λ
( ⋂

0≤j≤(m−1)h+u

Ac
j

)

≥ λ
( ⋂

0≤j≤mh

Ac
j

)
− 16δh λ

( ⋂
0≤j≤(m−1)h

Ac
j

)
.

The inductive assumption (2.32) shows that

λ
( ⋂

0≤j≤(m−1)h

Ac
j

)
≤ 2λ

( ⋂
0≤j≤mh

Ac
j

)
.

We then apply (2.26) to get that

λ
( ⋂

0≤j≤(m+1)h

Ac
j

)
≥ (1 − 32hδ)λ

( ⋂
0≤j≤mh

Ac
j

)
≥ 1

2
λ
( ⋂

0≤j≤mh

Ac
j

)
,

which proves (2.32) with m + 1 instead of m.
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We have established that (2.32) holds for every positive integer m.
Then, the sequence (∩0≤j≤mh Ac

j)m≥1 is a decreasing sequence of non-
empty compact sets. The intersection ∩j≥0 Ac

j is non-empty, and any
real number ξ in this intersection avoids all the intervals E(j, a), with
j ≥ 1 and a ≥ 1, thus, by (2.26), it satisfies (2.24).

The next corollary is a consequence of Theorem 2.16.

Corollary 2.17. Let ε be a real number with 0 < ε ≤ 1/20 and η be
a real number. Then, there exists a positive real number ξ such that

inf
n≥1

‖ξ(1 + ε)n + η‖ > 3 · 10−3 ε | log ε|−1.

Furthermore, for every real number α ≥ 21/20 and η, there exists a
positive real number ξ with

inf
n≥1

‖ξαn + η‖ > 5 · 10−5.

Proof. The first statement is a particular case of Theorem 2.16. The
second one follows immediately by taking ε = 1/20.

Notice that we have made no effort to get the best possible numerical
constants in Corollary 2.17.

2.4 On the powers of some transcendental numbers

In this section, we survey several results related to Hardy’s question [333]
of the existence of a transcendental number α > 1 and a non-zero real
number ξ such that ||ξαn|| tends to 0 as n tends to infinity. In an almost
forgotten paper Vijayaraghavan [710] studied the set of real numbers
α > 1 such that (αn)n≥1 is not dense modulo one. Among other results,
he proved that, for every positive real number ε, the set of real numbers
α such that ||αn|| < ε for every n ≥ 1 is uncountable; see also [168, 571],
where it is proved that this set has full Hausdorff dimension.

Theorem 2.18. For every sequence (rn)n≥1 of real numbers and for
every positive real number ε, there exist uncountably many real numbers
α > 1 such that ||αn − rn|| ≤ ε for every positive integer n.

We give two different proofs of Theorem 2.18. A first one is the Cantor-
type construction as explained in [168, 710], while a second one, found
by Dubickas [246], shows in a more explicit way the existence of real
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numbers α > 1 whose powers are close (modulo one) to any arbitrary
given sequence.

Proof. Without loss of generality, we assume ε < 1/2 and −1/2 ≤
rn < 1/2 for n ≥ 1. Put H = 	3/ε
, an = rn − ε and bn = rn + ε, for
n ≥ 1.

Set E1 = I1 = [H + a1,H + b1]. This is our Step 1. Since

(H + b1)2 − (H + a1)2 ≥ 4εH − 1 ≥ 4,

there is an integer j1 such that j1, . . . , j1 + 3 are all lying in the interval
[(H + a1)2, (H + b1)2]. For h = j1 + 1, j1 + 2, let I2,h denote the interval
[
√

h + a2,
√

h + b2]. Since

(H + a1)2 ≤ h + a2 < h + b2 ≤ (H + b1)2,

the interval I2,h is included in I1. By construction, every real number α

in Ih is such that α−H and α2−h are in [a1, b1] and [a2, b2], respectively.
Set E2 = I2,j1+1 ∪ I2,j1+2. This completes Step 2.

We continue this process. Let h2 = j1 + 1, j1 + 2. Since

(
√

h2 + b2)3 − (
√

h2 + a2)3 ≥ ((√h2 + b2)2 − (
√

h2 + a2)2
)√

h2 + a2

≥ 2εH − 2 ≥ 4,

there is an integer j2 such that j2, . . . , j2 + 3 are in the interval [(h2 +
a2)3/2, (h2 + b2)3/2]. For h = j2 + 1, j2 + 2, let I3,h2,h be the interval
[(h + a3)1/3, (h + b3)1/3]. By construction, I3,h2,h is included in I2,h2 .
Proceeding in this way, we construct at Step 3 a union E3 of four sub-
intervals of I1, whose elements α have the property that α−H,α2 − h2

and α3 − h are in [a1, b1], [a2, b2] and [a3, b3], respectively.
Continuing further in the same way, for j ≥ 4, we construct at Step

j a set Ej which is the union of 2j−1 closed intervals. This is a nested
construction. The set ∩j≥1 Ej is then a Cantor-type set, whose elements
α have the property that, for n ≥ 1, the fractional part of their nth
power lies in [h + an, h + bn], for some integer h depending on α and on
n, thus it satisfies ||αn − rn|| ≤ ε.

We present an alternative proof, following [246] (see also [257]), of the
existence of a real number α > 1 with the requested property. Now, we
assume ε < 1/2 and 0 ≤ rn < 1 for n ≥ 1. Let m be an integer with
m ≥ 2 log(1/ε) + 3. Let y0 ≥ 2 be a real number and put

yn := (	ymn
n−1
 + rn)1/(mn), for n ≥ 1.
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Since

yn ≥ (ymn
n−1 + rn)1/(mn) ≥ yn−1,

for n ≥ 1, the sequence (yn)n≥1 is non-decreasing. Let n ≥ 1 be an
integer. Observe that ymn

n − rn is an integer, thus {ymn
n } = rn. Since

	ymn
n−1
 + rn < ymn

n−1 + 2, we get

yn

yn−1
< (1 + 2y−mn

n−1 )1/(mn) < 1 +
2

mnymn
n−1

,

implying that

yn − yn−1 <
2

mnymn−1
n−1

.

Consequently,

yn − y0 <
2

mnymn−1
n−1

+ · · · + 2
2my2m−1

1

+
2

mym−1
0

≤ 2
m

( 1
y0

+ · · · + 1
yn
0

)
≤ 2y0

m
.

This proves that

β := lim
n→+∞ yn

exists.
Let k and n be integers with n ≤ k. Since yk ≥ 2, we get
(yk+1

yk

)mn

< (1 + 2y
−m(k+1)
k )n/(k+1) < 1 +

2n

(k + 1)ym(k+1)
k

< 1+
2

y
m(k+1)
k

≤ 1 + y
−m(k+1)+1
k .

It follows that, for every fixed n ≥ 1,

( β

yn

)mn

=
+∞∏
k=n

(yk+1

yk

)mn

<

+∞∏
k=n

(1 + y
−m(k+1)+1
k ) ≤ 1 + y−m(n+1)+3

n .

Consequently,

0 ≤ βmn − ymn
n < y−m+3

n ≤ 2−m+3 < ε,

by our choice of m. Since rn = {ymn
n }, we conclude that ||βmn − rn|| <

ε for n ≥ 1. This shows that α = βm satisfies the conclusion of the
theorem.
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The real numbers α constructed in the proofs of Theorem 2.18 are
clearly greater than 2. At the end of [710], Vijayaraghavan refined his
contruction to show that there are real numbers α > 1 arbitrarily close
to 1 and such that there exists an interval of length smaller than 1
containing all the fractional parts {αn}, n ≥ 1. His result was improved
by Bugeaud and Moshchevitin [168] as follows.

Theorem 2.19. Let ξ be a positive real number. For any sequence
(ηn)n≥1 of real numbers, there exist a positive real number γ, depend-
ing only on ξ and (ηn)n≥1, and arbitrarily small positive real numbers ε

such that

inf
n≥1

‖ξ(1 + ε)n + ηn‖ > γ ε | log ε|−1.

The proof of Theorem 2.19 is omitted, it uses a slight refinement of
the method initiated by Peres and Schlag for the proof of Theorem 2.16.

Despite the fact that the sequence (αn)n≥1 is uniformly distributed
modulo one for almost all numbers α > 1, we know only very few explicit
examples of real numbers α with the weaker property that (αn)n≥1 is
dense modulo one. We conclude this section by a construction of Du-
bickas [246] of uncountably many real numbers α > 1 enjoying the latter
property.

Theorem 2.20. Let (rn)n≥1 be a sequence of real numbers in [0, 1)
which is dense in [0, 1) and such that rn = 0 for infinitely many n. Set
x1 = 2 and

xn := 2 + �(xn−1 + rn−1)n − rn�, for n ≥ 2.

Then, the limit

α := lim
n→+∞ (xn + rn)1/n!

exists and the sequence (αn!)n≥1 is dense modulo one.

Proof. For n ≥ 2, we have

xn + rn = 2 + �(xn−1 + rn−1)n − rn� + rn > (xn−1 + rn−1)n,

thus the sequence x = ((xn + rn)1/n!)n≥1 is increasing. Furthermore, for
n ≥ 3, we have

(xn−1 + rn−1 + (xn−1 + rn−1)−n+1)n ≥ (xn−1 + rn−1)n + n

≥ (xn−1 + rn−1)n + 3

≥ xn + rn + 1

> xn + rn + (xn + rn)−n.
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It follows that the sequence x′ = ((xn + rn + (xn + rn)−n)1/n!)n≥2 is
decreasing. Consequently, both sequences x and x′ converge and α is
well defined. Let α′ be the limit of x′. For n ≥ 2, we have

xn + rn < αn! ≤ (α′)n! < xn + rn + (xn + rn)−n,

from which we get that α = α′ > 1.
Let y be in (0, 1). Let ε be real with 0 < ε < 1−y. Let n be an integer

such that rn is lying in (y, y + ε/2). Since xn tends to infinity with n,
we have

xn + y < xn + rn < αn!

<xn + rn + x−n
n < xn + y + ε/2 + x−n

n < xn + y + ε,

if n is large enough. This shows that infinitely many terms of the se-
quence (αn!)n≥1 belong to [y, y + ε], which completes the proof of the
theorem.

2.5 A theorem of Furstenberg

It follows from Theorem 2.16 that, for every lacunary sequence (mn)n≥1

of positive integers, there exist ε with 0 < ε < 1/2 and real numbers
ξ such that all the fractional parts {ξmn}, n ≥ 1, are contained in
[ε, 1− ε]. Does the same result hold if the sequence (mn)n≥1 is replaced
by a sequence which grows slower than exponentially fast?

An important particular case was investigated by Furstenberg [315].
Recall that two non-zero real numbers r and s are multiplicatively in-
dependent if they are both different from 1 and the ratio (log r)/(log s)
of their logarithms is irrational; otherwise, r and s are multiplicatively
dependent.

Theorem 2.21. Let r and s be multiplicatively independent integers.
Then, for every irrational number ξ, the set of real numbers {ξrmsn},
m,n ≥ 0, is dense in the torus T.

We establish Theorem 2.21 by following the approach of Boshernitzan
[122]. We begin by an easy auxiliary result.

Definition 2.22. For a positive integer n, a set X ⊂ T is called n-
invariant if nx (modulo 1) is in X whenever x belongs to X.

Lemma 2.23. Let M = (mi)i≥1 be an infinite sequence of distinct
positive integers, arranged in increasing order, such that mi+1/mi tends
to 1 as i tends to infinity. Let X be a closed infinite subset of the torus
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T that is mi-invariant for every i ≥ 1. If 0 is a limit point of X, then
X = T.

Proof. Let ε be a real number satisfying 0 < ε < 1/2. Let h be an
integer such that the inequality mi+1/mi < 1 + ε holds for every i ≥ h.
Replacing X by {1 − x : x ∈ X} if necessary, we can assume that there
are non-zero elements of X arbitrarily close to 0. Let x be in X such
that 0 < {mhx} < ε. Observe that for every i ≥ h such that mi ≤ 1/x

we have

0 < (mi+1 − mi)x < miεx ≤ ε.

Consequently, the finite set

{{mx} : m ∈ M,mh ≤ m ≤ 1/x} ⊂ X

intersects every interval of length ε in T. Since ε is arbitrary and X is
closed, X is equal to T.

Observe that, if r and s are multiplicatively independent integers,
then, for every positive integer u, the sequence M composed of all the
integers of the form rumsun with m,n ≥ 0 arranged in increasing order
satisfies the assumption of Lemma 2.23.

Proof of Theorem 2.21. Let ε be a positive real number and t be
an integer coprime with rs and satisfying t > max{1/ε, 3}. Let u be a
positive integer such that

ru ≡ su ≡ 1 mod t.

Denote by X the closure in the torus T of the set of real numbers
{ξrmsn}, m,n ≥ 0.

First, assume that X does not contain rational numbers. Define

X = X0 ⊃ X1 ⊃ . . . ⊃ Xt−1

by setting

Xi+1 =
{

x ∈ Xi : x +
1
t
∈ Xi

}
, (0 ≤ i ≤ t − 2).

Observe that, if x belongs to Xi for some i = 0, . . . , t − 2, and if Xi

is ru-invariant, then rux is in Xi+1. Indeed, since Xi is ru-invariant,
ru(x + 1/t) = rux + (ru − 1)/t + 1/t is in Xi and we use the fact that
t divides ru − 1 to get that {rux + 1/t} belongs to Xi, hence, rux is
in Xi+1.
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Consequently, we deduce from the fact that X0 is simultaneously ru-
and su-invariant that the sets X1, . . . , Xt−1 are simultaneously ru- and
su-invariant, as well.

Furthermore, for i = 1, . . . , t − 1, the set Xi is closed if the set Xi−1

is closed. Since X0 is a closed set, all the sets X1, . . . , Xt−1 are closed.
The difficult point is to prove that Xi is never empty. To this end, for

i = 0, . . . , t − 1, we introduce the set

Di := Xi − Xi = {x − x′ : x, x′ ∈ Xi},
and we aim at establishing that it includes 1/t. We argue by induction.
Let i = 0, . . . , t − 2 be such that Xi is non-empty. Since Xi is compact,
Di is a closed set. The set Di is simultaneously ru- and su-invariant,
hence, it is (ru)m(su)n-invariant for every non-negative integer m,n. As
Xi does not contain rational numbers, it is infinite and 0 is one of the
limit points of Di. Since ru and su are multiplicatively independent,
we deduce from Lemma 2.23 that Di = T, hence, 1/t is an element of
Xi − Xi. This proves that Xi+1 is non-empty.

Consequently, the set Xt−1 is non-empty, and there is x0 in Xt−1 such
that

x0,
{

x0 +
1
t

}
,
{

x0 +
2
t

}
, . . . ,

{
x0 +

t − 1
t

}
are all in X.

Since 1/t < ε and ε is arbitrary, X is dense in T. As X is a closed set,
it must be equal to T, a contradiction.

Thus, the set X must contain a rational point, say the point p/q,
where p and q are coprime positive integers. Replacing if needed p/q by
a suitable rational number of the form (p/q)(rs)�, where � ≥ 0, we can
assume that q is coprime with rs. Let v be a positive integer such that

rv ≡ sv ≡ 1 mod q.

Observe that the shifted set

X − p/q = {{x − p/q} : x ∈ X}
is simultaneously rv- and sv-invariant and has 0 for limit point. It then
follows from Lemma 2.23 that X = T. The theorem is established.

2.6 A conjecture of de Mathan and Teulié

A famous open problem in simultaneous Diophantine approximation is
the Littlewood conjecture [447], which claims that, for every given pair
(ξ, η) of real numbers, we have
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inf
q≥1

q · ‖qξ‖ · ‖qη‖ = 0. (2.33)

For references on this fascinating question, the reader is directed to [146,
Section 10.1], to Venkatesh’s article [705], or to Queffélec’s survey [598].

In analogy with (2.33), de Mathan and Teulié [483] proposed in 2004
a ‘mixed Littlewood conjecture’. For any prime number p, we normalize
the usual p-adic value | · |p in such a way that |p|p = p−1.

For every real number ξ and every prime number p, we have

inf
q≥1

q · ‖qξ‖ · |q|p = 0. (2.34)

Obviously, the above conjecture holds if ξ is rational or has unbounded
partial quotients, or if infn≥1 ||ξpn|| = 0. Thus, we only consider the case
when ξ is an element of the set {η ∈ R\Q : infq≥1 q · ‖qη‖ > 0} of badly
approximable real numbers (see Definition D.8). Real numbers for which
infn≥1 ||ξpn|| is positive do exist (for example, real numbers without
three consecutive digits 0 and without three consecutive digits p − 1 in
their p-ary expansion) and they form a set whose intersection with the
set of badly approximable real numbers has Hausdorff dimension one; see
Section 7.3. Furthermore, the set of badly approximable real numbers ξ

for which (2.34) holds for any prime p has as well Hausdorff dimension
one; see Exercise 7.7.

We briefly survey (without proofs) some results towards a proof of
the de Mathan–Teulié conjecture. Einsiedler and Kleinbock [277] showed
that a weaker form of it easily follows from Furstenberg’s Theorem 2.21.

Theorem 2.24. Let p1 and p2 be distinct prime numbers. Then, the
equality

inf
q≥1

q · ‖qξ‖ · |q|p1 · |q|p2 = 0

holds for every real number ξ.

Proof. The result is clear if ξ is rational. For an irrational number ξ,
apply Theorem 2.21 with r = p1 and s = p2 to get that the sequence
(ξpm

1 pn
2 )m,n≥0 is dense modulo one. This shows that, for every ε > 0,

there are integers m and n such that 0 < {ξpm
1 pn

2} < ε, that is, such
that, setting q = pm

1 pn
2 , we have q · ‖qξ‖ · |q|p1 · |q|p2 = ||qξ|| < ε.

The next theorem, proved in [160], asserts that (2.34) holds for every
pair (ξ, p) provided that the sequence of partial quotients of ξ is quasi-
periodic in the following sense.
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Theorem 2.25. Let ξ = [a0; a1, a2, . . .] be a badly approximable real
number. Let t ≥ 1 be an integer and b1, . . . , bt be positive integers. If
there exist two sequences (mk)k≥1 and (hk)k≥1 of positive integers with
(hk)k≥1 being unbounded and, for k ≥ 1,

amk+j+nt = bj , for j = 1, . . . , t and n = 0, . . . , hk − 1,

then
inf
q≥1

q · ‖qξ‖ · |q|p = 0

for every prime number p.

An immediate consequence of Theorem 2.25 is that (2.34) holds for
every prime p and every quadratic number ξ, a result already proved
in [483].

Einsiedler and Kleinbock [277] established that the set of possible
exceptions to the de Mathan–Teulié conjecture is, from the metric point
of view, very small.

Theorem 2.26. Let p be a prime number. The set of real numbers ξ

which do not satisfy (2.34) has Hausdorff dimension zero.

More precisely, it is proved in [277] that (2.34) holds for every prime
number p and every real number ξ with positive entropy (see Definition
9.11).

Further recent results can be found in [52, 164]. Improving an ear-
lier result of [167], Badziahin and Velani [52] established the following
theorem.

Theorem 2.27. Let p be a prime number. The set of real numbers ξ

such that
lim inf
q→+∞ q · log q · log log q · ‖qξ‖ · |q|p > 0

has full Hausdorff dimension.

2.7 Exercises

Exercise 2.1 (cf. [686]). Let ξ �= 0 and α > 1 be real numbers. Assume
that there are real numbers c > 1 and ρ such that 0 < ρ < 1 and
||ξαn|| < cρn, for n ≥ 1. Prove that α is an algebraic number. [Hint.
For n ≥ 1, set ξαn = an + εn, where an is an integer and |εn| ≤ 1/2.
Choose m ≥ 2 such that ρ−m > α. Let c1 < 1, c2 > 1 be positive
real numbers to be suitably chosen in terms of ξ, c, α,m. Let � be a
large integer and N be an integer with c1ρ

−� > N > c2α
�/m. Use the
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Schubfachprinzip to show that, for a suitable choice of c2, there are
integers u0, . . . , um, not all zero, such that |uj | ≤ N for j = 0, . . . , m
and uma� + · · · + u0a�+m = 0. Prove by induction that, for a suitable
choice of c1, we have uman + · · · + u0an+m = 0 for n ≥ �. Deduce that
um + um−1α + · · · + u0α

n = 0.]

Exercise 2.2. Prove that the conclusion of Theorem 2.1 remains true
under the assumption (2.6) for a suitable positive real number c.

Exercise 2.3 (cf. [619, Exercise 2]). Prove that the conclusion of The-
orem 2.1 remains true with (2.1) replaced by

∑N
n=1 n||ξαn||2 = o(N).

Exercise 2.4 (cf. [181, p. 134]). Let α be a Pisot number of degree d.
Prove that if the non-zero real number ξ satisfies limn→+∞ ||ξαn|| = 0,
then there are a non-negative integer N and an algebraic number ζ in
Q(α) such that Tr(αjζ) is a rational integer for j = 0, . . . , d − 1 and
ξ = α−Nζ.

Exercise 2.5 (Direct proof, by A. Weil [707], of Corollary 2.6 for ξ =
1). For n ≥ 1, set yn = {(p/q)n} and assume that (yn)n≥1 has only
finitely many limit points, denoted by ζ1, . . . , ζk. Assume that ζ1 is ir-
rational and consider a strictly increasing sequence (nr)r≥1 such that
ynr tends to ζ1 as r tends to infinity. Let m be a positive integer and
observe that

ynr+m ≡ (p/q)mynr
(mod 1/qm).

By letting r tend to infinity, obtain a contradiction.
Assume now that ζ1, . . . , ζk are all rational numbers. Let then M be

a positive integer such that Mζ1, . . . ,Mζk are rational integers, and
observe that the sequence (‖M(p/q)n‖)n≥1 tends to 0. Conclude.

Exercise 2.6. Complete the proof of Theorem 2.12.

Exercise 2.7 (cf. [687, Theorem 2]). Let α > 2 be a real number such
that 2α is an odd integer. Refine the proof of Theorem 2.14 to prove
that, for every positive integer m, there exists ξ in (m,m + 1) such that
{ξαn} lies in [0, 1/(2α − 2)] for every integer n ≥ 0.

Exercise 2.8 (cf. [363]). Let α > 1 be a real number. Prove that the
set of real numbers ξ satisfying

lim sup
n→+∞

||ξαn|| < 1/(2α + 2)

is at most countable.
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Exercise 2.9 (cf. [363]). Let ξ be a non-zero real number. Let δ and
M be positive real numbers. Prove that the set of real numbers α > M

satisfying

lim sup
n→+∞

||ξαn|| < (1 + δ)/(2α)

is at least countable and that the set of real numbers α > M satisfying

lim sup
n→+∞

||ξαn|| < (1 + δ)/α

is uncountable. [Hint. Take R a large positive integer, set z1 = R2,
zn+1 = �ξ−1/nz

(n+1)/n
n � and βn = ξ−1/nz

(n+1)/n
n for n ≥ 1. Then, set

α := limn→+∞ βn.]

Exercise 2.10 (cf. [379]). Let ε < 1/4 be a positive real number, t an
integer, and (mn)n≥1 an increasing sequence of positive integers satisfy-
ing mn+t/mn > 1 + ε, for n ≥ 1. Prove that there exists a real number
ξ such that ||ξmn|| ≥ (ε/3)2(log(t/ε))−2 for n ≥ 1. [Hint. Let s be a
positive integer such that (1 + ε)s > 3ts + 3 and set k = 3ts + 3. Ob-
serve that mn+ts/mn > k for n ≥ 1. Let I1 be a closed real interval of
length 1/k and divide it into k closed intervals of the same length 1/k2.
Prove that there exist three consecutive such intervals which contain no
rational of the form p/mn with 1 ≤ mn < k. Let I2 denote the middle
interval. Divide it into k closed intervals of the same length 1/k3 and
prove that there exist three consecutive such intervals which contain no
rational of the form p/mn with k ≤ mn < k2. Let I3 denote the middle
interval. Continue this process to construct an infinite nested sequence
I1 ⊃ I2 ⊃ . . . of closed intervals Ih, h ≥ 1, with the property that, for
h ≥ 1, the length of Ih equals 1/kh and the distance between Ih+1 and
any rational of the form p/mn with kh−1 ≤ mn < kh is at least equal to
1/kh+1. Let ξ be the point belonging to every interval Ih, h ≥ 1. Prove
that ||mnξ|| ≥ 1/k2 for n ≥ 1, and conclude.]

Exercise 2.11. Deduce from Theorem 2.16 that there is a positive
constant κ such that, for every sufficiently large integer n and every
real number t1, . . . , tn satisfying t1 > 1 and tj+1/tj ≥ 1 + (κ log n)/n

for j = 1, . . . , n − 1, there exists a positive real number ξ such that
||ξti|| ≥ 1/(n + 1) for i = 1, . . . , n.

Exercise 2.12 (cf. [246]). Let (δn)n≥1 be a sequence of positive numbers
with δ

1/n
n tending to 0 as n tends to infinity. Assume that there exist

an infinite set N of positive integers n such that the real number α > 1
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satisfies ||αn|| < δn for n in N . Prove that α is either transcendental,
or is a root of a rational integer. [Hint. Assume that α is algebraic with
Galois conjugates α1 = α, α2, . . . , αd and let ad ≥ 1 denote the leading
coefficient of its minimal defining polynomial. For n in N , show that
Pn := an

d

∏d
j=1(α

n
j − �αn + 1/2�) is a rational integer, and thus satisfies

either Pn = 0 or |Pn| ≥ 1.] Deduce that the number α constructed in
Theorem 2.20 is transcendental.

Exercise 2.13 (cf. [160]). Use the Folding Lemma (Theorem D.3) to give
explicit examples of pairs (ξ, p) for which (2.34) and even the stronger
inequality

lim inf
q→+∞ q2 · ‖qξ‖ · |q|p ≤ 1

hold.

2.8 Notes

� Let α > 1 and ξ �= 0 be real numbers. By means of completely
different arguments than those in the proof of Theorem 2.1, Feng [304] es-
tablished that α is a Pisot number when (2.1) is replaced by the stronger
assumption that

∑
n≥0 ‖ξαn‖ converges.

� Inspired by ideas from [566], Mignotte [514] proved, among other
results, that a necessary and sufficient condition for a real number α > 1
to be a rational integer is to satisfy ||αn|| ≤ ((α+1)(α+2))−1 for every
n ≥ 1.

� Környei [394] extended some results of Pisot [566] to sequences of
the form (P1(n)αn

1 +· · ·+Pk(n)αn
k )n≥1, where the Pi(X) are polynomials

and the αi are complex numbers.

� Kwapisz [414] gave a geometric proof of the first assertion of
Theorem 2.5.

� Zäımi [743] established, among other results, that a real number
α > 1 is a Pisot number if, and only if, there exists a non-zero real
number ξ such that ||ξα̃|| < 1/3 for every α̃ of the form a0 + a1α+ · · ·+
a�α

�, with � ≥ 1 and aj ∈ {0, 1} for 0 ≤ j ≤ �.

� For a Pisot or Salem number α, the set of real numbers ξ such
that (2.8) holds has been described by Zäımi [744].

� Cantor [176] slightly generalized Theorem 2.10.
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� The frequency of an infinite set N of positive integers is the supre-
mum of the real numbers A for which there are arbitrarily large integers
n such that every integer in the interval [n,An] belongs to N . Let α > 1
be a real algebraic number and ξ be a non-zero real number. Rauzy
[601] proved that if N has infinite frequency and if ||ξαn|| tends to 0 as
n tends to infinity along N , then α is either a Pisot, or a Salem number.
If, moreover, ξ is algebraic, then α is a Pisot number. Conversely, he es-
tablished that, for any Pisot or Salem number α, there exist a set N of
integers having infinite frequency and uncountably many real numbers
ξ such that ||ξαn|| tends to 0 as n tends to infinity along N .

� Erdős and Taylor [281] proved that, for any given lacunary se-
quence of integers (mn)n≥1, the set of real numbers ξ such that (ξmn)n≥1

is not uniformly distributed modulo one has full Hausdorff dimension.
The same result holds for the set of real numbers ξ such that (ξmn)n≥1

has no distribution function, as established by Helson and Kahane
[341].

� To complement Theorem 2.16, Boshernitzan [123] proved that,
for any unbounded sequence of positive real numbers (tn)n≥1 such that
lim supn→+∞ tn+1/tn is finite, the set of real numbers ξ such that the
sequence (ξtn)n≥1 is not dense modulo one is a countable union of sets
of Hausdorff dimension less than 1. This set has zero Hausdorff mea-
sure if, moreover, limn→+∞ tn+1/tn = 1. Ajtai, Havas and Komlós [26]
showed that, for any given sequence (εn)n≥1 of positive real numbers
tending to 0, there exists a sequence (mn)n≥1 of positive integers such
that mn+1/mn > 1 + εn for n ≥ 1 and the sequence (ξmn)n≥1 is uni-
formly distributed modulo one for every irrational number ξ; see also
[121]. On the other hand, it is proved in [322] that, for any lacunary
sequence (mn)n≥1 of positive integers, the set of real numbers ξ such
that (ξmn)n≥1 is uniformly distributed modulo one is a meagre set; see
also [323].

� Various results on the distribution of the sequence ({ξtn})n≥1

for fast-growing sequences (tn)n≥1 of positive real numbers are given
in [253].

� Results on sublacunary sequences (that is, increasing sequences
growing slower than any lacunary sequence) of real numbers have been
obtained in [31, 526, 527].

� The method introduced by Peres and Schlag [556] and discussed
in Section 2.3 has many other interesting applications to Diophantine
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problems. It has been applied by Rochev [612] to the distribution of
fractional parts of values of linear forms.

� Let ε be a positive real number. Pollington [571] proved that,
for every non-zero real number ξ, the set of real numbers α such that
{ξαn} < ε for every n ≥ 1 has Hausdorff dimension one. Furthermore,
the set of pairs of real numbers (ξ, α) with α > 1 and such that {ξαn} <

ε for every n ≥ 1 has Hausdorff dimension two.

� For a real number α > 1, the quantity lim infn→+∞ ||αn||1/n has
been studied by Mahler and Szekeres [474]; see also [162]. Let (εn)n≥1 be
a sequence of real numbers from [0, 1/2]. Koksma [391] showed that if the
series

∑
n≥1 εn converges then, for almost every real number α > 1, there

exists an integer n0(α) such that ||αn|| ≥ εn for n ≥ n0(α). Moreover,
if (εn)n≥1 is non-increasing and the series

∑
n≥1 εn diverges then, for

almost every real number α > 1, there exist arbitrarily large integers n

such that ||αn|| ≤ εn.

� Levin [430] (see also [429, 431] and Kulikova [412]) constructed
real numbers α such that (αn)n≥1 is uniformly distributed modulo one
and whose discrepancy is O(N−1/2(log N)4). This is almost as good
as the corresponding metric result; see Section 1.3. In an unpublished
manuscript, Lerma [424] gave a fairly complicated, alternative construc-
tion of real numbers greater than one with the same property.

� Zame [745] established that if f is any distribution function and
(nk)k≥1 is a sequence of real numbers such that nk+1 − nk tends to
infinity with k, then there exists a real number α such that the sequence
({αnk})k≥1 has f as its distribution function.

� Furstenberg’s Theorem 2.21 was extended by Kra [405], Urban
[693–699] and Gorodnik and Kadyrov [326]. See also Berend [71, 72],
Rudolph [615], Johnson [355], Feldman [301], Johnson and Rudolph
[356], Host [348, 349], Meiri [495] and Lindenstrauss [444].

� A quantitative version of Theorem 2.21 has been established in
[125]. It straightforwardly implies an improvement of Theorem 2.24 [164,
336].

� The first lower bound for ||en|| was obtained in 1953 by Mahler
[464] under the form

||en|| ≥ e−cn log n,

for every sufficiently large n, with c = 40. Subsequently, he [467] was
able to slightly decrease the numerical constant to c = 33. In 1974,
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Mignotte [512] gave a lower bound with c = 17.7, but Wielonsky [734]
pointed out that Mignotte’s proof contains errors and the corrected value
is c = 21.012. In the same paper, he gave a new bound, namely with
c = 19.183. This was improved by Hata [338], who obtained the value
c = 15.727.

� For real numbers ξ > 0, α > 1 and t ∈ [0, 1), let Mξ,α(t) denote
the number of times the value t occurs in the sequence ({ξαn})n≥1. It
was proved independently in [274, 581, 680] that M1,α(t) ≤ 2, unless
α is a root of an integer, in which case M1,α(0) = +∞. Subsequently,
Dubickas [239] established that, for real numbers ξ �= 0 and α > 1, the
sequence of fractional parts ({ξαn})n≥1 takes some value infinitely many
times if, and only if, there exist integers q ≥ 2, d ≥ 1, � ∈ {0, 1, . . . , d−1},
u �= 0 and v ≥ 1 such that α = q1/d and ξ = uq�/d/v. See Lemma 3.17
and [199, 263] for further related results.

� Let (gn)n≥1 be a sequence of positive real numbers satisfying
gn ≥ 1 for n ≥ 1 and limn→+∞ gn = +∞. Bugeaud [152] proved that,
for any irrational real number ξ, there exists an increasing sequence
of positive integers (mn)n≥1 satisfying mn ≤ ngn for n ≥ 1 and such
that the sequence of fractional parts ({ξmn})n≥1 tends to 0 as n tends
to infinity. This result is best possible in the sense that the condition
limn→+∞ gn = +∞ cannot be weakened, as proved in [249].

� Let n be a positive integer and let t1 < t2 < . . . < tn be n

positive real numbers. The lonely runner conjecture asserts that there is
a positive number ξ such that

inf
i=1,...,n

||ξti|| ≥ 1/(n + 1).

It originally comes from a paper of Wills [735], where it is stated for
integers ti. It has been solved for n ≤ 6, but remains open for every
n greater than or equal to 7. We refer the reader to [261] for bibli-
ographic references. In that paper, Dubickas observed that the lonely
runner conjecture is closely related to Theorem 2.16 (see Exercise 2.11)
and he applied his results from [247] to confirm the conjecture for every
n ≥ 16342 under the assumption that ti+1/ti exceeds 1 + (33 log n)/n

for i = 1, . . . , n − 1.
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On the fractional parts of powers
of algebraic numbers

In this chapter we focus on the sequences ({ξαn})n≥1 and (‖ξαn‖)n≥1,
where ξ is a non-zero real number and α is a real algebraic number
greater than 1. We first observe that, if α is a Pisot number, then the
sequence ({αn})n≥1 has at most two limit points, namely 0 and 1. For ex-
ample, 0 and 1 are the limit points of the sequence ({((1+

√
5)/2)n})n≥1,

while {(3 + 2
√

2)n} tends to 1 as n tends to infinity. The situation is
rather different if α is a Salem number, since (αn)n≥1 is then dense
modulo one, as was proved by Pisot and Salem; see Theorem 3.7. Very
little is known about ({αn})n≥1 when the algebraic number α is neither
a Pisot number, nor a Salem number.

We begin in Section 3.1 with the case where α is a rational integer and
continue in the next two sections with the cases where α is a rational
number and an algebraic number, respectively, culminating in the state-
ment and proof of Theorem 3.5. It gives an explicit, positive lower bound
for the difference between the greatest and the smallest limit point of
({ξαn})n≥1, provided that ξ does not belong to Q(α) when α is either
a Pisot or a Salem number. The necessity of the latter assumption is
discussed in Section 3.4. The next section is devoted to the study of the
sequence (‖ξαn‖)n≥1 when α is a rational number. In Section 3.6 we
provide various constructions of pairs (ξ, α), with α > 1 being a rational
number, such that all the points of the sequence ({ξαn})n≥1 are con-
tained in a certain prescribed interval or finite union of intervals. The
final sections are devoted to a brief exposition of the Waring problem
and to the sequences of integer parts of powers of algebraic numbers.

3.1 The integer case

In this section we treat the easiest case, namely when α is a rational
integer.

48
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Let b ≥ 2 be an integer. We first recall that any real number ξ has a
unique b-ary expansion, that is, it can be written uniquely as

ξ = �ξ� +
∑
k≥1

ak

bk
= �ξ� + 0 · a1a2 . . . ,

where the digits a1, a2, . . . are integers from {0, 1, . . . , b − 1} and an
infinity of the ak are not equal to b − 1.

Theorem 3.1. Let b ≥ 2 be an integer. For any irrational real number
ξ, the numbers {ξbn}, n ≥ 0, cannot all lie in an interval of length
strictly smaller than 1/b.

For any integer b ≥ 2, the example of the rational number b/(b2 −
1) = 0 · 101010 . . . with purely periodic b-ary expansion shows that it is
necessary to assume that ξ is irrational in Theorem 3.1.

Proof. Let
∑

k≥1 akb−k = 0 · a1a2 . . . , with ak ∈ {0, 1, . . . , b − 1} for
k ≥ 1, be the b-ary expansion of {ξ}. Let k be a positive integer and
observe that {ξbk} = 0 · ak+1ak+2 . . . Since ξ is irrational, this implies
that

ak+1

b
< {ξbk} <

ak+1

b
+

1
b
.

Thus, if there exist i, j ≥ 0 such that aj+1 − ai+1 ≥ 2, then we get

{ξbj} − {ξbi} >
aj+1

b
− ai+1

b
− 1

b
≥ 2

b
− 1

b
=

1
b
.

Consequently, we can assume without loss of generality that a1, a2, · · · ∈
{�, � + 1} for a certain integer � in {0, 1, . . . , b − 2} and we can write ξ

under the form �ξ� + �/(b − 1) + 0 · w1w2 . . ., where wk = ak − � for
k ≥ 1. Since ξ is irrational, the infinite word w := w1w2 . . ., defined
on the alphabet {0, 1}, is not ultimately periodic and its complexity
function p(m,w, {0, 1}) satisfies p(m,w, {0, 1}) ≥ m + 1 for every m ≥
1, by Theorem A.3. This implies that, for every m ≥ 1, there exists
(at least) one block Wm of m letters such that both 0Wm and 1Wm

are subblocks of w. In other words, there exist integers um, vm and
infinite words w′,w′′ such that {ξbum} − �/(b − 1) = 0 · 0Wmw′ and
{ξbvm} − �/(b − 1) = 0 · 1Wmw′′. Hence {ξbvm} − {ξbum} > b−1 − b−m.
Since m can be taken arbitrarily large, we conclude that no interval of
length strictly smaller than 1/b can contain all the {ξbn} with n ≥ 0.

It is worth noting that Theorem 3.1 is best possible, since, for any
integer b ≥ 2, there exist irrational real numbers ξ such that all the
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real numbers {ξbn}, n ≥ 0, are lying in a semi-open interval of length
1/b. For instance, for any irrational number θ with 0 < θ < 1 and
any real number ρ, the real number

∑
k≥1 skb−k, where (sk)k≥1 is the

sequence sθ,ρ defined in Theorem A.4, has this property. Theorem 2.1
from [161] describes the irrational numbers ξ such that all the fractional
parts {ξbn} with n ≥ 0 are contained in an open or semi-open interval
of length 1/b.

3.2 Mahler’s Z-numbers

According to Mahler [468], the problem whether Z-numbers do exist was
proposed to him by a Japanese colleague.

Definition 3.2. A positive real number ξ is a Z-number if the inequal-
ities 0 ≤ {ξ(3/2)n} < 1/2 hold for all integers n ≥ 0. More generally,
for a given real number α with α > 1 and real numbers s, t satisfying
0 ≤ s < s + t ≤ 1, we define the set Zα(s, s + t) as

Zα(s, s + t) = {ξ �= 0 : s ≤ {ξαn} < s + t, for all n ≥ 0}.
Mahler has not succeeded in solving this problem. He established vari-

ous partial results, including that for any non-negative integer m, the real
interval (m,m+1) contains at most one Z-number; see Exercise 3.1. Con-
sequently, there are at most countably many Z-numbers. Mahler showed
that the cardinality of the set of Z-numbers less than x is O(xδ), with
δ = log2((1 +

√
5)/2), a result improved in 1992 by Flatto [307] who

proved that one can take δ = log2(3/2).
While Mahler’s method is rather elementary, Flatto’s approach relies

on notions from symbolic dynamics and β-transformations (see Section
9.3), and it covers the more general case of sequences ({ξ(p/q)n})n≥0 for
coprime integers p and q such that p > q ≥ 2. A first step towards the
proof (or disproof) of the existence of Z-numbers was made in 1995 by
Flatto, Lagarias and Pollington [308], who established the next result
(for positive ξ).

Theorem 3.3. Let p and q be coprime integers satisfying p > q ≥ 2.
Then, the inequality

lim sup
n→∞

{
ξ
(p

q

)n}
− lim inf

n→∞

{
ξ
(p

q

)n}
≥ 1

p

holds for all non-zero real numbers ξ.
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According to Theorem 3.1, Theorem 3.3 remains true for q = 1 when
ξ is irrational, and it is best possible in that case. For coprime integers
p and q with p > q ≥ 2, Pollington [568] was the first to establish that
the set Zp/q(0, 1/p) ∩ R>0 is empty, a result reproved by Flatto [307].

The original proof of Theorem 3.3 given in [308] is quite intricate. An
alternative proof was found by Dubickas [238], which is more natural
and can be extended in various directions; see Theorem 3.5. Here, we
reproduce the even simpler proof from [251].

Proof. Set α = p/q. Let n be a positive integer and define

xn = �ξαn�, yn = {ξαn}. (3.1)

Since

ξαn+1 = xn+1 + yn+1 =
p

q
ξαn =

p

q
(xn + yn),

the real number

sn := qxn+1 − pxn = −qyn+1 + pyn (3.2)

is a rational integer. Furthermore, as yn and yn+1 are lying in [0, 1), we
deduce that

sn ∈ {−q + 1,−q + 2, . . . , p − 2, p − 1}.
First, we prove that (sn)n≥1 is not ultimately periodic. We argue by

contradiction and assume that there is a positive integer � such that
sn = sn+� for every sufficiently large integer n. Iterating � times the
recursion yn = (pyn−1 − sn−1)/q, we then deduce that the sequence(

yt� − (p/q)�y(t−1)�

)
t≥2

is ultimately constant and rational. This implies the existence of an
integer t0 and of rational numbers r = (p/q)� and r′ such that yt� =
ry(t−1)� − r′ for every t ≥ t0 + 1 and, consequently,

yt� = rt−t0yt0� − (rt−t0−1 + · · · + r + 1)r′, for t ≥ t0 + 1.

This can be rewritten as

yt� − r′

r − 1
= rt−t0

(
yt0� − r′

r − 1

)
.

Since r exceeds 1 and the quantities yt� − r′/(r− 1) and yt0� − r′/(r− 1)
are both bounded independently of t, we deduce that yt� = r′/(r−1) for
every t ≥ t0. Therefore, the rational numbers ξ(p/q)t0� and ξ(p/q)(t0+1)�
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have the same fractional part. Hence, ξ must be rational. Write ξ = a/b

and set

ct := (a/b)(p/q)t� − (a/b)(p/q)t0�, t ≥ t0.

Since

apt� = q(t−t0)�(bqt0�ct + apt0�),

and ct is a rational integer for t ≥ t0, we get that every integral power
of q� divides a. This is a contradiction since q ≥ 2. Consequently, the
sequence (sn)n≥1 is not ultimately periodic.

Let m be a positive integer. Since (sn)n≥1 is not ultimately periodic,
it follows from Corollary A.4 that there exist integers z0, z

′
0, z1, . . . , zm

such that z0 > z′0 and the finite words z0z1 . . . zm and z′0z1 . . . zm occur
infinitely often in the infinite word s1s2s3 . . . This implies that there are
a rational number rm, infinitely many integers n such that

yn+m+1 = αm+1yn − z′0α
m

q
− rm,

and infinitely many integers n such that

yn+m+1 = αm+1yn − z0α
m

q
− rm.

Setting λ = lim infn≥1 yn and μ = lim supn≥1 yn, we get

μ − αm+1λ ≥ −z′0α
m

q
− rm

and

αm+1μ − λ ≥ z0α
m

q
+ rm.

Since z0 − z′0 ≥ 1, adding the last two inequalities gives

μ − λ ≥ αm

q(1 + αm+1)
≥ 1

p
−
(q

p

)m+1

.

As m can be taken arbitrarily large, this shows that μ − λ ≥ 1/p and
that all the {ξαn}, n ≥ 0, cannot be contained in an interval of length
smaller than 1/p.

Besides Theorem 3.3, Flatto, Lagarias and Pollington [308] established
various results on the sets Zp/q(s, s + t) and derived several conditions
for p, q, s and t under which Zp/q(s, s + t) contains at most one element
in the interval (m,m+1), for each non-negative integer m. This extends
Mahler’s result on Z3/2(0, 1/2) and complements Theorem 2.14.
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3.3 On the fractional parts of powers of algebraic numbers

The proof of Theorem 3.3 presented in Section 3.2 can be extended to
the study of the sequence ({ξαn})n≥1, for a given algebraic number α

greater than 1.
We begin with the definitions of the length and the reduced length

of an algebraic number. The latter notion was introduced by Dubickas
[238].

Definition 3.4. The length of a complex polynomial is the sum of the
moduli of its coefficients. Let α be an algebraic number and denote by
P (X) its minimal defining polynomial over the integers. The length of α,
denoted by L(α), is equal to the length of P (X). The reduced length of α,
denoted by �(α), is equal to the infimum of the lengths of the polynomials
P (X)G(X), where G(X) runs through the set of real polynomials whose
leading coefficient or whose constant coefficient is equal to 1.

Theorem 3.5 is Theorem 2 from Dubickas [240]. The special case η = 0
was proved earlier in [238].

Theorem 3.5. Let α > 1 be a real algebraic number and η be a real
number. Let ξ be a non-zero real number that lies outside the field gen-
erated by α if α is a Pisot or a Salem number. Then,

lim sup
n→+∞

{ξαn + η} − lim inf
n→+∞ {ξαn + η} ≥ 1/�(α).

It is worth noting that Theorem 3.5 extends Theorems 3.1 and 3.3.
Indeed, according to Exercise 3.2, for any coprime integers p, q with
p > q ≥ 1, the reduced length of the rational number p/q is equal to p.

The additional assumption on ξ when α is a Pisot or a Salem number
is necessary; see Section 3.4.

Before proving Theorem 3.5, we state an auxiliary lemma, which will
be used several times in the sequel.

Lemma 3.6. Let P (X) = adX
d + · · · + a1X + a0 be a complex polyno-

mial of degree d ≥ 1 with distinct roots α1, . . . , αd. Let X1, . . . , Xd and
Z0, . . . , Zd−1 be such that

X1α
k
1 + · · · + Xdα

k
d = Zk, k = 0, 1, . . . , d − 1. (3.3)

Then we have XjP
′(αj) =

∑d−1
k=0 βj,kZk for j = 1, . . . , d, where we have

set βj,k =
∑d

h=k+1 ahαh−k−1
j for j = 1, . . . , d and k = 0, . . . , d − 1.
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Proof. The linear system (3.3) has a unique solution, since its Van-
dermonde determinant is non-zero. Let j = 1, . . . , d. Setting

Pj(X) =
P (X) − P (αj)

X − αj
=
∑

0≤k≤d

ak

Xk − αk
j

X − αj

=
∑

1≤k≤d

ak(Xk−1 + αjX
k−2 + · · · + αk−1

j )

=
d−1∑
k=0

βj,kXk,

we have Pj(αj) = P ′(αj) and Pj(αk) = 0 for k = 1, . . . , j−1, j+1, . . . , d.
Using (3.3), this shows that

d−1∑
k=0

βj,kZk = X1Pj(α1) + · · · + XdPj(αd) = XjP
′(αj),

as asserted.

Proof of Theorem 3.5. Write Q(X) = qdX
d+· · ·+q1X+q0 for the

minimal defining polynomial of α over the rationals. Let n be a positive
integer and define

xn = �ξαn + η�, yn = {ξαn + η}.
Set

sn = qdxn+d + · · · + q1xn+1 + q0xn

= −(qdyn+d + · · · + q1yn+1 + q0yn) + ηQ(1).

The crucial point is again the proof that the sequence (sn)n≥1 is not
ultimately periodic. We argue by contradiction and assume that there are
positive integers n0 and � such that sn = sn+� for every positive integer
n ≥ n0. The sequence (un)n≥1 defined for n ≥ 1 by un = xn+� − xn

satisfies the linear recurrence

q0un + · · · + qdun+d = 0, for n ≥ n0.

Denote by α1 = α, α2, . . . , αd the Galois conjugates of α. By Theorem
F.1, there exist algebraic numbers ζ1, · · · , ζd such that

un = ζ1α
n
1 + · · · + ζdα

n
d ,

for n ≥ n0. Let m ≥ n0 be an integer. Applying Lemma 3.6 to the linear
system

X1α
n−m
1 + · · · + Xdα

n−m
d = un, n = m,m + 1, . . . , m + d − 1,
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we see that there is an integer polynomial Gm(X) of degree at most d−1
such that

Q′(αj)ζjα
m
j = Gm(αj), j = 1, . . . , d.

Then, ζj is in the field generated by αj , and the algebraic numbers
ζ1, . . . , ζd are conjugates over Q, hence, ζ1 is non-zero. Let a be a positive
integer such that

a/(Q′(α)ζ1), aα/(Q′(α)ζ1), . . . , aαd−1/(Q′(α)ζ1)

are algebraic integers. Then, aαm = aGm(α)/(Q′(α)ζ1) is also an alge-
braic integer. Since m can be taken arbitrarily large, this can only be
possible if α is an algebraic integer.

For n ≥ n0, set

δn = yn+� − yn = ξ(α� − 1)αn − un

= (ξ(α� − 1) − ζ1)αn
1 − ζ2α

n
2 − · · · − ζdα

n
d .

Applying Lemma 3.6 to the linear system

X1α
n−m
1 + · · · + Xdα

n−m
d = δn, n = m,m + 1, . . . ,m + d − 1,

we see that X1, . . . , Xd are in absolute value bounded by a constant
depending only on α and independent of m, as |δn| is at most equal to
1 for n ≥ n0. Since

X1 = (ξ(α� − 1) − ζ1)αm
1 ,X2 = −ζ2α

m
2 , . . . , Xd = −ζdα

m
d ,

this implies that ζ1 = ξ(α� − 1) and that α2, . . . , αd are all in the closed
unit disc. Since α is an algebraic integer, this proves that it is a Pisot
or a Salem number. Moreover, ξ lies in the field Q(α) because ζ1 is in
Q(α). This contradicts our assumption on ξ. Consequently, the sequence
(sn)n≥1 cannot be ultimately periodic.

We continue similarly as in the proof of Theorem 3.3. Let m be a
positive integer and b1, . . . , bm be real numbers. Set

P (X) = Q(X)× (1+b1X + · · ·+bmXm) =: c0 +c1X + · · ·+cm+dX
m+d,

and let n be a positive integer. Since ξαnP (α) = 0, we get

vn := cm+dxn+m+d + . . . + c0xn

= −(cm+dyn+m+d + · · · + c0yn) + ηP (1)
(3.4)

and we check that

vn = bmsn+m + · · · + b1sn+1 + sn. (3.5)
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Let us view (sn)n≥1 as an infinite word s. Since it is not ultimately pe-
riodic, we get from Corollary A.4 that there exist integers z0, z

′
0, z1, . . . ,

zm such that the blocks z0z1 . . . zm and z′0z1 . . . zm occur infinitely often
in s and z0 > z′0.

Set λ = lim infn≥1 yn and μ = lim supn≥1 yn. Then, for any positive
real number ε, we have

λ − ε ≤ yn ≤ μ + ε

for every sufficiently large integer n.
We infer from (3.4) and (3.5) that there are arbitrarily large integers

n such that

vn = z0 + z1b1 + · · · + zmbm

< ηP (1) + (μ + ε)
( ∑

j:cj<0

(−cj)
)
− (λ − ε)

( ∑
j:cj>0

cj

)
,

and also arbitrarily large integers n with

−v′
n = −z′0 − z1b1 − · · · − zmbm

< −ηP (1) + (μ + ε)
( ∑

j:cj>0

cj

)
− (λ − ε)

( ∑
j:cj<0

(−cj)
)
.

Adding the last two inequalities gives

1 ≤ z0 − z′0 < (μ − λ + 2ε)L(P ).

Since ε is arbitrary, it follows that μ − λ ≥ 1/L(P ). Furthermore, the
same proof goes with polynomials P (X) obtained by multiplying Q(X)
by a monic polynomial. Consequently, we have shown that μ − λ ≥
1/�(α), as asserted.

3.4 On the fractional parts of powers of Pisot
and Salem numbers

If the algebraic number α is a Pisot or a Salem number, then the extra
assumption that the non-zero real number ξ does not belong to the
number field generated by α is required in the statement of Theorem 3.5.
The purpose of this section is to discuss the necessity of this assumption.

Dubickas [241] considered the sequence of fractional parts ({ξαn})n≥1

where α > 1 is a Pisot number and ξ is a positive element of Q(α).
He found the set of limit points of this sequence and described all cases
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when it has a unique limit point. We refer the reader to his paper and
choose to mainly devote this section to the case of Salem numbers.

Vijayarhagavan [708] established that the sequence (αn)n≥0 is dense
modulo one, for α being the real root greater than 1 of the reciprocal
polynomial X4 − X3 − X2 − X + 1. This is a particular case of the
following general result of Pisot and Salem [567].

Theorem 3.7. For any Salem number α, the sequence (αn)n≥1 is dense
modulo one, but is not uniformly distributed modulo one.

Before proving Theorem 3.7 we state an auxiliary lemma.

Lemma 3.8. Let ε > 0 and α be a Salem number of degree d. Let
α3, . . . , αd be the Galois conjugates of α lying on the unit circle, or-
dered in such a way that α2j−1 and α2j are complex conjugates for
j = 2, . . . , d/2. Let η3, . . . , ηd be complex numbers lying on the unit circle
such that η2j−1 and η2j are complex conjugates for j = 2, . . . , d/2. Then,
there are arbitrarily large integers n such that

|αn
k − ηk| < ε,

for k = 3, . . . , d.

Proof. For j = 3, . . . , d − 1 and j odd, let ωj be such that αj =
e2iπωj . Assume that there are rational integers a1, a3, . . . , ad−1 such that
a1 + a3ω3 + · · · + ad−1ωd−1 = 0. Then, we have∏

3≤j≤d−1, j odd

(αj)aj = 1. (3.6)

For h = 3, . . . , d−1 and h odd, let σh be the complex embedding defined
by σh(αh) = α. Applying σh to (3.6), we get

αah ·
∏

3≤j≤d−1,j �=h, j odd

(σh(αj))aj = 1,

which implies that ah = 0, since σh(αj) is on the unit circle for j ≥ 3
odd and j �= h. This shows that 1, ω3, . . . , ωd−1 are linearly independent
over the integers.

For j = 3, . . . , d − 1 and j odd, let βj be such that ηj = e2iπβj . For
any positive real number δ, it follows from Theorem 1.18 that there are
arbitrarily large integers n such that ||nωj −βj|| < δ for j = 3, . . . , d− 1
and j odd. This concludes the proof of the lemma.

Proof of Theorem 3.7. Let d be the degree of α and denote by α,
1/α, α3, 1/α3, . . . , αd−1, 1/αd−1 its Galois conjugates. For j = 3, . . . , d−1
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and j odd, let ωj be such that αj = e2iπωj . For any positive integer n,
the number αn +α−n +αn

3 +α−n
3 + · · ·+α−n

d−1 is a rational integer. Note
also that α−n tends to zero when n tends to infinity.

Let ρ be in (0, 1) and η3 be a complex number on the unit circle whose
real part equals ρ/2. Put η5 = · · · = ηd−1 = i. Let ε be a positive real
number. By Lemma 3.8, there are arbitrarily large integers n such that
ρ − dε ≤ α−n + αn

3 + α−n
3 + · · · + α−n

d−1 ≤ ρ + dε. Consequently, there
are arbitrarily large integers n for which there exists an integer rn with
ρ − dε ≤ rn − αn ≤ ρ + dε. This implies that the sequence (αn)n≥1 is
dense modulo one.

Since the function x �→ 2 cos(2πx) is 1-periodic and continuous and
since, for every integer h whose absolute value is sufficiently large, the
integral ∫ 1

0

exp{4iπh cos 2πt}dt = J0(4πh),

where J0 is the Bessel function of order 0 (see e.g. [126, p. 13]), is non-
zero, we deduce from Theorem 1.19 that the sequence

(2 cos(2nπω3) + · · · + 2 cos(2nπωd−1))n≥1

is not uniformly distributed modulo one. This implies that the sequence
(αn)n≥1 is not uniformly distributed modulo one.

Theorem 3.9. Let α > 1 be an algebraic number. Then, α is a Pisot or
a Salem number if, and only if, for every positive real number ε, there
exists a non-zero algebraic number ξ in Q(α) such that ||ξαn|| < ε for
every integer n ≥ 0.

Proof. We proceed with the ‘only if’ part and leave the ‘if’ part as
Exercise 3.4. Let α be a Pisot or a Salem number of degree d. Similarly
as in the proof of Theorem 2.10 and by Lemma 2.11, there exists a Pisot
number θ such that Q(θ) = Q(α). Let δ denote the maximum of the
absolute values of the Galois conjugates of θ (other than θ). Let ε be
a positive real number and h be a positive integer satisfying δh < ε/d.
Then, for every integer n ≥ 0, the trace of θhαn is a rational integer and

|Tr(θhαn) − θhαn| ≤ (d − 1)δh < ε.

This shows that the algebraic number ξ := θh satisfies the required
conclusion.

It follows from Theorem 3.9 that the dependence on ξ in the upper
bound (2.2) of Lemma 2.2 cannot be removed.
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We conclude this section by a result of Zäımi [742].

Theorem 3.10. Let α be a Salem number. For any non-zero real num-
ber ξ in the field Q(α), we have

lim sup
n→+∞

{ξαn} − lim inf
n→+∞ {ξαn} > 0

and even

lim sup
n→+∞

{ξαn} − lim inf
n→+∞ {ξαn} ≥ 1

L(α)
,

if α − 1 is a unit. Furthermore, if α − 1 is not a unit, then

inf
ξ �=0

(
lim sup
n→+∞

{ξαn} − lim inf
n→+∞ {ξαn}) = 0.

Proof. We follow the proof of Theorem 3.5 with η = 0. Let Q(X) =
qdX

d + · · · + q1X + q0 be the minimal defining polynomial of α. For
n ≥ 1, put xn = �ξαn�, yn = {ξαn}, and

sn = −(qdyn+d + · · · + q0yn).

Set λ = lim infn≥1 yn and μ = lim supn≥1 yn. Let ε be a positive real
number. Then we have

λ − ε ≤ yn ≤ μ + ε,

for every sufficiently large integer n. This shows that

(λ − ε)
(∑
qi>0

qi

)
+ (μ + ε)

(∑
qi<0

qi

) ≤ −sn

≤(λ − ε)
(∑
qi<0

qi

)
+ (μ + ε)

(∑
qi>0

qi

)

holds for every sufficiently large integer n. If the sequence (sn)n≥1 takes
infinitely many times at least two distinct values, then there are arbi-
trarily large integers n such that sn+1 − sn ≥ 1, hence,

(μ − λ + 2ε)L(α) = (μ − λ + 2ε)
(∑
qi>0

qi

)
+ (λ − μ − 2ε)

(∑
qi<0

qi

) ≥ 1.

Since ε can be taken arbitrarily small we get

lim sup
n→+∞

{ξαn} − lim inf
n→+∞ {ξαn} = μ − λ ≥ 1

L(α)
> 0. (3.7)

This proves the first statement of the theorem. Assume now that there
are integers n0 and s such that sn = s for all n ≥ n0. We then have

q0(yn+1 − yn) + q1(yn+2 − yn+1) + · · · + qd(yn+d−1 − yn+d) = 0, (3.8)
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for n ≥ n0. Let α1 = α, α2 = 1/α, α3, . . . , αd be the Galois conjugates
of α. Since the sequence (yn+1 − yn)n≥n0 satisfies the recursion (3.8),
Theorem F.1 implies that there exist complex numbers γ1, . . . , γd such
that

yn+1 − yn = γ1α
n
1 + · · · + γdα

n
d (3.9)

for all n ≥ n0. Since |yn+1 − yn| ≤ 1 for n ≥ n0, we get γ1 = 0.
Let ξ1 = ξ, ξ2, . . . , ξd be the Galois conjugates of ξ, where ξi = σi(ξ)

and σi is the complex embedding of Q(α) sending α to αi. For n ≥ n0,
set

zn = ξ1α
n
1 + ξ2α

n
2 + · · · + ξdα

n
d ,

and note that zn is a rational number satisfying

yn = zn − xn − (ξ2α
n
2 + · · · + ξdα

n
d ).

Consequently, for n ≥ n0, we have

yn+1−yn = (zn+1−xn+1)−(zn−xn)−ξ2(α2−1)αn
2 −· · ·−ξ2(α2−1)αn

2 ,

and it follows from (3.9) that

(γ2+ξ2(α2−1))αn
2 +· · ·+(γd+ξd(αd−1))αn

d = (zn+1−xn+1)−(zn−xn)

is a rational number. Let n1 ≥ n0 be an integer. Applying Lemma 3.6
to the system

0αn−n1
1 + (γ2 + ξ2(α2 − 1))αn1

2 αn−n1
2 + · · ·

+ (γd + ξd(αd − 1))αn1
d αn−n1

d

= (zn+1 − xn+1) − (zn − xn), n = n1, · · · , n1 + d − 1,

we get that
d−1∑
k=0

( d∑
h=k+1

qhαh−k−1
)(

(zn1+k+1 − xn1+k+1) − (zn1+k − xn1+k)
)

= 0.

Since qd is non-zero and (zn1+k+1−xn1+k+1)−(zn1+k−xn1+k) is rational
for k = 0, . . . , d − 1, we deduce that (zn1+k+1 − xn1+k+1) − (zn1+k −
xn1+k) = 0 for k = 0, . . . , d − 1. Consequently, zn − xn = zn0 − xn0 for
n ≥ n0 and there is a rational number c such that

yn = c − (ξ2α
n
2 + · · · + ξdα

n
d ) (3.10)

for n ≥ n0. Using that 0 < α2 < 1 and |α3| = · · · = |αd| = 1, it follows
from Lemma 3.8 that

μ = c + |ξ3| + · · · + |ξd| and λ = c − |ξ3| − · · · − |ξd|.
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This gives

lim sup
n→+∞

{ξαn} − lim inf
n→+∞ {ξαn} = μ − λ ≥ 2(|ξ3| + · · · + |ξd|) > 0.

Since ξ is non-zero, we get 0 ≤ λ < μ ≤ 1 and 0 < c < 1. It follows from
(3.10) that

sn = −(qdyn+d + · · · + q0yn) = −c(Q(1)) = s,

for n ≥ n0. Since s is an integer and 0 < c < 1, the number Q(1) cannot
be ±1, thus α−1 cannot be a unit. This means that, when α−1 is a unit,
the sequence (sn)n≥1 takes infinitely many times at least two distinct
values and (3.7) holds. This proves the second statement of the theorem.
For the proof of the last statement we refer the reader to [742].

3.5 The sequence (‖ξαn‖)n≥1

As observed by Dubickas [240], under the assumption of Theorem 3.5,
we can deduce a lower bound for the largest limit point of the sequence
(||ξαn||)n≥1. Recall that the quantities L(α) and �(α) have been intro-
duced in Definition 3.4.

Theorem 3.11. Let α > 1 be a real algebraic number. Let ξ be a
non-zero real number that lies outside the field generated by α if α is
a Pisot or a Salem number. Then, the largest limit point of the sequence
(||ξαn||)n≥1 is at least equal to 1/min{L(α), 2�(α)}.
Proof. If the largest limit point μ of the sequence (||ξαn||)n≥1 is
smaller than 1/2�(α), then the limit points of the sequence ({ξαn +
1/2})n≥1 all belong to the open interval of endpoints 1/2−μ and 1/2+μ,
whose length is smaller than 1/�(α). This contradicts Theorem 3.5 ap-
plied with η = 1/2. In view of Theorem 2.7, this proves the theorem.

When α > 1 is a rational number, Theorem 3.11 was improved by
Dubickas [240]. Before stating his result, we introduce the generating
function

T (z) :=
+∞∏
m=0

(1 − z2m

) = 1 − z − z2 + z3 + · · ·

of the Thue–Morse word (tk)k≥0 on {−1, 1} defined by t0 = 1 and
t2k+1 = −t2k = −tk for k ≥ 0. Furthermore, we put

E(z) :=
1 − (1 − z)T (z)

2z
. (3.11)
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Theorem 3.12. Let ξ be an irrational, real number. Let b be an integer
with b ≥ 2. Then the sequence (‖ξbn‖)n≥1 has a limit point greater than
or equal to

ξb :=
1 − (1 − b−1)

∏+∞
m=0 (1 − b−2m

)
2

=
E(1/b)

b

and a limit point smaller than or equal to

ξ′b :=
e(b)

∏+∞
m=0 (1 − b−2m

)
2

=
e(b)T (1/b)

2
,

where e(b) = 1 if b is even and e(b) = 1 − 1/b if b is odd. Furthermore,
both bounds are best possible.

For b = 2 a version of Theorem 3.12 can be found in [41, 45]. For
b ≥ 2, the real number T (1/b) is transcendental, thus ξb and ξ′b are
transcendental; see Chapter 8.

Preliminaries to the proof of Theorem 3.12. We begin with some
notation. To each finite or infinite word v = v1v2v3 . . . on the alphabet
{1, 2} and to each real number r with 0 < r < 1, we associate the real
number

E(v, r) = 1 − rv1 + rv1+v2 − rv1+v2+v3 + · · · =
∑
k≥0

(−1)krv1+···+vk .

At various steps we use that E(v, r) is given by an alternate sum. Let

z = z1z2 . . . = 2112221121121122211 . . .

be the fixed point of the morphism σ defined by σ(1) = 2 and σ(2) = 211.
For r in (0, 1), put

E(z, r) = 1 − r2 + r3 − r4 + r6 − r8 + · · · =
∑
k≥0

(−1)krak , (3.12)

where a0 = 0 and ak = z1 + · · · + zk for k ≥ 1.
It follows from Theorem A.16 that the generating function of the

Thue–Morse sequence and E(z, r) are connected by

2rE(z, r) = 1 − (1 − r)(t0 + t1r + t2r
2 + · · · ),

which, by (3.11), gives

E(z, r) = (1 − (1 − r)T (r))/(2r) = E(r). (3.13)

For later use, we check that

E(r) < min
{ 1

2r
,
2 − r

1 + r
,

1
1 + r3

,
1 + r

1 + r2

}
, for 0 < r < 1. (3.14)
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As in Appendix A, for a word v and a non-negative integer �, we denote
by v� the word v deprived of its first � letters. It follows from Lemma
A.15 that

1 − r + r3 − r4 + r5 − r7 < E(zi, r)

< 1 − r2 + r3 − r4 + r6, for 0 < r < 1 and i ≥ 0.
(3.15)

Since r(1−r2+r3−r4+r6) < 1−r+r3−r4 +r5−r7 for 0 < r ≤ 0.6775,
we deduce from (3.15) that

rE(zj , r) < E(zi, r), for 0 < r ≤ 0.6775 and i, j ≥ 0. (3.16)

We use the ordering �, defined in Appendix A, for the (finite and
infinite) words over the alphabet {1, 2}. Let r with 0 < r ≤ 0.6775 and
i ≥ 1 be an integer. By Theorem A.13, we have z � zi, so there is a
smallest index k such that the kth letters of z and of zi are different. If
k is odd, then these letters are 2 and 1, respectively, and we get from
(3.12) that

E(z, r) − E(zi, r) = −rakE(zk, r) + rak−1E(zi+k, r),

which is positive for 0 < r ≤ 0.6775 by (3.16). If k is even, then these
letters are 1 and 2, respectively, and we get from (3.12) that

E(z, r) − E(zi, r) = rakE(zk, r) − rak+1E(zi+k, r),

which is positive for 0 < r ≤ 0.6775 by (3.16). Consequently, we have
established that

E(zi, r) < E(z, r), for 0 < r ≤ 0.6775 and i > 0. (3.17)

We are now armed to establish a key auxiliary result for the proof of
Theorem 3.12.

Lemma 3.13. Let r be a real number with 0 < r ≤ 0.6775. Let v

be an infinite word which is not ultimately periodic. For any positive
real number ε, there are infinitely many positive integers � such that
E(v�, r) > E(r) − ε.

Proof. Let ε be a positive real number. For m ≥ 0, put Am = σm(2),
where σ is the morphism defined at the beginning of the preliminaries.
Fix m sufficiently large such that rak+1 < ε, where k = fm is the length
of the word Am. Since fm is odd, for any word v′ which begins with
Am, we have E(Am, r) < E(v′, r) < E(Am, r)+ ε. As z begins with Am,
this gives E(v′, r) > E(z, r) − ε. This proves the above assumption if
Am occurs infinitely often in v. Otherwise, by Theorem A.14, there is a
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finite word U with U � z having infinitely many occurrences in v. Let k

be the length of U . Without loss of generality, we can assume that the
first k − 1 letters of U and z coincide and that their kth letters are 2
and 1 if k is odd and 1 and 2 if k is even. Let � be an integer such that
U starts at the �th place of v. Write U ′ for the word U deprived of its
kth letter. If k is odd, then we have

E(U ′, r) = E(z, r) + rakE(zk, r) = E(v�−1, r) + rak+1E(v�+k−1, r).

In this case, if E(v�−1, r) and E(v�+k−1, r) are both at most equal to
E(z, r), we get that E(zk, r) ≤ rE(z, r), a contradiction with (3.16). If
k is even, then we have

E(U ′, r) = E(z, r)−rakE(zk, r) = E(v�−1, r)−rak−1+rak+δE(v�+k, r),

where δ = 0 or 1, whence

E(v�−1, r) − E(z, r) = rak−1
(
1 − r1+δE(v�+k, r) − rE(zk, r)

)
.

If E(v�+k, r) ≤ E(z, r), then, by (3.14) and (3.17), we have

r1+δE(v�+k, r) + rE(zk, r) ≤ 2rE(z, r) < 1,

whence E(v�−1, r) > E(z, r). Consequently, for any k, at least one
among the numbers E(v�−1, r), E(v�+k−1, r) and E(v�+k, r) is greater
than E(z, r).

Completion of the proof of Theorem 3.12. We start with co-
prime integers p and q satisfying p > q ≥ 1. We prove a more general
result than the theorem enounced. Namely, we establish a lower bound
for the largest limit point and an upper bound for the smallest limit
point of the sequence (||ξ(p/q)n||)n≥1, provided that q/p ≤ 0.6775. The
result follows by taking p = b and q = 1.

Set α = p/q and r := q/p. For n ≥ 1, set xn = �ξαn + 1/2�, yn =
{ξαn + 1/2}, and

sn = qxn+1 − pxn.

Observe that

‖ξαn‖ = |yn − 1/2| = |{ξαn + 1/2} − 1/2|

and

sn = −q(yn+1 − 1/2) + p(yn − 1/2).
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Thus,

yn − 1/2 =
sn

p
+ r(yn+1 − 1/2) =

sn

p
+ r
(sn+1

p
+ · · ·

)
,

and, by iteration, we get

‖ξαn‖ = |yn − 1/2| = |(1/p)(sn + sn+1r + sn+2r
2 + · · · )|. (3.18)

The sequence (sn)n≥1 takes integer values and it was shown in the proof
of Theorem 3.5 that it is not ultimately periodic.

For n ≥ 1, set

Un(r) := sn + sn+1r + sn+2r
2 + · · ·

Let n be such that |sn| ≥ 2. From

2 ≤ |sn| = |Un(r) − rUn+1(r)| ≤ |Un(r)| + r|Un+1(r)|,
we get that at least one number among |Un(r)| and r|Un+1(r)| is greater
than or equal to 2/(r + 1), and thus exceeds E(r), by (3.14).

Let n be such that sn = ±1, sn+1 = sn+2 = 0. From

1 = |sn| = |Un(r) − r3Un+3(r)| ≤ |Un(r)| + r3|Un+3(r)|,
we get that at least one of the numbers |Un(r)| and r3|Un+3(r)| is greater
than or equal to 1/(1 + r3), and thus exceeds E(r), by (3.14).

Let n be such that sn = 1, sn+1 = 0 and sn+2 = 1. Then, we have
Un(r)− r3Un+3(r) = 1 + r2 and at least one number among |Un(r)| and
r3|Un+3(r)| is greater than or equal to (1+r2)/(1+r3), and thus exceeds
E(r), by (3.14). The same conclusion holds if sn = −1, sn+1 = 0 and
sn+2 = −1.

Let n be such that sn = sn+1 = 1. Then Un(r) − r2Un+2(r) = 1 + r

and at least one number among |Un(r)| and r2|Un+2(r)| is greater than
or equal to (1+r)/(1+r2), and thus exceeds E(r). The same conclusion
holds if sn = sn+1 = −1.

In all of these cases, it follows from (3.18) that ||ξαn|| ≥ E(r)/p.
Assume now that s is a word on {−1, 0, 1} in which the words 100, −100,
101, −10−1, 11 and −1−1 occur only finitely often. Consequently, there
exists an n0 such that the non-periodic sequence sn0 , sn0+1, . . . begins
with sn0 = 1 and has the form 1, 0̂,−1, 0̂, 1, 0̂,−1, . . ., where 0̂ means
that the letter 0 may or may not occur. We associate to (sn)n≥n0 a
word v = (vn)n≥0 on {1, 2} by writing 2 if two consecutive units are
separated by the symbol 0 and by writing 1 otherwise. For instance, we
associate to 10−11−1010−1 . . . the word 21122 . . . Observe that v is not
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ultimately periodic. Let � be an integer greater than n0 and let t = t(�)
be the number of 0’s among sn0 , . . . , s�−1. If s� = ±1, then |U�(r)| is
equal to E(v�−n0−t, r) and, otherwise,

|U�+1(r)| =
|U�(r)|

r
= E(v�−n0−t(�), r) = E(v�+1−n0−t(�+1), r),

since s�+1 is non-zero. By Lemma 3.13, for any positive real number ε,
there are arbitrarily large integers � for which E(v�−n0−t(�), r) exceeds
E(z, r)−ε, since v is not ultimately periodic. Combined with (3.18), this
shows that the smallest limit point of the sequence (‖ξαn‖)n≥1 is greater
than or equal to E(z, r)/p. For p = b and q = 1, the latter quantity is
equal to E(1/b)/b. This proves the first statement of the theorem.

The proof of the second statement is similar. For n ≥ 1, write the
fractional part {ξαn} under the form 1/2+ gn, where −1/2 ≤ gn < 1/2.
Observe that

p�ξ(p/q)n� − q�ξ(p/q)n+1� = −p(1/2 + gn) + q(1/2 + gn+1)

= (q − p)/2 − pgn + qgn+1,

and set

sn := −qgn+1 + pgn.

The sequence (sn)n≥1 is not ultimately periodic and takes integer values
if p + q is even, and values in 1/2 + Z if p + q is odd. As above, we get
by iteration that

gn = (1/p)(sn + sn+1r + sn+2r
2 + · · · ). (3.19)

The case with p + q even corresponds to the case already studied in
the first statement of the theorem, and we deduce that the sequence
(||ξαn||)n≥1 has a limit point smaller than or equal to 1/2−E(r)/p. For
q = 1 and p = b ≥ 3 odd, the latter quantity is equal to 1/2−E(1/b)/b.
By (3.13), this gives the result stated.

Suppose now that p+ q is odd. Then, multiplying both sides of (3.19)
by 2, we get

2gn = (1/p)(2sn + 2sn+1r + 2sn+2r
2 + · · · ), (3.20)

where 2sn, 2sn+1, . . . are odd integers. For n ≥ 1, set

Vn(r) := 2sn + 2sn+1r + 2sn+2r
2 + · · ·

Let n be such that |2sn| ≥ 3. From

3 ≤ |2sn| = |Vn(r) − rVn+1(r)| ≤ |Vn(r)| + r|Vn+1(r)|,
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we get that at least one number among |Vn(r)| and r|Vn+1(r)| is greater
than or equal to 3/(1+r). Similarly, if 2sn = 2sn+1 = 2sn+2 = ±1, then
upon writing 1 + r + r2 = |Vn(r) + r3Vn+3(r)|, we deduce that at least
one number among |Vn(r)| and r3|Vn+3(r)| exceeds (1+r+r2)/(1+r3).
By (3.14), we can then assume that, starting from a certain place n0,
the sequence (sn)n≥n0 takes only the values ±1, with at most two equal
values in a row. Denote by h the map sending a series H(r) to (1 + (1−
r)H(r))/2. Then, h sends the tail of the sequence (sn)n≥1 to a sequence
of the form 1, 0̂,−1, 0̂, 1, 0̂,−1, . . ., where 0̂ means that the letter 0 may
or may not occur. Since, by (3.11), the map h sends (1−T (r))/r to E(r),
we deduce from the proof of the first statement that, for any positive real
number ε, there are arbitrarily large integers n such that |2gn| exceeds
(1 − T (r))/(rp) − ε. Consequently, the sequence (|gn|)n≥1 has a limit
point at least equal to (1−T (r))/(2q) and the sequence (||ξαn||)n≥1 has
a limit point smaller than or equal to 1/2 − (1 − T (r))/(2q). For q = 1
and p = b ≥ 2 even, the latter quantity is equal to T (1/b)/2, as stated
in the theorem.

Finally, the combination of Theorem A.13, (3.18) and (3.20) shows
that ||ξbb

n|| < ξb and ||ξ′bbn|| < ξ′b for every integer n ≥ 1 and b ≥ 2.
This establishes the last assertion of the theorem.

The proof of Theorem 3.12 covers powers of rational numbers greater
than or equal to 10/6.775 and can be extended to powers of rational
numbers greater than 1, but some extra work is needed to prove that
Lemma 3.13 still holds for every real number r between 0 and 1. This
would introduce further complication, and we prefer to refer the reader
to [240]. We display below the special case α = p/2, with p ≥ 3 an
odd integer. Unlike Theorem 3.12, the next result is presumably not
best possible.

Theorem 3.14. Let p ≥ 3 be an odd integer. Let ξ be a non-zero real
number. Then, the sequence (‖ξ(p/2)n‖)n≥1 has a limit point greater
than or equal to (p− (p− 2)T (2/p))/(4p) and a limit point smaller than
or equal to (1 + T (2/p))/4. In particular, the sequence (‖ξ(3/2)n‖)n≥1

has a limit point greater than or equal to (3−T (2/3))/12 = 0.238117 . . .

and a limit point smaller than or equal to (1 + T (2/3))/4 = 0.285647 . . .

Let ξ be a non-zero real number. It follows from Theorem 3.3 that
every closed sub-interval of [0, 1] of length 2/3 contains a limit point of
the sequence ({ξ(3/2)n})n≥1. The first part of Theorem 3.14 asserts that
the interval [0.238117 . . . , 0.761882 . . .] of length 0.523764 . . . contains a
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limit point of that sequence. At present, we have no example of an
interval of length smaller than 1/2 with the same property. However,
Dubickas [248] established that the union of three intervals [0, 8/39] ∪
[18/39, 21/39]∪ [31/39, 1], of total length 19/39, always contains a limit
point of ({ξ(3/2)n})n≥1, see Exercise 3.5.

3.6 Constructions of Pollington and of Dubickas

Let p and q be coprime integers satisfying p > q ≥ 2. We gather in this
section several constructions of positive real numbers ξ such that all the
fractional parts {ξ(p/q)n}, n ≥ 0, or all the numbers ||ξ(p/q)n||, n ≥ 0,
belong to a small interval.

We begin with a method introduced by Pollington [572, 574] for con-
structing real numbers ξ such that ||ξ(3/2)n|| is large for every positive
integer n.

Theorem 3.15. There exists a real number ξ such that ||ξ(3/2)n|| ≥
4/65 holds for every positive integer n.

Proof. Let ε be a real number with 0 < ε < 1/2 and n be a positive
integer. Assume that there is an integer m = m(n), depending on n,
such that the interval [(3/2)m(n + ε), (3/2)m(n + 1 − ε)] contains an
interval [� + ε, � + 1 − ε], where � = �(n) is an integer and

[(2/3)i(� + ε), (2/3)i(� + 1 − ε)]

does not contain an integer for i = 1, . . . ,m. Observe that m(n) =
m(n + a2m) for every non-negative integer a, since (3/2)ma2m is an
integer. Put then

δ(n) = min
0≤i≤m

min{‖(� + ε)(2/3)i‖, ‖(� + 1 − ε)(2/3)i‖}.

Observe that for x in [n+ ε, n+1− ε]∩ [(2/3)m(�+ ε), (2/3)m(�+1− ε)]
we then have

‖x(3/2)i‖ ≥ δ(n), for i = 1, 2, . . . ,m.

We illustrate this for n = 1 and ε = 2/5. The interval [(9/4)(1 +
ε), (9/4)(2 − ε)] contains an interval [3 + ε, 4 − ε] such that there is
no integer in [(2/3)(3 + ε), (2/3)(4 − ε)] ∪ [(4/9)(3 + ε), (4/9)(4 − ε)].
Thus, we can put m(1) = 2, �(1) = 3, and δ(1) = 4/15.

Let n1 mod 2m1 , . . ., nk mod 2mk be a finite system of covering con-
gruences, in the sense that for every positive integer n, there exists j with
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1 ≤ j ≤ k and n ≡ nj mod 2mj . Assume furthermore that mj = mj(nj)
for j = 1, . . . , k. Then, there exists ξ such that

‖ξ(3/2)i‖ ≥ min
1≤j≤k

δ(nj), (3.21)

for i ≥ 1. To see this, put I1 = [1, 2]. Let j ≥ 1 be an integer and assume
that Ij = [n, n + 1]. Let h = h(n) be in {1, . . . , k} and ah be such that
n = nh + ah2mh . Put then Ij+1 = [�h + ah3mh , �h + ah3mh + 1] and

Jj =
(2

3

)mh(t1)+···+mh(tj)

Ij+1,

where ti denotes the left endpoint of Ii for i = 1, . . . , j. Then, the se-
quence (Jj)j≥1 is a decreasing sequence of nested closed intervals. Its in-
tersection is reduced to one point ξ, which satisfies (3.21) for every i ≥ 1.
The theorem then follows by choosing for (n1, �1,m1), . . . , (n12, �12,m12)
the triples

(1, 3, 2),(2, 5, 2), (3, 12, 3), (4, 14, 3), (7, 36, 4), (8, 44, 4), (15, 117, 5),

(16, 125, 5), (31, 360, 6), (32, 368, 6), (0, 8, 6), (63, 720, 6),

and by selecting ε suitably. Indeed, it can be checked that this choice
gives min1≤j≤12 δ(nj) = 4/65.

Pollington [572] announced that the constant 4/65 in Theorem 3.15
can be replaced by 0.088. Using a totally different method, Dubickas
[248] established that every interval (m,m+1) with m a positive integer
contains a real number ξ such that ||ξ(3/2)n|| > 5/48 = 0.1041 . . . for
every integer n ≥ 0.

We continue with several results of Dubickas [248], which, in the op-
posite direction, show that for rational numbers p/q, there are non-zero
real numbers ξ such that ||ξ(p/q)n|| is quite small for every n ≥ 0.

Theorem 3.16. For every odd integer p ≥ 3 there exists a non-zero
real number ξ such that

||ξ(p/2)n|| < 1/p, for every n ≥ 0.

Let p and q be integers with p > 2q ≥ 4. If m is an integer, put δm = 1
when m is odd and δm = 0 otherwise. Then, there exist non-zero real
numbers ξ1 and ξ2 such that

||ξ1(p/q)n|| <
q − δq

2(p − q)
, for every n ≥ 0,
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and

||ξ2(p/q)n|| >
p − 2q + δp

2(p − q)
, for every n ≥ 0.

The first assertion of Theorem 3.16 with p = 3 was first proved by
Akiyama, Frougny and Sakarovitch [33], who established more precisely
that the set of positive real numbers ξ such that ||ξ(3/2)n|| < 1/3
for all positive integers n is infinite and countable. Their approach
rests on the representation of real numbers in the base composed of
1/p, q/p2, q2/p3, . . .; see also [32] for subsequent results. This shows that
the constant 0.238117 in Theorem 3.14 cannot be replaced by a con-
stant greater than 1/3. For large p, the bound 1/p in Theorem 3.16 is
close to best possible, since, by Theorem 3.14, it cannot be replaced by
1/p − 4/p3.

With a similar method it is proved in [248] that for coprime integers
p and q with q > 1 and (

√
2 + 1)(q − 1) < p < q2 − q, there exists a

non-zero real number ξ3 such that ||ξ3(p/q)n|| < (pq − p − q)/(p2 − q2)
for every n ≥ 0. In some cases, for instance when p/q = 11/4, this gives
a better bound than Theorem 3.16.

A slight improvement of the second assertion of Theorem 3.16 has
been obtained by Dubickas [259] when q is even and p > 2q. Namely, he
established the existence of a non-zero real number ξ4 such that

||ξ4(p/q)n|| <
q(p − 2)
2p(p − q)

, for every n ≥ 0.

Before proceeding with the proof of Theorem 3.16, we state an aux-
iliary result which allows us to get strict inequalities in Theorems 3.16
and 3.18.

Lemma 3.17. Let p, q be relatively prime integers with p > q > 1. For
every fixed real number ξ, t with ξ �= 0 and 0 ≤ t < 1, there exist only
finitely many integers n such that {ξ(p/q)n} = t.

Proof. This is left as Exercise 3.6.

Proof of Theorem 3.16. Let p > q ≥ 2 be integers and A be a
set of integers containing at least q consecutive integers. Let x0 be a
positive integer. We construct two sequences (xn)n≥0 and (sn)n≥0 of
integers and a real number ξ as follows. Let n be a positive integer such
that xn−1 is known. Choose sn−1 in A such that q divides pxn−1 +sn−1.
This is always possible since A contains q consecutive integers. Set then
xn := (pxn−1 + sn−1)/q. Observe that there may be several possible
choices for sn−1. Put
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ξ := x0 +
1
p

∑
j≥0

sj

(q

p

)j

= x0 +
1
p

(
s0 + s1

(q

p

)
+ · · ·

)

and, for every n ≥ 0,

yn :=
1
p

(
sn + sn+1

(q

p

)
+ · · ·

)
.

An immediate induction shows that

ξ(p/q)n = xn + yn, for every n ≥ 0.

For the first assertion of the theorem, choose q = 2 and A = {−1, 0, 1}.
Since xn := (pxn−1 + sn−1)/2, we must take sn−1 = 0 if xn−1 is even,
but we have two choices for sn−1 if xn−1 is odd. So we can choose the
sequence (sn)n≥0 of the form 0k110k2(−1)0k31 . . ., where k1, k2, . . . are
non-negative integers. It follows that all the yn belong to the interval
[−1/p, 1/p]. Consequently, |yn| = ||ξ(p/2)n|| for n ≥ 0. Furthermore, if
yn0 = ±1/p for some integer n0, then yn = yn0 for n ≥ n0, a contradic-
tion to Lemma 3.17. It follows that yn ∈ (−1/p, 1/p) for n ≥ 0.

For the second statement, choose A = {−(q − 1)/2,−(q − 1)/2 +
1, . . . , (q − 1)/2} if q is odd and A = {−q/2 + 1,−q/2 + 2, . . . , q/2} if q

is even, and take sn in A for n ≥ 0. Assume that q is odd. Then, every
yn belongs to the interval [−(q − 1)/(2(p− q)), (q − 1)/(2(p− q))]. Since
q − 1 < p − q, we get that |yn| = ||ξ(p/q)n||. Moreover, we have yn =
±(q−1)/(2(p−q)) if, and only if, sn = sn+1 = · · · = ±(q−1)/2. Thus, if
yn0 = ±(q−1)/(2(p− q)) for some integer n0, then yn = yn0 for n ≥ n0,
a contradiction to Lemma 3.17. We argue similarly when q is even.

The last statement of the theorem is left as Exercise 3.7.

There are further results if one replaces the function distance to the
nearest integer by the fractional part function. The next statement was
essentially proved in [308], see also [248]. Its proof is left as Exercise 3.8.

Theorem 3.18. Let p and q be coprime integers with q ≥ 2 and p > 2q.
Let t be an integer with 0 ≤ t ≤ p − 2q. Then there exists a non-zero
real number ξ such that t/(p − q) < {ξ(p/q)n} < (t + q − 1)/(p − q) for
n ≥ 0. In particular, for every odd integer p ≥ 5, there exists a non-zero
real number ξ such that {ξ(p/2)n} < 1/(p − 2) for n ≥ 0.

The last statement of Theorem 3.18 (with ≤ instead of <) was already
proved by Tijdeman [687] with a method close to that used in the proof
of Theorem 2.14; see Exercise 2.7. For large p, the bound 1/(p − 2) is
close to best possible, since, by Theorem 3.3, it cannot be replaced by a
number smaller than 1/p.
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3.7 Waring’s problem

The content of this section is slightly aside the main theme of the book,
however, we feel that Waring’s problem cannot be omitted when deal-
ing with fractional parts of powers of rational numbers. The reader is
directed to the excellent survey of Vaughan and Wooley [702].

Let n ≥ 2 be an integer. Hilbert [345] proved that there exists an
integer s(n) such that every positive integer can be expressed as the sum
of at most s(n) positive integers, all of which are nth powers. Denote
by g(n) the smallest integer with this property. Observe that the integer
2n�(3/2)n�−1 can only be represented by the powers 1n and 2n because
it is less than 3n. Since

2n�(3/2)n� − 1 = (�(3/2)n� − 1)2n + (2n − 1)1n,

we have

g(n) ≥ 2n + �(3/2)n� − 2. (3.22)

It is known (see e.g. [334, Chapter XXI]) that equality holds in (3.22)
when

2n{(3/2)n} + �(3/2)n� ≤ 2n. (3.23)

If (3.23) fails, then

g(n) = 2n + �(3/2)n� + �(4/3)n� − θ,

where θ is 2 or 3, according as

�(4/3)n� · �(3/2)n� + �(4/3)n� + �(3/2)n�
is equal to 2n or is larger than 2n. A quick check shows that, to prove
that (3.23) holds for n, it is sufficient to establish that

‖(3/2)n‖ ≥ (3/4)n−1. (3.24)

Mahler showed that (3.24) holds for every sufficiently large n (see Ex-
ercise 3.9), but his method does not enable us to get an explicit upper
bound for the possible values of n for which (3.24) does not hold. By
means of other techniques, Beukers [94] proved that ‖(3/2)n‖ ≥ 2−9n/10

for n > 5000. This estimate has been refined by Dubickas [233], Hab-
sieger [331] and Zudilin [751], who established that ‖(3/2)n‖ ≥ 0.5803n

for every n greater than an effectively computable constant. Note that
the condition (3.23) is known to hold for n up to 471, 600, 000.
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3.8 On the integer parts of powers of algebraic numbers

Let α > 1 be a real number. The problem of deciding whether or
not there are infinitely many composite numbers of the form �αn� is
closely related to the distribution of ({αn/2})n≥1, since we have �αn� =
2�αn/2� whenever {αn/2} < 1/2. If the latter happens for abitrarily
large integers n, then infinitely many elements of the sequence (�αn�)n≥1

are even and composite.
The first result on this problem was established in 1967 by Forman

and Shapiro [311], who showed that there are infinitely many composite
numbers in the sequence (�αn�)n≥1 for α = 3/2 and α = 4/3. The same
conclusion holds for α = 5/4 (see [265]), for α a quadratic unit [178]
and, more generally, for all Pisot and Salem numbers [235, 236]. Further
examples of algebraic and transcendental numbers with this property
are given in [238] and in [37], respectively.

Dubickas [242] introduced the set Z of real numbers α > 1 for which
there is a non-zero real number ξ such that the integer parts �ξαn� are
all even numbers for n ≥ 1. He obtained various results on Z and on its
complement, including examples of real numbers lying in (1,+∞) \ Z;
see also [238].

It is proved in [252] that for real numbers ξ and ν with ξ �= 0, both
sequences (�ξ2n +ν�)n≥1 and (�ξ(−2)n +ν�)n≥1 contain infinitely many
composite elements. Moreover, if ξ is irrational, then infinitely many
elements of each of these sequences are divisible by 2 or 3.

3.9 Exercises

Exercise 3.1 (cf. [468]). Establish that, for any non-negative integer
m, the real interval (m,m + 1) contains at most one Z-number. [Hint.
Assume that ξ is a Z-number. For an integer n ≥ 0, write xn = �ξ(3/2)n�
and put εn = 0 if xn is even and εn = 1 otherwise. Prove that 3{ξ} =
ε0 + (2/3)ε1 + (2/3)2ε2 + · · · Conclude.]

Exercise 3.2. Let p and q be coprime integers with p > q ≥ 1. Compute
the reduced length of qX − p. Find assumptions on the real polynomial
P (X) under which �(P ) can be estimated.

Exercise 3.3. Let α > 1 be a real algebraic number and qdX
d +

· · · + q1X + q0 its minimal defining polynomial over Z. Put L+(α) =∑d
i=0 max{0, qi} and L−(α) =

∑d
i=0 max{0,−qi}. Let ξ be a positive

real number not in Q(α) if α is a Pisot or a Salem number. Prove that
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lim sup
n→+∞

{ξαn} ≥ min
{ 1

L+(α)
,

1
L−(α)

}
.

Exercise 3.4. By a suitable adaptation of the proof of Theorem 2.5,
establish the ‘if’ part of Theorem 3.9.

Exercise 3.5 (cf. [248]). Prove that the union of three intervals [0, 8/39]∪
[18/39, 21/39]∪[31/39, 1] always contains a limit point of ({ξ(3/2)n})n≥1.
Let η be in [1/5, 8/39]. Let ξ be a real number such that {ξ(3/2)n} is
in (η, 9η/4) ∪ (1 − 9η/4, 1 − η) for every n ≥ 0. Define xn, yn and sn

as in (3.1) and (3.2) with p/q = 3/2. Prove that sn = 0 or 1 for ev-
ery n ≥ 0 and, more precisely, sn = 0 if yn ∈ (η, 9η/4) and sn = 1 if
yn ∈ (1 − 9η/4, 1 − η). Let m be the smallest integer such that sm = 1
and one among s0, s1, . . . , sm−1 is equal to 0. Recall that (sn)n≥0 is not
ultimately periodic. Prove that yn ∈ (1−27η/8, 9η/4)∪(1−9η/4, 27η/8)
for every n ≥ m + 1. For n ≥ m + 1, prove that sn+1 = 0 if, and only if,
sn = 1. Conclude.

Exercise 3.6. Prove Lemma 3.17.

Exercise 3.7. Prove the last assertion of Theorem 3.16.

Exercise 3.8. Prove Theorem 3.18.

Exercise 3.9 (cf. [465]). Let p and q be coprime integers with p > q ≥ 2.
Apply Ridout’s Theorem E.8 to show that, for every positive real number
ε, there exists an integer n0(ε, p, q) such that ||(p/q)n|| > 2−εn for every
n > n0(ε, p, q).

3.10 Notes

� Allouche and Glen [43, 44] pointed out that, for b = 2, Theorem
2.1 from [161] was already proved by Veerman [703, 704] and subse-
quently rediscovered by several authors. In [43] they gave a complete
description of the minimal intervals containing all the fractional parts
{ξ2n} for some positive real number ξ and all n ≥ 0; see also [415].

� Vijayarhagavan [706] established that, for every integer b ≥ 2
and every irrational number ξ, the set of limit points of the sequence
({ξbn})n≥1 is infinite. If, in addition, some integral power of ξ is equal
to b, he deduced that the set of limit points of the fractional parts of the
powers of ξ is infinite.
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� Let p and q be coprime integers with p > q ≥ 2. It was shown
in [308] that the set of s in [0, 1 − 1/p] for which Zp/q(s, s + 1/p) is
empty is everywhere dense in [0, 1 − 1/p]. Bugeaud [145] proved that
this set has full Lebesgue measure. Subsequently, for p < q2, Dubickas
[254] established that it is the whole interval [0, 1−1/p]. More precisely,
he proved that, if p and q are coprime integers with 2 ≤ q < p < q2 and
I is a closed interval of length 1/p of the torus T, then for each non-zero
real number ξ, there are infinitely many positive integers n such that
{ξ(p/q)n} does not belong to I.

� Dubickas and Mossinghoff [264] developed algorithms to search
for Z-numbers. They proved that there are no Z-numbers up to 257.

� In a series of notes [188–194], Choquet stated various results
(mostly without proofs) on the distribution of the sequence ({ξαn})n≥1,
mainly in the case α = 3/2.

� Strauch [676], Adhikari, Rath and Saradha [22], and Rath [600]
studied the distribution functions of the sequence ({ξ(p/q)n})n≥1 for
coprime integers p and q with p > q ≥ 2.

� Schinzel [622, 623] studied the reduced length of polynomials with
real coefficients.

� As shown by Dubickas [244], Theorem 3.5 can be extended to
linear recurrent sequences. For example, for any coprime integers p and
q with p > q ≥ 2 and for any non-negative integer �, we have

lim sup
n→+∞

{n�(p/q)n} − lim inf
n→+∞ {n�(p/q)n} ≥ 1/p�+1.

See also [382] for other results on the distribution of ({ξun})n≥1, where
(un)n≥1 is a recurrence sequence of rational integers.

� The distribution of the sequence ({ξ(−p/q)n})n≥1, for a non-zero
real number ξ and coprime integers p and q with p > q ≥ 1, has been
studied by Dubickas [245]. Among other results, he proved that, for any
real irrational number ξ and any integer b ≥ 2, we have

lim inf
n→+∞ {ξ(−b)n} ≤

+∞∏
k=1

(
1 − b−(2k+(−1)k−1)/3

)
,

and that the above inequality cannot be replaced by a strict one. He
also established that, for any non-zero real number ξ, the sequence
({ξ(−3/2)n})n≥1 has a limit point smaller than 0.533547 and a limit
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point greater than 0.466452. The word z (Definition A.12) plays a key
role in [245].

� Let α > 1 be an algebraic number and ξ be a positive real number.
Kaneko [365] established a lower bound for the number of integers n such
that 0 ≤ n < N and {ξαn} > min{1/L+(α), 1/L−(α)}, where L+(α)
and L−(α) are defined in Exercise 3.3.

� Theorem 3.5 has been extended to powers of complex non-real
algebraic numbers in [260].

� Kaneko [363] extended Theorem 3.12 by giving explicit lower
bounds for the largest limit point of (||ξαn||)n≥1 for a class of algebraic
numbers α of degree at least two. He [364] further established various
results on the greatest limit point of ({ξαn})n≥1 and on the difference
between the greatest and the smallest limit point of this sequence, when
α is an algebraic number of degree at least two satisfying some addi-
tional assumptions. In addition, he showed that if α is a quadratic Pisot
number whose Galois conjugate α2 lies in (0, 2 − √

2), then, for any
real number ξ not in Q(α), the greatest limit point of ({ξαn})n≥1 is at
least equal to 1/(α − α2), with equality when ξ equals (

∑
m≥1 α−m!)/

(α − α2).

� Independently, Dubickas [234] and Luca [451] proved that if α is
a Pisot number such that {αn} tends to 0 as n tends to infinity, then α

is a rational integer.

� Akiyama and Tanigawa [34] established that, if α is a Salem num-
ber of large degree, then the sequence ({αn})n≥1 is not far from being
uniformly distributed modulo one; see also [227]. Additional results on
fractional parts of powers of Salem numbers have been proved by Zäımi
[741, 742].

� Y. Meyer [511] proved that a real number α > 1 is a Pisot or a
Salem number if, and only if, for every ε > 0, there exists a positive
real number L such that every real interval of length L has a non-empty
intersection with the set of real numbers ξ such that ||ξαn|| < ε for
every n ≥ 1. Further results on Pisot and Salem numbers can be found
in [511].

� Dubickas [248] and Akiyama [32] proved independently that for
coprime integers p and q with p ≥ q2 + 1, there are non-zero real
numbers ξ such that the closure of the set {ξ(p/q)n}, n ≥ 1, is of
Lebesgue measure zero and even (see [32]) of Hausdorff dimension at
most (log q)/ log(p/q), which is less than 1.
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� Let (Fn)n≥0 denote the Fibonacci sequence defined by F0 = 0,
F1 = 1 and Fn+2 = Fn+1 +Fn for n ≥ 0. Among other results, Dubickas
[250] proved that, for any real number ξ not in the field Q(

√
5), there

are infinitely many positive integers n such that {ξFn} > 2/3.

� Kamae [361] established that if (mn)n≥1 is a non-decreasing se-
quence of positive integers tending to infinity and such that 2mn/n is
bounded, then the sequence (3n/2mn)n≥1 is uniformly distributed mod-
ulo one.

� Chowla and De Leon [195] proved that, if 0 is a limit point of the
sequence (||√6(

√
2 + 1)n/4||)n≥1, then the pair (

√
2,
√

3) satisfies the
Littlewood conjecture, that is, for any positive ε, there exists a positive
integer q such that q · ||q√2|| · ||q√3|| < ε.
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Normal numbers

Throughout this chapter, b denotes an integer at least equal to 2 and ξ

is a real number given by its b-ary expansion, that is,

ξ = �ξ� +
∑
k≥1

ak

bk
= �ξ� + 0 · a1a2 . . . , (4.1)

where the digits a1, a2, . . . are integers from {0, 1, . . . , b − 1} and an
infinity of the ak are not equal to b − 1.

For a positive integer N and a digit d in {0, 1, . . . , b − 1}, set

Ab(d,N, ξ) := Card{j : 1 ≤ j ≤ N, aj = d}.
More generally, for a block Dk = d1 . . . dk of k digits from {0, 1, . . . , b−1},
set

Ab(Dk, N, ξ) := Card{j : 0 ≤ j ≤ N − k, aj+1 = d1, . . . , aj+k = dk}.
Often, we identify the block Dk with the integer d1b

k−1+· · ·+dk−1b+dk.
We keep this notation throughout this chapter.

The notion of normal numbers was introduced by Émile Borel [114]
in a seminal paper published in 1909; see also [115, pp. 194–196]. We
reproduce his original definition.

Definition 4.1. Let b ≥ 2 be an integer. The frequency of a digit d

in the b-ary expansion of a real number ξ is equal to the limit of the
sequence (Ab(d,N, ξ)/N)N≥1 if this sequence converges, and does not
exist otherwise. A real number ξ is called simply normal to base b if
every digit 0, 1, . . . , b − 1 occurs in its b-ary expansion with the same
frequency 1/b, that is, if

lim
N→+∞

Ab(d,N, ξ)
N

=
1
b
, for d = 0, 1, . . . , b − 1. (4.2)

78



4.1 Equivalent definitions of normality 79

It is called normal to base b if each of ξ, bξ, b2ξ, . . . is simply normal to
every base b, b2, b3, . . .

There are several equivalent definitions of a normal number, which
are discussed in Sections 4.1 and 4.3. Theorem 4.14 shows the close
relationship between the notion of normality of a real number ξ to a
given base b and the distribution modulo one of the sequence (ξbn)n≥1.
Explicit constructions of normal numbers are given in Section 4.2. The
notion of ‘richness’, which is much weaker than that of normality, is
defined and briefly discussed in Section 4.4. Finally, we study in Section
4.5 the rational approximation to a subclass of the normal numbers
constructed in Section 4.2.

4.1 Equivalent definitions of normality

In the sequel, we often use that (4.2) holds if, and only if, there are
positive integers �0, . . . , �b−1 such that

lim
N→+∞

Ab(d, �dN, ξ)
�dN

=
1
b
, for d = 0, 1, . . . , b − 1.

This fact is easy to check.
Pillai [562] showed that the conditions imposed by Borel are redundant

in part and established the following result.

Theorem 4.2. Let b ≥ 2 be an integer. A real number ξ is normal to
base b if, and only if, ξ is simply normal to every base b, b2, b3, . . .

Theorem 4.2 was used without proof by Sierpiński [654].

Proof. The ‘only if’ part is immediate from Definition 4.1, but some
work is needed to establish the ‘if’ part. Let ξ be a real number simply
normal to every base b, b2, b3, . . . It is sufficient to show that bξ is simply
normal to every base b, b2, b3, . . . Since

|Ab(d,N, ξ) − Ab(d,N, bξ)| ≤ 1,

for d = 0, 1, . . . , b−1 and N ≥ 1, it is immediate that bξ is simply normal
to base b. Let j ≥ 2 and r ≥ 2 be integers. Let d = 0, . . . , bj − 1. Given
an integer D = 0, . . . , bjr − 1, write D = d′1b

jr−1 + · · · + d′jr−1b + d′
jr to

base b. Then, express bD − d′
1b

jr = d′
2b

jr−1 + · · · + d′jr−1b
2 + d′jrb as

bD − d′1b
jr = d1b

j(r−1) + · · · + dr−1b
j + dr
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to base bj . The cardinality of the set D′
b(j, r, k) composed of the integers

D in {0, 1, . . . , bjr−1} such that the digit d occurs exactly k times among
d1, . . . , dr−1 is equal to(

r − 1
k

)
bj(bj − 1)r−1−k, (4.3)

since the values of the j digits d′1 and d′jr−j+2, . . . , d
′
jr do not affect the

values of d1, . . . , dr−1. It follows from the definition of D′
b(j, r, k) that

Abj (d,Nr, bξ) ≥
r−1∑
k=1

k
∑

D∈D′
b(j,r,k)

Abjr(D,N, ξ).

Let ε be a positive real number. Since ξ is simply normal to base bjr,
we infer from (4.3) and the binomial identity that, for sufficiently large
N , we have

Abj (d,Nr, bξ)
Nr

≥
r−1∑
k=1

k

r

(
r − 1

k

)
bj(bj − 1)r−1−k(b−jr − ε)

= (1 − r−1)bj(b−jr − ε)
r−1∑
k=1

(
r − 2
k − 1

)
(bj − 1)r−2−(k−1)

= (1 − r−1)b−j(1 − εbjr),

thus

lim inf
N→+∞

Abj (d,N, bξ)
N

≥ 1 − r−1

bj
. (4.4)

Since (4.4) holds for every digit d = 0, . . . , bj − 1 and

bj−1∑
d=0

Abj (d,N, bξ)
N

= 1,

we deduce that

lim sup
N→+∞

Abj (d,N, bξ)
N

≤ 1 + bjr−1

bj
, (4.5)

for d = 0, . . . , bj − 1. Choosing r arbitrarily large, it follows from (4.4)
and (4.5) that bξ is simply normal to base bj . Since j ≥ 2 is arbitrary,
we have established the theorem.

We continue with an easy lemma.

Lemma 4.3. Let b and r be integers greater than or equal to 2. If a real
number is simply normal to base br, then it is simply normal to base b.
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Proof. Let k be an integer with 0 ≤ k ≤ r. Let d = 0, . . . , b − 1.
Denote by Db(r, d, k) the set of integers D from {0, 1, . . . , br − 1} such
that in the representation D = d1b

r−1 + · · ·+dr−1b+dr, with d1, . . . , dr

in {0, 1, . . . , b − 1}, exactly k digits among d1, . . . , dr are equal to d.
Observe that the cardinality pb(r, k) of Db(r, d, k) is given by

pb(r, k) =
(

r

k

)
(b − 1)r−k,

and that
r∑

k=0

k

r
pb(r, k) = br−1, (4.6)

by the binomial identity.
Let ξ be a real number simply normal to base br. Let ε be a positive

real number and N0 be an integer such that

Abr(D,N, ξ)
N

=
1
br

+ εD,N with |εD,N | ≤ ε

br−1
,

for every N ≥ N0 and for D = 0, 1, . . . , br − 1. Let N ≥ N0 be given.
Then, we deduce from (4.6) that
∣∣∣Ab(d, rN, ξ)

rN
− 1

b

∣∣∣ = ∣∣∣(
r∑

k=0

k

r

∑
D∈Db(r,d,k)

Abr(D,N, ξ)
N

)
− 1

b

∣∣∣

=
∣∣∣

r∑
k=0

k

r

pb(r, k)
br

− 1
b

+
r∑

k=0

k

r

∑
D∈Db(r,d,k)

εD,N

∣∣∣
≤ br−1 max

D∈{0,1,...,br−1}
|εD,N | ≤ ε.

This proves that ξ is simply normal to base b.

The converse of Lemma 4.3 does not hold. Indeed, it is easy to con-
struct explicit examples of real numbers simply normal to a given base
b ≥ 2, which are not simply normal to every base br with r ≥ 2. Take for
instance the rational number whose b-ary expansion is purely periodic
of period 012 . . . (b − 1).

We derive from Lemma 4.3 and Theorem 4.2 a theorem of Max-
field [494].

Theorem 4.4. Let b ≥ 2 be an integer, and r, s be positive integers. A
real number is normal to base bs if, and only if, it is normal to base br.

Proof. Clearly, it is sufficient to establish the result for s = 1. The
‘only if’ part follows directly from Theorem 4.2, so it remains for us to
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establish the ‘if’ part. Let r ≥ 2 be an integer and ξ be a real number
normal to base br. Let t be a positive integer. By Definition 4.1, ξ is
simply normal to base brt = (bt)r, and then to base bt, by Lemma 4.3.
Consequently, ξ is normal to base b, by Theorem 4.2.

We have already used several times the one-to-one correspondence
between digits in base bk (that is, elements of {0, 1, . . . , bk − 1}) and
blocks of k digits in base b (that is, words of length k on {0, 1, . . . ,

b−1}). Thus, looking at the expansion of a number to base bk should be
essentially the same as looking at blocks of k digits in its expansion to
base b. This point of view allows us to formulate an equivalent definition
of normality. In his seminal paper [114] (see also [115, p. 195]) Borel
also wrote that the characteristic property of a normal number is the
following:

Un groupement quelconque de p chiffres consécutifs étant considéré,
si l’on désigne par cn le nombre de fois que se rencontre ce groupement
dans les n premiers chiffres décimaux, on a

lim
n→+∞

cn

n
=

1
10p

.

This is precisely the content of Theorem 4.5.

Theorem 4.5. Let b ≥ 2 be an integer. A real number ξ is normal
to base b if, and only if, for every k ≥ 1, every block of k digits from
{0, 1, . . . , b−1} occurs in the b-ary expansion of ξ with the same frequency
1/bk, that is, if and only if,

lim
N→+∞

Ab(Dk, N, ξ)
N

=
1
bk

, for every k ≥ 1 and every

block Dk of k digits from {0, 1, . . . , b − 1}.
(4.7)

Several authors, including Champernowne [184], Koksma [389] and
Copeland and Erdős [203], have taken property (4.7) as the definition of
a normal number. Hardy and Wright [334] stated that property (4.7) is
equivalent to Definition 4.1, but gave no proof.

A complete proof of Theorem 4.5, independent of Theorem 4.2, was
given in 1951 by Niven and Zuckerman [544], and simplified one year
later by Cassels [180]. Theorem 4.5 was applied by Maxfield [493] to
give a short proof of Theorem 4.2.

The ‘if’ part of Theorem 4.5 is an immediate consequence of the
next result, established independently by Piatetski-Shapiro [559] again
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in 1951, and which is called the ‘hot spot lemma’ by Borwein and
Bailey [120].

Theorem 4.6. A real number ξ is normal to base b if, and only if, there
exists a positive number C such that

lim sup
N→+∞

Ab(Dk, N, ξ)
N

≤ C

bk
, for every k ≥ 1 and every

block Dk of k digits from {0, 1, . . . , b − 1}.
(4.8)

To prove Theorem 4.6, we need the following lemma. Recall that
pb(n, k) denotes the number of blocks of n digits from {0, 1, . . . , b − 1}
containing exactly k times a given digit.

Lemma 4.7. Let b ≥ 2 and n ≥ 1 be integers. For every integer j such
that 2 ≤ j ≤ (b − 1)n or −n ≤ j ≤ −2, we have

pb(bn, n + j) < bbne−j2/(4bn).

If n ≥ b15, then, for every real number ε with n−1/3 ≤ ε ≤ 1, we have∑
−n≤j≤−�εn�

pb(bn, n+j)+
∑

�εn�≤j≤(b−1)n

pb(bn, n+j) ≤ 214bbne−ε2n/(10b).

Proof. If j ≥ 2, then we have

pb(bn, n + j)
pb(bn, n)

=
(bn − n)(bn − n − 1) . . . (bn − n − j + 1)

(n + 1)(n + 2) . . . (n + j)(b − 1)j

=
n

n + 1
· n

n + 2
. . .

n

n + j
· (b − 1)(b − 1 − 1/n) . . . (b − 1 − (j − 1)/n)

(b − 1)j

<
(
1 − 1

n(b − 1)

)(
1 − 2

n(b − 1)

)
. . .
(
1 − j − 1

n(b − 1)

)

< exp
{
− 1

n(b − 1)
− 2

n(b − 1)
− . . . − j − 1

n(b − 1)

}

= exp{−j(j − 1)/2n(b − 1)} < exp{−j2/(4bn)},
as well as, in the same way,

pb(bn, n − j)
pb(bn, n)

=
(
1 − 1

n

)(
1 − 2

n

)
. . .
(
1 − j − 1

n

)

× (b − 1)j

(b − 1 + 1/n) . . . (b − 1 + j/n)

< exp{−j(j − 1)/2n} < exp{−j2/(4bn)}.
Combined with the obvious estimate

pb(bn, n) < bbn,
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this gives the first assertion of the lemma. As for the second one, it
is sufficient to note that we estimate a sum of at most 2bn terms, all
smaller than bbne−ε2n/(4b), and that

2bne−ε2n/(4b) = 2bne−3ε2n/(20b)e−ε2n/(10b).

From our assumptions n ≥ b15 and ε ≥ n−1/3, it then follows that

2bne−3ε2n/(20b) ≤ 2bne−3n1/3/(20b) ≤ 2bne−3(bn)1/4/20 ≤ 214.

This concludes the proof.

Proof of Theorems 4.5 and 4.6. We begin with the ‘only if’ part
of Theorem 4.5. Express ξ as in (4.1). Assume that ξ is normal to base
b and let Dk be given. Write Dk as a single digit, say d, to base bk. For
integers j = 0, 1, . . . , k − 1 and r ≥ 0, the occurrence of the block Dk

as akr+j+1 . . . akr+j+k corresponds to the digit d being in the (r + 1)th
position in the expansion of {bjξ} to base bk. Observe that

1
k

k−1∑
j=0

Abk(d,N, bjξ)
N

− 1
N

≤ Ab(Dk, Nk, ξ)
Nk

≤ 1
k

k−1∑
j=0

Abk(d,N, bjξ)
N

.

Since, by Definition 4.1, the real number bjξ is simply normal to base
bk for j = 0, . . . , k − 1, we get that

lim
N→+∞

Ab(Dk, N, ξ)
N

=
1
bk

,

as required.
We establish now the ‘if’ part of Theorem 4.6. Let ξ, b and C be such

that (4.8) holds. Let r ≥ 1 and � ≥ b5r be integers. Combine the digits
of ξ to base br into blocks of br�3 digits. Let d be in {0, 1, . . . , br − 1}. A
block of br�3 digits on {0, 1, . . . , br − 1} is called a good block if the digit
d occurs in it no more than �3 + br�2 times, and no less than �3 − br�2

times. Otherwise, the block is called a bad block. It follows from the
second assertion of Lemma 4.7 applied with n = �3 and ε = br/� that
there are at most

214brbr�3e−br�/10

different bad blocks of br�3 digits on {0, 1, . . . , br − 1}.
Consider a bad block as a block of rbr�3 digits to base b. By assump-

tion, for sufficiently large N , it occurs no more than 2CNb−rbr�3 times in
the prefix of length N of the b-ary expansion of ξ. Consequently, viewed
as a block of br�3 digits to base br, it occurs no more than 2CNr(br)−br�3
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times in the prefix of length N of the br-ary expansion of ξ, for sufficiently
large N . Consequently, if N is large enough, then the number of occur-
rences Abr(d,N, ξ) of the digit d among the first N digits in the br-ary
expansion of ξ satisfies

Abr (d,N, ξ) ≤ N

br�3
· (�3 + br�2) +

(
215CNre−br�/10

)
br�3 + br�3. (4.9)

Let ε be a given positive real number. Take � sufficiently large in order
that the right-hand side of (4.9) is less than Nb−r(1 + ε) + br�3. This
implies that

lim sup
N→+∞

Abr(d,N, ξ)
N

≤ 1
br

.

Since the same estimate holds for every digit in {0, 1, . . . , br − 1} and

br−1∑
d′=0

Abr (d′, N, ξ) = N,

we deduce that ξ is simply normal to base br. It then follows from The-
orem 4.2 that ξ is normal to base b.

We establish now a result given by Borel [114] in his fundamental
paper.

Theorem 4.8. Almost all real numbers are normal to all integer bases.

Proof. By Theorem 4.2, and since a countable union of null sets is
a null set, it is sufficient to prove that almost all numbers are simply
normal to a given base. Let b ≥ 2 and d be integers with 0 ≤ d ≤ b − 1.
For an integer j and a positive integer n, let Sd,n(j) denote the set of
real numbers ξ in (0, 1) such that there are exactly n + j digits equal to
d among the first bn digits of the b-ary expansion of ξ. In view of Lemma
4.7, if −n ≤ j ≤ −2 or 2 ≤ j ≤ (b−1)n, then the set Sd,n(j) is contained
in a union of at most pb(bn, n + j) intervals of the form [ξs, ξs + 1/bbn]
of total length at most equal to

b−bnpb(bn, n + j) ≤ e−j2/(4bn).

Let T and n be positive integers with n ≥ max{b15, T 3}. Let S′
d,n(T )

denote the union of the sets Sd,n(j) with −n ≤ j ≤ −	n/T 
 or 	n/T 
 ≤
j ≤ (b−1)n. By Lemma 4.7 applied with ε = 1/T , the Lebesgue measure
of S′

d,n(T ) is at most 214e−n/(10bT 2). Since the series
∑

n≥1 e−n/(10bT 2)

converges, Lemma C.1 implies that, for any given positive integer T and
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any d in {0, 1, . . . , b−1}, almost all real numbers ξ belong to only finitely
many sets S′

d,n(T ), n ≥ 1.
Let now ξ be a real number that is not normal to base b. Then, there

exists d = 0, . . . , b − 1 such that

lim
N→+∞

Ab(d, bN, ξ)
bN

=
1
b

does not hold. This means that there exist a positive real number τ and
infinitely many positive integers N such that

∣∣∣Ab(d, bN, ξ)
bN

− 1
b

∣∣∣ ≥ τ

b
=

1
bN

· τN.

Setting T = 	2/τ
, this proves that ξ belongs to infinitely many sets
S′

d,n(T ), n ≥ 1. Combined with the conclusion of the previous paragraph,
we have established that almost all real numbers are normal to base b.
This implies the theorem.

In [114] Borel asked for the construction of a real number normal to
all integer bases. We discuss this question in Section 5.2.

4.2 The Champernowne number

The first explicit example of a real number normal to a given base was
given by Champernowne [184] in 1933.

Theorem 4.9. The real number

ξc = 0.1234567891011121314 . . . ,

whose sequence of decimals is the increasing sequence of all positive
integers, is normal to base ten.

The real number ξc is often called the Champernowne number. At the
end of his paper, Champernowne stated (without proof) further related
results, including that the real number 0.46891012141516 . . . whose sequ-
ence of decimals is the increasing sequence of all composite numbers is
normal to base ten, as is the number 0 ·x1x2 . . . xr . . ., where xr denotes
the integer part of r log r, for any positive integer r. He concluded by ‘It
would be reasonable to suppose that the decimal formed by the sequence
of prime numbers is also normal to the scale of ten, but of this I have
no proof’.
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The latter problem was solved in 1946 by Copeland and Erdős [203],
who established the particular case m = 1 of the next statement. It
contains Theorem 4.9 and all the results stated in [184].

For a positive integer c and an integer b ≥ 2, we denote by (c)b the
word on {0, 1, . . . , b−1} representing c in base b, and we let �b(c) denote
its length. With this convention, we check that 19 = (19)10 = (10011)2
and �2(19) = 5.

Theorem 4.10. Let b ≥ 2 be an integer. Let (cj)j≥1 be an increasing
sequence of positive integers such that, for every θ > 1, we have cN < Nθ

for every sufficiently large integer N . Let m be a real number with m ≥ 1.
Then the real number

0 · (c1)b . . . (c1)b(c2)b . . . (c2)b(c3)b . . . ,

where the block of digits (cj)b is repeated �m�b(cj)� times for every j ≥ 1,
is normal to base b.

Theorem 4.10 for m > 1 has not been published previously. Since
the nth prime number is at most equal to a constant times n log 3n,
the next statement, established in [203], is an immediate consequence of
Theorem 4.10.

Corollary 4.11. The real number

0.235711131719232931 . . . ,

whose sequence of decimals is the increasing sequence of all prime num-
bers, is normal to base ten.

The proof of Theorem 4.10, and of most of the results of the same
flavour, rests on the concept of (ε, k)-normality, introduced by
Besicovitch [93].

Definition 4.12. Let b ≥ 2, k ≥ 1 and � ≥ 1 be integers, and let ε

be a positive real number. A finite word W of length � on the alpha-
bet {0, 1, . . . , b − 1} is (ε, k)-normal to base b if the total number of
occurrences in W of any combination of k digits is comprised between
(b−k − ε)� and (b−k + ε)�. A positive integer c is (ε, k)-normal to base
b if the word (c)b is (ε, k)-normal to base b.

We begin with a lemma asserting that there are not too many integers
which fail to be (ε, k)-normal to a given base.

Lemma 4.13. Let b ≥ 2, k ≥ 1 be integers, and let ε be a positive real
number with ε < 1/2. There exists a positive real number δ = δ(b, k),
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depending only on b and k, such that the number of integers up to N

which are not (ε, k)-normal to base b is less than N1−δε2
, provided that

N is sufficiently large.

Proof. Let n be an integer with n ≥ b15k and n ≥ ε−3. It follows from
Lemma 4.7 that the number of blocks of bkn letters on {0, 1, . . . , bk − 1}
containing more than n(1 + ε) or less than n(1 − ε) occurrences of a
given digit is at most equal to

214(bk)bkne−ε2n/(10bk).

Consequently, there exists a positive real number δ, depending only on
b and k such that, for n sufficiently large, the number of blocks of length
kbkn on {0, 1, . . . , b − 1} which are not (ε, k)-normal to base b is less
than (bk)(1−δε2)bkn. Thus, for n sufficiently large, the number of integers
between (bk)bkn and (bk)bk(n+1)−1 which are not (2ε, k)-normal to base
b is less than (bk)bk(n+1)(1−δε2). This implies that, if N is a sufficiently
large integer of the form (bk)bkn, then there are at most N1−(δε2/2)

integers up to N which fail to be (2ε, k)-normal to base b. The same
holds for every sufficiently large integer N if δ is replaced by δ/2. This
finishes the proof of the lemma.

Proof of Theorem 4.10. Fix a positive integer k and an integer N ,
which is assumed to be sufficiently large. Set ν = �b(cN ). Let ε be a
positive real number with ε < 1/2. For integers h, j with 0 ≤ h ≤
�mν� − 1 and 0 ≤ j ≤ ν − 1, consider the block

XN = XN,h,j := (c1)b . . . (c1)b . . . (cN )b . . . (cN )b(cN )b,j

on base b, where the block (cN )b is repeated h times and (cN )b,j is the
prefix of (cN )b of length j. Let tN denote the total number of blocks in
XN and uN denote the total number of distinct blocks in XN .

Set θ = 1 + ε4 and assume that N is sufficiently large in order that
cN < Nθ. By Lemma 4.13, there exists δ > 0, depending only on b and
k, such that the number of integers j such that 1 ≤ j ≤ N and the block
(cj)b is not (ε, k)-normal to base b is at most N (1−δε2)θ.

There are at most b�ν(1−ε3)� positive integers j such that the repre-
sentation of cj to base b has length less than or equal to 	ν(1 − ε3)
.
Thus, there are at least N − b�ν(1−ε3)� integers j such that 1 ≤ j ≤ N

and �b(cj) ≥ 	ν(1− ε3)
. Consequently, the length LN of the block XN

satisfies

LN ≥ ν(1 − ε3)�mν(1−ε3)�(N − 1 − b�ν(1−ε3)�),
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and the same argument also gives that

LN ≥ ν(1 − ε3)
(
tN − (bm)�ν(1−ε3)�).

Observe also that, since bν−1 ≤ cN ≤ bν , we have

b(ν−1)/θ ≤ N ≤ cN ≤ bν . (4.10)

In particular, we get N > 2b�ν(1−ε3)� and tN > 2(bm)�ν(1−ε3)�.
Let Dk be a block of k digits from {0, 1, . . . , b−1}. Taking into account

the overlaps, we deduce that

Ab(Dk, LN , ξ)
LN

<
1
bk

+ ε +
ktN

ν(1 − ε3)(tN − (bm)�ν(1−ε3)�)

+
νmνN (1−δε2)θ

ν(1 − ε3)�mν(1−ε3)�(N − 1 − b�ν(1−ε3)�)

<
1
bk

+ ε +
2k

ν(1 − ε3)
+

2mε3νN (1−δε2)θ−1

1 − ε3
,

(4.11)

for N sufficiently large. It follows from (4.10) that ν ≥ (log N)/(log b)
and

mε3νN (1−δε2)θ−1 ≤ mε3
N (ε3θ(log m)/(log b))+(1−δε2)(1+ε4)−1. (4.12)

If ε is sufficiently small, then the right-hand side of (4.12) is at most
equal to mN−δε2/2. For N large enough in terms of ε and k, we deduce
that the left-hand side of (4.11) is less than b−k + 2ε. We conclude by
applying Theorem 4.6.

4.3 Normality and uniform distribution

Unsurprisingly, the notion of normality to base b for a real number ξ is
deeply related to the distribution modulo one of the sequence (ξbn)n≥1.
The next theorem was proved by Wall [725] in his Ph.D. thesis.

Theorem 4.14. Let b ≥ 2 be an integer. The real number ξ is normal
to base b if, and only if, the sequence (ξbn)n≥1 is uniformly distributed
modulo one.

Proof. Assume first that the sequence (ξbn)n≥1 is uniformly distribu-
ted modulo one. Let Dk = d1 . . . dk be a block of k digits on {0, 1, . . . ,

b − 1} and put

u =
d1

b
+

d2

b2
+ · · · + dk

bk
, v =

d1

b
+

d2

b2
+ · · · + dk + 1

bk
.
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Let ξ = �ξ� + 0 · a1a2 . . . be the b-ary expansion of ξ given by (4.1).
Observe that, for n ≥ 1, the block anan+1 . . . an+k−1 is identical with
the block d1 . . . dk if, and only if, {bn−1ξ} is in [u, v). Consequently, for
N ≥ k, we have

Ab(Dk, N, ξ) = Card{n : 1 ≤ n ≤ N − k + 1, u ≤ {ξbn−1} < v}. (4.13)

Combined with our assumption

lim
N→+∞

Card{n : 1 ≤ n ≤ N,u ≤ {ξbn} < v}
N

= v − u =
1
bk

,

it then follows from Theorem 4.5 that ξ is normal to base b.
Conversely, let ξ be a real number normal to base b. Let u, v be real

numbers with 0 ≤ u < v ≤ 1. Observe that, in view of Theorem 4.5
and (4.13),

lim
N→+∞

Card{n : 1 ≤ n ≤ N,u ≤ {ξbn} < v}
N

= v − u

holds if u and v are rational numbers whose denominators are powers
of b. Let ε be a positive real number. There exist rational numbers
u1, v1, u2, v2, whose denominators are powers of b, such that u1 ≤ u ≤
u2 < v2 ≤ v ≤ v1 and u2 − u1 < ε, v1 − v2 < ε. Since, for every positive
integer N , we have

Card{n : 1 ≤ n ≤ N, u1 ≤ {ξbn} < v1}
≤ Card{n : 1 ≤ n ≤ N,u ≤ {ξbn} < v}
≤ Card{n : 1 ≤ n ≤ N,u2 ≤ {ξbn} < v2},

we deduce that, if N is large enough, then

v − u − 2ε ≤ Card{n : 1 ≤ n ≤ N,u ≤ {ξbn} < v}
N

≤ v − u + 2ε

holds. As ε is arbitrary, this proves that the sequence (ξbn)n≥1 is uni-
formly distributed modulo one.

This point of view allows us to define normality in a non-integer base.

Definition 4.15. Let α be a real number with |α| > 1. The real number
ξ is said to be normal to base α if the sequence (ξαn)n≥1 is uniformly
distributed modulo one.

We conclude this section by a restatement of Corollary 1.9 and Exer-
cise 1.2.

Theorem 4.16. Let α be a real number with |α| > 1. Then, almost
every real number ξ is normal to base α.
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In the special case where α ≥ 2 is an integer, this gives an alternative
proof of Theorem 4.8.

4.4 Block complexity and richness

To prove that a given real number is normal to some integer base is
often much too difficult. We introduce in this section the weaker notion
of richness (sometimes also called disjunctivity). It seems that this notion
first appeared in theoretical computer science and not in number theory;
see [202]. Note that the terminology ‘rich’ has been used since 2008 in
combinatorics on words with a different meaning.

Let b ≥ 2 be an integer. A natural way to measure the complexity
of a real number ξ whose b-ary expansion is given by (4.1) is to count
the number of distinct blocks of given length in the infinite word a =
a1a2a3 . . . As in Section A.1, for an infinite word w on the alphabet
{0, 1, . . . , b − 1} and for any positive integer n, we denote by p(n,w, b)
the number of distinct blocks of n letters occurring in w. Furthermore,
we set p(n, ξ, b) = p(n,a, b) with a as above. Clearly, we have

p(n, ξ, b) = Card{akak+1 . . . ak+n−1 : k ≥ 1}
and

1 ≤ p(n, ξ, b) ≤ bn, (4.14)

where both inequalities are sharp (take for example the analogue in base
b of the Champernowne number ξc to see that the right-hand inequality
is an equality for certain real numbers ξ).

Theorem 4.17. Let b ≥ 2 be an integer and ξ be a real number. If ξ is
irrational, then we have p(n, ξ, b) ≥ n+ 1 for every positive integer n. If
ξ is rational, then there exists a positive constant C, depending only on
ξ and b, such that p(n, ξ, b) ≤ C for every n ≥ 1.

Proof. Recalling that ξ is rational if, and only if, its b-ary expansion is
ultimately periodic, the theorem is a reformulation of Theorem A.3.

For every integer b ≥ 2, there exist uncountably many real numbers ξ

such that p(n, ξ, b) = n + 1 for every positive n; see Theorem A.5.
For an infinite word w on {0, 1, . . . , b − 1} and for positive integers

n, n′ we have

p(n + n′,w, b) ≤ p(n,w, b) · p(n′,w, b).
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This implies that the sequence (log p(n,w, b))n≥1 is subadditive, thus,
((log p(n,w, b))/n)n≥1 converges. We then set

E(w, b) := lim
n→+∞

log p(n,w, b)
n

and observe that 0 ≤ E(w, b) ≤ log b, by (4.14).

Definition 4.18. Let b ≥ 2 be an integer. The entropy to base b of a
real number ξ is the quantity

E(ξ, b) = lim
n→+∞

log p(n, ξ, b)
n

.

The set of real numbers ξ such that E(ξ, b) = 0 for some b ≥ 2 has
zero Hausdorff dimension; see Exercise 4.5.

Definition 4.19. Let b ≥ 2 be an integer. The real number ξ is rich
(or disjunctive) to base b if p(n, ξ, b) = bn for every n ≥ 1.

Clearly, every real number normal to base b is also rich to base b,
but the converse does not hold. The next result, whose proof is left as
Exercise 4.6, was established in [278]; see also [342].

Theorem 4.20. Let b ≥ 2 be an integer, and r, s be positive integers.
A real number is rich to base bs if, and only if, it is rich to base br.

By arguing as in the proof of Theorem 4.14, it is easy to show that
the real number ξ is rich to base b if, and only if, the sequence (ξbn)n≥1

is dense modulo one.

4.5 Rational approximation to Champernowne-type numbers

The aim of the present section is to investigate the quality of rational
approximation to certain real numbers which have been proved to be
normal to a given base in Theorem 4.10. The first result in this direc-
tion was proved in 1937 by Mahler [462, 463], who established that the
Champernowne number ξc is transcendental and is not a Liouville num-
ber; see [472, p. 136] for an anecdote on Mahler’s life. This is a particular
instance of a more general result; further extensions of which have been
given in [50, 462, 463, 470, 748, 749].

Definition 4.21. Let b ≥ 2 be an integer. Let a and n be positive inte-
gers. We denote by Wb,n,a the integer, written in base b, whose digits are
the concatenation, in non-decreasing order, of a copies of every positive
integer having exactly n digits in base b.
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Note that W10,1,2 = 112233445566778899. The special case c = 1 of
Theorem 4.22 was established by Mahler [462, 463].

Theorem 4.22. Let b ≥ 2 be an integer and c ≥ 1 be a real number.
Then, the real number ξb,c whose b-ary expansion is given by

ξb,c := 0 · Wb,1,�c	Wb,2,�c2	 . . . Wb,n,�cn	 . . .

is normal to base b, transcendental, and is not a Liouville number.

Observe that ξ10,1 is the Champernowne number ξc.
The key lemma for Mahler’s proof of Theorem 4.22 is the following

result.

Lemma 4.23. Let b ≥ 2 be an integer. Let a and n be positive integers.
Then, the integer Wb,n,a has exactly

Db,n,a := nabn−1(b − 1)

digits, and

Wb,n,a =
b(a+1)n−1 − bn−1 + 1

(bn − 1)(ban − 1)
bDb,n,a − b(a+1)n − bn + 1

(bn − 1)(ban − 1)
. (4.15)

Proof. We follow the proof of Mahler [470]. Since exactly bn − bn−1

integers have n digits in base b, the first assertion is clear. For the second
one, observe that

Wb,n,a = bDb,n,a

bn−1∑
k=bn−1

k(b−n + b−2n + · · · + b−an) b−an(k−bn−1)

= bDb,n,a
1 − b−an

bn − 1

bn−bn−1−1∑
k=0

(bn−1 + k) b−ank

= bDb,n,a
1 − b−an

bn − 1

(
bn−1 b−an(bn−bn−1) − 1

b−an − 1
+

(bn − bn−1 − 1)b−an(bn−bn−1+1)(b−an − 1) − b−an(bn−bn−1−1) + 1
ban(1 − b−an)2

)

= bDb,n,a
1 − b−an

bn − 1

( −bn−1

b−an − 1
+

b−an

(b−an − 1)2
)
+

1 − b−an

bn − 1

( bn−1

b−an − 1
+

(bn − bn−1 − 1)(b−an − 1) − 1
(b−an − 1)2

)
.

This proves the lemma.
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The important feature of Lemma 4.23 is that all the integers occurring
in (4.15), except bDb,n,a , are much smaller than bDb,n,a . Consequently,
the Champernowne number ξc can be expressed as a lacunary sum

∑
n≥1

cn

10f(n)
,

where f is a rapidly increasing integer-valued function and cn is a rational
number whose denominator and numerator are small compared to 10f(n).
As will be clear in the proof of Theorem 4.22, this is the key point for
establishing that ξc is transcendental.

Proof of Theorem 4.22. It follows from Theorem 4.10 that ξb,c is
normal to base b for b ≥ 2 and c ≥ 1. Thus, it only remains to prove that
ξb,c is transcendental and not a Liouville number. For a positive integer
n, put

rn =
b�c

n+1	(n+1)+n − bn + 1
(bn+1 − 1)(b�cn+1	(n+1) − 1)

− b�c
n	n+n − bn + 1

(bn − 1)(b�cn	n − 1)

and

dn = (b − 1)
n∑

j=1

jbj−1�cj�. (4.16)

We deduce from Lemma 4.26 that

ξb,c = lim
N→+∞

ξb,c,N ,

where, for any positive integer N , we have set

ξb,c,N =
b�c	

(b − 1)(b�c	 − 1)
+

N∑
n=1

rn b−dn .

Let N ≥ 2 be an integer. Define

qN = bdN

N+1∏
n=1

(bn − 1)(b�c
n	n − 1). (4.17)

Then, pN := qNξb,c,N is an integer which may not be coprime with qN .
Observe that the height H(ξb,c,N ) of ξb,c,N (see Definition E.4) is at most
equal to qN . Note that

b − 1
b

N∑
j=1

j(bc)j =
b − 1

c

N(bc)N+1 − (N + 1)(bc)N + 1
(bc − 1)2

(4.18)
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and
N+1∑
n=1

(n + 1)�cn� ≤ (N + 1)(N + 2)cN+1. (4.19)

Let ε be a positive real number. The combination of (4.16), (4.17), (4.18)
and (4.19) shows that, for N large enough, we have

qbc−ε
N < qN+1 < qbc+ε

N , bdN < qN < bdN (1+ε), (4.20)

and

0 < |ξb,c − ξb,c,N | ≤ 2b−dN+1

≤ 2q
−(bc−ε)/(1+ε)
N ≤ 2H(ξb,c,N )−(bc−ε)/(1+ε).

Except when b = 2 and c = 1, by taking ε sufficiently small, we deduce
from the Roth Theorem E.7 that ξb,c is transcendental. To get the same
conclusion if b = 2 and c = 1, we apply Ridout’s Theorem E.8; see
Exercise 4.7.

It only remains for us to prove that ξb,c is not a Liouville number. We
show that, since ξb,c has many good rational approximations, it cannot
be too well approximated by rational numbers. First, note that

|ξb,c − pN/qN | ≤ q
−3/2
N

and

|ξb,c − pN/qN | ≥ b−dN+1−2 ≥ q−bc−1
N , (4.21)

for every sufficiently large integer N . Let p/q be a rational number with
q positive and large. Let N be such that qN−1 < (2q)2 ≤ qN . If p/q �=
pN/qN , then we have

|ξb,c − p/q| ≥ |p/q − pN/qN | − |ξb,c − pN/qN |
≥ 1/(qqN ) − q

−3/2
N

≥ 1/(2qqN ) ≥ q−1q−bc−1
N−1 ≥ q−2(bc+2).

Otherwise, we get from (4.20) and (4.21) that

|ξb,c − p/q| = |ξb,c − pN/qN | ≥ q−bc−1
N ≥ q

−(bc+1)2

N−1 ≥ q−2(bc+2)2 .

Consequently, for every rational number p/q with q positive and suffi-
ciently large, we have

|ξb,c − p/q| ≥ q−2(bc+2)2 .

This shows that the irrationality exponent of ξb,c is finite, thus, ξb,c is
not a Liouville number.
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4.6 Exercises

Exercise 4.1. Let α > 1 be a real number and r ≥ 2 be an integer.
Prove that if ξ, ξα, ξα2, . . . , ξαr−1 are all normal to base αr, then ξ is
normal to base α.

Exercise 4.2 (cf. [494, 725]). Let b ≥ 2 be an integer and ξ be a real
number normal to base b. Prove that ξ/(b� − 1) is normal to base b for
every positive integer �. Prove that rξ is normal to base b for every non-
zero rational number r. Deduce that, for every coprime positive integer
m,n, the quadratic number

√
m/n is normal to base b if, and only if,√

n/m (resp.,
√

mn) is normal to base b.

Exercise 4.3. Let b ≥ 2 be an integer. Prove that a real number ξ is
normal to base b if, and only if, ξ is normal to base −b.

Exercise 4.4. Prove that a real number ξ is rich to an integer base b ≥ 2
if, and only if, E(ξ, b) = log b.

Exercise 4.5. Prove that the set of real numbers whose expansion to
some integer base has zero entropy has Hausdorff dimension zero.

Exercise 4.6. Prove Theorem 4.20.

Exercise 4.7. Apply Ridout’s Theorem E.8 to prove that the number
ξ2,1 defined in Theorem 4.22 is transcendental.

4.7 Notes

� Long [449] proved that ξ is normal to base b if, and only if, there
exist positive integers m1 < m2 < . . . such that ξ is simply normal to
all of the bases bmi , i ≥ 1. No finite set of mi suffices.

� Let b ≥ 2 be an integer. Hertling [344] proved that, if r and s are
positive integers such that s ≥ 2 and r does not divide s, then there are
uncountably many real numbers which are simply normal to base br but
not simply normal to base bs. The set of real numbers having the latter
property has full Hausdorff dimension [155].

� An alternative proof of Theorem 4.4, using automata and results
from symbolic dynamics, was given by Blanchard [104]. He also proved
that real numbers which are near normality to base br (resp., b) are also
near normality to base b (resp., br); see [105] for further results.
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� According to Hanson [332], a real number ξ is quasi-normal to
base b if every number derived from the b-ary expansion of ξ by selecting
those digits whose positions form an arithmetic progression is simply
normal to base b. He proved that every number normal to base b is also
quasi-normal to base b, but the converse does not hold.

� In his Ph.D. thesis, Wall [725] proved that the product of a non-
zero normal number by a non-zero rational number and the sum of
a normal number and a rational number are normal. This result was
established independently in [185], and later reproved by Doty, Lutz
and Nandakumar [229] by means of totally different methods. Maxfield
[492] proved that every non-zero real number is the sum (resp. product)
of two normal numbers. Consequently, the set of numbers normal to base
b is not closed under multiplication.

� Let b ≥ 2 be an integer. Let N (b) denote the set of real numbers
normal to base b. Wall’s result can be reformulated as N (b)+ r = N (b),
for every rational number r. It is quite obvious that there exist irrational
numbers γ such that N (b) + γ = N (b) (some Liouville numbers for
example). Non-trivial examples of such γ’s were given by Spears and
Maxfield [659]. A characterization of those γ’s, given by Rauzy [604],
has been used by Bernay [77] to show that they form a set of zero
Hausdorff dimension.

� The hot spot lemma has been improved by Bailey and Misi-
urewicz [57]; see also [210]. Piatetski-Shapiro [560] improved Theorem
4.6; see also [529].

� A proof of Theorem 4.9 was also given by Pillai [562] (the argu-
ments in [561] are not correct). At the end of [561], he asked whether the
number 0.248163264128 . . . formed of the increasing sequence of powers
of 2 is normal to base ten. This question remains open.

� Theorem 4.9 was subsequently generalized by several authors.
Davenport and Erdős [215] proved that, if f(X) is a polynomial tak-
ing positive integer values at positive integers, then the decimal 0 ·
f(1)f(2) . . . is normal to base ten. For f(X) = X2, this was proved
by Besicovitch [93], who in fact established that the squares of almost
all integers are (ε, k)-normal. A common generalization of the result
of Davenport and Erdős and of Corollary 4.11 was obtained by Nakai
and Shiokawa [537]. The result of Davenport and Erdős was extended
by Madritsch, Thuswaldner and Tichy [459] to numbers generated by
the values of entire functions; see also [534–536, 683] and [436, 437]
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for higher-dimensional generalizations. Schiffer [621] also generalized the
construction of Davenport and Erdős to 0·(f(1)+d1)(f(2)+d2) · · · , with
f(X) as above and (dn)n≥1 being a bounded sequence of positive ratio-
nal numbers. Discrepancy estimates are given in [232, 536, 621], where
among other results it is shown that there exists a positive constant c

such that DN ((ξc10n)n≥1) ≥ c/(log N) for every N ≥ 2.

� For any integer b ≥ 2 and any positive real number θ < 1,
Shiokawa [649] constructed an increasing sequence (cj)j≥1 of positive
integers satisfying xθ <

∑
j:cj≤x 1 < b2xθ, for every sufficiently large

x, and such that the real number 0 · (c1)b(c2)b(c3)b . . . is not normal
to base b. This shows that the growth condition in Theorem 4.10 is
essentially best possible.

� Lehrer [423] described a game between two players which can be
used to construct normal numbers to a given base.

� An alternative proof of the theorem of Copeland and Erdős was
given in [330].

� Properties of some dyadic Champernowne-type numbers have
been studied in [226, 650].

� Further constructions of real numbers normal to a given base have
been given by De Koninck and Kátai [219–222].

� Let b ≥ 2 be an integer. Gál and Gál [317] proved that the
discrepancy DN ((ξbn)n≥1) is O((N−1 log log N)1/2) for almost all real
numbers ξ. Levin [433] constructed explicitly real numbers ξ for which
DN ((ξbn)n≥1) = O(N−1(log N)2). In view of Theorem 1.13, this is close
to best possible. Earlier and related works include [400, 412, 413, 426–
428, 431, 435, 586, 616, 617, 737].

� For small variations around Theorem 4.14, see [648].

� Two criteria of non-uniform distribution modulo one for sequen-
ces (ξbn)n≥1, where b is an integer with |b| ≥ 2 and ξ is a real number,
are given in [530].

� For k ≥ 1, let non-negative real numbers μ(d1, . . . , dk) be defined
for each k-tuple (d1, . . . , dk) in {0, 1}k. Assume that these numbers sat-
isfy μ(0) + μ(1) = 1 and

μ(d1, . . . , dk) = μ(0, d2, . . . , dk) + μ(1, d2, . . . , dk)

= μ(d1, . . . , dk−1, 0) + μ(d1, . . . , dk−1, 1),
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for k ≥ 2. Ville [711] (see also [584]) has contructed explicitly real num-
bers ξ whose binary expansion ξ =

∑
k≥1 ak/2k is such that

lim
N→+∞

A2(d1 . . . dk, N, ξ)
N

= μ(d1, . . . , dk),

for each k-tuple (d1, . . . , dk) in {0, 1}k, with k ≥ 1; see also [516].

� For an integer b ≥ 2 and a real number ξ, denote by V (ξ, b) the
collection of all limit points (in the weak-∗ topology) of the sequence
(νn)n≥1 of probability measures defined by

νn(f) =
1
n

n−1∑
j=0

f(bjξ), f ∈ C0(T).

The set V (ξ, b) is a non-empty closed and connected subset of the set
I(b) of all probability measures on T invariant under the transforma-
tion Tb : x �→ bx. Conversely, Colebrook [200] established that, given a
non-empty closed and connected subset V of I(b), there always exists
a number ξ such that V (ξ, b) = V . This extends an earlier result of
Piatetski-Shapiro [559], who dealt with the case where V is reduced to
one probability measure; see also [269]. Volkmann [718] established that
V (mξ/n, b) = T−1

n TmV (ξ, b) holds for every real number ξ and every
positive integer m,n.

� Let b ≥ 2 be an integer. For a real number ξ and an integer n ≥ 1,
let pb,n(ξ) be the point in the simplex

Hb := {0 ≤ x0, x1, . . . , xb−1 ≤ 1 : x0 + x1 + · · · + xb−1 = 1}

with coordinates

(Ab(0, n, ξ)/n,Ab(1, n, ξ)/n, . . . , Ab(b − 1, n, ξ)/n).

Denote by Vb(ξ) the set of limit points of the sequence (pb,n(ξ))n≥1.
Volkmann [714] proved that, given any closed, connected set S included
in Hb, there exist real numbers ξ such that Vb(ξ) = S.

� Pellegrino [555] established that if 0 · a1a2a3 . . . is normal to a
given integer base, then the real number 0 · a1a1a2a1a2a3 . . ., whose
sequence of digits is the concatenation of all blocks a1 . . . an, has the
same property. Various modifications of normal numbers (including by
transducers) have been considered in [25, 51, 266, 267, 682, 719].
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� A subset S of the set of finite words on {0, 1} is called a selection
rule. For a selection rule S and a real number ξ whose binary expan-
sion reads 0 · a1a2 . . ., we define ξS := 0 · at1at2 . . ., where {t1 < t2 <

. . .} = {i : a1a2 . . . ai−1 ∈ S}. We call the real number ξS proper if
lim supj→+∞ tj/j < +∞. A selection rule S is said to preserve normality
if for any normal number ξ such that ξS is proper, ξS is also a normal
number. Two kinds of selection rules have been considered: oblivious
ones, which correspond to increasing sequences (nj)j≥1 for which ξS =
0 · an1an2 . . ., and selection rules that depend on the input sequence.
Kamae [359, 362] (see also [340]) proved that an oblivious selection rule
preserves normality if, and only if, (nj)j≥1 is completely deterministic in
the sense of Weiss (see Chapters 1 and 8 of [730]). Agafonov [24] (see also
[638]) established that selection by a finite automaton (or, equivalently,
by a regular language) preserves normality, a result later extended by
Kamae and Weiss [362]. Merkle and Reimann [507] have shown that Aga-
fonov’s result cannot be extended to certain more complicated classes of
languages.

� Mendès France [496] proved that, for every real number ξ normal
to base 2 and whose binary expansion is given by 0 · a1a2 . . ., for every
finite sequence �1 < . . . < �m of positive integers, the number 0 · b1b2 . . .,
with 1 − 2bk =

∏m
i=1(1 − 2ak+�i

) for k ≥ 1, is also normal to base 2.
An extension to any integer base b ≥ 2 is given in [498]. Some special
non-normal numbers are considered in [497, 498]; see also [325].

� Let b ≥ 2 be an integer. Mauduit and Moreira [489, 490] computed
the generalized Hausdorff dimensions of sets of real numbers having zero
entropy to base b. They subsequently considered the case of positive
entropy [491].

� Amou [49] studied the approximation to the Champernowne num-
ber by algebraic numbers of bounded degree. It follows from a result
established in [10] that the real numbers defined in Theorem 4.22 can-
not be U -numbers (see Definition E.13).

� Let b ≥ 2 be an integer. Slivka and Severo [657] studied various
ways to decompose the set of numbers in [0, 1] which are simply normal
to base b.

� Let I be an interval in [0, 1). For ξ in [0, 1) and an integer n ≥ 1,
put dn(ξ) = 1 if an odd number of the real numbers {ξ}, {2ξ}, . . . ,
{2n−1ξ} are lying in I, and put dn(ξ) = 0 otherwise. We say that ξ is
a normal number mod 2 with respect to I if (d1(ξ) + · · · + dN (ξ))/N
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tends to 1/2 as N tends to infinity. If I is not the interval (1/5, 5/6), it
is proved in [187] that almost every ξ in [0, 1) is a normal number mod 2
with respect to I. Furthermore, if I = (1/6, 5/6), then, for almost all ξ

in [1/3, 2/3] (resp. in [0, 1/3]∪ [2/3, 1]) the above arithmetic mean tends
to 2/3 (resp. to 1/3).

� Let b ≥ 2 be an integer. Ki and Linton [381] proved that the set of
real numbers simply normal to base b and the set of real numbers normal
to base b are Π0

3-complete. It is an open problem to decide whether the
set of real numbers which are normal to at least one integer base is
Σ0

4-complete; see [376] for an introduction to the Borel hierarchy.

� Šalát [618] proved that the set of simply normal numbers and the
set of real numbers which are normal to every integer base are of the first
Baire category (that is, are meagre sets). His result has been extended in
many different directions; see [35, 36, 350, 545, 642] and the references
quoted therein. Pushkin and Rakhmatullina [593] proved that, for b ≥ 2
being given, the set of real numbers ξ such that each digit 0, 1, . . . , b− 1
occurs infinitely many times in the b-ary expansion of ξ is a set of second
Baire category.

� Maxfield [494] called the real d-tuple (ξ1, . . . , ξd) a normal d-tuple
to base b if the sequence ((ξ1b

n, . . . , ξdb
n))n≥1 is uniformly distributed

modulo one in Rd.

� Postnikov [582] gave a geometric form to Champernowne’s
construction and, for a given Gaussian integer a + ib with ab �= 0, he
constructed a complex number α + iβ such that the sequence of frac-
tional parts ({(α + iβ)(a + ib)n})n≥1 is uniformly distributed in [0, 1]2

(it is understood that {x+iy} = {x}+i{y} and that C is identified with
R2); see also Polosuev [577]. Explicit constructions of normal numbers
in matrix number systems have been given by Madritsch [457, 458].

� A set S of real numbers is called a normal set (ensemble normal
in French) if there exists a real sequence (tn)n≥1 such that (ξtn)n≥1 is
uniformly distributed modulo one if, and only if, ξ is in S. By Theorem
4.14, for any integer b ≥ 2, the set of real numbers which are normal
to base b is a normal set. The study of normal sets was originated by
Mendès France [499, 500], who proved that the set of transcendental
numbers is a normal set, and continued by Y. Meyer [508–510], Rauzy
[602, 603], Dress [231], Zame [746], Mauduit [485, 486], J.-P. Borel [117–
119], Coquet [204], Watson [727], among others.
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Further explicit constructions of normal and
non-normal numbers

In Section 4.2, we have constructed explicitly real numbers which are
normal to a given base. In the first section of this chapter, we describe
another class of explicit real numbers with the same property. Then, we
discuss the existence of explicit examples of absolutely normal numbers.

Definition 5.1. A real number is called absolutely normal if it is normal
to every integer base b ≥ 2. A real number is called absolutely non-
normal if it is normal to no integer base b ≥ 2.

We briefly and partially mention in Section 5.2 the point of view of
complexity and calculability theory. Then, in Section 5.3, we give an
explicit example of an absolutely non-normal irrational number. We end
this chapter with some words on a method proposed by Bailey and
Crandall to investigate the random character of arithmetical constants.

5.1 Korobov’s and Stoneham’s normal numbers

In 1946 Good [324] introduced the so-called ‘normal recurring decimals’.
Integers b ≥ 2 and k ≥ 1 being given, he constructed rational numbers
ξ whose b-ary expansion has period bk and is such that every sequence
of k digits from {0, 1, . . . , b − 1} occurs in the b-ary expansion of ξ with
the same frequency b−k. An example with b = 2 and k = 3 is given
by the rational 23/255 with purely periodic binary expansion of period
00010111. A similar result was independently proved by de Bruijn [143]
also in 1946. A few years later Korobov [396, 397] (see also [584]) consid-
ered the normal recurring decimals of Good from a different point of view
and constructed by a different method what he called a ‘normal periodic
system’. We refer the reader to the addendum of [674] for a discussion
showing that the constructions of the normal recurring decimals of Good

102
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and the normal periodic systems of Korobov have actually been studied
by many authors since a paper of Flye Sainte-Marie [309] published in
1894.

Stoneham [667] considered the b-ary expansion of negative powers p−n

of an odd prime p, assuming that the integer b ≥ 2 is a primitive root
modulo p2, and showed that the distribution of the digits in the recurring
part of the period is (ε, k)-normal in the sense of Besicovitch [93] (see
Definition 4.12) when n is large. Subsequently [669–675], he extended
his results to broad classes of rational numbers and applied them to
construct normal numbers. For instance, in 1973, he proved [672] that
the real number

ξS,2,3 :=
∑
j≥1

1
3j23j

is normal to base 2. The aim of this section is to establish this result
and several of its extensions.

We follow the method developed by Bailey and Crandall [56] to es-
tablish Theorem 4.8 of [56], which we reproduce below.

Theorem 5.2. Let b and c be coprime integers, both at least equal to
2. Let (mj)j≥1 and (nj)j≥1 be increasing sequences of positive integers
such that (nj+1 − nj)j≥1 is non-decreasing and there exist γ > 1/2 and
an integer j0 with

mj+1 − mj

cγnj+1
≥ mj − mj−1

cγnj
for j ≥ j0. (5.1)

Then, the real number

ξ =
∑
j≥1

1
cnj bmj

(5.2)

is normal to base b.

We point out a particular case of Theorem 5.2.

Corollary 5.3. Let b and c be coprime integers, both at least equal to
2. Let d ≥ 2 be an integer. Then, the Stoneham number

ξS,b,c :=
∑
j≥1

1
cjbcj (5.3)

and the Korobov number

ξK,b,c,d :=
∑
j≥1

1

cdj bcdj (5.4)

are normal to base b.
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To show that Corollary 5.3 follows from Theorem 5.2, it is sufficient to
note that for the real numbers defined by (5.3) and (5.4) the inequality
(5.1) is satisfied with γ = 2/3.

Korobov [395] proved that the numbers ξK,b,c,d defined in Corollary
5.3 are normal to base b. For the sake of simplicity, we content ourselves
to establish Theorem 5.2 when c is an odd prime number. Its proof differs
greatly from that of Theorem 4.10 and involves exponential sums.

The strategy of the proof is inspired by the dynamical point of view
developed by Bailey and Crandall [55] and briefly presented in Section
5.4. With a number of the form (5.2), we associate the sequence of ra-
tional numbers (xn)n≥0 defined by x0 = 0 and, for n ≥ 1, by

xn = {bxn−1}, if n is not an element of (mj)j≥1,

and

xmj
=
{

bxmj−1 +
1

cnj

}
, for j ≥ 1.

For j ≥ 1, setting aj := xmj c
nj , we see that a1 = 1,

x0 = · · · = xm1−1 = 0, xm1 =
a1

cn1
, xm1+1 =

{ba1

cn1

}
, . . . ,

xm2−1 =
{bm2−m1−1a1

cn1

}
, . . . , xmj

=
aj

cnj
, xmj+1 =

{baj

cnj

}
,

. . . , xmj+1−1 =
{bmj+1−mj−1aj

cnj

}
, . . . ,

(5.5)

and aj+1 = bmj+1−mj cnj+1−nj aj + 1, for j ≥ 1.

Lemma 5.4. Let ξ be given by (5.2) and let (xn)n≥0 be the sequence
associated to ξ as defined above. Then, ξ is normal to base b if, and only
if, the sequence (xn)n≥0 is uniformly distributed in [0, 1].

Proof. Put m0 = 0. For m ≥ m1, let j be the index defined by
mj ≤ m < mj+1 and observe that

ξbm =
j∑

h=1

bm−mh

cnh
+
∑

h≥j+1

bm−mh

cnh

and

xm =
j∑

h=1

bm−mh

cnh
,

thus,

0 ≤ ξbm − xm ≤ 1
cnj

(1
b

+
1
b2

+ · · ·
)
≤ 1

cnj
.
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Since nj tends to infinity with j, it follows from Exercise 1.1 that the
sequence (ξbm)m≥1 is uniformly distributed modulo one if, and only if,
the sequence (xn)n≥0 is uniformly distributed in [0, 1]. This proves the
lemma.

The key tool for the proof of Theorem 5.2 is an estimate for exponen-
tial sums. We need two auxiliary lemmas.

Let p be an odd prime number and n a positive integer. Let b ≥ 2 be
an integer not divisible by p. The next lemma shows that the rational
numbers 1/pn, b/pn, b2/pn, . . . , bord(b,pn)−1/pn are quite well distributed
modulo one. This is a particular case of [401, Lemma 2]; see also [402].

Lemma 5.5. Let p be an odd prime number and b ≥ 2 be an integer
coprime with p. Let h be a non-zero integer and n a positive integer. Set
d = gcd(h, pn). If d = 1 or d < ord(b, pn)/ord(b, p), then, for any integer
J = 0, 1, . . . , ord(b, pn), we have

∣∣∣
J−1∑
j=0

e2iπhbj/pn
∣∣∣ <
√

pn

d

(
1 + log

pn

d

)
.

Proof. Set τ = ord(b, pn). For an integer f and a positive integer a

coprime with pn, consider the sum

σ(a, f) =
τ−1∑
j=0

e2iπ(abj/pn+fj/τ).

From the equality between fractional parts

{abj+τ

pn
+

f(j + τ)
τ

}
=
{abj

pn
+

fj

τ

}
,

we get that, for any integer �,

σ(a, f) =
τ−1∑
j=0

e2iπ(abj+�/pn+f(j+�)/τ) = e2iπf�/τ
τ−1∑
j=0

e2iπ(abj+�/pn+fj/τ).

Hence,

|σ(a, f)| =
∣∣∣
τ−1∑
j=0

e2iπ(abjb�/pn+fj/τ)
∣∣∣.
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Noticing that the integers ab, ab2, . . . , abτ are pairwise incongruent mod-
ulo pn and coprime with pn, we deduce that

τ |σ(a, f)|2 =
τ∑

�=1

∣∣∣
τ−1∑
j=0

e2iπ(abjb�/pn+fj/τ)
∣∣∣2

≤
pn∑

m=1

∣∣∣
τ−1∑
j=0

e2iπ(mbj/pn+fj/τ)
∣∣∣2,

=
τ−1∑

h,j=0

(
e2iπ(f(h−j)/τ)

pn∑
m=1

e2iπ(m(bh−bj)/pn)
)

= τpn,

whence,

|σ(a, f)| ≤ √
pn. (5.6)

Let h be a non-zero integer coprime with pn. For J = 0, 1, . . . , τ , we have

∣∣∣
J−1∑
j=0

e2iπhbj/pn
∣∣∣ = ∣∣∣ 1

τ

τ∑
f=1

J−1∑
�=0

e−2iπf�/τ
τ−1∑
j=0

e2iπ(hbj/pn+fj/τ)
∣∣∣

≤ 1
τ

τ∑
f=1

∣∣∣
J−1∑
�=0

e−2iπf�/τ
∣∣∣× ∣∣∣

τ−1∑
j=0

e2iπ(hbj/pn+fj/τ)
∣∣∣,

(5.7)

and, for f = 1, . . . , τ − 1,

∣∣∣
J−1∑
�=0

e−2iπf�/τ
∣∣∣ ≤ 1

sin(πf/τ)
≤ 1

2||f/τ || . (5.8)

Since τ ≤ pn − 1, the combination of (5.6), (5.7) and (5.8) gives

∣∣∣
J−1∑
j=0

e2iπhbj/pn
∣∣∣ ≤ max

1≤f≤τ

∣∣∣
τ−1∑
j=0

e2iπ(hbj/pn+fj/τ)
∣∣∣ (1 + log τ)

≤ √
pn(1 + log pn).

(5.9)

This establishes the lemma when d = 1.
Assume now that d ≥ 2. Set n′ = min{n, ordp(bord(b,p) − 1)} and

note that Corollary B.3 asserts that ord(b, pn) = pn−n′
ord(b, p). Conse-

quently, our assumption reads p ≤ d ≤ pn−n′−1 and there exist an integer
h1 coprime with p and an integer m such that n′ + 1 ≤ m ≤ n − 1 and
h/pn = h1/pm. Set τ1 = ord(b, pm−1) and note that τ = ord(b, pm) =
pτ1. We follow the proof of Theorem 8 on [402, p. 42]. For an arbitrary
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integer x, set δpm(x) = 1 if pm divides x and δpm(x) = 0 otherwise. We
have

pm∑
�=1

∣∣∣
τ−1∑
j=0

e2iπ�bj/pm
∣∣∣2 =

pm∑
�=1

τ−1∑
j,k=0

e2iπ�(bj−bk)/pm

= pm
τ−1∑

j,k=0

δpm(bj − bk) = pmτ.

Consequently, we have

pm∑
�=1,(p,�)=1

∣∣∣
τ−1∑
j=0

e2iπ�bj/pm
∣∣∣2 =

pm∑
�=1

∣∣∣
τ−1∑
j=0

e2iπ�bj/pm
∣∣∣2

−
pm∑

�=1,(p,�)=p

∣∣∣
τ−1∑
j=0

e2iπ�bj/pm
∣∣∣2

= pmτ −
pm−1∑
�=1

∣∣∣
τ−1∑
j=0

e2iπ�bj/pm−1
∣∣∣2

= pmτ − p2pm−1τ1 = 0.

Thus, since p does not divide h1, we have

τ−1∑
j=0

e2iπh1bj/pm

= 0,

and, setting τd = ord(b, pn/d) and recalling that h/pn = h1/pm,

τd−1∑
j=0

e2iπhbj/pn

=
τd

τ

τ−1∑
j=0

e2iπhbj/pn

= 0. (5.10)

Let Jd be the integer between 1 and τd which is congruent to J modulo
τd. Then, using (5.10) and arguing as in (5.9), we get

∣∣∣
J−1∑
j=0

e2iπhbj/pn
∣∣∣ = ∣∣∣

Jd−1∑
j=0

e2iπhbj/pn
∣∣∣ ≤
√

pn

d

(
1 + log

pn

d

)
.

This completes the proof of the lemma.

Lemma 5.6. Let p be an odd prime and b ≥ 2 be an integer coprime
with p. Let h be a non-zero integer. For any integers J ≥ 1 and n ≥ 2,
the condition gcd(h, pn) < b−ord(b,p)pn implies
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∣∣∣
J−1∑
j=0

e2iπhbj/pn
∣∣∣ < (pn/2 + Jbord(b,p)p−n/2

)
log pn. (5.11)

Proof. By Corollary B.3, we have ord(b, pn) ≥ ord(b, p)pnb−ord(b,p).
Thus, Lemma 5.5 implies that the left-hand side of (5.11) is less than
pn/2(1+log pn/2), as long as J does not exceed ord(b, pn). But for larger
J , we have at most 	J/ord(b, pn)
 copies of the exponential sum, and this
ceiling is bounded from above by 1 + Jbord(b,p)p−n. Since 1 + log pn/2 ≤
log pn, this completes the proof of the lemma.

We now have the material to complete the proof of Theorem 5.2 when
c is an odd prime number.

Proof of Theorem 5.2. We assume that c is an odd prime number
and leave the general case to the interested reader. Let h be a non-zero
integer. Set μ1 = m1 and μj = mj −mj−1, for j ≥ 2. Set E = μj0c

−γnj0 .
Let k1 ≥ j0 + 1 be an integer such that the conclusion of Lemma 5.6
holds for every power cnk with k ≥ k1 − 1. Let N be a sufficiently large
integer in order that we can write

N = N0 + μk1 + · · · + μK + J,

with K ≥ k1, N0 = μ1 + · · · + μk1−1 and 1 ≤ J ≤ μK+1. We infer from
(5.5) and Lemma 5.6 that

∣∣∣
N−1∑
j=0

e2iπhxj

∣∣∣ ≤ N0 +
K∑

k=k1

∣∣∣
μk−1∑
j=0

e2iπhak−1bj/cnk−1
∣∣∣

+
∣∣∣

J−1∑
j=0

e2iπhaKbj/cnK
∣∣∣

≤N0 +
K∑

k=k1

(
cnk−1/2 + μkord(b, c)c−nk−1/2

)
log cnk−1

+
(
cnK/2 + Jord(b, c)c−nK/2

)
log cnK

≤N0 +
(
KcnK−1/2 +

K∑
k=k1

μkord(b, c)c−nk−1/2
)

log cnK−1

+
(
cnK/2 + Jord(b, c)c−nK/2

)
log cnK .

A short calculation shows that (5.1) implies that

K∑
k=1

μk

cnk−1/2
≤ μK

cnK−1/2

( 1
1 − c1/2−γ

)
.



5.1 Korobov’s and Stoneham’s normal numbers 109

Since, by (5.1) and the definition of E, we have

cnk/2

N
≤ cnk/2

μk
≤ cnk/2c−γ(nk−nj0 )

μj0

≤ cnk(−γ+1/2)

E
,

for k = K − 1,K, there exists a positive constant C, independent of N ,
such that

C

N

∣∣∣
N−1∑
n=0

e2iπhxn

∣∣∣ ≤ 1
N

+
(
KcnK−1(−γ+1/2) + c−nK−1/2

)
log cnK−1

+
(
cnK/2(−γ+1/2) + c−nK/2

)
log cnK .

Since γ > 1/2 and (nj)j≥1 increases to infinity, it follows from Weyl’s cri-
terion (Theorem 1.2) that the sequence (xn)n≥1 is uniformly distributed
in [0, 1]. Combined with Lemma 5.4, this proves the theorem.

We present an alternative proof of a particular case of Corollary 5.3,
following [57, 120]. This proof shows the strength of Theorem 4.6.

Alternative proof of the normality of ξS,2,3 to base 2. Let
us write ξ for ξS,2,3. Then, the sequence (xn)n≥0 introduced after Corol-
lary 5.3 is generated by the recursion defined by x0 = 0 and, for n ≥ 1,
by xn = {2xn−1 + rn}, where rn = 1/n if n = 3m for some integer m

and rn = 0 otherwise. In particular, for any positive p, if n is less than
3p+1, then xn is an integer multiple of 1/3p and, for j = 0, . . . , 3p − 1,
the rational j/3p occurs exactly three times among the 3p+1 numbers
x0, . . . , x3p+1−1.

Observe that, for n ≥ 1, we have

{ξ2n} = xn +
+∞∑

m=�log3 n	+1

2n−3m

3m
.

From

0 <

+∞∑
m=�log3 n	+1

2n−3m

3m
≤ 1

2(n + 1)

∑
m≥0

3−m ≤ 3
4(n + 1)

,

we get that

|{ξ2n} − xn| ≤ 3
4(n + 1)

<
1
n

. (5.12)
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Let k be a positive integer and d1, . . . , dk be in {0, 1}. Set Dk = 2k−1d1+
· · · + 2dk−1 + dk,

u =
k∑

j=1

dj

2j
=

Dk

2k
, and v = u +

1
2k

.

Let N > 4k be an integer. We wish to bound from above the number
of indices n between 1 and N such that {ξ2n} lies in [u, v). In view of
(5.12), it is enough to bound from above the number of indices n between
1 and N such that xn lies in [u − 1/n, v + 1/n).

Define � by the inequalities 3� ≤ N < 3�+1. Observe that for n ≥ 2k

the interval [u − 1/n, v + 1/n) is contained in [u − 2−k, v + 2−k). Since
the length of this interval is 3 · 2−k, it contains at most �3�+12−k� + 1
integer multiples of 1/3�. Thus, recalling that xn is an integer multiple
of 1/3� if n is less than N , we see that there can be at most three times
this many n’s less than N and at least equal to 2k for which xn lies in
[u − 2−k, v + 2−k). Consequently, the number of positive integers n less
than N such that {ξ2n} lies in [u, v) is at most equal to

2k + 3(3�+12−k + 1) < 11N2−k.

With the notation of Chapter 4, we get that

lim sup
N→+∞

A2(Dk, N, ξ)
N

≤ 11
2k

,

and we conclude by applying Theorem 4.6.

As pointed out in [56], the proof of Theorem 5.2 shows that, for
coprime integers b and c both ≥ 2, the discrepancy of the sequence
(ξS,b,cb

n)n≥1 is O(N−1/2(log N)2).
We complement Corollary 5.3 by showing that Stoneham numbers

are not absolutely normal. Theorem 5.7 extends a result of Bailey re-
produced on [120, p. 329]; see also [357, 722].

Theorem 5.7. For every integer b and c with b ≥ 2, c ≥ 2, the real
number ξS,b,c is not normal to base bc.

Proof. The idea consists in showing that the bc-ary expansion of ξS,b,c

has very large blocks of zeros. If b = c = 2, then the result is clear.
Assume that bc ≥ 6. Let n be a positive integer. Since cn−jbn−cj

is an
integer for j = 1, . . . , �logc n�, we have

{ξS,b,c(bc)n} =
{ +∞∑

j=�logc n	+1

cn−jbn−cj
}

.
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If n = cm, where m ≥ 1 is an integer, then we have

{ξS,b,c(bc)n} ≤ (cb−(c−1))cm
(
1 +

1
c

+
1
c2

+ · · ·
)
≤ 2(cb−(c−1))cm

.

Since b ≥ 3 or c ≥ 3, we have cb−(c−1) < 1. This implies that, after the
cmth digit in the bc-ary expansion of ξ, there are at least δcm consecutive
digits 0, for some positive real number δ which does not depend on m.
With the notation of Chapter 4, this means that Abc(0, cm, ξ)+�δcm� =
Abc(0, cm + �δcm�, ξ). This implies that Abc(0, N, ξ)/N cannot have a
limit when N tends to infinity. Consequently, ξS,b,c is not normal to
base bc.

5.2 Absolutely normal numbers

In 1917, Sierpiński [654] gave an alternative proof of Borel’s Theorem
4.8 asserting that almost all real numbers are absolutely normal (note
that he used, without proof, the fact that a real number is absolutely
normal if it is simply normal to every integer base); see also the paper
of Lebesgue [421], written in 1909, but published in 1917. Sierpiński and
Lebesgue explained how to construct infinite sets of intervals in order
to determine effectively one absolutely normal number, defined as the
minimum of an uncountable set. This answers a question of Borel, but
not in the most satisfactory way, since it would be desirable to show
that un nombre irrationnel connu est absolument normal.

In 1962 Schmidt [628] gave a complicated effective construction of
absolutely normal numbers.

In 1979 Levin [428] constructed explicitly an absolutely normal num-
ber ξ whose discrepancy to every integer base b ≥ 2 satisfies

DN ((ξbn)n≥1) ≤ 107N−1/2(log N)3,

for every N sufficiently large in terms of b. His construction is unfortu-
nately much too complicated to be reproduced here.

Turing [689] formalized the concept of computability in 1936, about
20 years after the publication of the papers of Sierpiński and Lebesgue.
The computable numbers are those whose expansion in some integer
base can be generated by a mechanical (finitary) method, outputting
each of the digits, one after the other. In an unpublished note, Turing
[690] gave a computable construction to establish Borel’s Theorem 4.8
together with an algorithm for computing absolutely normal numbers;
see [67] and [69] for a comprehensive exposition of Turing’s ideas. We
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insist on the fact that the set of computable real numbers is countable,
so there is no evidence for the existence of computable absolutely normal
numbers.

Becher and Figueira [68] gave a recursive reformulation of Sierpiński’s
construction which produces a computable absolutely normal number,
together with an algorithm to compute it in doubly exponential time
complexity.

Various notions of randomness are discussed in [97, 173, 230, 387, 540].
A sequence is random if it passes all conceivable effectively testable prop-
erties of stochasticity. Kolmogorov [343, 392] and Martin-Löf [480] for-
malized this approach. Further equivalent definitions are summarized
in [173, Theorem 6.99]. If b ≥ 2 is an integer and (ak)k≥1 is a ran-
dom sequence on {0, 1, . . . , b − 1}, then the real number with b-ary
expansion 0 · a1a2 . . . is called a random number. According to [173,
Theorem 6.61], this random number is normal to base b. The con-
verse, however, does not hold. Since the sequence 123456789101112 . . .

is computable, it is not random, thus the Champernowne number ξc :=
0.12345678910111213 . . ., which is normal to base 10, is not a random
number. Furthermore, Calude and Jürgensen [175] proved that the no-
tion of random number is base invariant; see also Staiger [660].

A further example of an absolutely normal but not computable num-
ber is given by a Chaitin’s random number Ω, the halting probability of
a universal machine. Since it is random, it is a transcendental number.
A procedure to compute the exact values of the first 64 binary digits
of a Chaitin’s Ω number is given in [174].

A simple construction of an absolutely normal number remains a chal-
lenging open problem. No simple explicit example of a real number which
is normal to two multiplicatively independent bases is known.

5.3 Absolutely non-normal numbers

Maxfield [494] has pointed out that the set of absolutely non-normal
numbers is uncountable and dense. Martin [478] was the first to give
an explicit example of an absolutely non-normal irrational number. We
reproduce his nice construction.

Theorem 5.8. Set d2 = 4 and

dj = jdj−1/(j−1), for j ≥ 3.
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Then, the real number

ξ :=
+∞∏
j=2

(
1 − 1

dj

)
(5.13)

is a Liouville number which is simply normal to no base.

Proof. Since dj ≥ j2 for every j ≥ 2, the sum
∑

j≥2 1/dj and the
infinite product (5.13) also converge. Let j ≥ 5 be an integer. We deduce
from j ≤√dj that

dj+1 > 5dj/j ≥ 5
√

dj .

Using the fact that 5x ≥ x5 for x ≥ 5, we conclude that

dj+1 > (
√

dj)5 > 2d2
j . (5.14)

For k ≥ 2, set

ξk :=
k∏

j=2

(
1 − 1

dj

)
,

and observe that ξ < ξk and

ξ = ξk ·
+∞∏

j=k+1

(
1 − 1

dj

)
≥ ξk

(
1 −

+∞∑
j=k+1

1
dj

)

> ξk

(
1 −

+∞∑
j=k+1

1
2j−k−1dk+1

)

= ξk

(
1 − 2

dk+1

)
> ξk − 2

dk+1
,

(5.15)

since dj > 2dj−1 and ξk < 1.
Let k ≥ 2 be an integer and write

dk+1ξk+1 = (dk+1 − 1)ξk

=
(
(k + 1)dk/k − 1

)
ξk =

(k + 1)dk/k − 1
dk

dkξk.
(5.16)

Noticing that dk is a power of k, it follows from (5.16) and Corollary
B.4 that dk+1ξk+1 is an integer multiple of dkξk. Since d2ξ2 = 3 is an
integer, we deduce that

dkξk is an integer for k ≥ 2. (5.17)

We now prove that, for every b ≥ 2, the real number ξ is slightly less
than but very close to the rational number ξb, whose denominator is a
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power of b. Consequently, the b-ary expansion of ξ has a very long string
of digits equal to b − 1.

Let b ≥ 2 and r be positive integers. By (5.17), the number dbr ξbr is
an integer, thus, the b-ary expansion of ξbr terminates after at most

logb dbr = rdbr−1/(br − 1)

digits. Furthermore, ξ is less than ξbr , but, by (5.15), the difference is
less than 2/dbr+1. Observe that

2
dbr+1

≤ 2
brdbr /br ≤ b1−rdbr /br

.

Subtracting this small difference from ξbr , the resulting b-ary expansion
has occurrences of the digit b−1 beginning at the (rdbr−1/(br−1)+1)th
digit at the latest, and continuing through at least the (rdbr/br − 1)th
digit. With the notation from Chapter 4, we have

Ab

(
b − 1,

rdbr

br
, ξ
)
≥ rdbr

br
− rdbr−1

br − 1
− 1

>
rdbr

br
− 2rdbr−1

br
>

rdbr

br

(
1 − 2√

dbr

)
,

by (5.14). Consequently,

lim sup
N→+∞

Ab(b − 1, N, ξ)
N

= 1,

and ξ is not simply normal to base b. Since b ≥ 2 is arbitrary, this shows
that ξ is absolutely non-normal. Furthermore, we have shown that, for
any positive integer w, there are arbitrarily large integers N such that
the first N digits of ξ are followed by more than wN digits b − 1. This
shows that the irrationality exponent of ξ is infinite, meaning that ξ

is a Liouville number. Liouville’s Theorem E.5 then implies that ξ is a
transcendental number.

5.4 On the random character of arithmetical constants

In this section, we briefly discuss a theory developed by Bailey and
Crandall [55] to explain random behaviour for the digits in the integer
expansions of fundamental mathematical constants. At the core of their
approach is the following general hypothesis concerning the distribution
of the iterates generated by dynamical maps.
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Hypothesis A. Let b ≥ 2 be an integer. Let p(X) and q(X) be integer
polynomials such that 0 ≤ deg p(X) < deg q(X) and q(X) has no non-
negative integer roots. Define the sequence (yn)n≥0 by setting y0 = 0
and

yn+1 =
{

byn +
p(n)
q(n)

}
, for n ≥ 0.

Then this sequence either has finitely many limit points or is uniformly
distributed in [0, 1].

Bailey and Crandall [55] established that, assuming the validity of
Hypothesis A, then the real number

ξ :=
∑
n≥0

p(n)
q(n)

b−n (5.18)

either is rational or is normal to base b. In particular, if Hypothesis A
is true, then each of the constants π, log 2 and ζ(3) is normal to base
2, and log 2 is normal to base 3. To be even more precise, if one could
establish that the simple iteration given by y0 = 0 and

yn+1 =
{

2yn +
1

n + 1

}
, for n ≥ 0,

is uniformly distributed in [0, 1], then it would follow that log 2 is normal
to base 2.

A real number ξ having an expansion (5.18) is called in [417] a BBP-
number, and the associated formula (5.18) is then called a BBP-expan-
sion of ξ to base b. This refers to the algorithm discovered by Bailey,
Borwein and Plouffe [54] by which one can rapidly calculate individual
digits of certain polylogarithmic constants, including π, written in some
base.

Proving Hypothesis A appears intractable.
Lagarias [417] showed that the relation between particular orbits of

two discrete dynamical systems underlying Hypothesis A also applies
to expansions of real numbers of the form

∑
n≥1 εn/bn, with (εn)n≥1 a

sequence of real numbers tending to 0 as n tends to infinity. However,
since every real number has such an expansion, Hypothesis A cannot be
true in such generality and thus must be restricted to apply only to ex-
pansions of some special form. At the end of [417], there is an interesting
discussion on Hypothesis A and Furstenberg’s conjecture mentioned as
Problem 10.26.

Note that Lemma 5.4 is a particular case of a general result given in
Exercise 5.2. It is motivated by Hypothesis A.
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The interested reader is advised to consult [55, 56, 417] and the mono-
graph [120].

5.5 Exercises

Exercise 5.1. Let b and c be coprime integers, both ≥ 2. Let d ≥ 2 be
an integer. Prove that the real numbers ξS,b,c and ξK,b,c,d are transcen-
dental. Are they Liouville numbers?

Exercise 5.2. Let b ≥ 2 be an integer. Let (εn)n≥0 be a converging
sequence of real numbers. Set x0 = 0 and xn+1 = {bxn + εn} for n ≥ 0.
Prove that (xn)n≥0 is uniformly distributed in [0, 1] if, and only if, the
real number

∑
n≥0 εn/bn is normal to base b.

Exercise 5.3 (cf. [396, 402]). Let (xn)n≥1 be a real sequence which is
completely uniformly distributed modulo one. Let b ≥ 2 be an integer
and set ak = �{xk}b� for k ≥ 1. Prove that the real number ξ with b-ary
expansion 0 · a1a2 . . . is normal to base b.

Exercise 5.4 (cf. [155, 342, 667, 672]). Let b be an odd prime number.
Let a ≥ 2 be an integer coprime with b. Set �b = ordb(aord(a,b) − 1).
Prove that, for any positive integer n and any integer c coprime with b,
all blocks of digits from {0, 1, . . . , a−1} of length at most �(n−�b) loga b�
occur in the periodic part of the a-ary expansion of c/bn.

Exercise 5.5 (cf. [342], Theorem 5). Let b be an odd prime number. Let
a ≥ 2 be an integer coprime with b. Apply Exercise 5.4 to show that, if
(nj)j≥1 is a strictly increasing sequence of positive integers satisfying

nj+1 ≥ bnj logb a

for infinitely many j, then the real number
∑

j≥1 b−nj is rich to base a.

5.6 Notes

� Let b ≥ 2 be an integer. Ugalde [691] used graphs and de Bruijn
words to construct real numbers which are normal to base b, and, more-
over, have quite small discrepancy. In [692], he gave a specific construc-
tion of a Cantor-like set in [0, 1], all of whose members are normal to
base b, and whose Lebesgue measure can be made arbitrarily close to 1.

� Further constructions of normal numbers of Korobov type have
been given by Kano [370].
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� Starčenko [661] (see also [583]) established the converse of Ko-
robov’s result stated as Exercise 5.3. Namely, if a real number ξ with
b-ary expansion 0 ·a1a2 . . . is normal to an integer base b ≥ 2, then there
exists a completely uniformly distributed sequence (xn)n≥1 such that
ak = �{xk}b� for k ≥ 1.

� Let r ≥ 2 be an integer. Hertling [342] proved that the real num-
ber

∑
j≥1 r−j!−j is not rich to base r but is rich to every base s such

that r and s are multiplicatively independent. Inspired by this work,
Bugeaud [155] gave an explicit construction of a real number which is
rich to every integer base.

� Exercise 5.4 asserts that every block of suitably small length oc-
curs in the periodic part of the a-ary expansion of c/bn; however, we
cannot predetermine its location.

� A vector x = (x1, . . . , xd) is said to be absolutely normal in Rd

if the sequence (xAn)n≥1 is uniformly distributed modulo one in Rd

for arbitrary non-singular integral matrices A whose eigenvalues are not
roots of unity. Pushkin [589] considered certain m-dimensional manifolds
Γ in Rd and showed that λΓ-almost all points x in Γ are absolutely
normal in Rd, where λΓ is the Lebesgue measure for the parameter space.
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Normality to different bases

Keeping in mind that almost all real numbers are normal to every integer
base, we investigate the following question: Do there exist real numbers
which are normal to one base r, but not normal to another base s? By
Theorem 4.4 we know already that the answer is negative when r and s

are multiplicatively dependent. However, at the end of the 1950s, Cas-
sels and W.M. Schmidt, independently, gave a positive answer to this
question when r and s are multiplicatively independent. Section 6.1 is
devoted to their result. In the second section, we discuss its extension
to non-integer bases. Then, we investigate what can be said on the ex-
pansions of a given number to two different bases. The final section is
concerned with the study of the analogous question for representations
of integers in two different bases.

6.1 Normality to a prescribed set of integer bases

Theorem 4.4, established by Maxfield [494], asserts that if r and s are
multiplicatively dependent integers at least equal to 2, then a real num-
ber is normal to base r if, and only if, it is normal to base s. However,
this result says nothing if r and s are multiplicatively independent. In
‘The new Scottish book’ (Problem 144), Steinhaus [663] asked whether
normality with respect to infinitely many bases implies normality with
respect to all other bases. Answers have been given independently by
Cassels [182] and W. M. Schmidt [627]. Below is the statement estab-
lished by Schmidt.

Theorem 6.1. Let r ≥ 2 and s ≥ 2 be multiplicatively independent
integers. The set of real numbers which are normal to base r but not
even simply normal to base s is uncountable.

118
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The idea behind the proof of Theorem 6.1 is to construct a measure μ

supported by the set of real numbers that are not normal to base s, and
then to apply the Davenport–Erdős–LeVeque Lemma 1.8 to infer that
μ-almost all numbers are normal to base r.

For the sake of simplicity, we establish Theorem 6.1 in the particular
case s = 3, as was done by Cassels [182]. The general case is slightly more
technical but it does not require new ideas. We begin with an auxiliary
lemma.

Lemma 6.2. There exist absolute positive constants A and δ such that

N−1∑
n=0

+∞∏
j=1

| cos(3−jhbnπ)| < AN1−δ,

for every positive integer N , every non-zero integer h, and every integer
b ≥ 2 which is not a power of 3.

Proof. Assume first that b is congruent to 1 modulo 3 and that N is a
large power of 3, say N = 3r, with r ≥ 316. Set � = ord3(b−1). Let n be
an integer with 0 ≤ n < 3r. Set s = ord3(bn −1) and n0 = n/3s. Lemma
B.2 implies that ord3(bn − 1) = s + ord3(bn0 − 1), and we deduce from
Theorem B.1 that (bn0 −1)/(b−1) is not divisible by 3. We deduce from
s ≤ r− 1 that ord3(bn − 1) ≤ 3r+�−1. This implies that the bn, with 0 ≤
n < 3r, run modulo 3�+r through all residue classes which are congruent
to 1 modulo 3�. Let h be a positive integer and set m = ord3(h). Then
the integers hbn, 0 ≤ n < 3r, run modulo 3�+m+r through all residue
classes which are congruent to h modulo 3�+m. Consequently, if we have
the ternary representation

hbn =
∑
k≥0

εk(n)3k, where εk(n) = 0, 1 or 2,

then the r-tuple(
ε�+m(n), ε�+m+1(n), . . . , ε�+m+r−1(n)

)
(6.1)

takes precisely once every one of the 3r possible values as n runs from 0
to 3r − 1.

We now divide the 3r integers n satisfying 0 ≤ n ≤ 3r − 1 into two
classes. Class I comprises the integers such that the digit 1 occurs at
least 	r/6
 times in the r-tuple (6.1). Class II comprises the remaining
integers.

Let us first deal with Class I. Observe that the fractional part of
3−jhbn lies between 1/3 and 2/3 for every integer j such that εj−1(n) = 1.
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For every integer n in Class I, this is precisely the case for at least 	r/6

values of j in {� + m + 1, . . . , � + m + r}, thus

+∞∏
j=1

| cos(3−jhbnπ)| ≤ (cos(π/3))r/6.

Since Class I contains at most 3r elements, there exists a positive δ1

such that

∑
n∈(I)

+∞∏
j=1

| cos(3−jhbnπ)| ≤ 3(1−δ1)r. (6.2)

Let us now deal with Class II. Note that, on average, the digit 1 occurs
r/3 times in the r-tuple (6.1). Hence, we may hope that the cardinality
of Class II is rather small. This is indeed the case, as it follows from
Lemma 4.7 that

�r/6�∑
k=0

p3(r, k) ≤
�r/6�∑
k=0

p3(3	r/3
, k) ≤ 2143r+2e−r/3240.

Consequently, there exist positive real numbers A2 and δ2 such that

∑
n∈(II)

+∞∏
j=1

| cos(3−jhbnπ)| ≤ A23(1−δ2)r. (6.3)

Combining (6.2) and (6.3), we conclude that there exist positive real
numbers A3 and δ3 such that

N−1∑
n=0

+∞∏
j=1

| cos(3−jhbnπ)| < A3N
1−δ3 , (6.4)

for every N that is a power of 3, including the values of N less than 316.
Now, let N be a positive integer, and write

N =
∑

0≤r≤R

ηr3r, where ηr = 0, 1 or 2 and ηR �= 0.

The range of summation 0 ≤ n < N may be divided into 0 ≤ n < N−3R

and N − 3R ≤ n < (N − 3R) + 3R. More generally, this range may be
subdivided into η0 + η1 + · · · + ηR intervals of the type

Nr,η ≤ n < Nr,η + 3r,
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where there are precisely ηr intervals of length 3r. Since A3 and δ3 do
not depend on h, we infer from (6.4) that

∑
Nr,η≤n<Nr,η+3r

+∞∏
j=1

| cos(3−jhbnπ)| < A3(3r)1−δ3 ≤ A3N
1−δ3 , (6.5)

for every Nr,η as above. Using that

η0 + η1 + · · · + ηR ≤ 2(log 3N),

it follows from (6.5) that

N−1∑
n=0

+∞∏
j=1

| cos(3−jhbnπ)| < 2(log 3N)A3N
1−δ3 < A4N

1−δ4 ,

for some positive real numbers A4 and δ4.
It only remains for us to deal with the integers b that are not congruent

to 1 modulo 3. If b is congruent to 2 modulo 3, then b2 is congruent to
1 modulo 3 and we may separate odd and even integers n in the range
of summation 0 ≤ n < N before applying our upper bound for the base
b2 and integers h and hb, respectively, to get the required estimate. If
b = 3τ b1 with τ ≥ 1 and b1 prime to 3, then we simply observe that

+∞∏
j=1

| cos(3−jhbnπ)| =
+∞∏

j=1−nτ

| cos(3−jhbn
1π)| ≤

+∞∏
j=1

| cos(3−jhbn
1 π)|

to conclude the proof of the lemma.

We are now in a position to establish Theorem 6.1 for s = 3.

Proof of Theorem 6.1. Assume that s = 3 and let r = b be a
positive integer which is not a power of 3. Let μK denote the standard
measure on the middle third Cantor set (see Section C.3). Observe that,
for every real number t, its Fourier transform μ̂K satisfies

μ̂K(t) =
∫ 1

0

e2iπtξ dμK(ξ) = lim
J→+∞

2−J
∏

1≤j≤J

(
1 + e2iπ(2·3−j)t

)

=
+∞∏
j=1

1 + e4iπ3−jt

2
,

hence

|μ̂K(t)| =
∣∣∣
∫ 1

0

e2iπtξ dμK(ξ)
∣∣∣ =

+∞∏
j=1

| cos(2 · 3−jπt)|.
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Consequently, if h is a non-zero integer and N is a positive integer, then
it follows from Lemma 6.2 that∫ 1

0

∣∣∣ ∑
0≤n<N

e2iπhbnξ
∣∣∣2 dμK(ξ)

=
∑

0≤m<N

∑
0≤n<N

∫ 1

0

e2iπ(hbm−hbn)ξ dμK(ξ)

≤
∑

0≤m<N

∑
0≤n<N

+∞∏
j=1

| cos(2 · 3−jh(bm − bn)π)|

≤ N + 2
∑

0≤n<N

∑
1≤�<N−n

+∞∏
j=1

| cos(2 · 3−jh(b� − 1)bnπ)|

≤ N + 2NAN1−δ ≤ N2−δ/2,

provided that N is sufficiently large. This proves that the series

∑
N≥1

1
N

∫ 1

0

∣∣∣ 1
N

∑
0≤n<N

e2iπhbnξ
∣∣∣2 dμK(ξ)

converges, thus, by Lemma 1.8,

lim
N→+∞

1
N

∑
0≤n<N

e2iπhbnξ = 0

for μK-almost all ξ. By Theorem 1.2, the sequence (ξbn)n≥1 is then
uniformly distributed modulo one for μK -almost all ξ. By Theorem 4.14,
this shows that μK -almost all ξ are normal to base b.

Actually, the proof of Theorem 6.1 gives a stronger result than the one
enounced, see Theorem 7.14. We end this section by an extension of The-
orem 6.1 obtained by Schmidt [628] by means of a specific construction.

Theorem 6.3. Let R ∪ S be a partition of the set of integers greater
than or equal to 2 into two classes such that any two multiplicatively
dependent integers fall in the same class. The set of real numbers which
are normal to every base from R but not normal to every base from S
is uncountable.

Schmidt [628] gave a (fairly complicated) constructive proof of The-
orem 6.3, while Theorem 6.1 is ‘only’ an existence statement. On the
other hand, the numbers satisfying the conclusion of Theorem 6.3 may
not be simply normal to every base from S. Taking for S the empty set,
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Schmidt constructed explicitly real numbers which are normal to every
integer base; see also Section 5.2.

6.2 Normality to non-integer bases

In their proofs of Theorem 6.1, Cassels and Schmidt have used the Can-
tor measure. This is also the case of Pearce and Keane [554], who gave
a ‘structurally simple proof’ [sic] of Theorem 6.1. To this end, they
calculated the Fourier coefficients associated with the Cantor measure.
Shortly thereafter, Brown, Moran and Pearce [136] replaced the use of
the Cantor measure by that of Riesz product measures, which have the
great advantage that their Fourier coefficients are easy to compute. This
method, which extends well to non-integer bases, has been developed in
subsequent works [138–141, 519, 520, 522].

Definition 6.4. For a real number α with |α| > 1, set

N (α) := {ξ ∈ R : (ξαn)n≥1 is uniformly distributed modulo one}.
In [502], Mendès France asked whether Maxfield’s Theorem 4.4 ex-

tends to non-integer bases, that is, α and β being real numbers greater
than 1, whether we have N (α) = N (β) if, and only if, (log α)/(log β)
is rational. In this direction, Moran and Pollington [522] established the
following result.

Theorem 6.5. Let α and β be real numbers greater than 1. If N (α) is
included in N (β), then (log α)/(log β) is rational.

Bertrand [83] proved that if the positive integer k and the real number
α > 1 are such that αk + α−k or αk − α−k is a rational integer, then
N (α) is contained in N (αr) for every positive integer r.

The answer to Mendès France’s question is in general negative, as was
first shown by Brown, Moran and Pollington [139]. They established a
definitive result in [140], which we reproduce below.

Theorem 6.6. Let α > 1 be a real number and r and s be distinct
positive integers. The set N (αs) is included in the set N (αr) if, and
only if, there is a positive integer k such that either

αk ∈ Z and Q(αr) ⊂ Q(αs)

or

αk + α−k or αk − α−k is in Z and s divides r.
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We do not give a complete proof of Theorem 6.6. We content ourselves
with establishing a particular case of it, namely Theorem 6.7 below,
which forms the main content of the note [139]. Recall that for any non-
square positive integer b, it is expected that

√
b is normal to base b,

while, clearly,
√

b does not belong to N (
√

b).

Theorem 6.7. Let b be a non-square positive integer with b ≥ 10. For
every positive integer k we have

N (
√

b) ⊂ N ((
√

b)k) and N (
√

b) = N (bk
√

b),

but

N (b) �⊂ N (
√

b).

The assumption that b is at least equal to 10 is a technical assump-
tion which allows some simplification in the proof. It follows from The-
orem 6.6 that the conclusion of Theorem 6.7 remains true for b in
{2, 3, 5, 6, 7, 8}.

The proofs of Theorems 6.5 and 6.7 follow the same lines. The key idea
for the proof of Theorem 6.5 is to find, when (log α)/(log β) is irrational,
a probability measure μ (a discriminatory measure) which assigns zero
mass to N (β) and full mass to N (α).

Preliminaries for the proofs of Theorems 6.5 & 6.7. Let λ

be a real number with λ > 1. We construct a suitable Riesz product
measure μ such that the sequence (ξλn)n≥1 is not uniformly distributed
modulo one for μ-almost all real numbers ξ. Let A be a set of positive
integers whose upper density is positive, that is, satisfying

lim sup
N→+∞

Card{1 ≤ n ≤ N : n ∈ A}
N

> 0, (6.6)

and such that

λn′−n > 3 for all integers n, n′ in A ∪ {0} with n′ > n. (6.7)

For a positive integer N and a real number t, set

ηN (t) =
∏

n∈A,1≤n≤N

(
1 + cos(2πλnt)

)
and ρ(t) =

1 − cos t

πt2
.

The Fourier transform of ρ is the triangle function equal to 1 at 0 and
vanishing on and only on {t ∈ R : |t| ≥ 1}. Said differently, we have
ρ̂(t) = max{1 − |t|, 0} for t in R. Then, define the measure μN by

dμN (t) = ηN (t)ρ(t) dt.
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Observe that μ̂N (t) = 0 unless the real number t satisfies∣∣∣t − ∑
n∈A,1≤n≤N

εnλn
∣∣∣ < 1 (6.8)

for some ε1, . . . , εN in {±1, 0}. Here and below, it is understood that
εn = 0 if n /∈ A. Furthermore, the graph of μ̂N is the union of seg-
ments of the real axis with triangular bumps of width 2 centred at the
points ε1λ1+ · · ·+ εNλN with height 2−|ε1|−···−|εN |, where ε1, . . . , εN ∈
{±1, 0}. Since the sequence of Fourier transforms (μ̂N )N≥1 converges
pointwise towards a function which is continuous at 0, the continuity
theorem (see [98, p. 303]) asserts that the weak star limit μ of the se-
quence of measures (μN )N≥1 exists and, furthermore, that μ is a contin-
uous probability measure on R whose Fourier transform at t is 0 unless
(6.8) holds for some integer N and some ε1, . . . , εN in {±1, 0}, in which
case we have 0 ≤ μ̂(t) ≤ 2−|ε1|−···−|εN |. The latter inequality becomes
an equality if, and only if, t =

∑N
n=1 εnλn.

For further use, observe that, by (6.7), the difference between any two
distinct elements of the increasing sequence of all positive real numbers
of the form ±λn1 ± · · · ± λnh exceeds 2, where h ≥ 1 and n1 < · · · < nh

are in A. This implies that, for any given real number t, inequality (6.8)
has at most one solution with ε1, . . . , εN in {0,±1}.

For n ≥ 1 and a real number t, put

Xn(t) = e2iπtλn

,

and note that

μ̂(λn) =
∫ +∞

−∞
e2iπtλn

dμ(t) =
∫ +∞

−∞
Xn(t) dμ(t).

It follows from the properties of μ̂ that, for all distinct positive integers
m and n, we have

μ̂(λm ± λn) = μ̂(λm) · μ̂(λn). (6.9)

Indeed, (6.9) becomes 0 = 0 if m or n does not belong to A, and it
reduces to 1/4 = 1/4 if m and n are in A. Let N be a positive integer.
Observe that we have∫ +∞

−∞

1
N

∑
1≤n≤N

e2iπtλn

dμ(t) =
1
N

∑
1≤n≤N

μ̂(λn)

≥ Card{1 ≤ n ≤ N : n ∈ A}
2N

,

(6.10)
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since μ̂(λn) = 1/2 for every positive integer n in A and μ̂(t) ≥ 0 for
every real number t.

Using that the functions |μ̂| and |X1|, |X2|, . . . are all bounded by 1,
we deduce from (6.9) that

∫ +∞

−∞

∣∣∣ 1
N

∑
1≤n≤N

(Xn(t) − μ̂(λn))
∣∣∣2 dμ(t) ≤ 4

N
.

We then infer from Lemma 1.8 that

lim
N→+∞

1
N

∑
1≤n≤N

(Xn(t) − μ̂(λn)) = 0

holds for μ-almost all real numbers t. Combined with (6.6) and (6.10),
this gives

lim sup
N→+∞

1
N

∑
1≤n≤N

e2iπξλn

> 0

for μ-almost all real numbers ξ. Thus, by Theorem 1.2, the sequence
(ξλn)n≥1 is not uniformly distributed modulo one for μ-almost all real
numbers ξ.

Proof of Theorem 6.7. Let k be a positive integer. Let ξ be in
N (

√
b) and set un = ξ(

√
b)n for n ≥ 1. For h ≥ 1 and n ≥ 1, set

vh,n = un+2h − un = (bh − 1)ξ(
√

b)n.

Since ξ is in N (
√

b), Theorem 1.2 implies that the sequence (vh,n)n≥1

is uniformly distributed modulo one for every positive integer h. It then
follows from Theorem 1.6 that (ukn)n≥1 is uniformly distributed modulo
one. By Theorem 4.14, this means that ξ is normal to base (

√
b)k and

proves the first assertion.
Let ξ be in N (bk

√
b). For h = 0, 1, . . . , 2k and n ≥ 1, we have

ξ(
√

b)h(
√

b)n(2k+1) = ξ(
√

b)2h(k+1)−h(2k+1)(
√

b)n(2k+1)

= ξbh(k+1)(bk
√

b)n−h,

and, since ξ is in N (bk
√

b), it follows from Theorem 1.2 that ξ(
√

b)h

belongs to N (bk
√

b). We then get from Exercise 4.1 that ξ is in N (
√

b).
This completes the proof of the first two assertions of Theorem 6.7.

To establish the last assertion of Theorem 6.7, we define the measure μ

as in the preliminaries with λ =
√

b and A = {n ≥ 1 : n odd}. Observe
that (6.7) holds since b ≥ 10. We conclude from the preliminaries that
the sequence (ξ(

√
b)n)n≥1 is not uniformly distributed for μ-almost all
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real numbers ξ. It remains to show that μ-almost all real numbers are
normal to base b. By Lemma 1.8 and Theorem 1.2, it is sufficient to
establish that

+∞∑
N=1

1
N3

∑
1≤m<n≤N

μ̂
(
h(bn − bm)

)
< +∞, (6.11)

for every non-zero integer h.
Fix a non-zero integer h. Let m and n be distinct positive integers. It

follows from the preliminaries that the inequality∣∣∣h(bn − bm) −
∑
i≥1

εib
i
√

b
∣∣∣ < 1 (6.12)

has at most one solution (εi)i≥1 such that εi ∈ {0,±1} for i ≥ 1. If it
has no solution, then set r(n,m) = +∞; otherwise, let r(n,m) be the
number of non-zero elements of the sequence (εi)i≥1. Then, we have

|μ̂(h(bn − bm)
)| ≤ 1

2r(n,m)
. (6.13)

For n ≥ 1, set t(n) = max{1, �n/(log 3n)2�}. Since, for any integer
N ≥ 3, we have

∑
n−t(n)≤m<n≤N

1
2r(n,m)

≤
N∑

n=1

n−1∑
m=n−t(n)

1
2

≤
N∑

n=1

t(n)
2

≤ Nt(N) ≤ N2

(log 3N)2
,

(6.14)

it follows from (6.11) and (6.13) that it remains for us to prove that the
sum

+∞∑
N=1

1
N3

∑
1≤m<n≤N,m<n−t(n)

1
2r(n,m)

(6.15)

converges. Without any loss of generality, we may assume that there are
infinitely many integers m,n with m < n − t(n) for which (6.12) has
a solution (εi)i≥1 such that εi ∈ {0,±1} for i ≥ 1. Since t(n) tends
to infinity with n, it then follows that there exist an integer h0 and a
sequence (δi)i≥−h0 taking its values in {0,±1} such that

h
√

b =
+∞∑

i=−h0

δib
−i. (6.16)
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Put s(n) =
∑t(n)−h0−1

i=−h0
|δi|. Substituting (6.16) into (6.12) shows that

s(n) ≤ r(n,m) when 1 ≤ m < n − t(n). Thus, we get

∑
1≤m<n≤N,m<n−t(n)

1
2r(n,m)

≤
N∑

n=1

n

2s(n)
.

Let r be a positive integer with δr �= 0 and δr+1 = δr+2 = · · · = δ3r = 0.
Then,

brh
√

b = br
r∑

i=−h0

δib
−i + τr, (6.17)

where |τr| ≤ b−2r and vr :=
∑r

i=−h0
δib

r−i is an integer of absolute
value at most hbr+1. Squaring (6.17) gives

b2r+1h2 = v2
r + 2τrvr + τ2

r ,

which is impossible if |2τrvr + τ2
r | < 1, thus, if r is sufficiently large. In

particular, every interval [r + 1, 3r] with r sufficiently large contains at
least an integer i such that |δi| ≥ 1. Consequently, there exists a positive
real number c < 1 such that s(n) ≥ 2c(log 3n) − 1, for n ≥ 1, hence,

N∑
n=1

n

2s(n)
≤ 2

N∑
n=1

(3n)1−c ≤ 6N2−c,

for N ≥ 1, and the sum (6.15) converges. This shows that (6.11) holds.
We conclude by applying Lemma 1.8 and Theorem 1.2.

Proof of Theorem 6.5. Assume that (log α)/(log β) is irrational,
and let (pk/qk)k≥1 be the sequence of its convergents; see Appendix D.
Let p be an integer such that βp > 3. Define the measure μ as in the
preliminaries with λ = β and

A =
⋃
k≥1

{p(qk + 1), p(qk + 2), . . . , p(min{2qk, qk+1} − 1)}.

We check that (6.7) is satisfied. Observe that the upper density of A
is at least equal to 1/(4p). We thus get from the preliminaries that
μ(N (β)) = 0.

Assume that μ(N (α)) < 1. Then, by Lemma 1.8 and Theorem 1.2,
there exists a non-zero integer h such that

+∞∑
N=1

1
N3

∑
1≤m<n≤N

μ̂
(
h(αn − αm)

)
= +∞. (6.18)
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Let m and n be distinct positive integers. It follows from the prelimi-
naries that the inequality∣∣∣h(αn − αm) −

∑
i∈A,1≤i≤R(n,m)

εiβ
i
∣∣∣ < 1 (6.19)

has at most one solution (εi)i≥1 such that εi ∈ {0,±1} for i ≥ 1. If it
has no solution, then set r(n,m) = +∞; otherwise, let r(n,m) be the
number of non-zero elements of the sequence (εi)i≥1. The above notation
means that εR(n,m) = ±1.

As above, set t(n) = max{1, �n/(log 3n)2�} for n ≥ 1. By (6.18) and
the analogues of (6.13) and (6.14), we get

+∞∑
N=1

1
N3

N∑
n=1

n−t(n)∑
m=1

1
2r(n,m)

= +∞

and
+∞∑
n=1

1
n2

n−t(n)∑
m=1

1
2r(n,m)

= +∞.

Consequently, there are arbitrarily large integers S such that

∑
2S≤n<2S+1

∑
1≤m≤n−t(n)

1
2r(n,m)

≥ 22S

S2
.

Throughout the rest of this proof, we assume at several places that S is
sufficiently large, without mentioning it explicitly. Since

∑n
m=1 1/2 ≤ 2S

for n < 2S+1, we deduce that, for these integers S, there is a set G(S),
of cardinality at least 2S/S3, of integers in {2S, . . . , 2S+1 − 1} such that

∑
1≤m≤n−t(n)

1
2r(n,m)

≥ 2S

S3
,

for n in G(S). For each n in G(S), let m be an integer satisfying 1 ≤
m ≤ n − t(n) and r(n,m) ≤ 5 log S. We nominate one such m = m(n)
for each n in G(S). Fix n in G(S) and suppose that (6.19) holds for the
pair (n,m(n)) = (n,m). Set R(n) = R(n,m(n)). Then, somewhere in
the sequence

εR(n), εR(n)−1, . . . , εR(n)−v(S),

where v(S) = 	6S2 log S
, there is a block of S2 consecutive zeros. Let
us write V (n) for the largest i such that εi is followed by a block of at
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least S2 zeros. Since R(n)−V (n) is less than v(S) and r(n,m) does not
exceed 5 log S, the number of possible choices of

εR(n), εR(n)−1, . . . , εV (n)

does not exceed (2v(S))5 log S , hence is less than 2S/2/S3 when S is large
enough.

It follows that, for some

w =
M∑

k=0

ε′
kβ−pk,

with ε′
0, ε′1, . . . , ε′

M in {0,±1}, there is a subset G′(S) of G(S) of cardi-
nality at least 2S/2 such that, for every n in G′(S), we have

hαn(1 + τn) = wβR(n)(1 + σn), (6.20)

where

|τn| ≤ α−t(n) ≤ e−Cn(log n)−2
,

|σn| ≤ e−C(log n)2 ,
(6.21)

for some positive constant C and R(n) in A. Let n0 < n1 < . . . < nJ

be these integers n. For j = 1, . . . , J , setting vj = nj − n0 and uj =
R(nj) − R(n0) and taking logarithms of (6.20) with n = n0 and n = nj

(this allows us to eliminate h and w in (6.20)), we deduce from (6.21)
that

γ :=
log α

log β
=

uj

vj
+ δj , (6.22)

where

vj ≤ nJ ≤ 2S and |δj | ≤ exp{−C′S2},
for some positive constant C′. In particular, we deduce that

R(nj) ≥ uj ≥ γvj/2. (6.23)

Since, by (6.20), the quotient R(�)/� is bounded independently of the
positive integer �, it follows from (6.23) that

|δj | ≤ exp{−C′S2} <
1

R(nj)3
<

1
2v2

j

,

for j = 1, . . . , J . By (6.22) and Theorem D.7, the rational number uj/vj

must be a convergent to γ. Thus, there exist positive integers d and r such
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that uj = dpr and vj = dqr. Moreover, by Theorem D.1 and (6.23),
we get

1
R(nj)3

>
∣∣∣γ − pr

qr

∣∣∣ > 1
qr(qr + qr+1)

>
γ

4R(nj)qr+1
,

so that R(nj) < qr+1. By the definition of A, this shows that R(nj) is
less than 2pqr and uj ≤ 2pqr. It follows from (6.23) that vj ≤ 4pqr/γ,
thus the integer d can take no more than 	4p/γ
 different values. Since
(qk)k≥1 grows at least exponentially (Theorem D.5) and qr ≤ 2S , there
are at most S2 such integers j. This contradicts the fact that G′(S) has
2S/2 elements. We have shown that μ(N (α)) = 1. This proves that N (α)
is not contained in N (β) when the quotient (log α)/(log β) is irrational,
as asserted.

6.3 On the expansions of a real number to two different bases

This section is concerned with the following general question, which was
investigated in [155]:

Let r and s be multiplicatively independent positive integers. Are there
irrational real numbers whose r-ary expansion and s-ary expansion are,
in some sense, both ‘simple’?

First, we have to explain what is meant by ‘simple’. Actually, there
are several possible points of view.

Let b ≥ 2 be an integer and ξ a real number whose b-ary expansion is
given by

ξ = �ξ� +
∑
k≥1

ak

bk
,

where ak is in {0, 1, . . . , b−1} for k ≥ 1 and an infinity of the ak are not
equal to b − 1.

A first point of view is to use the block complexity function n �→
p(n, ξ, b) defined in Section 4.4. An irrational real number ξ could then
be considered as ‘simple’ to base b if this function increases very slowly.

A second point of view, addressed in [53], consists in counting the
number of non-zero digits of ξ among its n first b-ary digits by setting

NZ(n, ξ, b) = Card{k : 1 ≤ k ≤ n, ak �= 0}.
An irrational real number ξ could then be considered as ‘simple’ to base
b if the function n �→ NZ(n, ξ, b) increases very slowly. This means that
ξ has only few non-zero digits.
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A third point of view, addressed in [147], consists in estimating the
asymptotic behaviour of the number of digit changes in the b-ary expan-
sion of ξ. Following [147], we define the function DC, ‘number of digit
changes’, by

DC(n, ξ, b) = Card{k : 1 ≤ k ≤ n, ak �= ak+1},
for any positive integer n. For every integer b ≥ 2, the b-ary expansion of
any rational number p/q is ultimately periodic, thus there exist integers
�0 and C such that DC(n, p/q, b�) ≤ C for � ≥ �0. The growth of the
functions n �→ DC(n, ξ, b�) can be used to measure the complexity of the
real number ξ. In this respect, the ‘simplest’ numbers are the rational
numbers and an irrational real number ξ could then be considered as
‘simple’ to base b if the function n �→ NZ(n, ξ, b) increases very slowly.
This means that ξ has only few digit changes in its b-ary expansion.

Since, for n ≥ 1, we have

DC(n, ξ, b) ≤ 2NZ(n, ξ, b) + 1, (6.24)

a lower bound for DC(n, ξ, b) implies a lower bound for NZ(n, ξ, b).
However, the converse does not hold.

We show that, if, for some integer r ≥ 2, the r-ary expansion of an
irrational real number ξ has very few digit changes, then, if s ≥ 2 is
coprime with r, the s-ary expansion of ξ must have a certain amount of
digit changes.

Theorem 6.8. Let r ≥ 2 and s ≥ 2 be coprime positive integers. Let
ξ be an irrational real number. There exist an integer n0 and a positive
real number κ such that

DC(n, ξ, r) + DC(n, ξ, s) ≥ κ log n, for n ≥ n0, (6.25)

and

NZ(n, ξ, r) + NZ(n, ξ, s) ≥ κ log n, for n ≥ n0.

Proof. We repeatedly use the elementary fact that, if the r-ary expan-
sion of a rational number ζ reads 0 · a1a2 . . . anaaa . . . , with a, a1, . . . an

in {0, 1, . . . , r − 1} and a �= an, then

rnζ = a1r
n−1 + · · · + an−1r + an +

a

r − 1

and there exists an integer d such that ζ = d/(rn(r − 1)). The latter
rational number may not be written under its lowest form. To see this,
just observe that
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ζ =
(a − an) + r(an − an−1) + · · · + rn−1(a2 − a1) + a1r

n

rn(r − 1)
,

and a−an has no reason to be coprime with r. Note however that, since
a is not equal to an, there exists a prime number p and a positive integer
v such that pv divides r, but pv does not divide an − a. This shows that
if ζ = A/B in its reduced form, then pn divides B.

Set λ = (log r)/(log s) and c = 2 + 	2/λ
. Let N be a large positive
integer such that DC(N, ξ, r) = DC(2N + c, ξ, r). This implies that the
(N + 1)th, (N + 2)th, . . . until the (2N + c + 1)th digits in the r-ary
expansion of ξ are all the same. Let n be the smallest positive integer
such that the (n + 1)th, (n + 2)th, . . . until the (2N + c + 1)th digits
in the r-ary expansion of ξ are all the same. We have n ≤ N and there
exists an integer f such that

∣∣∣ξ − f

rn(r − 1)

∣∣∣ ≤ 1
r2N+c+1

.

Let h be the integer defined by the inequalities

h + 1 ≤ λ(2N − n + c − 1) < h + 2. (6.26)

If the integer g satisfies

fsh(s − 1) = grn(r − 1), (6.27)

then our choice of n and the above discussion imply that pn divides
sh(s−1) for a prime divisor p of r. Since r and s are coprime, p does not
divide s and we get that n ≤ 2 log s. This shows that if N is sufficiently
large, in terms of r, s and ξ, then no integer g satisfies (6.27). Observe
that

2rnsh(r − 1)(s − 1) ≤ 2rn+1r2N−n+c−1 ≤ r2N+c+1.

Consequently, the triangle inequality gives
∣∣∣ξ − g

sh(s − 1)

∣∣∣ ≥ ∣∣∣ f

rn(r − 1)
− g

sh(s − 1)

∣∣∣− ∣∣∣ξ − f

rn(r − 1)

∣∣∣
≥ 1

rnsh(r − 1)(s − 1)
− 1

r2N+c+1

≥ 1
2rnsh(r − 1)(s − 1)

≥ 1
sλ(n+1)+h+2

,

for any integer g, when N (hence, h) is large enough. This implies that,
in the s-ary expansion of ξ, the (h+1)th, (h+2)th, . . . until the (λ(n+1)
+h + 2)th digits cannot be all the same, whence
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DC(λ(n + 1) + h + 1, ξ, s) ≥ DC(h, ξ, s) + 1.

It then follows from (6.26) that

DC(2λN + λc, ξ, s) ≥ DC(λN + (c − 1)λ − 2, ξ, s) + 1

≥ DC(λN, ξ, s) + 1,

since n ≤ N and (c − 1)λ − 2 > 0, by our choice of c.
Set u1 = 1 and un+1 = 2un + c for n ≥ 1. A rapid calculation shows

that un ≤ (c + 1)2n for n ≥ 1. We thus have proved that

DC(un+1, ξ, r) −DC(un, ξ, r)

+ DC(λun+1, ξ, s) −DC(λun, ξ, s) ≥ 1,

for every sufficiently large integer n. Setting λ′ = max{1, λ}, we get

DC(λ′(c + 1)2n, ξ, r) + DC(λ′(c + 1)2n, ξ, s) ≥ n,

for every sufficiently large integer n. In view of (6.24), this proves the
theorem.

Further results are given in [155]; see also Exercise 6.2.
For coprime integers r ≥ 2 and s ≥ 2, it remains an open problem to

find a non-trivial lower bound for p(n, ξ, r)+p(n, ξ, s), valid for every real
irrational number ξ and every sufficiently large integer n; see Chapter
10 for related open questions.

6.4 On the representation of an integer in two different bases

Stewart [664] established effectively that an integer cannot have few
non-zero digits simultaneously in base 2 and in base 3, a result first
obtained by Senge and Strauss [643] but with an ineffective proof; see
also [60, 106, 159, 314, 515].

For integers b ≥ 2 and n ≥ 1, let DC(n, b) denote the number of
times that a digit different from the previous one is read in the b-ary
representation of n. The next theorem, extracted from [159], extends
Stewart’s result and is established with the same arguments. We omit
its proof, which uses Baker’s theory of linear forms in the logarithms of
algebraic numbers.

Theorem 6.9. Let r and s be multiplicatively independent integers.
There exists an effectively computable integer c, depending only on r

and s, such that, for every integer n ≥ 20, we have
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DC(n, r) + DC(n, s) ≥ log log n

log log log n + c
− 1.

In particular, Theorem 6.9 implies that n cannot have simultaneously
few non-zero digits in its r-ary and in its s-ary representations, when
r and s are multipicatively independent integers.

6.5 Exercises

Exercise 6.1. Let β > 1 be a real number. Prove that a real number is
normal to base β2 if it is normal to base −β. Is the converse true?

Exercise 6.2 (cf. [155]). Let r and s be positive integers with gcd(r, s)
≥ 2. Construct explicitly irrational real numbers ξ for which (6.25) does
not hold, whatever the values of κ > 0 and n0.

Exercise 6.3. Let r and s be positive integers having a common prime
divisor. Let n ≥ 1 be an integer. Give a lower bound for the number of
non-zero digits of rn written in base s.

Exercise 6.4 (cf. [538]). Let m be a positive integer such that 2m can
be written as a sum of distinct powers of 3. Let k be a positive integer.
Show that 2m can only take 2k−1 distinct values modulo 3k. Deduce that
there are only 2k−1 residue classes r1, . . . , r2k−1 modulo 2 ·3k−1 in which
m can lie. For X ≥ 2, with a suitable choice of k, prove that there are
at most 1.62X(log 2)/(log 3) integers m less than X such that 2m can be
written as a sum of distinct powers of 3.

6.6 Notes

� The set of real numbers which are not simply normal to one base
but normal to every multiplicatively independent base has Hausdorff
dimension one [531–533].

� El-Zanati and Transue [278] gave an elementary proof of the fol-
lowing nice result. Let r and s be two multiplicatively independent
positive integers. Fix a finite collection G of finite blocks of digits on
{0, 1, . . . , s−1} and let Cs(G) be the set of all real numbers whose s-ary
expansion does not contain any block from G. If Cs(G) contains a Can-
tor set, then Cs(G) contains a number whose r-ary expansion contains
every finite block of digits on {0, 1, . . . , r− 1}. This proves that richness
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to base r does not imply richness to base s, a statement which also
follows from Schmidt’s proof of Theorem 6.1; see also [342].

� Let r ≥ 2 and s ≥ 2 be integers. Let ξ be in (0, 1) and ξ
(r)
n be the

rational number obtained by truncating the r-ary expansion of ξ after
the nth digit. The problem to determine the largest integer m

(r,s)
n (ξ)

for which the first m
(r,s)
n (ξ) digits of the s-ary expansions of ξ and ξ

(r)
n

coincide has been studied from the metrical point of view in [124, 211].

� Colebrook and Kemperman [201] refined Theorem 6.1 by show-
ing that, given an integer r ≥ 2 and a real number ξ, there exists a
real number η satisfying V (η, r) = V (ξ, r) (see the notes at the end of
Chapter 4 for the definition) and which is normal to base s, for every
integer s such that r and s are multiplicatively independent. This has
been further refined by Pushkin [591, 592].

� The first use of Riesz product techniques for normality questions
appeared in papers by Brown, Moran and Pearce [136, 137]. Subsequent
results can be found in [139, 140, 520–522]. It is shown in [136] that, for
any integer b ≥ 2, every real number can be expressed as the sum of four
numbers none of which is normal to base b but all of which are normal
to all bases multiplicatively independent of b. This has been slightly
refined in [134], where it is shown that, in addition, all the four numbers
can be taken to be non-simply normal to base b. Further decomposition
theorems are given in [137, 138].

� An alternative proof of Schmidt’s Theorem 6.3 using Riesz prod-
uct techniques was given in [137]. It extends to non-integer bases. Among
other results, it is shown in [137, 138] that if R and S are multiplica-
tively independent sets (this means that r and s are multiplicatively
independent for every r in R and s in S) of algebraic numbers greater
than 1, then there are uncountably many real numbers which are normal
to every base from R but not normal to every base from S.

� Pollington [573] strengthened Theorem 6.3 by showing that, un-
der the assumptions of that theorem, the set N (R,S) of real numbers
which are normal to every base from R but not normal to every base
from S has Hausdorff dimension one; see also [533]. More generally [575],
if (λn)n≥1 is any real sequence, the set of real numbers ξ such that every
translate x + λn, with n ≥ 1, is normal to every base from R but not
normal to every base from S has Hausdorff dimension one. This implies
that every real number can be expressed as a sum of two numbers from
N (R,S); see also [138].
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� Improving an earlier result of Bertrand-Mathis [83], Brown, Mo-
ran and Pollington [140] established that, if α > 1 is a real number and
r ≥ 2 is an integer, then rN (α) = N (α) holds if, and only if, there exists
a positive integer k such that αk or αk + α−k or αk −α−k is an integer.

� Volkmann [720] proved that for every multiplicatively indepen-
dent integer r and s, there exist real numbers which are normal to base
r and are such that the digits of their expansion to base s have prescribed
frequencies; see also [100–102, 588, 590, 721].

� The first articles concerned with normality with respect to matri-
ces include [196, 578, 585]. Let d ≥ 2 be an integer and R, S be rational
d × d matrices with eigenvalues which are algebraic integers other than
0 and roots of unity. A vector x is called normal to base R if (Rnx)n≥1

is uniformly distributed modulo one in Rd. When R and S commute,
Schmidt [629] showed that if the eigenvalues of R are outside the unit
circle and Rm �= Sn for every positive integer m,n, then there are ele-
ments of Rd which are normal to base S but not to base R. For d ≥ 2,
Sigmund [655] gave an elegant proof when R and S are automorphisms.
Brown and Moran [133, 135] removed the extra condition on the eigen-
values of R. Schmidt [629] conjectured that the set of vectors normal to
base R and the set of vectors normal to base S are equal if, and only
if, there exist positive integers m and n such that Rm = Sn. This was
proved in [141] in the case of two-dimensional matrices; see also [87].

� Let R and S be number-theoretical transformations defined on
[0, 1] (or on the d-dimensional unit cube). Schweiger [640] showed that,
if there exist positive integers m,n such that Rm = Sn, then normality
to base S (we omit the precise definition) implies normality to base R.
He conjectured that the opposite conclusion holds when Rm = Sn has
no solution in positive integers m,n. Kraaikamp and Nakada [407] gave
two counterexamples to Schweiger’s conjecture.

� Discrepancy results for the set of real numbers which are not
normal to a fixed base s > 3, but normal with respect to an arbitrary
set of integer bases r > s, multiplicatively independent of s, are given
in [518].

� Feldman and Smorodinsky [302] extended the result of Schmidt
[627] to other measures than the Cantor measure. An amusing illus-
tration of their theorem is the following. Flip a coin (perhaps unfair)
repeatedly, and write 0 for heads, 1 for tails. This gives the binary ex-
pression of a number ξ in [0, 1]. Then, unless the coin is almost surely
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heads or almost surely tails, ξ is with probability one normal to base
ten. Kamae [360] made use of specific singular measures; see also [597].

� Inspired by a paper of Wagner [722], Kano and Shiokawa [369,
371] proved, for coprime integers b, c with b, c ≥ 2, the existence of rings
of real numbers all of whose non-zero elements are normal to base b but
not normal to base bc; see also [357].

� Volkmann [717] established that there exist real numbers ξ such
that Vb(ξ) = Hb (see the notes at the end of Chapter 4 for the definition)
for every integer b ≥ 2.

� Let b1, . . . , bd be integers greater than or equal to 2. Korobov
[398] introduced the notion of real numbers ξ1, . . . , ξd being jointly (or
conjunctly) normal to the bases b1, . . . , bd; see [402, 431, 434, 583, 661].

� Erdős [280] asked how often the ternary expansion of 2n omits the
digit 2. It is likely that there are only finitely many such integers n but
the problem is still beyond reach. For λ > 0 and X > 1, let Nλ(X) be
the number of integers n in [1,X] such that the ternary expansion of the
integer part �λ2n� omits the digit 2. Lagarias [418] proved that Nλ(X) ≤
25X0.9725 for all sufficiently large X. In the case λ = 1, Narkiewicz [538]
obtained the better bound given in Exercise 6.4; see also [378].
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Diophantine approximation and
digital properties

Let ξ be a real number given by its expansion to an integer base b ≥ 2,
that is,

ξ = �ξ� +
∑
k≥1

ak

bk
= �ξ� + 0 · a1a2 . . . , (7.1)

where the digits ak are in {0, 1, . . . , b− 1} for k ≥ 1 and infinitely many
ak are different from b−1. Looking at (7.1) gives some information on the
irrationality exponent of ξ (see Definition E.1). Indeed, a very näıve way
to produce good rational approximations to ξ is to search for integers
r and s such that ar+1 = · · · = ar+s = 0 and to observe that ξ is then
close to the rational number �ξ� +

∑r
k=1 ak/bk. We can elaborate this

argument and look merely for repetitions of finite blocks of digits rather
than only long strings of 0. Recall that, if (dk)k≥1 is a periodic sequence
taking its values in {0, 1, . . . , b − 1} and such that there are integers r

and s with s ≥ 1 and dr+js+h = dr+h for j ≥ 1 and h = 1, . . . , s, then
there exists an integer p such that

∑
k≥1

dk

bk
=

p

br(bs − 1)
. (7.2)

Note that the latter fraction may not be written under its lowest form.
Going back to our original discussion, assuming that there are integers

r, s, � such that ar+js+h = ar+h for h = 1, . . . , s and j = 1, . . . , �, then
{ξ} is quite close to the rational number ξr,s in [0, 1] whose b-ary expan-
sion starts with a1 . . . ar and continues with infinitely many repeated
copies of the finite word ar+1 . . . ar+s. Since {ξ} and ξr,s have their first
r + (� + 1)s digits in common, we get

|{ξ} − ξr,s| ≤ 1
br+(�+1)s

.

139



140 Diophantine approximation and digital properties

The height (see Definition E.4) H(ξr,s) of ξr,s being at most equal to
br(bs − 1), we deduce that

|{ξ} − ξr,s| ≤ 1
H(ξr,s)(r+(�+1)s)/(r+s)

. (7.3)

If there exist a real number μ > 1 and triples (r, �, s) satisfying (7.3)
with r + s arbitrarily large and (r + (� + 1)s)/(r + s) ≥ μ, then the
irrationality exponent of ξ is at least equal to μ. In view of Theorem
E.2, this gives non-trivial information only when μ > 2.

These considerations motivate the introduction in Section 7.1 of new
exponents of Diophantine approximation which express what can be said
on rational approximation to a real number by simply looking at its b-ary
expansion. As can be expected, for almost all real numbers these expo-
nents are strictly less than the irrationality exponent. This is discussed
in Sections 7.1 and 7.2. Section 7.3 is devoted to Schmidt’s (α, β)-games.
The next sections are concerned with Diophantine approximation on the
middle third Cantor set. Section 7.7 gathers several results on normal
numbers with prescribed Diophantine properties. We end this chapter
with classical results on the Hausdorff dimension of sets of real numbers
with missing digits (or whose digits occur with a prescribed frequency).

7.1 Exponents of Diophantine approximation

Let ξ be a real number given by its expansion in an integer base b ≥ 2
as in (7.1). If there are positive integers r and s such that ||brξ|| < b−s,
then ar+1, . . . , ar+s are all equal and their common value is either 0 or
b − 1. This and the discussion below (7.2) motivate the introduction of
new exponents of Diophantine approximation [50].

Definition 7.1. Let ξ be an irrational real number. Let b ≥ 2 be an
integer. We denote by vb(ξ) the supremum of the real numbers v for
which the inequality

||bnξ|| < (bn)−v

has infinitely many solutions in positive integers n. We denote by v′
b(ξ)

the supremum of the real numbers v for which the inequality

||br(bs − 1)ξ|| < (br+s)−v (7.4)

has infinitely many solutions in positive integers r and s.
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The value v′
b(ξ) coincides with the Diophantine exponent of the infinite

word a = a1a2 . . .; see Definition A.2.
Let ξ be an irrational real number and b ≥ 2 be an integer. Since we

can choose s = 1 in (7.4), we see that

v′
b(ξ) ≥ vb(ξ) ≥ 0

and

μ(ξ) ≥ max{v′b(ξ) + 1, 2} ≥ max{vb(ξ) + 1, 2}. (7.5)

Furthermore, we check (see Exercise 7.1) that

vb(ξ) = vbt(ξ) and v′b(ξ) = v′
bt(ξ), for t ≥ 1. (7.6)

The exponent vb (resp. v′
b) measures how a given real number is ap-

proximable by rational numbers whose denominators are powers of b

(resp. have the form br(bs−1) for some positive integers r and s). These
rational numbers are not supposed to be written under their lowest form.
In particular, if b1 and b2 are integers at least equal to 2 and such that
the set of prime factors of b1 is a subset of the set of prime factors of b2,
then vb2(ξ) cannot be too small when vb1(ξ) is large. This observation is
made more precise in the following lemma.

Lemma 7.2. Let b1 and b2 be integers at least equal to 2 and such that
every prime factor of b1 divides b2. Write

b1 = pe1
1 . . . pe�

� , b2 = pf1
1 . . . pf�

� b′2,

where p1, . . . , p� are distinct prime numbers, ei, fi are positive integers
and b′2 is coprime to p1 . . . p�. Define

ρ(b1, b2) := min
1≤i≤�

fi

ei
. (7.7)

Then, for any real irrational number ξ, we have

vb2(ξ) + 1 ≥ ρ(b1, b2)
log b1

log b2
(vb1(ξ) + 1).

Proof. Let m1 and m2 be positive integers such that bm1
1 divides bm2

2 .
Set v = vb1(ξ). Let ε = 0 if v = 0 and let ε be in (0, v) otherwise. Let n

be a positive integer such that

||bn
1 ξ|| < (bn

1 )−v+ε.

Setting n = (k − 1)m1 + r with 0 ≤ r < m1 and k ≥ 1, we have

||bm2k
2 ξ|| < (b1)m1(1+v)−r(bm2

2 /bm1
1 )k(bm1k

1 )−v+ε,
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which implies that

vb2(ξ) + 1 ≥ m1 log b1

m2 log b2
(vb1(ξ) + 1),

since n (hence, k) can be taken arbitrarily large. Hence, we have

vb2(ξ) + 1 ≥
(

sup
m1,m2:b

m1
1 |bm2

2

m1

m2

) log b1

log b2
(vb1(ξ) + 1),

where, as indicated, the supremum ranges over all positive integers
m1, m2 such that bm1

1 divides bm2
2 . Since bm1

1 divides bm2
2 if, and only if,

m1ei ≤ m2fi for i = 1, . . . , �, we deduce that

sup
m1,m2:b

m1
1 |bm2

2

m1

m2
= min

1≤i≤�

fi

ei
.

This proves the lemma.

Lemma C.1 implies that almost every real number ξ satisfies vb(ξ) =
v′b(ξ) = 0 for every integer b ≥ 2. Furthermore, for any given b ≥ 2, any
positive real number v, and any bounded sequence (dj)j≥1 of positive
integers, we have

vb

(∑
j≥1

dj

b�(v+1)j	

)
= v. (7.8)

To construct real numbers ξ with a prescribed value for v′
b(ξ) is much

more difficult, since we know only very little on the divisors of integers
of the form bs −1. Indeed, the good rational approximations of the form
(7.2) may not be written under their lowest form, thus we only have an
upper bound for their heights, and, consequently, only a lower bound
for v′b(ξ). To establish that this lower bound is actually the exact value
seems to be very difficult.

In view of Lemma 7.2, we propose the following problem. We denote
by B the set consisting of all positive integers which are not perfect
powers, thus B = {2, 3, 5, 6, 7, 10, . . .}, and we set B1 = {1} ∪ B. It is
convenient to define the function v1 by

v1(ξ) = μ(ξ) − 1,

for every irrational number ξ.

Problem 7.3. Let (vb)b∈B1 and (v′
b)b∈B be sequences of real numbers or

+∞ satisfying

v1 ≥ 1, 0 ≤ vb ≤ v′
b ≤ v1, for every b ∈ B,
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and

vb2 + 1 ≥ ρ(b1, b2)
log b1

log b2
(vb1 + 1),

for every b1, b2 ∈ B such that every prime factor of b1 divides b2. Prove
that there exist real numbers ξ such that

v1(ξ) = v1, vb(ξ) = vb and v′b(ξ) = v′b, for every b ∈ B.

Problem 7.3 can be compared with the Main Problem studied in [146],
where, besides rational approximation, the quality of approximation by
algebraic numbers of bounded degree measured by the exponents wn

and w∗
n (see Definition E.12) is also considered.

We end this section with a connection between the exponents vb and
normality. We use an argument already seen in the proof of Theorem 5.7.

Proposition 7.4. Let ξ be an irrational real number and b ≥ 2 an
integer. If vb(ξ) is positive, then ξ is not simply normal to base b.

Proof. If vb(ξ) is positive, then there exist an integer m ≥ 4, a digit
d equal to 0 or b−1, and arbitrarily large integers N such that, recalling
that

Ab(d, n, ξ) := Card{k : 1 ≤ k ≤ n, ak = d}, for n ≥ 1,

we have

Ab(d, (m + 1)N, ξ) − Ab(d,mN, ξ) = N,

thus,

Ab(d, (m + 1)N, ξ)
(m + 1)N

− m

m + 1
Ab(d,mN, ξ)

mN
=

1
m + 1

.

If (Ab(d, n, ξ)/n)n≥1 tends to a limit �, then � must satisfy

� − m

m + 1
� =

1
m + 1

,

thus � = 1. Consequently, the digit d does not occur with frequency 1/b

in the b-ary expansion of ξ. This shows that ξ is not simply normal to
base b.

Note that there exist real numbers ξ satisfying v′b(ξ) > 0 that are
normal to base b; see Exercise 7.2.
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7.2 Prescribing simultaneously the values of all the
exponents vb

The purpose of this section is to establish a general result, proved by
Amou and Bugeaud [50], which solves partially Problem 7.3.

Theorem 7.5. Let (vb)b∈B1 be a sequence of elements of R ∪ {+∞}
satisfying

1 +
√

5
2

≤ vb ≤ v1, for every b ∈ B, (7.9)

and

vb2 + 1 ≥ ρ(b1, b2)
log b1

log b2
(vb1 + 1), (7.10)

for every b1, b2 ∈ B such that every prime factor of b1 divides b2. There
exist uncountably many real numbers ξ such that

vb(ξ) = vb, for every b ∈ B1.

The lower bound (1 +
√

5)/2 in (7.9) is typical of proofs whose main
argument is the triangle inequality; see [425] or [146, Section 7.7].

To prove Theorem 7.5, we construct inductively the continued fraction
expansion of a suitable real number ξ, in such a way that we know all
the rational numbers p/q for which |ξ− p/q| is comparable to or smaller
than q−(3+

√
5)/2. We begin with an auxiliary lemma.

Lemma 7.6. Let b ≥ 2 be an integer and ν ≥ (3+
√

5)/2 be a real num-
ber. Let m be a positive integer. Let P/Q and R/S be reduced fractions
with positive denominators such that

Sν ≤ Q < bSν (7.11)

and
1
Q

≤
∣∣∣P
Q

− R

S

∣∣∣ ≤ m

Q
. (7.12)

Then, for any reduced fraction A/B with S ≤ B < Q, we have
∣∣∣P
Q

− A

B

∣∣∣ > 1
b(2m)1.7Bν

. (7.13)

Proof. Assume first that S ≤ B ≤ Sν−1/(2m). Since this with (7.11)
gives BS ≤ Sν/(2m) ≤ Q/(2m), using

∣∣∣P
Q

− A

B

∣∣∣ ≥ ∣∣∣A
B

− R

S

∣∣∣− ∣∣∣P
Q

− R

S

∣∣∣



7.2 Prescribing simultaneously the values of the exponents vb 145

together with (7.12), we obtain
∣∣∣P
Q

− A

B

∣∣∣ ≥ 1
BS

− m

Q
≥ 1

2BS
≥ 1

2B2
.

Assume next that Sν−1/(2m) < B < Q. Since this with (7.11) gives
Q < b(2mB)ν/(ν−1), we obtain

∣∣∣P
Q

− A

B

∣∣∣ ≥ 1
BQ

>
1

bB(2mB)ν/(ν−1)
,

which implies (7.13), since ν/(ν − 1) < 1.7 and 1 + ν/(ν − 1) ≤ ν. This
proves the lemma.

Proof of Theorem 7.5. Let (bj)j≥1 be a sequence of integers from
B1 such that b1 = 1, bj ≤ j for j ≥ 1, and, for every b ∈ B1, there are
infinitely many j satisfying bj = b. Let R0/S0 be a reduced fraction with
S0 > 100. Assume that we have already constructed reduced fractions
Pi/Qi and Ri/Si for i = 1, . . . , j − 1 with j ≥ 1. (Note that we do not
have P0/Q0.) Then we construct inductively reduced fractions Pj/Qj

and Rj/Sj as follows.
We first take Qj = b

nj

j with nj ≥ 1 (resp. Qj prime) if bj ≥ 2
(resp. if bj = 1) such that the triple (S,Q, b) = (Sj−1, Qj , bj) (resp.
(S,Q, b) = (Sj−1, Qj , 2)) satisfies (7.11) with ν = (3 +

√
5)/2, and next

take an integer Pj such that Pj/Qj is reduced and the pair (R/S, P/Q) =
(Rj−1/Sj−1, Pj/Qj) satisfies (7.12) with m = m(b) := 2b + 2. Denoting
the continued fraction expansion of Pj/Qj by [a0; a1, . . . , ak] with ak ≥ 2,
we define a reduced fraction Rj/Sj by

Rj

Sj
:= [a0; a1, . . . , ak, �Qv−1

j �],

where v = vbj
if vbj

< +∞ and v = j if vbj
= +∞.

By construction, we can define a real number ξ by

ξ := lim
j→+∞

Pj

Qj
,

whose continued fraction expansion has Pj/Qj and Rj/Sj (j ≥ 1) among
its convergents. We claim that this ξ satisfies the conditions given in the
theorem. To this end we consider rational approximations to ξ.

Let j be a positive integer and set v = vbj
. Under the above notation,

since

[a0; a1, . . . , ak, �Qv−1
j � − 1]
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is the only possible convergent to ξ between Pj/Qj and Rj/Sj , we have

1
Qj(Sj + Qj)

<
∣∣∣ξ − Pj

Qj

∣∣∣ < 1
Qj(Sj − Qj)

,

which implies
1

2Qv+1
j

<
∣∣∣ξ − Pj

Qj

∣∣∣ < 2
Qv+1

j

. (7.14)

For the same reason, for any reduced fraction A/B with Qj < B <

Sj (j ∈ Z≥1), we have ∣∣∣ξ − A

B

∣∣∣ ≥ 1
2B2

.

Let A/B be a reduced fraction with Sj−1 ≤ B < Qj (j ≥ 1). Since
∣∣∣ Pj

Qj
− A

B

∣∣∣ ≥ 1
BQj

,
∣∣∣ξ − Pj

Qj

∣∣∣ ≤ 2
Qv+1

j

,

and since BQj < Qv+1
j /4, we have

∣∣∣ξ − A

B

∣∣∣ ≥ ∣∣∣ Pj

Qj
− A

B

∣∣∣− ∣∣∣ξ − Pj

Qj

∣∣∣ > 1
2

∣∣∣ Pj

Qj
− A

B

∣∣∣.
We then infer from Lemma 7.6 that∣∣∣ξ − A

B

∣∣∣ > 1
2b(2m(b))1.7B(3+

√
5)/2

,

where b = bj and m(b) = 2b + 2. Consequently, on recalling that bj ≤ j

for j ≥ 1, these estimates prove our claim.
In each step of the inductive procedure, there are at least two choices of

Pj/Qj having the same denominator Qj ; one is less than Rj−1/Sj−1, and
the other is greater than Rj−1/Sj−1. Hence, we have an infinite directed
binary tree of reduced fractions whose infinite paths correspond to real
numbers ξ, which are different from each other and have the conditions
given in the assertion. This ensures the uncountability of the desired
numbers, and completes the proof of the theorem.

For the sake of clarity, we add a few words on (7.10). Let b and b′

be distinct elements of B such that each prime divisor of b′ also divides
b. Then, for any Q′

j = (b′)n′
with some positive integer n′, we have to

estimate from below ∣∣∣ξ − P ′
j

Q′
j

∣∣∣ = ∣∣∣ξ − Pj

Qj

∣∣∣
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with Qj = bn and Pj = P ′
j(Qj/Q′

j) provided that Q′
j divides Qj . Since,

by (7.14),
∣∣∣ξ − P ′

j

Q′
j

∣∣∣ > 1
2(Q′

j)vb′+1
,

we have ∣∣∣ξ − Pj

Qj

∣∣∣ > 1
2
(Qj)−(vb′+1)(n′ log b′)/(n log b).

On noting that n′/n ≤ ρ(b′, b) with ρ(·, ·) defined in (7.7), we get
∣∣∣ξ − Pj

Qj

∣∣∣ > 1
2
(Qj)−ρ(b′, b)(vb′+1)(log b′)/(log b).

In view of the assumption (7.10), this shows that vb(ξ) = vb. To see this,
one should add that, if j is such that bj = 1, then, by assumption, Qj

is a prime number and there are at most finitely many such j for which
each prime divisor of Qj also divides b.

To conclude this section, we briefly explain why the approach followed
in the proof of Theorem 7.5 cannot be applied to construct real numbers
ξ with prescribed values for v′

b(ξ), where b is in B. The point is that we do
not control all the rational approximations that give the value of v′

b(ξ).
Indeed, with the above notation, let us consider the fractions Pj/Qj for
the indices j with bj = 1. Let b be in B. Then, there exist integers Tj ,
rj and sj such that

Pj

Qj
=

Tj

brj (bsj − 1)
,

where the latter fraction may not be written in reduced form. It may
happen that brj (bsj − 1) is not much greater than Qj . If this is the case
for infinitely many j, we may even get that v′b(ξ) = v1(ξ). Since there
are no ways to control rj and sj , we cannot get the exact value of v′b(ξ).

Additional explicit examples of real numbers with prescribed expo-
nents vb and v′b are given in [50].

7.3 Badly approximable numbers to integer bases

Similarly to the classical notion of badly approximable real numbers (see
Definition D.8), we introduce the notion of badly approximable numbers
to a given integer base.
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Definition 7.7. Let b ≥ 2 be an integer. A real number ξ is b-badly
approximable if

inf
n≥0

‖ξbn‖ > 0.

Clearly, for an integer b ≥ 2, a real number is b-badly approximable
if, and only if, the blocks of the digit 0 and the blocks of the digit b− 1
occurring in its b-ary expansion have bounded length.

Although one can easily construct real numbers which are b-badly
approximable for some integer b ≥ 2, it does not seem obvious to confirm
the existence of numbers that are b-badly approximable for every integer
b ≥ 2. This was shown in 1966 by Schmidt [631] as one of the many
applications of his (α, β)-game. We slightly modify the exposition from
[635], taking into account the works of Akhunzhanov [28, 29].

Let S be a set of real numbers, called the target set. Let α, β and ρ

be given positive numbers with α < 1 and β < 1. Consider the following
game played by players Black and White. First, Black chooses a closed
interval B1 of length λ(B1) = |B1| = 2ρ on the real line. Next, White
picks a closed interval W1 contained in B1 and of length |W1| = α|B1|.
Then, Black chooses a closed interval B2 contained in W1 and of length
|B2| = β|W1|, etc. In this way, a nested sequence of closed intervals

B1 ⊃ W1 ⊃ B2 ⊃ W2 ⊃ . . .

is constructed, with lengths

|Bk| = 2ρ(αβ)k−1 and |Wk| = 2ρα(αβ)k−1 (k ≥ 1).

Clearly, the intersection ⋂
k≥1

Bk =
⋂
k≥1

Wk

consists of a single point. If this point lies in S, then we say that White
wins the game. Furthermore, if White is able to win the game no matter
how Black plays, then S is called an (α, β, ρ)-winning set. A set S which
is (α, β, ρ)-winning for every positive ρ is called an (α, β)-winning set. A
set S which is (α, β)-winning for every β in (0, 1) is called an α-winning
set. A set is termed winning if it is α-winning for some positive real
number α.

Any (α, β, ρ)-winning set is uncountable. Moreover, Schmidt [631]
proved that a winning set has full Hausdorff dimension and that a count-
able intersection of winning sets is a winning set.
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Throughout this section, we make the additional assumption that α is
less than 1/3 since this allows some simplification. Our aim is to establish
the following statement, essentially proved by Akhunzhanov [28, 29].

Theorem 7.8. There are uncountably many real numbers ξ such that
∣∣∣ξ − p

q

∣∣∣ > 1
215q2

, for all integers p, q with q ≥ 1, (7.15)

and

||ξbn|| > b−1100b(log 3b), for all integers b ≥ 2 and n ≥ 1. (7.16)

Consequently, there are uncountably many badly approximable real num-
bers that are b-badly approximable for every integer b ≥ 2.

We keep the notation from Section 4.4. In order to deduce from The-
orem 7.8 the existence of real numbers having maximal entropy to base
b for no integer b ≥ 2, we first claim that, for a real number ξ, an integer
b ≥ 2, and positive integers n and t, we always have

p(tn, ξ, b) ≤ tbtp(n, ξ, bt). (7.17)

To see this, observe that any block of tn consecutive digits of ξ to base b

is composed of t1 digits of ξ to base b followed by n−1 digits of ξ to base
bt and by t−t1 digits of ξ to base b, for some integer t1 with 0 ≤ t1 ≤ t−1.
If the real number ξ satisfies (7.16), then, putting t = 	1100b(log 3b)
, it
has (at least) one missing digit in its expansion to base bt, yielding that

p(n, ξ, bt) ≤ (bt − 1)n, for n ≥ 1.

We deduce from (7.17) that

p(tn, ξ, b) ≤ tbt(bt − 1)n,

and, by taking the logarithm, dividing by tn and letting n tend to infin-
ity, it then follows that

E(ξ, b) ≤ log(bt − 1)
t

≤ log b − 1
tbt

.

We have established the following consequence of Theorem 7.8.

Corollary 7.9. There exist uncountably many badly approximable real
numbers ξ such that

E(ξ, b) ≤ log b − 1
b1110b(log 3b)

, for every b ≥ 2.
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With some additional effort, it is possible to show that the set of
badly approximable real numbers which are b-badly approximable for
every integer b ≥ 2 has Hausdorff dimension one. The same result holds
for the set of real numbers having maximal entropy to base b for no
integer b ≥ 2; see [29].

We split the proof of Theorem 7.8 into five auxiliary lemmas. Through-
out this section, for given positive real numbers α, β, ρ and for every
positive integer k, we set

ρk = ρ(αβ)k−1 and ρ′k = ρα(αβ)k−1 = αρk.

Furthermore, B(x, ρ) denotes the open interval centred at x and of
radius ρ.

Lemma 7.10. Let α be such that 0 < α < 1/3. Let ρ > 0. Let B(x, ρ) be
an open real interval and I be a closed subinterval of B(x, ρ) of length at
most 2αρ. Then, there exists x′ in B(x, ρ) such that B(x′, αρ) ⊂ B(x, ρ)
and B(x′, αρ) has empty intersection with I.

Proof. Our assumption on α implies that α < 1 − 2α. Consequently,
if the centre of I is less than or equal to x, then I is included in the
interval (x − ρ, x + (1 − 2α)ρ) and x′ := x + ρ − αρ has the required
property. Likewise, if the centre of I is greater than x, then we take
x′ := x − ρ + αρ.

Lemma 7.11. Let α, β be such that 0 < α < 1/3, 0 < β < 1. Sup-
pose that Black begins his play with an interval of length 2ρ. Set c =
min{αρ, α3β2/2}. Then, the set of real numbers ξ such that |ξ − p/q| >

cq−2 for all integers p and q ≥ 1 is (α, β, ρ)-winning.

Proof. Set R = (αβ)−1/2. If 2ρ ≤ (αβ)2, then put k0 = 1, otherwise,
let k0 be the integer defined by the inequalities (αβ)2 < 2ρk0 ≤ αβ.
White chooses W1, . . . ,Wk0−1 arbitrarily. Fix an arbitrary non-negative
integer k. We describe White’s strategy for choosing Wk0+k such that∣∣∣ξ − p

q

∣∣∣ > c

q2
for all ξ ∈ Wk0+k, Rk ≤ q < Rk+1, gcd(p, q) = 1.

Note that, for any distinct p1/q1, p2/q2 with Rk ≤ q1, q2 < Rk+1, we
have ∣∣∣p1

q1
− p2

q2

∣∣∣ =∣∣∣p1q2 − p2q1

q1q2

∣∣∣ > 1
R2k+2

.

Since 2ρk0 ≤ αβ, we get

2ρk0+k = 2ρ(αβ)k0+k−1 = 2ρk0R
−2k ≤ R−2k−2,
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thus Bk0+k contains at most one point p/q with Rk ≤ q < Rk+1 and
White has to worry only over an interval I of length 2c/q2, thus, of length
at most 2cR−2k. Our choices of c and k0 imply that 2cR−2k < 2αρk0+k,
since we have 2c ≤ α3β2 < 2αρk0 if k0 ≥ 2 and 2c ≤ 2αρ if k0 =
1. Consequently, by Lemma 7.10, White can choose an interval Wk0+k

included in Bk0+k, of length 2ρ′k0+k, and having empty intersection with
I. Thus, for every ξ ∈ Wk0+k and for every integer p, q with Rk ≤ q <

Rk+1, we have |ξ − p/q| > c/q2. Since k is arbitrary, we deduce that,
for every ξ ∈ ∩k≥0 Wk0+k, and every integer p, q with q ≥ 1, we have
|ξ − p/q| > c/q2. This proves the lemma.

Lemma 7.12. Let α, β be such that 0 < α < 1/3, 0 < β < 1. Let
ρ ≥ αβ/4. Let b be an integer satisfying

b ≥ 4(α2β)−1. (7.18)

Then, the set of real numbers having no digit 0 and no digit b− 1 in the
b-ary expansion of their fractional part is (α, β, ρ)-winning.

Proof. Let Black begin with the ball B1 of length 2ρ. Since ρ ≥ αβ/4,
there exists a positive integer n0 such that

1/4 > ρn0 := (αβ)n0−1ρ ≥ (αβ)/4. (7.19)

For j ≥ 1, define the positive integer nj by

1/(4bj) > ρnj
:= (αβ)nj−1ρ ≥ (αβ)/(4bj). (7.20)

Since αβ > 1/b, the sequence (nj)j≥0 is strictly increasing. We will
describe White’s strategy to select the balls Wn0 ,Wn1 , . . .

Let j ≥ 1 be an integer. The real numbers whose jth digit is equal to
0 or to b− 1 are lying in intervals of length 2b−j , which are distant from
each other by at least

b1−j(1 − 2/b) ≥ b1−j/2 > 2ρnj−1 ,

using (7.19) and (7.20). Hence, White has to worry over at most one
interval I included in Bnj−1 and of length at most 2b−j . We infer from
(7.19) and (7.20) that b1−j ≤ 4ρnj−1(αβ)−1, hence

b−j ≤ 4(αβb)−1ρnj−1 ≤ αρnj−1 ,

by (7.18) and (7.20). By Lemma 7.10, White can select an interval Wnj−1

included in Bnj−1 and having empty intersection with I. This describes
the winning strategy of White when the target set is the set of real
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numbers having no digit 0 and no digit b − 1 in the b-ary expansion of
their fractional part.

Lemma 7.13. Let ∪∞
j=1Pj be a partition of the set of positive integers

into disjoint arithmetic progressions Pj with first term mj and common
differences dj. Given real numbers 0 < α < 1/3, 0 < β < 1 and ρ > 0,
let βj = β(αβ)dj−1 and ρj = ρ(αβ)mj−1, for j ≥ 1. If, for every j ≥ 1,
the set Sj is an (α, βj , ρj)-winning set, then the intersection ∩∞

j=1Sj is
an (α, β, ρ)-winning set.

Proof. Note that, for n ≥ 1, the radius of Bmj+(n−1)dj
is

ρ(αβ)mj+(n−1)dj−1 = (αβj)n−1ρj .

White has an (α, β, ρ)-winning strategy W1,W2, . . . for the target set
∩∞

j=1Sj . Namely, for j ≥ 1, he has to play according to the (α, βj , ρj)-
winning strategy for the target set Sj on his mj ,mj + dj,mj + 2dj , . . .

turns. Then, for every j ≥ 1, the intersection ∩∞
i=1Wi belongs to Sj . The

lemma follows.

Lemma 7.14. The set of even positive integers can be represented as
the disjoint union ∪∞

j=2Pj of arithmetic progressions Pj with first terms
mj and common differences dj such that

mj ≤ dj ≤ 100j(log 3j)2, for j ≥ 2. (7.21)

Proof. For j ≥ 2, put vj = 100j(log 3j)2 and let dj be the power of 2
defined by the inequalities

1 ≤ vj

2
< dj ≤ vj .

Observe that the sequence (dj)j≥1 satisfies
∑

j≥1 d−1
j < 1/2 and is non-

decreasing. Let P2 be the arithmetic progression of even integers starting
with m2 = 2 and with common difference d2. Let k ≥ 2 be such that the
disjoint arithmetic progressions of even integers P2, . . . , Pk have already
been constructed. Since the density of the union P2 ∪ . . . ∪ Pk is equal
to d−1

2 + d−1
3 + · · · + d−1

k , which is less than 1/2, there exists an even
positive integer m outside this union. Let mk+1 be the smallest positive
integer with this property. Since mk+1 is not congruent to mj modulo
dj and dj divides dk+1 for j = 1, . . . , k, the arithmetic progression

Pk+1 := {mk+1 + hdk+1 : h ≥ 0}
is disjoint from the union P2 ∪ . . . ∪ Pk. Furthermore, we deduce from
the minimality of mk+1 that mk+1 ≤ dk+1. This proves the lemma.
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Proof of Theorem 7.8. Set α = 1/4, β = 1/2 and ρ = 1. Let
(mj)j≥2, (dj)j≥2 and (Pj)j≥2 be as in Lemma 7.14. Set β1 = αβ2

and ρ1 = αβ. By Lemma 7.11 the set S1 of real numbers ξ such that
|ξ − p/q| > 2−15q−2 for every p/q with q ≥ 1 is (α, β1, ρ1)-winning.
Put d1 = 2 and m1 = 1. Denote by P1 the set of odd integers and ob-
serve that P1 ∪ P2 ∪ . . . is a partition of the set of positive integers into
arithmetic progressions.

For b ≥ 2, set βb = β(αβ)db−1 and ρb = (αβ)mb−1. Since db ≥ mb,
we get that ρb ≥ αβb/4. Let sb be the positive integer defined by the
inequalities

4
α2βb

≤ bsb <
4b

α2βb
. (7.22)

By Lemma 7.12, the set Sb of real numbers having no digit 0 and no
digit bsb − 1 in their bsb-ary expansion is (α, βb, ρb)-winning. Note that
any element ξ of this set satisfies ||ξbnsb || ≥ b−sb for every n ≥ 0, thus
||ξbn|| ≥ b−2sb for every n ≥ 0. Further, it follows from (7.21) and (7.22)
that

bsb < 128b · 8100b(log 3b)2 ≤ b550b(log 3b).

Lemma 7.13 implies that the set ∩j≥1Sj is (α, β, 1)-winning and we have
shown that every element ξ in this set satisfies (7.15) and (7.16). This
proves the theorem.

We end this section by pointing out that Lemma 7.11 immediately
implies that the set of badly approximable numbers is a winning set, a
result established in [631].

7.4 Almost no element of the middle third Cantor set is very
well approximable

We have already mentioned that a covering argument shows that vb(ξ) =
v′b(ξ) = 0 for almost every real number ξ and all bases b ≥ 2. Further-
more, Theorem E.3 asserts that almost every real number ξ satisfies
v1(ξ) = 1. Weiss [728] (see also [576, 729]) established that the latter
result also holds for almost every real number ξ in the middle third Can-
tor set K, where ‘almost all’ and ‘almost no’ now refer to the standard
measure μK supported on K; see Definition C.7. Note that the measure
μK was used for establishing Theorem 6.1, whose proof actually gives
the following statement.
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Theorem 7.15. Almost every real number in the middle third Cantor
set K is normal to every integer base which is not a power of 3. Conse-
quently, the set of real numbers in K which are normal to every integer
base which is not a power of 3 has the same Hausdorff dimension as K,
namely (log 2)/(log 3).

By Proposition 7.4 and Theorem 7.15, we have vb(ξ) = 0 for μK -
almost every element ξ of K and every integer b ≥ 2 which is not a
power of 3. Following the method of [728], we slightly extend this result.

Theorem 7.16. With respect to the standard measure μK on the middle
third Cantor set, we have

v1(ξ) = 1, vb(ξ) = v′b(ξ) = 0 (b ≥ 2),

for μK-almost all ξ in the middle third Cantor set.

The key tool for the proofs of the results established in the present
section is the fact, established in Lemma C.8, that, setting

γ = (log 2)/(log 3) and C = 4 · 3γ ,

the measure μK satisfies

μK(B(x, ερ)) ≤ CεγμK(B(x, ρ)), (7.23)

for every x in [0, 1] and every ε, ρ with 0 < ε ≤ 1 and 0 < ρ < 1.

Proof. Observe first that for every non-negative integer Q, every q, q0

in {2Q, . . . , 2Q+1 − 1} and every integer p, p0 such that p/q �= p0/q0, we
have

∣∣∣p
q
− p0

q0

∣∣∣ ≥ 1
qq0

> 2−2(Q+1) > 2 · 2−2(Q+2).

Consequently, the intervals B(p/q, 2−2(Q+2)) and B(p0/q0, 2−2(Q+2)) are
disjoint. This implies that the μK -measure of the union of the intervals
B(p/q, 2−2(Q+2)) over all the rational numbers p/q with p and q coprime,
0 < p/q < 1 and 2Q ≤ q < 2Q+1 is bounded by 1, independently of Q.

Let w > 1 be a real number. Let Q0 be a positive integer such that
q−1−w ≤ 2−2(Q+2) holds for all Q and q with Q ≥ Q0 and 2Q ≤ q <

2Q+1.
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Using (7.23) with ε = q−1−w22(Q+2), we get∑
0<p/q<1,(p,q)=1,q≥2Q0

μK(B(p/q, q−1−w))

=
∑

Q≥Q0

∑
∗

μK(B(p/q, q−1−w))

≤
∑

Q≥Q0

∑
∗

C
( q−1−w

2−2(Q+2)

)γ

μK(B(p/q, 2−2(Q+2)))

≤
∑

Q≥Q0

C 2γ(−Q(1+w)+2Q+4)
∑
∗

μK(B(p/q, 2−2(Q+2)))

≤
∑

Q≥Q0

C 2γ(4+Q(1−w)),

(7.24)

where
∑

∗ means that the summation is taken over the rationals p/q

such that 0 < p/q < 1, gcd(p, q) = 1 and 2Q ≤ q < 2Q+1. The final sum
in (7.24) is finite since w > 1. Consequently, the sum∑

0<p/q<1,(p,q)=1,q≥1

μK(B(p/q, q−1−w))

converges, and we apply Lemma C.1 to establish the claimed result on v1.
Let b ≥ 2 be an integer and v be a real number with 0 < v < 1/2.

Let r, s be integers with r ≥ 0 and s ≥ 1. For every integer p with
0 < p < br(bs − 1), we have

B
( p

br(bs − 1)
,

1
(br(bs − 1))1+v

)
⊂ B

( p

br(bs − 1)
,

3
b(r+s)(1+v)

)
.

It follows from (7.23) applied with ε = 9b−(r+s)v and ρ = 1/(3br+s) that

μK

(
B
( p

br(bs − 1)
,

1
(br(bs − 1))1+v

))

≤ 4 · 33γb−(r+s)vγμK

(
B
( p

br(bs − 1)
,

1
3br+s

))
.

Since, for fixed r, s and for p varying from 0 to br(bs − 1), the intervals

B
( p

br(bs − 1)
,

1
3br+s

)

are disjoint, the sum of their μK -measures is at most equal to 1. Conse-
quently,

∑
0<p<br(bs−1)

μK

(
B
( p

br(bs − 1)
,

1
(br(bs − 1))1+v

))
≤ 4 · 33γ b−(r+s)vγ
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and, since v is positive, the sum

∑
r≥0

∑
s≥1

∑
0<p<br(bs−1)

μK

(
B
( p

br(bs − 1)
,

1
(br(bs − 1))1+v

))
(7.25)

converges. Restricting the second sum in (7.25) to s = 1, Lemma C.1
implies that μK -almost every element ξ in K satisfies vb((b − 1)ξ) = 0,
hence also vb(ξ) = 0. A further application of Lemma C.1, this time to
the converging sum (7.25), yields that μK -almost every ξ in K satisfies
vb(ξ) = v′b(ξ) = 0. This completes the proof of the theorem.

7.5 Playing games on the middle third Cantor set

In Section 7.3, the Schmidt game is played on closed intervals contained
in [0, 1]. As was first observed by Fishman [306], it can be played as well
on other closed subsets K of [0, 1]. We say that a subset S of [0, 1] is
(α, β)-winning on K if S∩K is (α, β)-winning for Schmidt’s game played
on the metric space K with the metric induced from [0, 1]. Playing the
game on K amounts to choosing balls in [0, 1] according to the rules of a
game played on [0, 1], but with the additional constraint that the centres
of all the balls have to lie in K.

We are able to refine Theorem 7.8 as follows. We prove that there are
elements on the middle third Cantor set K which are b-badly approx-
imable for every base b ≥ 2. The key property of K needed for the proof
is that the standard measure μK enjoys a decay property (Lemma C.9)
which allows us to play Schmidt’s game on it.

Theorem 7.17. There exist a positive real number c and uncountably
many real numbers ξ in the middle third Cantor set which are badly
approximable and, for all integers b ≥ 2 and n ≥ 1, satisfy

||ξbn|| > b−cb(log b).

Since the analogue of Theorem 7.17 holds with the middle third Cantor
set replaced by any set of numbers with missing digits, we can deduce
the following result, pointed out in [155].

Theorem 7.18. Let ε be a positive real number and b0 ≥ 2 be an
integer. There exist a positive real number c, depending only on ε and
b0, and uncountably many real numbers ξ such that

E(ξ, b0) < ε



7.5 Playing games on the middle third Cantor set 157

and

E(ξ, b) ≤ log b − 1
bcb(log b)

, for every b ≥ 2.

Before establishing (a more general result than) Theorem 7.17, we
introduce the notion of an absolutely decaying measure [131, 383].

Definition 7.19. Let μ be a locally finite Borel measure on R. Let C, γ

be positive real numbers. We say that μ is (C, γ)-absolutely decaying if
there exists ρ0 > 0 such that for all 0 < ρ ≤ ρ0, x in the support of μ,
y ∈ R and ε > 0, we have

μ
(
B(x, ρ) ∩ B(y, ερ)

)
< Cεγμ

(
B(x, ρ)

)
. (7.26)

We say that μ is absolutely decaying if it is (C, γ)-absolutely decaying
for some positive C, γ.

Fishman [306] proved that the Schmidt game can be played on sets
which are the supports of absolutely decaying measures. Note that (7.26)
clearly holds with C = γ = 1 when μ is the Lebesgue measure. Further-
more, it follows from Lemma C.9 that the standard measure μK on
the middle third Cantor set (Definition C.7) is (27, γ)-decaying, with
γ = (log 2)/(log 3).

Lemma 7.20. Let K be the support of a (C, γ)-absolutely decaying mea-
sure on R, and let α be such that

0 < α ≤ 1
4

( 1
3C

)1/γ

. (7.27)

Then for every 0 < ρ < ρ0, x ∈ K and z ∈ R, there exists x′ ∈ K with

B(x′, αρ) ⊂ B(x, ρ) (7.28)

and

B(x′, αρ) ∩ B(z, αρ) = ∅. (7.29)

Proof. If z does not belong to B(x, 2αρ), then it is sufficient to take
x′ = x. Otherwise, let x1 and x2 be the endpoints of B(x, ρ) with x1 <

x2. By (7.26) applied successively with y = x1 and y = x2, we have

μ
(
B(x1, αρ)

)
< Cαγμ

(
B(x, ρ)

)
<

μ
(
B(x, ρ)

)
3

and

μ
(
B(x2, αρ)

)
< Cαγμ

(
B(x, ρ)

)
<

μ
(
B(x, ρ)

)
3

.
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Furthermore, again by (7.26) with y = x, we get

μ
(
B(x, 4αρ)

)
< C(4α)γμ

(
B(x, ρ)

) ≤ μ
(
B(x, ρ)

)
3

,

so there is a point x′ in K∩B(x, ρ) which does not belong to B(x, 4αρ)∪
B(x1, αρ)∪B(x2, αρ). Hence, B(x′, αρ) satisfies (7.28) and (7.29), since
z belongs to B(x, 2αρ).

To establish Theorem 7.17, we follow the proof of Theorem 7.8, re-
placing the use of Lemma 7.10 by that of Lemma 7.20. This shows that,
at every step, White can choose a suitable ball whose centre lies in the
support of the absolutely decaying measure. A minor further change is
needed. Namely, because of (7.27), we cannot select α = 1/4 any more.
In the case of the middle third Cantor set, we can take α = 2−18. We
omit the details and refer the reader to [131].

7.6 Elements of the middle third Cantor set with prescribed
irrationality exponent

In this section, following [148], we construct real numbers whose ternary
expansion and continued fraction expansion are explicitly given, in or-
der to establish that there are points in the middle third Cantor set
K with any prescribed irrationality exponent and that there are badly
approximable numbers in K.

Theorem 7.21. Let μ be a real number with μ ≥ 2. The middle third
Cantor set K contains uncountably many elements whose irrationality
exponent is equal to μ. For any λ ≥ 2, the real number

ξμ,λ :=
∑
j≥1

2
3�λμj	

is an element of K with

μ(ξμ,λ) = μ and v3(ξμ,λ) = v′
3(ξμ,λ) = μ − 1. (7.30)

Furthermore, for any λ ≥ 2, the real number ξ2,λ is badly approximable.

The key ingredient of the proof is an elementary lemma from the
theory of continued fractions, the so-called Folding Lemma, quoted as
Theorem D.3.

Proof of Theorem 7.21. Let λ and μ be real numbers at least equal
to 2. Set v = �λμ�. Since v ≥ 4, the open real interval with endpoints
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[0; 1, 1, 1, 2] = 5/8 and [0; 1, 1, 1, 4] = 9/14 contains at least one reduced
rational number whose denominator is equal to 3v. Consequently, there
exists a positive integer r, with 1 ≤ r ≤ 3v and r coprime with 3, such
that the continued fraction of r/3v reads

r

3v
= [0; 1, 1, a3, . . . , ah−1, ah],

where h ≥ 4 and ah ≥ 2.
For k ≥ 1, set

uk = �λμk+1� − 2�λμk�
and

vk = uk + 2uk−1 + · · · + 2k−1u1 + 2kv = uk + 2vk−1 = �λμk+1�,
with v0 = v. Applying Theorem D.3 to r/3v with t = 3u1 , then to
r/3v +(−1)h/3u1+2v with t = 3u2 , and so on, we get a sequence (dk)k≥1

of integers such that the real number

ξu :=
r

3v
+

(−1)h

3u1+2v
− 1

3u2+2(u1+2v)
− · · ·

− 1
3uk+2(uk−1+···+2k−2u1+2k−1v)

− · · ·
= [0; 1, 1, a3, . . . , ah−1, ah, 3u1 − 1, 1, ah − 1,

ah−1, . . . , a3, 2, 3u2 − 1, 1, 1, a3, . . .],

associated to the sequence u = (uk)k≥1, satisfies

1
3uk+1+2vk

≤
∣∣∣ξu − dk

3vk

∣∣∣ ≤ 2
3uk+1+2vk

, for k ≥ 1. (7.31)

Here, dk is the nearest integer to ξu3vk , for k ≥ 1, and is not divisible
by 3. We show now that the sequence (dk/3vk)k≥1 comprises all the best
rational approximations to ξu. Write

ξu = [0; a1, a2, . . .],
pj

qj
= [0; a1, a2, . . . , aj ], j ≥ 1,

for the continued fraction expansion of ξu and for its convergents, respec-
tively. It follows from Theorem D.1 that

1
(aj + 2)q2

j−1

<
∣∣∣ξu − pj−1

qj−1

∣∣∣ < 1
ajq2

j−1

, for j ≥ 2. (7.32)

Let m ≥ 2 be an integer. By construction, we have

a2m(h+1) = 3um+1 − 1, p2m(h+1)−1 = dm, q2m(h+1)−1 = 3vm , (7.33)
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and we deduce from (7.31) that

1

q
2+um+1/vm

2m(h+1)−1

≤
∣∣∣ξu − p2m(h+1)−1

q2m(h+1)−1

∣∣∣ ≤ 2

q
2+um+1/vm

2m(h+1)−1

. (7.34)

Let j satisfy 2m−1(h + 1) < j < 2m(h + 1). Again by construction, the
partial quotient aj is less than or equal to 3um−1 − 1 and qj−1 exceeds
3vm−1 , by (7.33). Then, (7.32) yields

∣∣∣ξu − pj−1

qj−1

∣∣∣ > 1
(aj + 2)q2

j−1

≥ 1
(3um−1 + 1)q2

j−1

≥ 1

2q
2+um−1/vm−1
j−1

.
(7.35)

Since (uk)k≥1 is non-decreasing, it follows from (7.34) and (7.35) that

μ(ξu) = lim sup
k→+∞

uk+1

vk
= μ. (7.36)

The ternary expansion of the real number

2
( r

3v
+

(−1)h

3u1+2v
− ξu

)
=
∑
k≥2

2
3vk

(7.37)

contains only the digits 0 and 2. Let u′ = (u′
k)k≥1 be a sequence defined

from the above sequence u by setting u′
1 = 1, u′

2k = uk and u′
2k+1 ∈

{1, 2} for k ≥ 1. Then, a similar proof yields that the real number
2(r3−v + (−1)h3−u′

1−2v − ξu′) has the same irrationality exponent as ξu
and its ternary expansion contains only the digits 0 and 2. If μ = 2 and
k ≥ 0, then �λμk+1� − 2�λμk� is in {0, 1}. In that case, the real number
ξu is badly approximable. Thus, we have constructed uncountably many
real numbers with the requested property. Furthermore, (7.30) follows
from (7.36), (7.37), (7.5) and (7.8). This completes the proof of the
theorem.

We describe below another class of real numbers having the prop-
erty that both their b-ary expansion (for some integer b ≥ 2) and their
continued fraction expansion are explicitly determined. It was found by
Böhmer [110] in 1927 and rediscovered nearly 50 years later by Danilov
[213] and, independently, by Adams and Davison [21], who extended a
result of Davison [218]; see also Bundschuh [169] and the references given
on [46, p. 297].
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Theorem 7.22. For a positive real irrational number α = [0; a1, a2, . . .]
in (0, 1) and an integer b ≥ 2, define

ξb(α) = (b − 1)
+∞∑
j=1

1
b�j/α	 .

For n ≥ 1, let pn/qn denote the nth convergent to α and set

tn :=
bqn − bqn−2

bqn−1 − 1
,

where q−1 = 0 and q0 = 1. Then, we have

ξb(α) = [0; t1, t2, t3, . . .] (7.38)

and the irrationality exponent of ξb(α) is given by

μ(ξb(α)) = 1 + lim sup
n→+∞

[an; an−1, . . . , a1]. (7.39)

Taking b = 3 in Theorem 7.22, we get elements of the Cantor set
with prescribed irrationality exponent. Note that the set of exponents
obtained is included in [(3 +

√
5)/2,+∞). We omit the proof of (7.38)

and leave the proof of (7.39) as Exercise 7.5. This computation was
done in [2].

7.7 Normal and non-normal numbers with prescribed
Diophantine properties

In the present section, we gather various results on the existence of
(absolutely) normal numbers with specific Diophantine properties.

Theorem 7.23. Let b ≥ 2 be an integer and μ ≥ 2 be a real number.
There exist real numbers that are normal to base b and whose irrational-
ity exponent is equal to μ.

We omit the proof of Theorem 7.23, established in [50]. We only men-
tion that it is constructive and rests on Theorem 5.2 and on an extension
of Theorem D.3 worked out by Amou [49]. Namely, for an integer b ≥ 3
and a real number μ > 2, the real number

∑
j≥1

1
b�μj	2j

(7.40)

is normal to base b and its irrationality exponent is equal to μ. Likewise,
for μ > 2, the real number
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∑
j≥1

1
2�μj	3j

(7.41)

is normal to base b and its irrationality exponent is equal to μ. Replacing
μj by j2j in (7.40) and (7.41), we get real numbers with irrationality
exponent 2, which are, respectively, normal to base b and to base 2.

On [517, p. 203], Montgomery asked for ‘a normal number whose con-
tinued fraction coefficients are bounded’. No explicit example of such
a number has been exhibited yet. It is written in [517] that, when
Kaufman’s paper [374] appeared, Roger Baker observed that Kaufman’s
result combined with Lemma 1.8 and Jarńık’s estimates [353] for the
Hausdorff dimension of the set S{1,2,...,M} of real numbers with par-
tial quotients at most equal to some integer M ≥ 9 (this dimension is at
least equal to 1−(M(log 2)/4)−1 and does not exceed 1−(8M log M)−1)
implies the existence of badly approximable real numbers which are ab-
solutely normal.

In view of Lemma 1.8 (see Exercise 7.6), in order to prove that a
given real set S contains absolutely normal numbers, it is sufficient to
construct a probability measure on S whose Fourier transform does not
decrease too slowly at infinity. This is precisely what Kaufman [374, 375]
did, first when S is the set of badly approximable numbers and second
when S is the set of real numbers whose irrationality exponent is equal
to or exceeds μ, where μ > 2 is an arbitrary real number. The first
statement of the next theorem has been proved in [599].

Theorem 7.24. Let A be a finite set of positive integers. Let SA be
the set of real numbers with partial quotients in A. If the Hausdorff
dimension of SA exceeds 1/2, then there are real numbers in SA which
are absolutely normal. Moreover, these numbers form a set of Hausdorff
dimension dim SA. In particular, the set of badly approximable numbers
which are absolutely normal has Hausdorff dimension one.

Under the assumption of the theorem, for every positive real number
δ with 1/2 < δ < dim SA, Queffélec and Ramaré [596, 599], inspired by
[374], have constructed a measure μA supported by the set SA with the
following properties. There exist positive real numbers ε, c1, c2 such that

μA(B) ≤ c1|B|δ, for every Borelian real set B, (7.42)

and the Fourier transform of μA satisfies |μ̂A(x)| ≤ c2(1+|x|)−ε for every
real number x. The dimension result follows from (7.42) and Lemma C.5.
This has been pointed out to me by Sanju Velani.
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A similar strategy implies the following result, proved by Kaufman
[375]; see also [738].

Theorem 7.25. Let μ > 2 be given. The set of real numbers with
irrationality exponent at least equal to μ and which are absolutely nor-
mal has the same Hausdorff dimension as the set of real numbers with
irrationality exponent at least equal to μ, namely 2/μ.

A suitable adaptation of the results proved in Chapter 9 of [738] shows
that one can replace ‘at least equal to μ’ by ‘equal to μ’ in Theorem 7.25.

A little more work is required to apply this strategy to the set of
Liouville numbers [144].

Theorem 7.26. There are uncountably many Liouville numbers which
are absolutely normal.

The proof of Theorem 7.26 makes use of a result of Bluhm [107, 108],
very much inspired by [375].

We conclude this section by two results on numbers normal to no base
proved by Pollington [569] and Bugeaud [144], respectively.

Theorem 7.27. Let μ > 2 be given. The set of real numbers with
irrationality exponent at least equal to μ and which are absolutely non-
normal has Hausdorff dimension 2/μ.

Like in Theorem 7.25, one can replace ‘at least equal to μ’ by ‘equal
to μ’ in the above statement.

Theorem 7.28. There are uncountably many Liouville numbers which
are absolutely non-normal.

7.8 Hausdorff dimension of sets with missing digits

We state and prove two results on the size of sets of real numbers with
missing digits or whose digits have prescribed frequencies.

Theorem 7.29. Let b ≥ 2 be an integer. Let S be a subset of {0, 1, · · · ,

b − 1} with s ≥ 2 elements. Then, the Hausdorff dimension of the set
Eb,S of real numbers in [0, 1] having only digits from S in their b-ary
expansion is equal to (log s)/(log b).

Proof. For k ≥ 1, denote by Ek the union of the so-called basic inter-
vals [a/bk, (a + 1)/bk], where a runs through the integers from {0, 1, . . . ,

bk − 1} whose digits in their representation in base b all belong to S.
The covering of Eb,S consisting of the sk basic intervals of Ek of length
b−k gives that
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H(log s)/(log b)(Eb,S) ≤ sk(b−k)(log s)/(log b) = 1,

thus the Hausdorff dimension of Eb,S is at most equal to (log s)/(log b).
Note that Eb,S and its closure differ from at most countably many

elements, so they have the same Hausdorff dimension. Let U1, . . . , Um

be closed, proper subintervals of [0, 1], whose union covers Eb,S (since
Eb,S is compact, we can restrict ourselves to finite coverings). For i =
1, . . . ,m, let hi be the integer such that b−hi−1 ≤ |Ui| < b−hi . Let k be
an integer greater than h1, . . . , hm. Then Ui intersects at most

sk−hi = skb−hi(log s)/(log b) ≤ skb(log s)/(log b)|Ui|(log s)/(log b)

basic intervals of Ek. However, by assumption, the union U1 ∪ . . . ∪ Um

intersects all sk basic intervals of length b−k. We then get that

sk ≤
m∑

i=1

sk+1|Ui|(log s)/(log b),

thus
m∑

i=1

|Ui|(log s)/(log b) ≥ 1/s.

This gives the requested lower bound for the Hausdorff dimension of
Eb,S .

Corollary 7.30. Let b ≥ 2 be an integer. The set of real numbers
which are not normal to base b has Hausdorff dimension one.

Proof. For r ≥ 1, the set of real numbers having only the digits
1, 2, . . . , br − 1 in their expansion to base br has Hausdorff dimension
(log(br − 1))/(log br). By Theorem 4.4, these numbers are not normal to
base b. As r can be taken arbitrarily large, this proves the corollary.

We end this section with a metric result of Eggleston [272] on sets
of real numbers with prescribed frequencies of digits. In the sequel it is
understood that 0 log 0 = 0.

Theorem 7.31. Let b ≥ 2 be an integer. Let p0, p1, . . . , pb−1 be real
numbers such that p0 + p1 + · · · + pb−1 = 1 and 0 ≤ pi ≤ 1 for i =
0, . . . , b− 1. Denote by F (p0, . . . , pb−1) the set of real numbers ξ in [0, 1]
such that, for d = 0, . . . , b−1, the digit d occurs with frequency pd in the
b-ary expansion of ξ. Then, the Hausdorff dimension of F (p0, . . . , pb−1)
is equal to

− 1
log b

b−1∑
d=0

pd log pd. (7.43)
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Proof. Let k be a positive integer and d1, . . . , dk be in {0, 1, . . . , b−1}.
Define the measure μ on [0, 1] by putting

μ([0 · d1 . . . dk−1dk, 0 · d1 . . . dk−1(dk + 1)]) = pd1 . . . pdk
,

where 0 · d1 . . . dk−1dk means
∑k

h=1 dh/bh. It follows from Lemma 1.8
that, for d = 0, . . . , b − 1, the digit d occurs with frequency pd in
the b-ary expansion of μ-almost all real numbers ξ. This shows that
μ(F (p0, . . . , pb−1)) = 1.

Let ξ be in [0, 1] and write Ik(ξ) for the interval of the form [a/bk, (a+
1)/bk] to which ξ belongs, where a is a rational integer. Note that

log μ(Ik(ξ)) = n0,k log p0 + · · · + nb−1,k log pb−1,

where nd,k denotes the number of digits d among the first k digits in
the b-ary expansion of ξ, for d = 0, . . . , b − 1. Let s be a positive real
number. If ξ is in F (p0, . . . , pb−1), then

1
k

log
μ(Ik(ξ))
|Ik(ξ)|s =

n0,k

k
log p0 + · · · + nb−1,k

k
log pb−1 + s log b

−→
k→+∞

p0 log p0 + · · · + pb−1 log pb−1 + s log b.

This shows that

lim
k→+∞

μ(Ik(ξ))
|Ik(ξ)|s = 0 or +∞,

according as s is smaller or greater than the value (7.43). We conclude
by applying Lemma C.5.

Observe that if in Theorem 7.31 we choose p0 = . . . = ps−1 = 1/s, for
some integer s with 2 ≤ s ≤ b, then the Hausdorff dimension of the set
F (p0, . . . , ps−1, 0, . . . , 0) is equal to that of the set Eb,{0,1,...,s−1}, namely
to (log s)/(log b).

7.9 Exercises

Exercise 7.1. Prove (7.6).

Exercise 7.2. Let b ≥ 2 be an integer. By suitably modifying the b-ary
expansion of a number normal to base b and with low discrepancy, prove
that there exist real numbers ξ which are normal to base b and satisfy
v′

b(ξ) > 0.
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Exercise 7.3 (cf. [131, 526, 528]). Let (tj)j≥1 be a lacunary sequence of
positive real numbers greater than 1. Prove that the set of real numbers
ξ such that infj≥1 ||ξtj || is positive is a winning set.

Exercise 7.4 (cf. [132]). Set γ = (log 2)/(log 3). Prove that for every
ξ in the middle third Cantor set K, there exists a rational number p/q

in K such that |ξ − p/q| < 1/(qQ) and q ≤ 3Qγ

. Deduce that for every
irrational number ξ in K there are infinitely many rational numbers p/q

in K such that ∣∣∣ξ − p

q

∣∣∣ < 1
q
·
( log 3

log q

)1/γ

.

Exercise 7.5. Apply Exercise E.1 to prove equality (7.39).

Exercise 7.6. Let μ be a probability measure supported on a set S of
real numbers and such that there exists a positive constant c with

|μ̂(x)| ≤ (log(3 + |x|))−c
, for x ∈ R.

Prove that μ-almost all elements of S are normal to every integer base
b ≥ 2.

Exercise 7.7. Use the properties of the measure μA introduced below
Theorem 7.24 to show that the set of badly approximable real numbers
ξ for which (2.34) holds for every prime number p has full Hausdorff
dimension.

Exercise 7.8. Let v be a positive real number and b ≥ 2 be an integer.
Prove that the Hausdorff dimension of the set of real numbers ξ such
that vb(ξ) ≥ v is equal to 1/(v + 1).

Exercise 7.9. Let μ ≥ 2 be a real number. Prove that the Hausdorff
dimension of the set of real numbers ξ such that μ(ξ) ≥ μ is equal to 2/μ.

7.10 Notes

� For every integer b ≥ 2 and every real number v ≥ 1, Dubickas
[258] constructed explicitly a real number ξ such that v′

b(ξ) = v.

� By means of the metric number theory, and more precisely of the
theory of intersective sets [268, 289, 290], it is proved in [50] that, for
every v ≥ 0, the set of real numbers ξ such that v1(ξ) = 2v + 1 and
vb(ξ) = v for every b in B has Hausdorff dimension 1/(v + 1). Combined
with Proposition 7.4, this implies that the set of absolutely non-normal
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real numbers has Hausdorff dimension one. The theory of winning sets
and that of intersective sets are two powerful tools to estimate the Haus-
dorff dimension of countable intersections of sets.

� Nilsson [541, 542] studied the sets

F (c) := {ξ ∈ [0, 1] : ||ξ2n|| ≥ c, for every n ≥ 0},

where c is a positive real number. Among other results, he proved that
the Hausdorff dimension of F (c) depends continuously on c, is constant
on intervals which form a set of full Lebesgue measure, and is self-similar;
see also [354, 416].

� An alternative proof of the existence of real numbers which are b-
badly approximable for every integer b ≥ 2 was obtained by Färm in his
doctoral thesis [294]. It does not depend on the theory of (α, β)-games.

� Let (tn)n≥1 be a lacunary sequence of positive real numbers grea-
ter than 1. The set of real numbers ξ such that infn≥1 ||ξtn|| is positive
is a winning set [526, 528] (see also [131] and Exercise 7.3). In partic-
ular, for every real number α > 1, the set of real numbers ξ such that
infn≥1 ||ξαn|| is positive is a winning set.

� McMullen [456] introduced the notions of strong and absolute
winning sets. Other types of games are described in [550, 715].

� The main result of [425] implies that the Hausdorff dimension of
the set of real numbers ξ in the middle third Cantor set K for which
v3(ξ) = v is equal to γ/(v+1), where γ = (log 2)/(log 3) is the Hausdorff
dimension of K; see also [297]. Kristensen [408] (see also [425]) estab-
lished that, for any given real number w ≥ 1, the Hausdorff dimension
of the set of ξ in K such that w1(ξ) ≥ w is at most equal to 2γ/(w + 1).

� It was proved in [383, 384, 409] that the set of badly approx-
imable numbers lying in the middle third Cantor set K has the same
Hausdorff dimension as K. However, μK -almost no element of K is badly
approximable. This follows from a nice result from [276] asserting that
the sequence of partial quotients of almost every element of K contains
all finite words on {1, 2, . . .}.

� Kleinbock, Lindenstrauss and Weiss [383] established that μK -
almost every element ξ in the middle third Cantor set satisfies wn(ξ) =
w∗

n(ξ) = n for every positive integer n; see also Kristensen [408]. Let
n ≥ 2 be an integer and w > (2n − 1 +

√
4n2 + 1)/2 be a real number.

Set nj = �(w + 1)j� for j ≥ 1 and ξw := 2
∑

j≥1 3−nj . Then, the same
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proof as that of Theorem 7.8 from [146] shows that wn(ξw) = w∗
n(ξw) =

w1(ξw) = w.

� It follows from results of Urbański [700, 701] and arguments from
Section 7.5 that, for any (finite or infinite) set N of at least two positive
integers, there exist real numbers which are b-badly approximable for
every integer b ≥ 2 and all of whose partial quotients belong to N .
Furthermore, the set of these numbers has the same Hausdorff dimension
as the set of real numbers all of whose partial quotients belong to N .

� The use of the Folding Lemma to describe the continued fraction
expansion of some real numbers defined by their b-ary expansion was
first discovered by Shallit [644, 645]. As noted in [395], the continued
fraction expansions of the Korobov’s numbers, defined in Corollary 5.3,
can be given explicitly by repeated use of the Folding Lemma.

� Real sets of Lebesgue measure zero can be classified by means of
Fourier–Stieltjes transforms. We denote by M0(T) the set of probabil-
ity measures on the torus T whose Fourier coefficients tend to zero at
infinity. A closed set of real numbers in T is called an M0-set if it car-
ries a probability measure from M0(T). Kahane and Salem [358] asked
whether, for any measure μ in M0(T), it is true that μ-almost all ele-
ments of T are normal to base 2. A negative answer was given by Lyons
[453, 454], who showed the existence of measures μ in M0(T) such that
the set of real numbers which are not normal to base 2 has positive μ-
measure. He further gave a lower bound for the speed of convergence of
|μ̂(n)| to 0; see also [551, 596].

� Let b ≥ 2 be an integer and D be a finite word on {0, 1, . . . , b−1}.
Volkmann [712] computed the Hausdorff dimension of the set of real
numbers ξ in the b-ary expansion of which the block D does not occur.

� Starting with the seminal papers of Eggleston [272, 273], there
is a broad literature on Hausdorff dimension of sets of real numbers
with special digit properties. Barreira, Saussol and Schmeling [63, 64]
used multifractal analysis to calculate the Hausdorff dimension of sets
of real numbers defined by linear or even non-linear relations between
the frequencies of their digits; see also [65, 66, 546].

� In a series of papers, Volkmann [713, 714] computed the Haus-
dorff dimension of sets of real numbers whose b-ary expansion enjoys
special properties. Li and Dekking [441] generalized Eggleston’s result
[272] to the situation where the relative frequencies of groups of dig-
its in the expansion are prescribed. Further extensions have been given
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in [442, 547]. In the latter paper, the authors computed the Hausdorff
dimension of the set of real numbers in [0, 1] whose decimal expansion
enjoys the following property: a certain group of digits occurs with a cer-
tain prescribed frequency and another group of digits also occurs with a
(possibly different) prescribed frequency. We emphasize that the groups
need not be disjoint, unlike in previous works.

� Real numbers ξ such that all the finite blocks occur in their b-ary
expansion with prescribed frequencies given by a probability measure μ

and such that the sequence (ξbn)n≥1 has a low discrepancy with respect
to the measure μ have been constructed in [432].

� Färm [296] considered the set of real numbers ξ such that, for
every integer b ≥ 2 and every d = 0, 1, . . . , b − 1, the frequency of the
digit d in the b-ary expansion of ξ does not exist. He proved that this
set has Hausdorff dimension one. This solves a question of Olsen, who
obtained partial results in [548, 549]. Further metrical results on non-
normal numbers are given in [35, 36].

� Kotova [404] proved that there exist uncountably many real num-
bers ξ such that the digit 1 occurs in their ternary expansion with fre-
quency equal to ξ.

� Knichal [385] studied from the metric point of view the set of real
numbers ξ whose binary expansion 0 ·a1a2 . . . satisfies |Card{k : 1 ≤ k ≤
n : ak = 0} − n/2| = O(nδ) for some real number δ with 0 < δ < 1/2.

� Barral and Seuret [61] considered sets of real numbers that are
approximated at a certain rate by rational numbers which are selected
according to the asymptotic frequencies of their digits in some fixed
integer base.

� Cesaretto and Vallée [183] studied the Hausdorff dimension of
real numbers with bounded digit averages.
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Digital expansion of algebraic numbers

In 1950, at the end of his paper [116] Émile Borel wrote:

En définitive, le problème de savoir si les chiffres d’un nombre tel que√
2 satisfont ou non à toutes les lois que l’on peut énoncer pour des

chiffres choisis au hasard me parâıt toujours être un des problèmes les
plus importants qui se posent aux mathématiciens. [Finally, the problem
of knowing whether the digits of a number such as

√
2 satisfy all laws

that can be stated for randomly chosen digits seems to me to be one of
the most important of mathematical problems.]

Not very much has been proved since the publication of Émile Borel’s
note, and his problem is very far from being solved. There have been
some numerical experiments, according to which the binary digits (or
the decimal digits) of classical constants like e, π, log 2 and

√
2 are more

or less randomly distributed; see e.g. [95, 96, 120, 270, 668].
Throughout the present chapter, b denotes an integer at least equal

to 2 and ξ is a real number. There exists a unique infinite sequence
a = (ak)k≥1 of integers in {0, 1, . . . , b − 1} such that

ξ = �ξ� +
∑
k≥1

ak

bk
= 0 · a1a2 . . . , (8.1)

and infinitely many ak are different from b − 1. The sequence a is ul-
timately periodic if, and only if, ξ is rational. With a slight abuse of
notation, we also denote by a the infinite word a1a2 . . .

We present three results showing that, in various senses, the b-ary
expansion of an algebraic irrational number is not ‘too simple’. Then,
we explain how precise information on the combinatorial structure of
Sturmian sequences implies some information on the b-ary expansion of
certain real numbers, including e and the badly approximable numbers.

170
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In Section 8.6, we investigate an apparently innocent problem posed and
solved by Mahler, concerning the existence of multiples of an irrational
number containing infinitely many occurrences of a given finite block of
digits.

8.1 A transcendence criterion

Let b ≥ 2 be an integer. Let ξ be a real algebraic irrational number of
degree d. It follows from Liouville’s Theorem E.5 that there exists an
integer m, depending only on ξ, such that, for any positive integer r, we
have

||brξ|| ≥ b−mb−(d−1)r.

This implies that the rth digit of the b-ary expansion of ξ cannot be
followed by (d−1)r+m digits 0. By contraposition, we have established
the following transcendence criterion.

Theorem 8.1. Let b ≥ 2 be an integer and ξ be an irrational number
whose b-ary expansion is given by (8.1). Let (nj)j≥1 be the increasing
sequence of positive integers composed of the indices k for which ak ≥ 1.
If (nj+1/nj)j≥1 is unbounded, then ξ is transcendental.

The above discussion shows how a Diophantine inequality can be
translated into a combinatorial transcendence criterion involving expan-
sions to an integer base. Replacing the use of Liouville’s Theorem E.5
by that of Roth’s Theorem E.7 (resp., of Ridout’s Theorem E.8), one
sees that the same conclusion holds under the weaker assumption that

lim sup
j→+∞

nj+1/nj > 2 (resp., lim sup
j→+∞

nj+1/nj > 1).

Using the exponent of approximation vb introduced in Section 7.1, we
have explained above that Liouville’s theorem (resp., Roth’s theorem,
Ridout’s theorem) implies that ξ is transcendental if vb(ξ) = +∞ (resp.,
if vb(ξ) > 1, if vb(ξ) > 0).

This has been formulated in [637, Section I.6] and, in a more gen-
eral form, in [303, Theorem 1.31]. As is shown in the next theorem, a
stronger statement follows from a deep extension of the Roth Theorem
E.7, namely from the Schmidt Subspace Theorem E.10.

We begin with a transcendence criterion proved in [15]; see also [6].

Theorem 8.2. Let b ≥ 2 be an integer and ξ be an irrational, real
number. If vb(ξ) or v′

b(ξ) is positive, then ξ is transcendental.



172 Digital expansion of algebraic numbers

The statement of Theorem 8.2 is redundant since v′b(ξ) is always at
least equal to vb(ξ).

Proof. If vb(ξ) is positive, then there are a positive real number ε

and infinitely many positive integers r such that

||brξ|| < (br)−ε .

It then follows from Ridout’s Theorem E.8 that ξ is transcendental.
If v′

b(ξ) is positive, then there are a positive real number ε and in-
finitely many pairs of positive integers (r, s) such that

||br(bs − 1)ξ|| < (br+s)−ε .

Thus, there is an infinite sequence of distinct integer triples (rj , sj , pj)j≥1

such that (sj)j≥1 is non-decreasing, s1 ≥ 1 and

|brj+sj ξ − brj ξ − pj | < (brj+sj )−ε , (8.2)

for every j ≥ 1. If (sj)j≥1 is bounded, then there exists a positive integer
s such that vb(ξ(bs − 1)) is positive, and we conclude that ξ(bs − 1),
hence also ξ, are transcendental. Consequently, we can assume that the
sequence (sj)j≥1 is strictly increasing.

We argue by contradiction and assume that ξ is algebraic. Consider the
three linearly independent linear forms with real algebraic coefficients:

L1(X1,X2,X3) =X1,

L2(X1,X2,X3) =X2,

L3(X1,X2,X3) =ξX1 − ξX2 − X3.

Fix j ≥ 1 and observe that∏
�|b

|brj+sj |� |brj |� ×
∏

1≤i≤3

|Li(brj+sj , brj , pj)| < (brj+sj )−ε ,

where the first product is taken over all the prime divisors of b and,
for a prime �, the absolute value | · |� is normalized such that |�|� =
�−1. By Theorem E.10, all the triples (brj+sj , brj , pj) with j ≥ 1 lie in
finitely many proper rational subspaces of Q3. Thus, there exist a non-
zero integer triple (z1, z2, z3) and an infinite set of positive integers J
such that

z1b
rj+sj + z2b

rj + z3pj = 0,

for every j in J . Since (sj)j≥1 is strictly increasing, z3 must be non-zero
and pj/brj+sj then tends to the rational number −z1/z3 when j tends
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to infinity along J . However, (8.2) implies that pj/brj+sj tends to ξ

as j tends to infinity along J . Since ξ is assumed to be irrational, we
get a contradiction. We conclude that ξ is transcendental. The proof is
complete.

8.2 Block complexity of algebraic numbers

As already mentioned in Section 4.4, a natural way to measure the com-
plexity of a real number ξ whose b-ary expansion is given by (8.1) is to
count the number p(n, ξ, b) := p(n,a, b) of distinct blocks of given length
n in the infinite word a = a1a2a3 . . .

A first step towards a proof of the normality of irrational algebraic
numbers would be a good lower bound for p(n, ξ, b) when ξ is irrational
algebraic. The first result of this type, proved in 1997 by Ferenczi and
Mauduit [305], asserts that, if ξ is algebraic irrational, then the tail of the
expansion of ξ to base b cannot be a Sturmian sequence. Since the Stur-
mian sequences can be viewed as the ‘simplest’ non-periodic sequences,
this shows that the b-ary expansion of every algebraic irrational number
cannot be ‘too simple’.

Actually, as pointed out by Allouche [38], the approach of [305] com-
bined with the combinatorial Theorem A.8 of Cassaigne [179] yields a
slightly stronger result, namely that

lim
n→+∞

(
p(n, ξ, b) − n

)
= +∞, (8.3)

for any algebraic irrational number ξ.
The estimate (8.3) follows from a good understanding of the combi-

natorial structure of Sturmian sequences combined with a combinatorial
translation of Ridout’s Theorem E.8. The transcendence criterion given
in Theorem 8.2, established in [7], yields an improvement of (8.3).

Theorem 8.3. For any irrational algebraic number ξ and any integer
b ≥ 2, we have

lim
n→+∞

p(n, ξ, b)
n

= +∞. (8.4)

Although (8.4) considerably strengthens (8.3), it is still very far from
what is commonly expected, that is, from confirming that p(n, ξ, b) = bn

holds for every positive n when ξ is algebraic irrational.
Besides Theorem 8.2, the key tool for the proof of Theorem 8.3 is the

following combinatorial lemma.
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Lemma 8.4. Let b ≥ 2 be an integer. Let w = w1w2 . . . be an infinite
word on the alphabet {0, 1, . . . , b − 1} which is not ultimately periodic,
and set

ξ =
w1

b
+

w2

b2
+ · · ·

If there exists an integer C such that

lim inf
n→+∞

p(n,w, b)
n

< C,

then v′b(ξ) ≥ 1/(3C + 2).

Proof. By assumption, there exists an infinite set N of positive inte-
gers such that

p(n,w, b) ≤ Cn, for every n in N . (8.5)

Let n be in N . By (8.5) and the Schubfachprinzip, there exists (at least)
one block Bn of length n having (at least) two occurrences in the prefix
of length (C + 1)n of w. Thus, there are words Un, U ′

n, Vn and V ′
n such

that |Un| < |U ′
n| and

w1 . . . w(C+1)n = UnBnVn = U ′
nBnV ′

n.

If |UnBn| ≤ |U ′
n|, then define Xn such that UnBnXn = U ′

n. Observe
that

w1 . . . w(C+1)n = Un(BnXn)1+|Bn|/|BnXn|V ′
n (8.6)

and
|Bn|

|BnXn| ≥
|Bn|

|UnBnXn| ≥
n

Cn
≥ 1

C
. (8.7)

Set Wn := BnXn and cn := |Bn|/|BnXn|.
If |U ′

n| < |UnBn|, then, recalling that |Un| < |U ′
n|, we define B′

n by
U ′

n = UnB′
n. Since BnVn = B′

nBnV ′
n and |B′

n| < |Bn|, the word B′
n is a

strict prefix of Bn and Bn is a rational power of B′
n. Thus, there are a

positive integer xn and a rational number yn such that 0 ≤ yn < 2 and

B′
nBn = B′

n
1+|Bn|/|B′

n| = B′
n

2xn+yn = (B′
n

xn)2B′
n

yn .

Observe that

2xn|B′
n| + 2|B′

n| ≥ |B′
nBn|,

thus

n = |Bn| ≤ (2xn + 1)|B′
n| ≤ 3xn|B′

n|.
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Consequently, Un(B′
n

xn)2 is a prefix of w such that

|B′
n

xn | ≥ n/3

and
|B′

n
xn |

|UnB′
n

xn | ≥
n

3
· 1
(C + 1)n − |B′

n
xn | ≥

1
(3C + 2)

. (8.8)

Set Wn := B′
n

xn and cn := 1.
It then follows from (8.6), (8.7) and (8.8) that, for every n in N ,

UnW 1+cn
n is a prefix of w

and
|Wn

cn |
|UnWn| ≥

1
(3C + 2)

. (8.9)

Thus, ξ is very close to the rational number ξn whose b-ary expansion is
given by UnW∞

n , namely, ξ and ξn have at least their first rn+(1+cn)sn

(note that this number is an integer) digits in common, where rn and
sn denote the lengths of Un and Wn, respectively. Observe that there is
an integer pn such that

ξn :=
pn

brn(bsn − 1)
.

We then deduce from (8.9) that
∣∣∣ξ − pn

brn(bsn − 1)

∣∣∣ ≤ 1
brn+(1+cn)sn

≤ 1
b(rn+sn)(1+1/(3C+2))

.

This implies that v′b(ξ) is at least 1/(3C + 2), which proves the lemma.

Combining Theorem 8.2 and Lemma 8.4, we prove that the block
complexity of an irrational algebraic number cannot be too small.

Proof of Theorem 8.3. Let ξ be an irrational algebraic number and
b ≥ 2 be an integer. Theorem 8.2 implies that v′b(ξ) = 0, which, in turn,
yields (8.4) by Lemma 8.4.

If we were able to prove that an integer b ≥ 2 and a real number
ξ satisfy v′b(ξ) = 0, then we would immediately get (8.4) by Lemma
8.4. However, we have no single example of a ‘classical’ transcendental
number with this property.

The basic strategy for proving Theorem 8.3 can be summarized as
follows: to find a Diophantine property P shared by the real numbers
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having small block complexity, but not by the algebraic numbers. At
present, any Diophantine property shown to be true for algebraic num-
bers holds for almost all real numbers. Consequently, the property P is
necessarily satisfied only by almost no numbers. Thus, keeping in mind
that almost all real numbers are normal to every integer base, the present
strategy cannot be applied to show that algebraic irrational numbers are
normal to every integer base.

Theorem 8.3 is too weak for confirming a conjecture of Mahler [473]
asserting that there are no algebraic irrational numbers in the middle
third Cantor set.

8.3 Zeros in the b-ary expansion of algebraic numbers

As in Section 6.3, for an integer b ≥ 2, an irrational real number ξ whose
b-ary expansion is given by (8.1), and a positive integer n, set

NZ(n, ξ, b) := Card {k : 1 ≤ k ≤ n, ak �= 0}.
The function n �→ NZ(n, ξ, b) counts the number of non-zero digits
among the first n digits of the b-ary expansion of ξ.

It follows from Ridout’s Theorem E.8 that

lim
n→+∞

NZ(n, ξ, b)
log n

= +∞, (8.10)

for every irrational algebraic number ξ; see Exercise 8.4. For the base
b = 2, this was considerably improved by Bailey, Borwein, Crandall and
Pomerance [53], using elementary considerations and ideas from additive
number theory. A minor modification of their method allows us to get a
similar result for expansions to an arbitrary integer base; see Definition
E.4 for the definition of the height of an algebraic number.

Theorem 8.5. Let b ≥ 2 be an integer and ξ an irrational real algebraic
number of degree d. Denote by Ad the leading coefficient of the minimal
polynomial of 1 + {ξ} over Z and by H its height. Then, for any integer
n exceeding (20bdd2H)2d, we have

NZ(n, ξ, b) ≥ 1
b − 1

( n

2(d + 1)Ad

)1/d

.

A similar statement was independently proved in [18]. The idea behind
the proof of Theorem 8.5 is quite simple and was inspired by a new proof
by Knight [386] of the transcendence of the real number

∑
j≥0 2−2j

; see
Exercise 8.6. If an irrational real number ξ has only few non-zero digits,
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then its integer powers ξ2, ξ3, . . ., and any finite linear combination of
them, cannot have too many non-zero digits. In particular, ξ cannot be
a root of an integer polynomial of small degree. This is not at all so
simple, since we have to take much care of the carries.

Unlike [53, Theorem 7.1], which depends on Roth’s Theorem E.7,
Theorem 8.5 above is effective. Using in the proof below Ridout’s The-
orem E.8 instead of Liouville’s Theorem E.5 allows one to show that,
under the assumption of Theorem 8.5 and for every positive real num-
ber ε, we have

NZ(n, ξ, b) ≥ 1 − ε

b − 1

( n

Ad

)1/d

,

provided that n is larger than some integer n0. This method of proof
yields no explicit value for n0, however.

It immediately follows from Theorem 8.5 that, if N ≥ 1012 is an
integer, then, among the first N digits in the binary expansion of

√
2,

there are at least (N/6)1/2 digits 1.
We introduce below several quantities that will be used for establishing

Theorem 8.5. Let ξ be an irrational real number in (1, 2) whose b-ary
expansion is given by (8.1) and set a0 = �ξ� = 1. For a positive integer
� and non-negative integers n and R, set

r�(n, ξ, b) :=
(b−1)�∑
k=1

k Card{(j1, . . . , j�) : j1 + · · ·+ j� = n, aj1 · · · aj�
= k}

and

T�(R, ξ, b) =
∑
m≥1

r�(m + R, ξ, b)
bm

=
∑

m≥R+1

r�(m, ξ, b)
bm−R

. (8.11)

Observe that

r�(n, ξ, b) ≤ (b − 1)�
∑

0≤j1,...,j�≤n;j1+···+j�=n

1

= (b − 1)�

(
n + � − 1

� − 1

) (8.12)

and

ξ� =
∑
m≥0

r�(m, ξ, b)
bm

, (8.13)

but note that, for � ≥ 2, the sequence (r�(m, ξ, b))m≥0 is not, in general,
the b-ary expansion of ξ�.
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Lemma 8.6. For ξ, � and R as above, we have

T�(R, ξ, b) <
(R + �)�(b − 1)�

(� − 1)!(R + 1)
≤ 2(b − 1)�(R + �)�−1.

Proof. For � ≥ 1, setting

U�(R, b) =
∑
m≥1

1
bm

(
R + m + � − 1

� − 1

)

=
∑
m≥1

1
bm

(
R + m + � − 2

� − 2

)
+
∑
m≥1

1
bm

(
R + m + � − 2

� − 1

)

=
∑
m≥1

1
bm

(
R + m + � − 2

� − 2

)
+

1
b

(
R + � − 1

� − 1

)

+
1
b

∑
m≥1

1
bm

(
R + m + � − 1

� − 1

)
,

(8.14)

where we agree that
(

h
−1

)
= 0 for every integer h, it follows from (8.11)

and (8.12) that T�(R, ξ, b) ≤ (b− 1)�U�(R, b). Using the recurrence rela-
tion

U�(R, b) =
b

b − 1
U�−1(R, b) +

1
b − 1

(
R + � − 1

� − 1

)

deduced from (8.14), we see that

U�(R, b) ≤ 2U�−1(R, b) +
(

R + � − 1
� − 1

)
.

Since U1(R, b) ≤ 1, an induction on � gives

U�(R, b) ≤
�−1∑
j=0

(
R + �

j

)
,

hence,

T�(R, ξ, b)
(b − 1)�

≤ U�(R, b)

<
(R + �)�−1

(� − 1)!

∑
n≥0

( � − 1
R + �

)n

=
(R + �)�

(� − 1)!(R + 1)
≤ �(R + �)�−1

(� − 1)!
.

This proves the lemma.

We are now in a position to establish Theorem 8.5.
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Proof of Theorem 8.5. Let ξ in (1, 2) be an algebraic number of
degree d ≥ 2 and denote by AdX

d + · · ·+A1X +A0 its minimal defining
polynomial over Z with Ad ≥ 1. Let R ≥ 0 and b ≥ 2 be integers. Set

T (R, ξ, b) =
d∑

�=1

A�T�(R, ξ, b). (8.15)

It follows from (8.11), (8.13) and (8.15) that

−bRA0 = bR
d∑

�=1

A�

∑
m≥0

r�(m, ξ, b)
bm

=
R∑

m=0

bR−m
d∑

�=1

A�r�(m, ξ, b) +
d∑

�=1

A�

∑
m≥R+1

bR−m r�(m, ξ, b)

=
R∑

m=0

bR−m
d∑

�=1

A�r�(m, ξ, b) + T (R, ξ, b).

Consequently, T (R, ξ, b) is a rational integer and, for R ≥ 1,

b T (R − 1, ξ, b) = T (R, ξ, b) +
d∑

�=1

A�r�(R, ξ, b). (8.16)

Set

c1 = (b − 1)−1
(
2(d + 1)Ad

)−1/d and c2 = (b − 1)c1.

Let N be a positive integer such that NZ(N, ξ, b) ≤ c1N
1/d. Since

∑
0≤n≤N

rd−1(n, ξ, b) ≤ (b − 1)d−1
(NZ(N, ξ, b)

)d−1 ≤ cd−1
2 N1−1/d,

the number M of integers R in [0, N − 1] for which rd−1(R, ξ, b) ≥ 1
does not exceed cd−1

2 N1−1/d. Let us denote these integers by 0 = R1 <

R2 < . . . < RM , and set RM+1 = N .
Let I be the subset of {1, . . . , M} consisting of the integers i with

Ri+1 − Ri ≥ c1−d
2 N1/d/3. Observe that
∑
i∈I

(Ri+1 − Ri) ≥ N − c1−d
2 N1/dM/3 ≥ 2N/3. (8.17)

Let i be in I. Since N exceeds (20bdd3H)d, we get

b(Ri+1−Ri−d log N)/(d+1) ≥ 3d−1d2Hbd log N ,
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and it follows from Liouville’s Theorem E.5 that ξ cannot have too long
blocks of zeros in its b-ary expansion. More precisely, there is an integer

ji ∈ [(Ri+1 − Ri − d log N)/(d + 1), Ri+1 − Ri − 2d log N ]

such that aji
≥ 1, hence r1(ji, ξ, b) ≥ 1 and

rd(Ri + ji, ξ, b) ≥ rd−1(Ri, ξ, b)r1(ji, ξ, b) ≥ 1.

We deduce from (8.11) and (8.15) that

T (Ri+ji − 1, ξ, b) ≥ Ad
rd(Ri + ji, ξ, b)

b

−
d−1∑
�=1

|A�|
∑
m≥1

r�(Ri + ji − 1 + m, ξ, b)
bm

≥ Ad

b
−

d−1∑
�=1

|A�|
∑

m≥Ri+1−Ri−ji+1

r�(Ri + ji − 1 + m, ξ, b)
bm

=
Ad

b
−

d−1∑
�=1

|A�| bRi+ji−Ri+1 T�(Ri+1 − 1, ξ, b)

≥ 1
b
− 2

b2d log N

d−1∑
�=1

|A�| (Ri+1 + �)�−1(b − 1)�,

by Lemma 8.6. This gives that

T (Ri + ji − 1, ξ, b) ≥ 1/(2b),

since N exceeds (20bdd2H)2d. Note that, for R = Ri +1, Ri +2, . . . , Ri +
ji − 1, we have rd−1(R, ξ, b) = 0, and, consequently, r1(R, ξ, b) = . . . =
rd−2(R, ξ, b) = 0. For such an integer R, we get from (8.16) that

bT (R − 1, ξ, b) = T (R, ξ, b) + Adrd(R, ξ, b),

and it follows by induction that T (R, ξ, b) is positive for R = Ri, Ri +
1, . . . , Ri + ji − 1, hence for at least ji ≥ (Ri+1 − Ri − d log N)/(d + 1)
values of R in [Ri, Ri+1 − 1]. Recalling that T (R, ξ, b) is an integer and
setting K = 	2d log N
, we get

Ri + ji − 1 ≤ Ri+1 − 2d log N − 1 ≤ N − K.
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Thus, we have proved that

∑
1≤R≤N−K

|T (R, ξ, b)| ≥
∑
i∈I

Ri+1 − Ri − d log N

d + 1

≥ 2N

3(d + 1)
− M log N,

(8.18)

by (8.17). On the other hand, for � = 1, . . . , d, we have

∑
1≤R≤N−K

T�(R, ξ, b) =
∑
m≥1

b−m
∑

R≤N−K

r�(R + m, ξ, b)

≤
K∑

m=1

b−m
∑

0≤R≤N

r�(R, ξ, b)

+ b−K
∑

m≥K+1

bK−m
∑

R≤N−K

r�(R + m, ξ, b)

<
∑

0≤R≤N

r�(R, ξ, b) + b−K
∑

K≤R≤N

T�(R, ξ, b),

thus, by Lemma 8.6 and since N exceeds (20bdd2H)2d,

∑
1≤R≤N−K

T�(R, ξ, b) ≤ (b − 1)�
(NZ(N, ξ, b)

)�

+ N−2d(log b)(b − 1)�(N + d)d

≤ (b − 1)�
((NZ(N, ξ, b)

)� + 1
)
.

Consequently, recalling that T�(R, ξ, b) ≥ 0 for R ≥ 1, we obtain

∑
1≤R≤N−K

|T (R, ξ, b)| ≤
d∑

�=1

|A�| (b − 1)�
((NZ(N, ξ, b)

)� + 1
)

≤ Ad(b − 1)d
(NZ(N, ξ, b)

)d
+ bddH

(NZ(N, ξ, b)
)d−1 + dHbd

≤ N

2(d + 1)
+ 2bddHN1−1/d.

This gives a contradiction to (8.18), since N exceeds (20bdd2H)2d.
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8.4 Number of digit changes in the b-ary expansion of
algebraic numbers

As in Section 6.3, for an integer b ≥ 2, an irrational real number ξ whose
b-ary expansion is given by (8.1), and a positive integer n, we set

DC(n, ξ, b) := Card {k : 1 ≤ k ≤ n, ak �= ak+1},
which counts the number of digits followed by a different digit, among
the first n digits in the b-ary expansion of ξ. Using this notion for measur-
ing the complexity of a real number, Theorem 8.7 shows that algebraic
irrational numbers are ‘not too simple’.

Theorem 8.7. Let b ≥ 2 be an integer. For every irrational, real alge-
braic number ξ, there exists an effectively computable constant n0(ξ, b),
depending only on ξ and b, such that

DC(n, ξ, b) ≥ (log n)5/4, (8.19)

for every integer n ≥ n0(ξ, b).

A weaker result than (8.19), namely that

lim
n→+∞

DC(n, ξ, b)
log n

= +∞, (8.20)

follows quite easily from Ridout’s Theorem E.8. Here, we use the quan-
titative version of Ridout’s theorem given in Theorem E.9 to improve
(8.20). We point out that the lower bound in (8.19) does not depend on
b. It can be slightly refined by using the same trick as in the proof of
Theorem 9.9; see [163].

Proof. Let the b-ary expansion of ξ be given by (8.1). Assume without
loss of generality that a1 = b − 1, that is, (b − 1)/b < ξ < 1. Define
the increasing sequence of positive integers (nj)j≥1 by a1 = · · · = an1 ,
an1 �= an1+1 and anj+1 = · · · = anj+1 , anj+1 �= anj+1+1 for j ≥ 1.
Observe that

DC(n, ξ, b) = max{j : nj ≤ n}
for n ≥ n1, and that nj ≥ j for j ≥ 1. For j ≥ 1, set

ξj :=
nj∑

k=1

ak

bk
+

+∞∑
k=nj+1

anj+1

bk
=

nj∑
k=1

ak

bk
+

anj+1

bnj (b − 1)
,

and observe that

ξj =
Pj(b)

bnj (b − 1)
,
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where Pj(X) := a1X
nj +· · ·+(anj

−anj−1)X+(anj+1−anj
) is an integer

polynomial of degree nj whose constant coefficient is not divisible by b.
Consequently, b does not divide Pj(b). We have

|ξ − ξj | <
1

bnj+1
,

and this can be rewritten as∣∣∣(b − 1)ξ − Pj(b)
bnj

∣∣∣ < b − 1
bnj+1

. (8.21)

By Liouville’s Theorem E.5, denoting by H the height of (b − 1)ξ and
by d its degree, we have

∣∣∣(b − 1)ξ − Pj(b)
bnj

∣∣∣ ≥ 1
d2Hbd−1bnjd

.

So, if

nj ≥ U := 1 + 2H,

then

nj+1 ≤ 2dnj . (8.22)

Let 0 < ε ≤ 1 and let j1 denote the smallest j such that nj ≥
max{U, 5/ε}. Let j be an integer such that j ≥ j1 and nj+1/nj ≥ 1+2ε.
We have

bnj > max
{
2H, 24/ε

}
.

Furthermore, it follows from (8.21) and the inequality εnj ≥ 5 that
∣∣∣(b − 1)ξ − Pj(b)

bnj

∣∣∣ < b − 1
(bnj )1+2ε

≤ 1
(bnj )1+ε

. (8.23)

Since b does not divide Pj(b), Theorem E.9 applied to (8.23) implies
that the number T of such integers j with j ≥ j1 satisfies

T ≤ 1010 log(6d)(1 + ε−3) log
(
(1 + ε−1) log(6d)

)
.

Let J be an integer satisfying

J > max
{
n3

j1
, (4d)6

}
and j2 be the largest integer with

nj2 ≤ 6dJ1/3.

Then j1 ≤ j2 < J and, since nj2 ≥ U , we have

nj2 ≥ nj2+1

2d
≥ 3J1/3,
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by (8.22). Observe that

nJ

nj2

=
nJ

nJ−1
× nJ−1

nJ−2
× · · · × nj2+1

nj2

≤ (1 + 2ε)J (2d)T .

By taking logarithms and choosing ε := J−2/9, we get

2 log nJ ≤ 1012J7/9(log 6d)2 ≤ J4/5,

when J is large enough. This implies the theorem.

8.5 On the b-ary expansion of e and some other
transcendental numbers

The combinatorial structure of Sturmian sequences leads us to introduce
the following exponents of approximation, which measure the initial rep-
etitions occurring in the expansions of a real number to an integer base.

Definition 8.8. Let ξ be an irrational real number. Let b be an integer
with b ≥ 2. We denote by v′′

b (ξ) the supremum of the real numbers v for
which the inequality

||(br − 1)ξ|| < (br)−v

has infinitely many solutions in positive integers r.

The exponent v′′
b measures whether the b-ary expansion of ξ possesses

large initial repetitions. It corresponds to the notion of initial critical
exponent from combinatorics on words, introduced by Berthé, Holton
and Zamboni [79].

Clearly, for every b ≥ 2 and every irrational real number ξ, we have

μ(ξ) ≥ 1 + v′′b (ξ). (8.24)

We establish the following extension on the results of Ferenczi and
Mauduit [305] and Allouche [38] on the b-ary expansion of algebraic
numbers (recall that the irrationality exponent of these numbers is equal
to 2, by Roth’s Theorem E.7).

Theorem 8.9. For any real number ξ with irrationality exponent equal
to 2 and for any integer b ≥ 2, we have

lim
n→+∞

(
p(n, ξ, b) − n

)
= +∞.
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Besides algebraic irrationals, the set of ‘classical’ real numbers whose
irrationality exponent is 2 includes e, ep/q, tan(1/q), for non-zero integers
p, q with q ≥ 1.

Theorem 8.9, which was first published in [1], is an almost immediate
consequence of a deep result of Berthé, Holton and Zamboni [79] on the
combinatorial structure of Sturmian sequences.

Proof. Let b ≥ 2 be an integer. Let ξ be a real number for which
there is an integer k such that p(n, ξ, b) ≤ n + k for every positive
integer n. It follows from Theorem A.8 that there are a non-negative
integer s, a Sturmian sequence s on {0, 1}, and two finite words W0,W1

on {0, 1, . . . , b− 1} such that the b-ary expansion of (the fractional part
of) bsξ is the infinite word obtained from s by replacing 0 (resp. 1)
by W0 (resp. W1). If the slope of s is a badly approximable number,
then it follows from Theorem A.6 that v′′b (bsξ) exceeds 1, consequently
v′′b (ξ) > 1. If the slope of s is not a badly approximable number, then,
by Theorem A.7, the real number ξ is a Liouville number. Consequently,
in any case, we have μ(ξ) > 2, by (8.24). This completes the proof of
the theorem.

It follows from Theorem 8.9 that a real irrational number cannot have
simultaneously a ‘simple’ continued fraction expansion and a ‘simple’
expansion in some integer base.

Corollary 8.10. For any badly approximable number ξ and any inte-
ger b ≥ 2, we have

lim
n→+∞

(
p(n, ξ, b) − n

)
= +∞.

Corollary 8.10 is near to best possible, since there exist badly approx-
imable numbers of low complexity. For instance, for b ≥ 2, the number
ζb =

∑
j≥1 b−2j

is badly approximable (by adapting the proof of The-
orem 7.21) and it has sublinear complexity, namely p(n, ζb, b) ≤ (2 +
log 3)n + 4 for n ≥ 1, as follows from the proof of [320, Lemma 2.4].

8.6 On the digits of the multiples of an irrational number

Let b ≥ 2 be an integer. Weyl’s Theorem 1.3 asserts that, for any
irrational number ξ, the sequence (mξ)m≥1 is uniformly distributed
modulo one. This implies that for any finite block D of digits from
{0, 1, . . . , b− 1}, there exist arbitrarily large integers m such that D oc-
curs at least once in the b-ary expansion of mξ. This does not, however,
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provide any information regarding the number of occurrences of D in the
b-ary expansion of mξ. The question whether there is a positive integer
m such that D occurs infinitely often in the b-ary expansion of mξ was
addressed by Mahler [469]. He showed that there is at least one such
m below an explicit bound depending on b and on the length of D, but
independent of ξ; see Exercise 8.8. His result was subsequently improved
by Szüsz and Volkmann [681] and by Berend and Boshernitzan [73].

Theorem 8.11. Let b ≥ 2 and n ≥ 1 be integers. Let D be a block of
digits of length n on {0, 1, . . . , b−1}. For any irrational number ξ, there
exists an integer m, depending on ξ, b, n, such that

1 ≤ m ≤ bn+1 + bn − 1 (8.25)

and the block of digits D appears infinitely often in the b-ary expansion
of mξ.

Theorem 8.11 slightly improves [73, Theorem 1.1], where the upper
bound for m is 2bn+1 − 1.

Definition 8.12. For integers b ≥ 2 and n ≥ 1, let M(b, n) denote the
smallest integer M such that, for every irrational real number ξ and
every block D of length n on {0, 1, . . . , b − 1}, there exists a positive
integer m at most equal to M with the property that D has infinitely
many occurrences in the b-ary expansion of mξ.

Theorem 8.11 asserts that M(b, n) ≤ bn+1 + bn − 1 for every integer
b ≥ 2 and n ≥ 1. The next result, extracted from [73], shows that
Theorem 8.11 is not far from being best possible.

Theorem 8.13. For every integer b ≥ 2 and n ≥ 1, we have

M(b, n) ≥ bn − 1.

If b is not a prime power, then, for every positive real number ε, there
exists a positive integer n0 such that

M(b, n) ≥ (1 − ε)bn+1, for n ≥ n0.

Proof. For the first assertion, simply take the number ξ =
∑

j≥1 b−2j

and a block D consisting of n consecutive digits (b− 1). Then, the b-ary
expansion of mξ contains at most finitely many occurrences of D for
1 ≤ m ≤ bn − 2.

The second assertion is slightly more difficult to prove. Let p be a
prime divisor of b. Let ε be a real number with 0 < ε < 1/4. Since b
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is not a prime power, (log p)/(log b) is irrational and, by Theorem D.1,
there are arbitrarily large positive integers s, t such that

0 <
log p

log b
− s

t
<

1
t2

.

Consequently, there exist positive integers � and r such that b� < pr <

(1 + ε)b�. We first claim that the representation in base b of no positive
multiple of pr contains the block D, consisting of r−� consecutive digits
(b − 1), within its r lowest digits. Indeed, if this were the case, then by
multiplying this multiple of pr by an appropriate power of b, we would
then get a number of the form mpr whose block of r lowest digits starts
with the block D. The remainder m′ in the Euclidean division of mpr

by br would satisfy

br − b� ≤ m′ < br.

As m′ and br are multiples of pr, this would contradict the fact that pr

exceeds b�. Thus, the smallest multiple of pr containing a block consisting
of n ≥ r − � consecutive digits (b − 1) is at least equal to

�+n∑
i=�+1

(b − 1)bi = b�+1(bn − 1).

Now set

ξ =
(p

b

)r ∑
j≥1

b−2j

.

For n ≥ r − �, the foregoing discussion implies that the smallest m for
which mξ contains the block consisting of n consecutive digits (b − 1)
infinitely often is at least b�+1(bn −1)/pr, thus greater than (1− ε)bn+1,
if n is large enough.

Proof of Theorem 8.11. Let Λb(ξ) denote the set of all limit points
in T of the sequence ({ξbj})j≥1. We distinguish between several (some-
what overlapping) cases.

Case I. Assume that Λb(ξ) contains a rational r = p/q with gcd(p, q) =
1 and bn < q ≤ bn+1. Since every interval of length b−n (on the torus T)
meets the set {0, 1/q, . . . , (q−1)/q} composed of the integer multiples of
r modulo 1, there exists an integer m with 1 ≤ m ≤ q − 1 such that the
expansion of {mr} begins with 0 · D and differs from 0 · D0∞ and from
0 · D(b − 1)∞. Using that the sets Λb(mξ) and {{mλ} : λ ∈ Λb(ξ)} are
equal, we deduce that {mr} is a limit point of the sequence ({ξbjm})j≥1.
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Consequently, there are infinitely many occurrences of the block D in
the b-ary expansion of mξ.

Case II. Assume that 0 is in Λb(ξ). Replacing ξ by −ξ, we may assume
that the b-ary expansion of ξ contains arbitrarily long blocks of 0. Let
(mj)j≥1 be an increasing sequence of integers such that the b-ary ex-
pansion of {ξbmj} begins with 0j , but that of {ξbmj−1} does not begin
with 0. For any positive integer d, let rd = pd/qd be a limit point of
({ξbmj−d})j≥1 written under its reduced form. For d ≥ 2, we select rd

in such a way that there exists a in {0, 1, . . . , b − 1} such that

pd

qd
=

a

b
+

1
b
· pd−1

qd−1
=

aqd−1 + pd−1

bqd−1
.

Consequently, we have qd−1 < qd ≤ bqd−1 and there exists a suitable d

such that bn < qd ≤ bn+1. Since rd is in Λb(ξ), we conclude as in Case I.
Case III. Assume that Λb(ξ) contains a reduced rational number p/q

with q ≤ bn+1. Then we carry out the construction of Case II with ξ

replaced by qξ.
Case IV. Let t be a real number with 1 ≤ t ≤ 2. Assume that Λb(ξ)

contains no rational point p/q with q ≤ tbn. We first claim that there
exist a point β in Λb(ξ) and a rational r = p/q written in its reduced
form such that

|β − p/q| < (tbn+1q)−1, tbn < q ≤ tbn+1. (8.26)

Indeed, starting with any β0 in Λb(ξ), we can find a reduced rational
p0/q0 such that |β0 − p0/q0| < (tbn+1q0)−1 and q0 ≤ tbn+1. Choose
inductively points βi in Λb(ξ), i = 1, 2, . . ., with bβi+1 = βi for each i.
Next choose reduced rationals ri = pi/qi, i = 1, 2, . . ., with bri+1 = ri

and |βi − ri| = b−i|β0 − r0| for each i. Observe that qi ≤ qi+1 ≤ bqi

for each i. If the sequence (qi)i≥1 is bounded from above by tbn, then
some reduced rational r′ = p′/q′ with q′ ≤ tbn appears infinitely often in
the sequence (ri)i≥1, in which case r′ is in Λb(ξ), in contradiction with
our assumption. Consequently, there exists i such that the rational pi/qi

satisfies (8.26). This proves our claim.
Instead of choosing t = 2 in (8.26) as in [73], we take t = 1 + 1/b.

We then observe that every interval of length 1/(bn + bn−1) (on the
torus T) meets the set {0, 1/q, . . . , (q − 1)/q} of integer multiples of r

taken modulo 1. Since |mβ − mr| < 1/(bn+1 + bn) for m = 1, . . . , q, we
deduce that every interval of length b−n (on the torus T) meets the set
{β, {2β}, . . . , {qβ}}. Arguing now as in Case I, we get that there exists
an integer m, with 1 ≤ m ≤ q − 1, such that the b-ary expansion of mξ
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contains the block D infinitely often. The upper bound for q given by
(8.26) implies our statement.

8.7 Exercises

Exercise 8.1 (cf. [19]). Combine Theorem A.11 and Theorem 8.2 to
establish that the binary expansion of an algebraic number contains
infinitely many occurrences of 7/3-powers.

Exercise 8.2. The complement of a finite word W = w1 . . . wn on
{0, 1, . . . , b−1} is the word W ′ = w′

1 . . . w′
n such that wi +w′

i = b−1 for
i = 1, . . . , n. Prove that the b-ary expansion of an irrational algebraic
number does not begin with arbitrarily large words of the form WW ′.

Exercise 8.3 (cf. [4]). Let a = (ak)k≥1 and a′ = (a′
k)k≥1 be sequences

of elements from an alphabet A, that we identify with the infinite words
a1a2 . . . and a′

1a
′
2 . . ., respectively. We say that the pair (a,a′) satisfies

Condition (∗) if there exist three sequences of finite words (Un)n≥1,
(U ′

n)n≥1 and (Vn)n≥1 such that:

(i) for any n ≥ 1, the word UnVn is a prefix of the word a and the
word U ′

nVn is a prefix of the word a′;
(ii) the sequences (|Un|/|Vn|)n≥1 and (|U ′

n|/|Vn|)n≥1 are bounded from
above;

(iii) the sequence (|Vn|)n≥1 is increasing.

If, moreover, we add the condition

(iv) the sequence (|Un| − |U ′
n|)n≥1 is unbounded,

then, we say that the pair (a,a′) satisfies Condition (∗∗).
Let b ≥ 2 be an integer and take A = {0, 1, . . . , b − 1}. Assume that

the pair (a,a′) satisfies Condition (∗) and apply Theorem E.10 with
m = 4 to prove that at least one of the real numbers

ξ :=
+∞∑
k=1

ak

bk
, ξ′ :=

+∞∑
k=1

a′
k

bk

is transcendental, or the b-ary expansions of ξ and ξ′ have the same tail.
If, furthermore, the pair (a,a′) satisfies Condition (∗∗), then show that
at least one of the real numbers ξ, ξ′ is transcendental, or ξ and ξ′ are
both rational and their b-ary expansions have the same tail.

Exercise 8.4. Prove (8.10) and (8.20).
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Exercise 8.5 (cf. [611]). For an integer b ≥ 2 and a non-negative in-
teger x, let NZ(x, b) denote the number of non-zero digits in the b-ary
representation of x. Prove that, for all positive integers x and y, we have

NZ(x + y, b) ≤ NZ(x, b) + NZ(y, b)

and

NZ(xy, b) ≤ min{2, b − 1}NZ(x, b)NZ(y, b).

Let ξ and η be positive irrational numbers and n be a sufficiently large
integer. If ξ + η is irrational, prove that

NZ(n, ξη, b) ≤ NZ(n, ξ, b) + NZ(n, η, b) + 1.

If ξη is irrational, prove that

NZ(n, ξη, b) ≤ 2 · NZ(n, ξ, b) · NZ(n, η, b) + log(ξ + η + 1) + 1.

For every positive integer A, prove that

NZ(n, ξ, b) · NZ(n,A/ξ, b) ≥ 1
2
· (n − 1 − log(ξ + A/ξ + 1)).

Let ξ be an irrational real algebraic number of degree d whose minimal
defining polynomial over the integers AdX

d + · · · + A1X + A0 satisfies
A0 < 0 and A1, . . . , Ad ≥ 0. Establish that

NZ(n, ξ, b) ≥ (2d−1NZ(Ad, b)
)−1/d

n1/d(1 + o(1)),

where 2d−1 can be replaced by 1 if b = 2.

Exercise 8.6 (cf. [386]). Prove that the real number ξ :=
∑

j≥0 2−2j

is
transcendental. For k ≥ 1, let a(r, k) denote the number of ways that the
integer r ≥ 0 can be written as a sum of exactly k powers of 2, where
different orderings of the sum are counted as distinct. Let d ≥ 1 and
m ≥ 1 be integers, and set N := (2d − 1)2m. Prove that a(r, k) = 0 for
every integer r, k with 1 ≤ k ≤ d and N−(2m−1−1) ≤ r ≤ N +(2m−1),
except for (r, k) = (N, d), in which case a(N, d) = d!. Prove that, if m is
large, then, for k = 1, . . . , d, we have

+∞∑
r=N+2m

a(r, k)2−r < 2−N−1.

Deduce that the binary expansions of 1, ξ, . . . , ξd−1 have a common,
arbitrarily long block of 0, while the same block for ξd has an isolated
non-zero ‘island’. Conclude that ξ is transcendental.
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Exercise 8.7. Prove that M(3, 1) = 2.

Exercise 8.8 (cf. [469]). Let ξ be an irrational real number with 0 <

ξ < 1 and b ≥ 2 be an integer. Let n be a positive integer. For an integer
m so large that bmξ ≥ 1, prove that there exist integers x(m,n) and
y(m,n) such that

|bmξx(m,n) − y(m,n)| < b−n, 1 ≤ x(m,n) ≤ bn, y(m,n) ≥ 1.

Deduce that there exist an infinite set S0 of positive integers and an
integer x0 such that, for every m in S0 there is an integer y(m) with

|bmξx0 − y(m)| < b−n, 1 ≤ x0 ≤ bn, y(m) ≥ 1.

Deduce furthermore that there exist an infinite set S1 of positive integers
and an integer x1 such that, for every m in S1 there is an integer y′(m)
with

|bmξx1−y′(m)| < b−n, 1 ≤ x1 ≤ bn−1, b does not divide x1, y′(m) ≥ 1.

Denote by a := a1a2 . . . the b-ary expansion of ξ and, for a positive
integer X, let aX := aX,1aX,2 . . . be that of {Xξ}. Set ξ∗ = 1 − ξ.
Establish that ax1 or a∗

x1
contains infinitely many blocks of n consecutive

digits 0. Denote by a×
x1

that one of the numbers ax1 or a∗
x1

with the
latter property.

Let H be a large integer. Let h0(H) be the smallest integer greater
than H such that a×

x1,h = 0 for h = h0(H), . . . , h0(N)+n−1. Let h1(H)
be the smallest integer greater than h0(H) such that a×

x1,h1(H) > 0. Put

t = t(H) =
∑

h≥h1(H)

a×
x1,hbh1(H)−h−1

and prove that 1/b < t < 1. Let b0 . . . bn−1 be a block of digits from
{0, 1, . . . , b − 1} other than the block 00 . . . 00, and put B = b0b

n−1 +
· · ·+ bn−1. Prove that there exists an integer x2 = x2(H) such that B <

x2t < B +1. Show that 1 ≤ x2 ≤ bn+1 − 1 and that the block of n digits
a×

x1x2,h1(H)−n . . . a×
x1x2,h1(H)−1 is identical with the block b0 . . . bn−1. De-

duce that there exists X with 1 ≤ X ≤ (bn − 1)(bn+1 − 1) such that the
b-ary expansion of at least one of the two numbers Xξ or Xξ∗ contains
infinitely many copies of a given block of length n. Conclude.
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8.8 Notes

� Let b ≥ 2 be an integer. Mahler [462] investigated how many
times a given block of k digits on {0, 1, . . . , b − 1} can repeat after the
nth digit in the b-ary expansion of an irrational number which is not a
Liouville number.

� Theorem 8.2 implies that the real number
∑

j≥0 2−2j

, sometimes
called the Fredholm number, is transcendental. This result was first
proved by Kempner [377] in 1916.

� Mahler [473] suggested explicitly to apply the Schmidt Subspace
Theorem E.10 exactly as in the proof of Theorem 8.2 to investigate
whether the middle third Cantor set contains irrational algebraic ele-
ments or not.

� An application of the Schmidt Subspace Theorem E.10 similar to
that in Theorem 8.2 was used in 1999 by Troi and Zannier [688] to prove
the transcendence of the number

∑
2−m, where the summation is over

the set of integers m which can be represented as sums of distinct terms
of the form 2� + 1 with � being a positive integer.

� Alternative expositions of the proof of Theorem 8.3 are given in
[12, 99].

� By means of a subtle use of the Quantitative Subspace Theorem,
it has been proved in [163] that, for any irrational algebraic number ξ

and any integer b ≥ 2, we have

lim sup
n→+∞

p(n, ξ, b)
n(log n)0.09

= +∞.

� Since its proof ultimately depends on the Schmidt Subspace The-
orem, Theorem 8.3 is ineffective. Let b ≥ 2 be an integer and ξ be an
irrational algebraic number. Using a suitable version of the Quantitative
Subspace Theorem, Bugeaud [149] gave explicitly a (very small) positive
real number δ, expressed only in terms of the degree and the height of
ξ, such that p(n, ξ, b) ≥ (1 + δ)n for every positive integer n.

� An automatic number is a real number ξ whose expansion in some
integer base b ≥ 2 can be generated by a finite automaton (see [46] for a
precise definition of a finite automaton). By a result of Cobham [198], its
complexity function satisfies p(n, ξ, b) = O(n). It then straightforwardly
follows from Theorem 8.3 that every irrational automatic number is tran-
scendental, confirming a conjecture of Cobham [197], also formulated in
[505]. As a particular case, we get that the Thue–Morse–Mahler numbers
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∑

k≥0 tkb−k are transcendental, where t0t1 . . . is the Thue–Morse word
(Definition A.9) written on {0, 1}. The latter result was first proved
by Mahler [460]. Dekking [225] found an alternative proof, reproduced
in [46].

� Adamczewski and Cassaigne [17] established that the irrational-
ity exponent of an automatic number is finite; see also [70]. Furthermore,
Adamczewski and Bugeaud [13] proved that an automatic number can-
not be a U -number. Bugeaud [148] used the construction given in the
proof of Theorem 7.21 to show that there are automatic real numbers
with any prescribed rational irrationality exponent. Conversely, it may
be the case that the irrationality exponent of an automatic real num-
ber is always rational. In this direction, improving earlier results from
[20], Bugeaud [154] established that the irrationality exponent of every
Thue–Morse–Mahler number is equal to 2. Furthermore, it is proved in
[165, 620] that the exponents vb and v′

b take rational values at every
real number whose expansion to base b can be generated by a finite
automaton.

� Let f : Z≥1 → Z≥1 be an increasing function. A pair (ξ, ξ′) of
real numbers is called f -independent if there exist only finitely many
integers n for which the prefixes of length f(n) of their b-ary expansions
have a block of length n in common. Let f : Z≥1 → Z≥1 be an increasing
function such that n �→ f(n)/n is bounded. Let ξ and ξ′ be two algebraic
numbers in (0, 1). It was proved in [4] that either the b-ary expansions
of ξ and ξ′ have the same tail, or the pair (ξ, ξ′) is f -independent. Put
another way, this shows that if one slightly perturbs the b-ary expansion
of an algebraic number ξ and gets a number ξ′, then ξ′ is transcendental,
except in the trivial case when the tails of the expansions of ξ and ξ′

coincide; see Exercise 8.3.

� Diophantine properties of real numbers whose binary expansion
is a Sturmian word were studied in [13, 79, 595].

� Using a result of Thue [685] on the structure of ternary infinite
words, Adamczewski and Rampersad [19] established that the ternary
expansion of an algebraic number contains infinitely many occurrences
of squares or infinitely many occurrences of one of the blocks 010 or
02120.

� Let (nj)j≥1 be a lacunary sequence of positive integers such that
lim infj→+∞ nj+1/nj > 1. Applying the Schmidt Subspace Theorem
E.10, Corvaja and Zannier [207] established that the function f defined
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on the open unit disc by f(z) =
∑

j≥1 znj takes a transcendental value
at every non-zero algebraic point. See also [16] for a weaker conclu-
sion valid, however, for a larger class of functions. Alternative applica-
tions of the Subspace Theorem to transcendence results can be found in
[171, 513, 630, 750].

� Let b ≥ 2 be an integer. Let f(X) be a quadratic polynomial with
rational coefficients and taking positive integer values at positive inte-
gers. Let (dj)j≥1 be a bounded sequence of non-zero integers. Inspired
by [53], Luca [452] established that the real number

∑
j≥1 djb

−f(j) is
neither rational nor quadratic. Neither his method, nor Theorem 8.2,
imply that the real number

∑
j≥1 b−j2

is transcendental, a statement
established in [92, 271] and which follows from deep results on the val-
ues of theta series at algebraic points.

� Kaneko [366, 368] established improved lower bounds for the num-
ber of digit changes of a class of algebraic numbers. They are similar to
the lower bounds for the number of non-zero digits. Inspired by the
method of [53], he [367] obtained algebraic independence results for cer-
tain real numbers having few non-zero digits.

� Let P (X) = a0 +a1X + · · ·+adX
d be a real polynomial of degree

d ≥ 1. Theorem 1.4 asserts that the sequence (P (n))n≥1 is dense modulo
one if at least one coefficient among a1, . . . , ad is irrational. If a1, . . . , ad

are all rational numbers, denote by c(P ) the least common multiple of
the denominators of a1, . . . , ad. Berend and Boshernitzan [73] proved
that, for every given positive real number ε and every d ≥ 1, there
exists c0(d) such that for every polynomial P (X) in Q(X) of degree d

with c(P ) > c0, the set {P (n) : n ≥ 1} meets every interval of length ε

(on the torus T). Further results related to Theorem 8.11 can be found
in [47, 71, 74, 75, 321].

� Set u1 = 1 and un+1 = �√2(un + 1/2)� for n ≥ 1. Graham and
Pollak [328] proved that, for n ≥ 1, the nth binary digit of

√
2 is equal

to u2n+1 − 2u2n−1; see also [665, 666] and the references quoted therein.
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Continued fraction expansions and
β-expansions

Beside b-ary expansions, there are many classical ways to represent a
real number, including by means of its continued fraction expansion, or
of its β-expansion. In the first section, we define the notion of normal
continued fraction and construct explicitly a real number having a nor-
mal continued fraction. In the next section, we present several results
on the continued fraction expansion of algebraic numbers. Section 9.3 is
devoted to a short survey on β-expansions.

9.1 Normal continued fractions

The sequence of partial quotients of an irrational real number ξ in (0, 1)
can be obtained by iterations of the Gauss map TG defined by TG(0) = 0
and TG(x) = {1/x} for x ∈ (0, 1). Namely, if [0; a1, a2, . . .] denotes the
continued fraction expansion of ξ, then Tn

G (ξ) = [0; an+1, an+2, . . .] and
an = �1/Tn−1

G (ξ)� for n ≥ 1.
It is understood that ξ is a real number in (0, 1), whose partial quo-

tients a1(ξ), a2(ξ), . . . and convergents p1(ξ)/q1(ξ), p2(ξ)/q2(ξ), . . . are
written a1, a2, . . . and p1/q1, p2/q2, . . . when there should be no confu-
sion.

The map TG possesses an invariant ergodic probability measure, name-
ly the Gauss measure μG , which is absolutely continuous with respect
to the Lebesgue measure, with density

μG(dx) =
dx

(1 + x) log 2
.

For every function f in L1(μG) and almost every ξ in (0, 1), we have
([212, Theorem 3.5.1]; see also Section C.4)

195
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lim
n→+∞

1
n

n−1∑
k=0

f(T k
G ξ) =

1
log 2

∫ 1

0

f(x)
1 + x

dx (9.1)

and

lim
n→+∞

log qn(ξ)
n

=
π2

12 log 2
. (9.2)

For subsequent results in the metric theory of continued fractions, we
refer the reader to [380] and to [212].

Definition 9.1. We say that [0; a1, a2, . . .] is a normal continued frac-
tion, if, for every integer k ≥ 1, every finite word d = d1 . . . dk on the
alphabet Z≥1, we have

lim
N→+∞

Card{j : 0 ≤ j ≤ N − k, aj+1 = d1, . . . , aj+k = dk}
N

=
∫ r′/s′

r/s

μG( dx) = μG(Δd),
(9.3)

where r/s and r′/s′ denote the rational numbers [0; d1, . . . , dk−1, dk]
and [0; d1, . . . , dk−1, dk + 1] ordered such that r/s < r′/s′, and Δd =
[r/s, r′/s′].

Let d = d1 . . . dk be a finite word on the alphabet Z≥1 (we warn
the reader that, throughout this section, a and d always denote finite
words). It follows from Theorem D.1 that the set Δd of real numbers
ξ in (0, 1) whose first k partial quotients are d1, . . . , dk is an interval of
length

λ(Δd) =
1

qk(qk + qk−1)
.

Applying (9.1) to the function f equal to 1 on Δd and to 0 everywhere
else, we get that for almost every ξ = [0; a1, a2, . . .] in (0, 1) the limit
defined in (9.3) exists and is equal to μG(Δd). Thus, we have established
the following statement.

Theorem 9.2. Almost every ξ in (0, 1) has a normal continued fraction
expansion.

As was shown in Section 4.2, for any integer b ≥ 2, the number whose
b-ary expansion is the concatenation of the representation in base b of
the integers 1, 2, . . . is normal to base b. Adler, Keane and Smorodinsky
[23] have given a similar construction for a normal continued fraction.

Theorem 9.3. Let 1/2, 1/3, 2/3, 1/4, 2/4, 3/4, . . . be the infinite se-
quence (ri)i≥1 obtained in writing the rational numbers in (0, 1) with
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denominator 2, then with denominator 3, denominator 4, etc., ordered
with numerators increasing. Let x1x2x3 . . . be the sequence of positive
integers constructed by concatenating the partial quotients (we choose
the continued fraction expansion which does not end with the digit 1) of
this sequence of rational numbers. Then, the real number

ξaks = [0;x1, x2, . . .] = [0; 2, 3, 1, 2, 4, 2, 1, 3, 5, . . .]

is a normal continued fraction.

In the statement of Theorem 9.3 and in its proof, the denominator of
a rational number p/m is the integer m, even if p and m are not coprime.

Proof. We follow the proof of [23]. Set g = π2/(12 log 2). Let δ be a
positive real number with δ < 1/3. Let η be a positive real number. Let
m ≥ 3 be an integer and set

n = �(1 − 2δ)(log m)/g�. (9.4)

Let d = d1 . . . dk be a finite word on the alphabet Z≥1. Let Γm,δ,d,η be
the set of all finite words a = a1 . . . an on Z≥1 satisfying

e(1−δ)gn ≤ Kn(a1, . . . , an) ≤ e(1+δ)gn

and∣∣∣Card{j : 0 ≤ j ≤ n − k, aj+1aj+2 . . . aj+k = d}
n

− μG(Δd)
∣∣∣ < η.

Here, Kn(a1, . . . , an) denotes the continuant of a1, . . . , an; see Definition
D.4. Keeping this notation, we say that the rational ri = [0; ai,1, ai,2, . . . ,

ai,ni
] is (m, δ,d, η)-good if we have

(i) Kni
(ai,1, ai,2, . . . , ai,ni

) ≤ m,

(ii) ni ≥ n and ai,1ai,2 . . . ai,n ∈ Γm,δ,d,η.

Lemma 9.4. Let a = a1 . . . an be in Γm,δ,d,η and define pn−1/qn−1 =
[0; a1, . . . , an−1] and pn/qn = [0; a1, . . . , an]. Then we have

Card{i : ri = [0; ai,1, ai,2, . . . , ai,n, . . . , ai,ni
] is (m, δ,d, η)-good

and ai,1ai,2 . . . ai,n = a} ≥ m2

2qn(qn + qn−1)
− 4m

qn
.

Proof. For positive integers s and t with s < t, set

φ(s, t) = (tpn + spn−1, tqn + sqn−1).
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Since pnqn−1 − pn−1qn = ±1, the map φ is injective. By Theorem D.1,
the continued fraction expansion of the rational

tpn + spn−1

tqn + sqn−1
=

(t/s)pn + pn−1

(t/s)qn + qn−1

is given by [0; a1, a2, . . . , an, an+1, . . . , ak], where [an+1; an+2, . . . , ak] is
the continued fraction expansion of t/s. By construction, this rational is
(m, δ,d, η)-good as soon as its denominator is less than or equal to m,
that is, as soon as

tqn + sqn−1 ≤ m. (9.5)

Since different pairs (s, t) yield different images φ(s, t), a lower bound
for the cardinality of the set defined in the lemma is the number of
pairs (s, t) with 1 ≤ s < t and satisfying (9.5). In the (s, t)-plane, the
inequality (9.5) with the extra condition 0 ≤ s < t defines a triangle of
area A = m2/(2qn(qn+qn−1)). This triangle contains at least A−4m/qn

lattice points with positive coordinates. This proves the lemma.

By definition, the denominator of every (m, δ,d, η)-good rational num-
ber is at most m. The next lemma shows that most of the rational num-
bers of denominator at most m are (m, δ,d, η)-good rational numbers.
Observe that, for m ≥ 2, there are exactly m − 1 rational numbers in
(0, 1) of denominator m, hence, there are i(m) := m(m − 1)/2 rational
numbers in (0, 1) of denominator at most equal to m.

Lemma 9.5. Let m, δ, η and d be as above. For every positive real num-
ber ε, there exists an integer m0, depending on δ, η and d, such that

Card{i : ri is (m, δ,d, η)-good}
Card{i : the denominator of ri is at most m} > 1 − ε (9.6)

holds for every m exceeding m0.

Proof. Let Cm denote the left-hand side of (9.6). It follows from
Lemma 9.4 that

Cm ≥ 2
m(m − 1)

∑
a∈Γm,δ,d,η

( m2

2qn(qn + qn−1)
− 4m

qn

)

≥ m

m − 1

∑
a∈Γm,δ,d,η

1
qn(qn + qn−1)

·
(
1 − 16qn

m

)

=
m

m − 1
λ(Γ̃m,δ,d,η) ·

(
1 − 16qn

m

)
,
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where Γ̃m,δ,d,η denotes the set of real numbers in (0, 1) whose first n

partial quotients a1, . . . , an are such that the word a1 . . . an is in Γm,δ,d,η.
We deduce from (9.2) that λ(Γm,δ,d,η) tends to 1 as m tends to infinity.

Furthermore, since the rational is assumed to be (m, δ,d, η)-good, we
have

16qn

m
≤ 16e(1+δ)gn

m
≤ 16e(1+δ)(1−2δ)(log m)

m
≤ 16e2gm−δ,

which tends to zero as m tends to infinity. This proves the lemma.

Lemma 9.6. Let m, δ, η and d be as above. If the rational number ri =
[0; a1, . . . , an, an+1, . . . , ani

] is an (m, δ,d, η)-good rational number, then
we have

ni − n < 32gδn

for every m exceeding e(3g+1)/δ.

Proof. Write s/t = [0; an+1, . . . , ani
]. Then, the denominator qni

of
ri satisfies

m ≥ qni
= tqn + sqn−1 > tqn,

thus,

t <
m

qn
≤ m

e(1−δ)g(−1+(1−2δ)(log m)/g)
≤ egm3δ.

We get from (D.5) that

ni − n ≤ 1 + 3 log t < 1 + 3g + 9δ log m ≤ 10δ log m,

if m exceeds e(3g+1)/δ. By (9.4), this proves the lemma.

Proof of Theorem 9.3 (continued). Let ξaks = [0;x1, x2, . . .] be
the number defined in the theorem. For a positive integer j and a finite
word d = d1 . . . dk on the alphabet Z≥1, set

ρj(d, ξaks) = Card{i : 0 ≤ i ≤ j, xi+1 . . . xi+k = d}.
For a positive integer m, recall that i(m) = m(m − 1)/2 is the index
of the last rational with denominator m and let j(m) be the index cor-
responding to the partial quotient ai(m),ni(m)

in ξaks. This means that
xj(m) = ai(m),ni(m)

.
Observe that there are m rationals with denominator m + 1 and each

of them has an expansion of length at most equal to 3 log(m + 1). This
implies that

j(m + 1) − j(m)
j(m)

≤ 3m log(m + 1)
i(m)

,
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which tends to zero as m tends to infinity. Consequently, to establish
the theorem, it is sufficient to show that

lim
m→+∞

ρj(m)(d, ξaks)
j(m)

= μG(Δd). (9.7)

We estimate ρj(m)(d, ξaks) and, to this end, the number of occurrences
of d in x1x2 . . . xj(m)+k.

Let ε, δ, η be positive real numbers. By Lemma 9.5, there exists an
integer m0, depending only on δ, η and d such that, for every m exceeding
m0, at least (1 − ε)i(m) rational numbers are (m, δ,d, η)-good. Then,
we have

j(m) ≥ (1 − ε)ni(m), (9.8)

while it follows from Lemma 9.6 that

j(m) ≤ n(1 + 32gδ)i(m) + 3εi(m) log m.

We know that, by definition, every (m, δ,d, η)-good rational contains
at least n(μG(Δd) − η) occurrences of d. Consequently,

ρj(m)(d, ξaks)
j(m)

≥ ni(m)(1 − ε)(μG(Δd) − η)
n(1 + 32gδ)i(m) + 3εi(m) log m

,

which implies that

lim inf
m→+∞

ρj(m)(d, ξaks)
j(m)

≥ (μG(Δd) − η)
( 1 − ε

1 + 32g(δ + ε)

)
. (9.9)

On the other hand, the finite word composed of the first n partial quo-
tients of an (m, δ,d, η)-good rational contains at most n(μG(Δd) + η)
occurrences of d. The number N of other possible occurrences of d is
bounded by the sum of the lengths of the continued fraction expansions
of the rational numbers that are not (m, δ,d, η)-good plus the sum of
the lengths of the tails of the (m, δ,d, η)-good rationals. Thus, we have

N ≤ εi(m)(3 log m) + 32gδni(m).

Consequently, by (9.8),

ρj(m)(d, ξaks)
j(m)

≤ ni(m)(μG(Δd) + η) + εi(m)(3 log m) + 32gδni(m)
(1 − ε)ni(m)

,

and we get that

lim sup
m→+∞

ρj(m)(d, ξaks)
j(m)

≤ μG(Δd) + η

1 − ε
+

32g(δ + ε)
1 − ε

.
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Combined with (9.9), this gives (9.7) since ε, η and δ can be taken arbi-
trarily small. This completes the proof of Theorem 9.3.

9.2 On the continued fraction expansion of an
algebraic number

By Theorem D.6, a real number ξ has a periodic (resp. finite) continued
fraction expansion if, and only if, ξ is a quadratic algebraic number (resp.
a rational number). Very little is known about the continued fraction
expansion of an algebraic number ξ = [a0; a1, a2, . . .] of degree at least
three. On the one hand, it follows from Liouville’s Theorem E.5 that the
sequence (an)n≥1 cannot increase too rapidly (see (9.10) and Theorem
9.9 below), but, on the other hand, we do not even know whether (an)n≥1

is unbounded.
A much easier question was posed by Andrzej Schinzel to Harold Dav-

enport. He asked whether, for any given integer N , there exist algebraic
numbers of degree at least three which have infinitely many partial quo-
tients greater than N . A positive answer follows from the next theorem,
established by Davenport [214] and valid for every irrational number.

Theorem 9.7. Let ξ be an irrational number and let p be a prime
number. Then, at least one of the numbers

ξ, ξ + 1/p, . . . , ξ + (p − 1)/p

has infinitely many partial quotients greater than p − 2.

Proof. Let (pn/qn)n≥1 denote the sequence of convergents to the real
number pξ. Since, by (D.2), qn and qn+1 are coprime for n ≥ 1, there
exists an infinite set N of positive integers such that qn is relatively
prime to p for every n in N .

For n in N , let �n be the integer defined by

pn ≡ �nqn (mod p), 0 ≤ �n ≤ p − 1.

There exist an integer � satisfying 0 ≤ � ≤ p − 1, an infinite subset N1

of N , and a sequence of integers (rn)n∈N1 such that

pn = �qn + prn, for n in N1.

Consequently, for n in N1, we get
∣∣∣ξ − �

p
− rn

qn

∣∣∣ = 1
p

∣∣∣pξ − pn

qn

∣∣∣ < 1
pq2

n

,
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and it follows from inequalities (D.3) that infinitely many partial quo-
tients of the real number ξ − �/p are greater than p − 2.

Pass [553] established that, for any given integer N , there exist al-
gebraic integers of arbitrarily large degree which have infinitely many
partial quotients greater than N ; see Exercise 9.3. It follows from The-
orem 1.11 of Einsiedler, Fishman and Shapira [276] that for any given
integer N , every irrational real number has a multiple having infinitely
many partial quotients greater than N . Consequently, there exist alge-
braic integers of every degree ≥ 2 which have infinitely many partial quo-
tients greater than N . We reproduce [276, Theorem 5.5], which should
be compared to Theorem 8.11.

Theorem 9.8. For any positive integer N there exists a real number
M such that, for any irrational number ξ, there exists an integer m

between 1 and M for which mξ has infinitely many partial quotients
greater than N .

When the algebraic number ξ := [0; a1, a2, . . .] is a quadratic number,
the sequence (an)n≥1 is ultimately periodic and the sequence (qn)n≥1

of the denominators of its convergents is ultimately a linear recurrence
sequence. This implies that (q1/n

n )n≥1 is bounded and, even, converges
(use Theorem D.5 or see [283, Section 2.4]). When the degree of ξ is
greater than two, one generally believes that (q1/n

n )n≥1 also converges
or, at least, remains bounded. It is even likely that (qn)n≥1 satisfies (9.2).
However, we seem to be very far away from a proof (or a disproof).

The first general upper estimate for the rate of increase of (qn)n≥1

when ξ is an algebraic number of degree d ≥ 3 follows by combining
Theorem D.1 with Liouville’s Theorem E.5. This easily yields that

log log qn ≤ (log d)n, (9.10)

for every n large enough. A slight sharpening, namely the estimate
log log qn = o(n), can be deduced from Roth’s Theorem E.7. Sharper
upper bounds follow from the quantitative form of Roth’s theorem given
in Theorem E.9.

Theorem 9.9. Let ξ be an irrational, real algebraic number and let
(pn/qn)n≥1 denote the sequence of its convergents. Then, for any ε > 0,
there exists a constant c, depending only on ξ and ε, such that

log log qn ≤ c n2/3+ε .

Theorem 9.9 is the analogue for continued fraction expansions of
Theorem 8.7. Slightly sharper versions of it are proved in [8, 150].
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Proof. For δ > 0, let N (ξ, δ) denote the cardinality of the set of
solutions to the inequality ∣∣∣ξ − p

q

∣∣∣ < 1
q2+δ

,

in integers p, q with gcd(p, q) = 1 and q > 0. Let k ≥ 2 be an integer and
δ1, . . . , δk be real numbers satisfying 0 < δ1 < . . . < δk < 1. Let N be a
(sufficiently large) integer and put S0 = {1, 2, . . . , N}. For j = 1, . . . , k,
let Sj denote the set of positive integers n in S0 such that qn+1 > q

1+δj
n .

Observe that S0 ⊃ S1 ⊃ . . . ⊃ Sk. It follows from Theorem D.1 that, for
any n in Sj , the convergent pn/qn gives a solution to∣∣∣ξ − p

q

∣∣∣ < 1
q2+δj

.

Consequently, the cardinality of Sj is at most N (ξ, δj).
Write

S0 = (S0 \ S1) ∪ (S1 \ S2) ∪ . . . ∪ (Sk−1 \ Sk) ∪ Sk.

Let j be an integer with 1 ≤ j ≤ k. The cardinality of S0 \S1 is bounded
by N and, if j ≥ 2, the cardinality of Sj−1 \ Sj is at most N (ξ, δj−1).
Furthermore, for any n in Sj−1 \ Sj , we get

log qn+1

log qn
≤ 1 + δj . (9.11)

Denoting by d the degree of ξ, we infer from Theorem D.1 and Liouville’s
Theorem E.5 that there exists an integer n0 such that

log qn+1

log qn
≤ d, (9.12)

for every integer n ≥ n0. Assume that N exceeds n0. Since Sk has at
most N (ξ, δk) elements, we deduce from (9.11) and (9.12) that

log qN =
log qN

log qN−1
× log qN−1

log qN−2
× · · · × log qn0+1

log qn0

× log qn0

≤ (log qn0) (1 + δ1)N
k∏

j=2

(1 + δj)N (ξ,δj−1) dN (ξ,δk).

Taking the logarithm of both sides, we get

log log qN ≤ log log qn0 + N log(1 + δ1)

+
k∑

j=2

N (ξ, δj−1) log(1 + δj) + (log d)N (ξ, δk).
(9.13)
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We now select δ1, . . . , δk. We may assume that ε < 1/3. Set ν =
3/(1 − ε) and, for j = 1, . . . , k, set

δj = N−(νk−νj−1)/(νk+1−1).

We check that 0 < δ1 < . . . < δk < N−1/6 and deduce from Theorem
E.9 that N (ξ, δ) ≤ δ−ν for every δ with 0 < δ ≤ δk, if ε is sufficiently
small and N sufficiently large. We then infer from (9.13) that

log log qN ≤ 2k N (νk+1−νk)/(νk+1−1) = 2k N (ν−1)/(ν−ν−k). (9.14)

Choosing then k equal to 	log ε−1
, we get from (9.14) that

log log qN ≤ 3(log ε−1)N ε+2/3,

if N is large enough. This proves the theorem.

Since very little is known on the continued fraction expansion of al-
gebraic numbers of degree greater than or equal to three, there is some
interest in proving various transcendence criteria for continued fraction
expansions. The first results of this type were established by Maillet [475]
and A. Baker [58]. The next theorem is extracted from [42]. Sturmian
sequences are defined in Theorem A.5.

Theorem 9.10. Let a and b be distinct positive integers. Let (sn)n≥1

be a Sturmian sequence on {a, b}. Then, the continued fraction ξ :=
[0; s1, s2, . . .] is transcendental.

Proof. Let (pn/qn)n≥1 be the sequence of convergents to ξ. By The-
orem A.6, there are arbitrarily large integers m such that sm+i = si

for i = 1, . . . , m. Let αm = [0; s1, . . . , sm, s1, . . .] be the quadratic real
number in (0, 1) with purely periodic continued fraction expansion of
period s1, . . . , sm. Since the first 2m partial quotients of ξ and αm co-
incide, it follows from Theorem D.1 that |ξ − αm| < q−2

2m. A rapid cal-
culation shows that αm is a root of the integer polynomial Pm(X) =
qm−1X

2 + (qm − pm−1)X − pm, thus its height H(αm) is less than qm.
Since q2m ≥ q2

m, by Theorem D.5, we get that

|ξ − αm| ≤ H(αm)−4,

and the transcendence of ξ follows from Corollary E.11.

The key ingredient for the proof of Theorem 9.10 is a result of Schmidt
(actually, a special case of the Schmidt Subspace Theorem) asserting
that algebraic numbers of degree greater than two cannot be well
approximated by quadratic numbers. This result is also crucial in
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M. Queffélec’s proof [594] of the transcendence of the continued frac-
tion whose sequence of partial quotients is the Thue–Morse sequence on
{1, 2}; see Exercise 9.4 for a (different) proof.

Further combinatorial transcendence criteria for continued fractions
have been established in [3, 5, 8, 9, 14]. Their proofs rest on the Schmidt
Subspace Theorem E.10, and not only on Corollary E.11. A much stron-
ger result was subsequently obtained in [158]. Let ξ be an irrational real
number and write

ξ = �ξ� + [0; a1, a2, . . .].

Let a denote the infinite word a1a2 . . . over the alphabet Z≥1. A natural
way to measure the intrinsic complexity of ξ is to count the number
p(n, ξ) := p(n,a) of distinct blocks of given length n in the word a.
Exactly as in Definition 4.18, we introduce the notion of entropy of a
real number. If ξ is a rational number, we agree that p(n, ξ) = 1 for
n ≥ 1.

Definition 9.11. The entropy of a real number ξ is the quantity

E(ξ) := lim
n→+∞

log p(n, ξ)
n

.

Let ξ be a real algebraic number of degree at least three. A first step
towards a proof that ξ has unbounded partial quotients would be to get
a good lower bound for p(n, ξ). The first result of this type is Theorem
9.10, which gives that p(n, ξ) ≥ n + 2 holds for every sufficiently large
integer n. This is considerably improved in the next statement.

Theorem 9.12. For any algebraic number ξ of degree at least three, we
have

lim
n→+∞

p(n, ξ)
n

= +∞.

Theorem 9.12, established in [158], is the exact analogue for continued
fraction expansions of Theorem 8.3. Its proof, beyond the scope of the
present monograph, rests as well on the Schmidt Subspace Theorem.

Actually, Theorem 9.12 is a consequence of the following combinato-
rial transcendence criterion and of the analogue for continued fraction
expansions of Lemma 8.4.

For an irrational and not quadratic real number ξ = [0; a1, a2, . . .],
define the exponent v′T (ξ) as the Diophantine exponent (Definition A.2)
of the infinite word a = a1a2 . . . Denoting by (pn/qn)n≥1 the sequence
of convergents to ξ, the following statement is established in [158].
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Theorem 9.13. With the above notation, if (q1/n
n )n≥1 is bounded and

v′
T (ξ) is positive, then ξ is transcendental.

This is the analogue for continued fraction expansions of Theorem 8.2.
We note that Theorem 9.13 applies to a large class of continued fraction
expansions with unbounded partial quotients.

9.3 On β-expansions

Recall that if b ≥ 2 is an integer and if the b-ary expansion of the
irrational number ξ in (0, 1) is given by ξ =

∑
k≥1 ak/bk, then {bnξ} =∑

k≥n+1 ak/bk for n ≥ 0. Denoting by Tb the map defined on [0, 1] by
Tb(x) = {bx}, we observe that an = �bTn−1

b (ξ)� for n ≥ 1. This shows
that, like for the continued fraction expansion, the b-ary expansion of an
irrational number is obtained by iterating a suitable map. This point of
view is used to define expansions to a non-integer base.

Throughout this section, β denotes a real number greater than 1 and
�β
 is equal to β−1 if β is an integer and to �β� otherwise. We may con-
sider writing any positive real number as a series

∑
n≥1 an/βn, where the

an are non-negative integers. The notion of β-expansion was introduced
by Rényi [608] in 1957. We denote by Tβ the transformation defined on
[0, 1] by Tβ(x) = {βx}.
Definition 9.14. The expansion of a number x in [0, 1] to base β, also
called the β-expansion of x, is the sequence (an)n≥1 of integers from
{0, 1, . . . , �β
} such that

x =
a1

β
+

a2

β2
+ · · · + an

βn
+ · · · ,

and defined by one of the following equivalent properties:

∑
k>n

ak

βk
<

1
βn

, for all n ≥ 0;

a1 = �βx�, a2 = �β{βx}�, a3 = �β{β{βx}}�, . . .

an = �βT n−1
β (x)�, for all n ≥ 1.

We then write

dβ(x) = a1a2 . . . an . . .
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For x < 1, the β-expansion coincides with the representation of x

computed by the ‘greedy algorithm’. If β is an integer, then the digits
ai of x lie in the set {0, 1, . . . , β − 1} and dβ(x) corresponds, for x �= 1,
to the usual β-ary expansion of x.

Rényi [608] proved that the transformation Tβ has a unique invariant
probability measure νβ which is absolutely continuous with respect to
the Lebesgue measure on [0, 1]. This measure is ergodic [608] and it is
the unique measure of maximal entropy [347].

We endow the set {0, 1, . . . , �β
}Z≥1 with the lexicographic order de-
noted by <lex, the product topology and the one-sided shift operator
σ defined by σ((sn)n≥1) = (sn+1)n≥1, for any sequence (sn)n≥1 in
{0, 1, . . . , �β
}Z≥1 .

Definition 9.15. The closure of the set of all β-expansions of x in [0, 1]
is called the β-shift and denoted by Sβ .

Parry [552] proved that the shift Sβ is fully determined by dβ(1).

Theorem 9.16. If dβ(1) = a1 . . . aM00 . . . 0 . . ., then s = (sn)n≥1 be-
longs to Sβ if, and only if,

σk(s) <lex a1 . . . aM−1(aM − 1)a1 . . . aM−1(aM − 1)a1 . . . , for k ≥ 1.

If dβ(1) does not terminate with zeros only, then s = (sn)n≥1 belongs to
Sβ if, and only if,

σk(s) <lex dβ(1), for k ≥ 1.

It follows from Theorem 9.16 that Sβ is contained in Sβ′ if, and only
if, β ≤ β′. The next definition is motivated by Theorem 9.16.

Definition 9.17. A block d1 . . . dm on {0, 1, . . . , �β
} is admissible if

σk(d1 . . . dm) <lex dβ(1), for k = 0, 1, . . . ,m − 1.

Blanchard [103] classified the β-shifts into five disjoint classes C1 to
C5, as follows:

– β belongs to C1 if dβ(1) terminates with zeros only;
– β belongs to C2 if dβ(1) is eventually periodic but does not terminate

with zeros only;
– β belongs to C3 if dβ(1) does not contain arbitrarily large strings of

0’s and if dβ(1) is not eventually periodic;
– β belongs to C4 if dβ(1) does not contain some admissible blocks, but

contains arbitrarily large strings of 0’s;
– β belongs to C5 if dβ(1) contains all admissible blocks.
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Elements of Class C1 ∪C2 are called Parry numbers. The term simple
Parry numbers usually denotes elements of Class C1. Classes C1 and C2

are both countable and all their elements are algebraic integers. Fur-
thermore, every Pisot number is a Parry number [83, 626]. The fact that
all Salem numbers would be Parry numbers is a particular instance of
a conjecture of K. Schmidt [626]. This was proved by Boyd [128] for
all Salem numbers of degree 4. However, the same author considered in
[129] a heuristic suggesting the existence of Salem numbers of degree 8
that are not Parry numbers.

Schmeling [625] proved that C3 has Hausdorff dimension one and that
C5 has full Lebesgue measure. Explicit natural examples of transcen-
dental numbers in C3 were given by Allouche and Cosnard [40], and by
Chi and Kwon [186]. Explicit examples of transcendental numbers in C4

were given in [6].
Let πβ : [0, 1] → Sβ denote the map assigning to each x in [0, 1] its β-

expansion. For a block Dm = d1 . . . dm on {0, 1, . . . , �β
}, a real number
x in [0, 1] with dβ(x) = a1a2 . . . and an integer N ≥ 1, set

Aβ(Dm, N, x) = Card{j : 0 ≤ j ≤ N − m, aj+1 = d1, . . . , aj+m = dm}.
Definition 9.18. A real number x in [0, 1] is β-normal if, for every finite
block D on {0, 1, . . . , �β
}, the limit limN→+∞ Aβ(D,N, x)/N exists and
is equal to νβ(π−1

β D).

It follows from Rényi’s result mentioned above that, for any real num-
ber β > 1, almost every real number x in [0, 1] is β-normal. Explicit con-
structions of β-normal numbers have been given in [84, 352] by means
of a Champernowne-type construction.

The next definition was formulated by Schmeling [625].

Definition 9.19. A real number β in (1,+∞) is self-normal if dβ(1) is
β-normal.

Schmeling [625] established that almost all (with respect to the Lebes-
gue measure) real numbers β in (1,+∞) are self-normal. By means of a
method inspired by Chapernowne’s construction, Bertrand-Mathis [90]
constructed uncountably many self-normal numbers.

Unlike for expansions to an integer base, it generally remains open to
decide whether an algebraic number has or does not have an eventually
periodic β-expansion when the base β is algebraic. Moreover, it seems to
be very difficult to describe the β-expansion of an algebraic number when
this expansion is neither finite, nor eventually periodic. In particular,
very little is known on the β-expansion of 1 for an algebraic number β
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greater than 1 which is not in the union of the classes C1 and C2. Some
partial results are given in [6, 262].

Recall that the set N (β), introduced in Definition 6.4, denotes the
set of real numbers ξ such that (ξβn)n≥1 is uniformly distributed mod-
ulo one.

Definition 9.20. For every real number β > 1, we denote by D(β) the
set of real numbers whose β-expansion is β-normal.

There is no reason for the sets D(β) and N (β) to be equal. Bertrand
[81] proved that if β is a Pisot number, then D(β) is contained in N (β).
We do not know whether or not both sets coincide.

Bertrand [82, 85, 86] established that, if β > 1 is such that (βn)n≥1 is
uniformly distributed modulo one, then the set N (β) is strictly contained
in D(β).

Schmeling [625] proved that every x in (0, 1] is β-normal for almost
all β in (1,+∞).

We extend as follows the notion of b-badly approximable numbers,
introduced in Section 7.3.

Definition 9.21. Let β > 1 be a real number which is not a rational
integer. A real number x in [0, 1] is called β-badly approximable if the
blocks of the digit 0 occurring in its β-expansion have bounded length.

Using a suitable modification of Schmidt’s game, Färm, Persson and
Schmeling [299] proved that, for any real number β with 1 < β < 2, the
set of β-badly approximable numbers is α-winning for any real number
α with 0 < α < 1/64. This was previously established by Färm [295]
when dβ(1) is finite.

9.4 Exercises

Exercise 9.1. Study the rate of approximation of ξaks by rational
numbers.

Exercise 9.2. Prove that there exist real numbers having a normal
continued fraction expansion and an arbitrarily prescribed irrationality
exponent.

Exercise 9.3 (cf. [553]). Let p be a large prime number. For n ≥ 1, set
gn(X) = X(X + 1) . . . (X + n − 1). Put f(X) = pgp(X) − 1.

(1) Prove that f(X) is irreducible and has a real root α.
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(2) Use Theorem 9.1 to prove that there is c in {0, 1, . . . , p − 1} such
that p/(α + c) is an algebraic integer of degree p with infinitely many
partial quotients at least equal to p − 2.

Exercise 9.4. Let (an)n≥1 be a non-ultimately periodic sequence of pos-
itive integers. Assume that there are arbitrarily large integers m such
that a1 . . . am is a square (resp., a palindrome). Use Theorem E.10 (resp.,
Exercise E.3) to prove that [0; a1, a2, . . .] is transcendental. Deduce that
the real number [0; 1, 2, 2, 1, 2, 1, 1, 2, . . .], whose sequence of partial quo-
tients is given by the Thue–Morse infinite word on {1, 2}, is transcen-
dental.

9.5 Notes

� Numerical values and speculation for continued fraction expan-
sions of certain algebraic numbers can be found in [420, 609]. Computa-
tional problems connected with the calculation of the continued fraction
of algebraic numbers are discussed in [112, 130]. For statistics on the
continued fraction expansion of π and other classical numbers, see [228].

� Postnikov and Pyateckĭı [585] (see also [583, Chapter 27]) gave
another construction for a normal continued fraction. Postnikov [583]
formulated a sufficient condition for a number to have a normal contin-
ued fraction which is analogous to Theorem 4.6.

� Kraaikamp and Nakada [406] established that a number which is
normal with respect to its regular continued fraction expansion is also
normal with respect to its continued fraction expansion from below, and
that a number is normal with respect to its regular continued fraction
expansion if, and only if, it is normal with respect to its nearest integer
continued fraction expansion.

� Mendès France [503] established that, under the assumptions of
Theorem 9.7, there exists j in {0, 1, . . . , p − 1} such that ‘many’ partial
quotients of ξ + j/p exceed p − 2.

� Berend and Boshernitzan [74] proved that there exist uncountably
many real numbers ξ with the property that the sequence of partial
quotients of each integer multiple nξ tends to infinity.

� It follows from Theorem 9.12 that an infinite continued fraction
whose sequence of partial quotients is generated by a finite automaton is
either quadratic, or transcendental. Transcendence measures for families
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of continued fractions including the continued fractions defined in The-
orem 9.10 are given in [11, 156], following a general method based on
the Quantitative Subspace Theorem and explained in [10].

� The continued fractions [0; 1, 2, 3, 4, . . .] and, much more gener-
ally, [0; a1, a2, a3, . . .], where (an)n≥1 is an arithmetic progression of pos-
itive integers, are transcendental; see [637, p. 134].

� Let p and q be coprime integers with p > q ≥ 2. Mahler’s re-
sult [465] established in Exercise 3.9 implies that, for every ε > 0, the
first partial quotient of ‖(p/q)n‖ is less than 2εn when n is sufficiently
large. For a rational number r, let L(r) denote the length of the short-
est continued fraction equal to r. In 1973, Mendès France [501] asked
whether

sup
n≥1

L((p/q)n
)

= +∞

holds for all coprime integers p and q with p > q ≥ 2. Choquet [193, 194]
gave an affirmative answer to this question. Independently, Pourchet
[587] applied Ridout’s Theorem E.8 to obtain a stronger statement. He
proved that, for all coprime integers p and q with p > q ≥ 2, for any
positive real number ε, the partial quotients of ‖(p/q)n‖ are all less than
2εn when n is sufficiently large. Consequently, L((p/q)n

)
tends to infinity

with n. Pourchet never published his result. Some details of the proof
have been given by van der Poorten [579]; see also [209], [747, Exercise
II.6] and [150]. Under the above hypotheses, it is proved in [150] that
there are arbitrarily large integers n such that L((p/q)n) ≥ (log n)1/5.
Corvaja and Zannier [209] extended Pourchet’s theorem to quotients of
power sums.

� Mendès France [506] asked whether for every real quadratic ir-
rational ξ and every positive M , there exist integers n such that the
length of the period of the continued fraction expansion of ξn exceeds
M . This question was completely solved by Corvaja and Zannier [208].
Results on the length of the period of the continued fraction for values
of the square root of power sums have been given in [166, 639]. Further
questions on continued fraction expansions of real numbers in a fixed
quadratic field are considered in [27, 329, 455, 736].

� Mauduit and Moreira [489, 490] computed the generalized Haus-
dorff dimensions of sets of real numbers having zero entropy.

� For additional results on real numbers with bounded partial quo-
tients, see the survey [646].
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� Fan, Liao and Ma [292] determined the Hausdorff dimension, in
terms of a modified variational principle, of sets of real numbers having
prescribed frequencies of partial quotients in their continued fraction
expansion.

� Let ξ be in (0, 1) and ξn be the rational number obtained by
truncating the decimal expansion of ξ after n digits. The problem to
determine the largest integer kn(ξ) for which the first kn(ξ) partial quo-
tients of the continued fraction expansions of ξ and ξn coincide has
been studied by Lochs [448]. He established the surprising result (com-
pare with Theorem D.7) that, for almost all real numbers ξ, the ratio
kn(ξ)/n tends to 6π−2(log 2)(log 10) = 0.9702 . . . when n tends to infin-
ity; see also [124, 212, 285–287, 739, 740] and [62, 440] when the decimal
expansion is replaced by the β-expansion.

� Smorodinsky and Weiss [658] generalized the Champernowne con-
struction to obtain normal sequences for finite-state ergodic Markov
shifts and for subshifts with a unique measure maximizing the topo-
logical entropy (e.g., the β-shifts). Analogous results were obtained for
Markov shifts by Postnikov [583] and for β-shifts by Ito and Shiokawa
[352]. Furthermore, Bertrand-Mathis [84] constructed so-called ‘Cham-
pernowne sequences’ for general coding systems. The result of Copeland
and Erdős (case m = 1 of Theorem 4.10) has been extended in [91] to
bases β which are Pisot numbers; see also [327].

� Bertrand-Mathis introduced and studied the notion of geometri-
cally normal numbers [85, 86, 89].

� Bertrand-Mathis [88] conjectured that, for real numbers β > 1,
β′ > 1 which are not integers, the Rényi measures νβ and νβ′ coincide if,
and only if, β′ = β +1 and there exist integers a, b such that β2 = aβ +b

and 1 ≤ b < a. She gave some partial results.

� Kwon [415] extended Theorem 3.1 to β-expansions.

� Durner [269] extended Colebrook’s results [200] to β-expansions.

� For β > 1, set G(β) = νβ(π−1
β (0)). This quantity represents the

asymptotic proportion of zeros in the β-expansion of ξ for almost every ξ.
Brown and Yin [142] considered analytic properties of the map β �→ G(β)
and proved, among other results, that if β is not an integer, then G(β)
exceeds 1/β.

� Let α in (0, 1] and β > 1 be algebraic numbers. The asymptotic
behaviour of the function that counts the number of digit changes in the
β-expansion of α is studied in [151].
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� Let v > 0 and β0, β1 be such that 1 < β0 < β1 < 2. Denote
by Dv(β0, β1) the set of real numbers β in (β0, β1) for which there are
infinitely many integers n such that all the digits an, an+1, . . . up to
a�(1+v)n	 in the β-expansion of 1 are equal to 0. Persson and Schmeling
[558] proved that the Hausdorff dimension of Dv(β0, β1) equals 1/(1+v).

� For (α, β) in [0, 1)×(1,+∞) and x in [0, 1] define Tα,β by Tα,βx =
{βx+α}. Faller and Pfister [291] proved that, for every x, α not both 0,
the point x is Tα,β-normal (we omit the definition) for almost every β

in (1,+∞). This extends a result of Schmeling [625] who dealt with the
case x = 1 and α = 0.

� Färm and Persson [298] (see also [299] for a slightly weaker result)
proved that, for every sequence (βj)j≥1 of real numbers greater than 1,
the set of real numbers x such that (Aβj

(D,N, x)/N)N≥1 converges
for no j ≥ 1 and no finite block D on {0, 1, . . . , �βj
} has Hausdorff
dimension one.

� Chaotic and topological properties of β-expansions are studied
in [439]. Simonsen [656] considered β-shifts from the point of view of
computability theory.

� Dubickas [255] obtained various results on sequences generated
by the map x �→ 	βx+γ
 for real numbers β > 1 and γ. In particular, if
x1 = 1 and xn+1 = 	3xn/2
 for n ≥ 1, then, setting wn = 0 if xn is even
and wn = 1 otherwise, the infinite word w = w1w2 . . . on {0, 1} satisfies
p(n,w, {0, 1}) ≥ 1.709n for every sufficiently large integer n.

� An interesting discussion on generalizations of continued fractions
can be found in [479]. For (−β)-expansions, see [443] and the references
therein. For normality in the context of Q-Cantor series, see [48, 476]
and the references therein. Further representations of real numbers by
infinite series are studied in [318] and in [393].
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Conjectures and open questions

We gather open problems encountered in the preceding chapters with
several new ones. Instead of formulating them in terms of questions,
we merely prefer to propose statements whose validity remains open. In
many cases there is no evidence for, or against, the assertion claimed.
We do not recall the partial results obtained towards these problems,
since they can be (hopefully) easily found in the present book.

A large list of open problems in the general theory of distribution
modulo one has been compiled by Strauch and Nair [677]; see also the
monograph [678].

The thematic ordering of the problems essentially follows Chapters 1
to 9.

The first problem was posed by Hardy [333] in 1919.

Problem 10.1. Are there a transcendental number α and a positive real
number ξ such that ||ξαn|| tends to 0 as n tends to infinity?

Very little is known on the sequence of fractional parts of e.

Problem 10.2. To prove that ||en|| does not tend to 0 as n tends to
infinity.

The next problem is usually attributed to Mahler although it does not
seem to have been stated explicitly in his papers.

Problem 10.3. To prove that there exists a positive real number c such
that ||en|| > e−cn, for every n ≥ 1.

Waldschmidt [723] conjectured that a stronger result holds, namely
that there exists a positive real number c such that ||en|| > n−c for
every n ≥ 1. This is supported by metrical results [391].

The spectrum of a sequence (xn)n≥1 of real numbers is the set of
irrational real numbers θ in (0, 1) such that the sequence (xn − nθ)n≥1

214



Conjectures and open questions 215

is not uniformly distributed modulo one. The next problem was posed
by Mendès France [502].

Problem 10.4. Let ξ be a non-zero real number and α > 1 be a real
number. The spectrum of the sequence (ξαn)n≥1 is at most countable.

The next problem was proposed and discussed by Dubickas as Con-
jecture 2 in [250].

Problem 10.5. Let K be a real number field. Then, for any ε > 0, there
exists a lacunary sequence (tn)n≥1 of positive numbers in K such that

lim sup
n→+∞

{ξtn} ≥ 1 − ε, for any real number ξ not in K.

Moreover, each subinterval of [0, 1] of length ε contains a limit point of
the sequence ({ξtn})n≥1.

As was shown in Section 2.5, for every irrational number ξ, the sequence
(ξ2n3m)m,n≥1 is dense modulo one. On the other hand, if the sequence
(mn)n≥1 of positive integers is lacunary, then there exist uncountably
many real numbers ξ such that (ξmn)n≥1 is not dense modulo one.

Problem 10.6. To find a very rapidly increasing sequence (mn)n≥1

of positive integers such that (ξmn)n≥1 is dense modulo one for every
irrational number ξ.

The next problem was formulated in [168].

Problem 10.7. Let ε be a positive real number. Are there arbitrarily
large real numbers α such that α is not a Pisot number and all the
fractional parts {αn}, n ≥ 1, are lying in an interval of length ε/α?

We recall the conjecture of de Mathan and Teulié [483] discussed in
Section 2.6.

Problem 10.8. For every real number ξ and every prime number p, we
have infq≥1 q · ||qξ|| · |q|p = 0.

We continue with a question of Mahler [468].

Problem 10.9. There are no real numbers ξ such that 0 ≤ {ξ(3/2)n} <

1/2 for every positive integer n.

We keep focusing on fractional parts of integral powers of 3/2.

Problem 10.10. The sequence ((3/2)n)n≥1 is dense modulo one.

Since Problem 10.10 seems to be much too difficult, we highlight a
weaker question, which was posed by Mendès France [506].
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Problem 10.11. The sequence ({(3/2)n})n≥1 has an irrational limit
point.

Problem 10.12. There does not exist a real number M such that, for
every n ≥ 1, all the partial quotients of {(3/2)n} are less than M .

We continue with a question related to Waring’s problem; see Sec-
tion 3.7.

Problem 10.13. To find an upper bound for the number of positive
integers n such that ||(3/2)n|| < (3/4)n.

Levin [433] established the existence of normal numbers with small
discrepancy, but it is unclear whether his result is the best possible.

Problem 10.14. Let b ≥ 2 be an integer. To find a real number ξ and
a positive constant c such that DN ((ξbn)n≥1) ≤ c(log 2N)/N for every
N ≥ 1.

Problem 10.15. To find a simple construction of a real number nor-
mal both to base 2 and to base 3. To find a simple construction of an
absolutely normal real number.

Problem 10.16. To prove the existence of a real number ξ such that
DN ((ξbn)n≥1) ≤ c(log 2N)κ/N for every N ≥ 1 and every b ≥ 2, where
c and κ are positive constants depending only on b and ξ.

The next problems, suggested by Rivoal [611], are reproduced in [724].

Problem 10.17. Let b ≥ 2 be an integer. To give an explicit example of
a positive real number ξ which is simply normal (resp., normal) to base
b and for which 1/ξ is not simply normal (resp., not normal) to base b.

Problem 10.18. To give an explicit example of a positive real num-
ber ξ which is absolutely normal and for which 1/ξ does not share this
property.

The next question is extracted from [25]. Recall that, for an integer
b ≥ 2, the set of real numbers normal to base b is denoted by N (b).

Problem 10.19. Do there exist irrational numbers γ such that N (b) +
γ = N (b) for every integer b ≥ 2?

Only very little is known on the expansions of a given real number to
different bases. A general question, which was investigated in [155], can
be formulated as follows.

Problem 10.20. Are there irrational numbers having a ‘simple’ expan-
sion to base 2 and a ‘simple’ expansion to base 3?
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By ‘simple’, we mean for instance with low block complexity, or with
few digit changes, or with few non-zero digits, etc. Of course, 2 and 3
do not play any particular role in Problem 10.20. From Problem 10.21
until Problem 10.29, we denote by r and s any two multiplicatively
independent positive integers.

The next problems make the question in Problem 10.20 a little more
precise.

Problem 10.21. Find an increasing function f such that p(n, ξ, r) +
p(n, ξ, s) exceeds f(n) for every irrational number ξ and every sufficiently
large (in terms of ξ, r, s) integer n.

Problem 10.22. There exists a positive real number ξ such that

lim
n→+∞

NZ(n, ξ, r) + NZ(n, ξ, s)
n

= 0.

Problem 10.23. Give an explicit example of a real irrational number
which is rich neither to base r, nor to base s.

Problem 10.24. There are no irrational numbers ξ such that the
sequences ({ξrn})n≥1 and ({ξsn})n≥1 both have only countably many
limit points.

Problem 10.24 is probably easier to solve than [316, Conjecture 2],
reproduced below as Problem 10.25. For an integer b ≥ 2 and a real
number ξ, we denote by Λb(ξ) the set of limit points of the sequence
({ξbn})n≥1.

Problem 10.25. For every irrational number ξ, the sum of the Haus-
dorff dimensions of Λr(ξ) and of Λs(ξ) is at least equal to 1.

Problem 10.25 is motivated by the following celebrated conjecture of
Furstenberg [315, 477].

Problem 10.26. The Lebesgue measure is the unique non-atomic ergodic
measure on the torus which is invariant both under multiplication by 2
and under multiplication by 3.

Partial results can be found in [301, 346, 348, 349, 355, 356, 444, 495,
615].

We continue on the same topic with [316, Conjecture 2].

Problem 10.27. In the representation of rn in base rs every digit and
every combination of digits occur as soon as n is sufficiently large.

Problem 10.27 should be compared with the next problem, which was
raised by Schmidt [627].
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Problem 10.28. For any fixed ε and k, the number of n ≤ N for which
the representation of rn in base s is not (ε, k)-normal (in the sense of
Besicovitch) is o(N) as N tends to infinity.

We display a further question on representations of integers in different
integer bases. A finite Sturmian word is any finite block of an infinite
Sturmian word.

Problem 10.29. Prove that there are only finitely many powers of r

whose representation in base s is a finite Sturmian word.

The next problem was proposed by Colebrook and Kemperman [201]
and extends a question of Volkmann [716]. For an integer b ≥ 2 and a
real number ξ, the sets I(b) and V (ξ, b) are defined in Section 4.7.

Problem 10.30. Let (sn)n≥1 be a sequence of positive integers such
that sn and sm are multiplicatively independent for any distinct positive
integers m and n. For every n ≥ 1, let Vn be a non-empty and closed
subset of I(sn). There exists a real number ξ such that V (ξ, sn) = Vn

for every n ≥ 1.

Hertling [342] asked whether Schmidt’s Theorem 6.3 has an analogue
with normality replaced by richness.

Problem 10.31. Let R ∪ S be a partition of the set of integers greater
than or equal to 2 into two classes such that any two multiplicatively
dependent integers fall in the same class. There are real numbers which
are rich to every base from R but not rich to every base from S.

The next problem is a slightly modified form of an open problem given
on [46, p. 403].

Problem 10.32. Is there an irrational real number whose expansions in
two multiplicatively independent bases can both be generated by a finite
automaton?

We now radically change our point of view. Rather than looking at
the expansions of one given number to several integer bases, we take an
infinite word w on {0, 1} which we use to define two real numbers, a
first one whose binary expansion is given by w and a second one whose
ternary expansion is given by w. The next problem appeared at the end
of a paper of Mendès France [504]; see also [505]. According to him (see
the discussion in [46, p. 403]) it was proposed by Mahler; however, we
were unable to find any mention of it in Mahler’s works.

Problem 10.33. For an arbitrary infinite sequence (εk)k≥1 of 0’s and
1’s, the real numbers

∑+∞
k=1 εk/2k and

∑+∞
k=1 εk/3k are algebraic if, and

only if, both are rational.
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The following more general question is discussed in [157].

Problem 10.34. Let P be a property valid for almost all real numbers.
Let b ≥ 2 be an integer. Let b1 and b2 be distinct integers, at least equal
to b. Let (εk)k≥1 be a sequence taking its values in {0, 1, . . . , b−1}, which
is not ultimately periodic. Is it true that at least one among the numbers

ξ1 :=
∑
k≥1

εk

bk
1

and ξ2 :=
∑
k≥1

εk

bk
2

(10.1)

satisfies property P?

By arguing as in Section 7.6, we see that the answer to Problem 10.34
is negative when P is the property ‘not being a Liouville number’ or ‘not
being badly approximable’. Theorem 1 from [157] gives explicit examples
of integers b ≥ 2 and b1 > b with b1 �= b2 and sequences (εk)k≥1 taking
their values in {0, 1, . . . , b−1} such that, setting b2 = b2, the irrationality
exponents of ξ1 and ξ2 defined by (10.1) are different.

We copy an open problem already discussed in Section 7.1, where the
notation used in its statement is introduced.

Problem 10.35. Let (vb)b∈B1 and (v′
b)b∈B be sequences of real numbers

or +∞ satisfying

v1 ≥ 1, 0 ≤ vb ≤ v′
b ≤ v1, for every b ∈ B,

and

vb2 + 1 ≥ ρ(b1, b2)
log b1

log b2
(vb1 + 1),

for every b1, b2 ∈ B such that every prime factor of b1 divides b2. Prove
that there exist real numbers ξ such that

v1(ξ) = v1, vb(ξ) = vb and v′b(ξ) = v′b, for every b ∈ B.

By Theorem 7.8, there exist real numbers which are b-badly approx-
imable for every b ≥ 2.

Problem 10.36. There exist a real number ξ and a positive real number
c such that ||bnξ|| > b−c for every base b ≥ 2 and every integer n ≥ 0
(resp., every integer n sufficiently large in terms of b).

There exist Liouville numbers in the middle third Cantor set K and
there are Liouville numbers which are normal to base 2. Furthermore, K

contains numbers normal to base 2. But we do not know whether there
are real numbers with all these three properties.



220 Conjectures and open questions

Problem 10.37. Prove that the middle third Cantor set contains Liou-
ville numbers which are normal to base 2.

The above problem concerns the intersection of three sets, any two of
them having non-empty intersection.

The exponents wn and w∗
n are introduced in Definition E.12.

Problem 10.38. What can be said on the approximation of points in
the middle third Cantor set K by algebraic numbers? Are there points ξ

in K such that wn(ξ) differs from w∗
n(ξ) for some integer n ≥ 2?

Problem 10.39. Are there elements of the middle third Cantor set with
a prescribed value for the exponent v2?

Problem 10.40. Let (nj)j≥1 be an increasing, lacunary sequence of pos-
itive integers. Find the irrationality exponent of the real number∑

j≥1 2−nj .

Problem 10.41. Determine the Hausdorff dimension of the set of badly
approximable numbers with prescribed digit frequencies.

The next problem was proposed in [19] for b = 2.

Problem 10.42. Let b ≥ 2 be an integer. Is it true that the b-ary ex-
pansion of every irrational algebraic number contains arbitrarily large
squares? Is it true that the b-ary expansion of every irrational algebraic
number contains arbitrarily large palindromes?

Problem 10.43. Let b ≥ 2 be an integer. A real number whose b-ary
expansion begins in arbitrarily large palindromes is either rational or
transcendental.

A morphic number is a real number ξ whose expansion in some integer
base b ≥ 2 is a morphic sequence (see [46] for a precise definition).
As proved in [275], its complexity function satisfies p(n, ξ, b) = O(n2).
Furthermore, any automatic number is a morphic number.

Problem 10.44. Irrational morphic numbers are transcendental.

Problem 10.45. The real number e is not an automatic number.

The notion of deterministic sequence has been defined in [359, 604].
The next problem was posed by Mendès France [504].

Problem 10.46. Let b ≥ 2 be an integer. Is the b-ary expansion of an
irrational algebraic number deterministic?

Let b ≥ 2 be an integer. Beside the block complexity of a real number
written in base b, we may define as well its infinite complexity. For an
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infinite word w on the alphabet {0, 1, . . . , b − 1} and for any positive
integer n, we let p∞(n,w, b) denote the number of distinct blocks of
n letters occurring infinitely often in w. Furthermore, for an irrational
number ξ whose b-ary expansion is given by ξ = �ξ� +

∑
k≥1 ak/bk, we

set p∞(n, ξ, b) = p∞(n,a, b) with a = a1a2 . . . Obviously, for n ≥ 1, we
have 1 ≤ p∞(n, ξ, b) ≤ bn, and p∞(n, ξ, b) ≥ n + 1 if ξ is irrational.

Problem 10.47. Give a non-trivial lower bound for p∞(n, ξ, b) when ξ

is an algebraic irrational number.

We cannot exclude that p∞(n,
√

2, b) = n + 1 for every b ≥ 2 and
every n ≥ 1.

For integers b ≥ 2 and c ≥ 2, let (c)b denote the sequence of digits
of c in its representation in base b. Mahler [471] proved that the real
number 0 · (c)10(c2)10 . . . is irrational. This was subsequently reproved
and extended to every base b ≥ 2 by Bundschuh [170] and Niederreiter
[539]; see also [59, 172, 647, 652].

Problem 10.48. With the above notation, prove that, for arbitrary
integers b ≥ 2 and c ≥ 2, Mahler’s number 0 · (c)b(c2)b . . . is transcen-
dental and normal to base b.

The question of the normality of 0.248163264 . . . to base ten was
already posed by Pillai [561].

The next two problems are extracted from [597].

Problem 10.49. Construct a real number which is normal to some given
integer base and whose continued fraction expansion is normal.

Problem 10.50. Let b ≥ 2 be an integer. There is a real number whose
continued fraction expansion is normal and whose b-ary expansion has
a low block complexity.

A real number ξ being given, it is very rare that we can say something
at the same time on its continued fraction expansion and on its expansion
to some integer base (but see Section 7.6).

Problem 10.51. Is there a real number ξ whose continued fraction
expansion is normal and which is not normal to a given integer base
b ≥ 2? which is absolutely non-normal?

Problem 10.52. There are irrational numbers with a ‘simple’ expansion
in base 2 and a ‘simple’ continued fraction expansion.

Problem 10.53. There is an irrational real number ξ such that E(ξ) <

log 2 and E(ξ, b) < log b for some integer b ≥ 2 (resp., for every integer
b ≥ 2).
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Recall that μK denotes the standard measure on the middle third
Cantor set.

Problem 10.54. Are μK-almost all elements of the middle third Cantor
set normal with respect to the Gauss measure?

Berend and Boshernitzan [74] formulated Problem 10.55 and gave a
positive answer to it when ξ is quadratic; see also [276, Question 5.7].

Problem 10.55. Let ξ be a badly approximable real number. Prove that,
for any finite block D of positive integers, there exist arbitrarily large
integers n such that the block D appears infinitely often in the sequence
of partial quotients of nξ viewed as an infinite word.

The next problem was posed by Mendès France; see [487], where fur-
ther interesting open problems are proposed.

Problem 10.56. If ξ has a normal continued fraction expansion, then
qξ has the same property for every non-zero rational number q.

The following problems are motivated by results presented in
Chapter 9.

Problem 10.57. For every integer N ≥ 2 and d ≥ 2, there exist algebraic
units of degree d which have infinitely many partial quotients greater
than N .

Problem 10.58. An irrational real number whose sequence of partial
quotients is a morphic sequence is quadratic or transcendental.

Problem 10.59. For a real number β > 1, compare the sets N (β)
and D(β).

Problem 10.60. For almost all β in the middle third Cantor set, the
real number 1 + β is self-normal.

We conclude with a problem proposed by Mendès France [498].

Problem 10.61. Let α > 2 be a Pisot number and set

C(α) :=
{
(α − 1)

∑
k≥1

εkα−k : εk ∈ {0, 1}}.
For every ξ in C(α) the sequence (ξαn)n≥1 is not uniformly distributed
modulo one.



Appendix A

Combinatorics on words

Taking a point of view from combinatorics on words has helped to ob-
tain several important theorems in Diophantine approximation, some
of which are discussed in the present book. In this appendix, we gather
various results, some are classical, others less well known. Standard text-
books on combinatorics on words include [46, 310, 450].

A.1 Definitions

Let A be a finite or infinite set. A finite word W on the alphabet A is
either the empty word ε, or a finite block of elements from A. The set
of all finite words on A is a monoid for the concatenation. The length
of a finite word W on the alphabet A, that is, the number of letters
composing W , is denoted by |W |. For any positive integer �, we write W �

for the word W . . . W (� times repeated concatenation of the word W )
and W∞ for the infinite word constructed by concatenation of infinitely
many copies of W . More generally, for any positive real number x, we
denote by W x the word W �x	W ′, where W ′ is the prefix of W of length
	(x − �x�)|W |
. In particular, we can write

aabaaaabaaaa = (aabaa)12/5 = (aabaaaabaa)6/5.

Any word W x with x > 1 and W finite is called an x-power (a square
when x = 2 and a cube when x = 3). An overlap is any finite word of
the form wWwWw, where w ∈ A and W ∈ A∗.

A finite, non-empty word W = w1 . . . wn is a palindrome if wj =
wn−j+1 for j = 1, . . . , n.

For a finite or infinite word w on the alphabet A and for any positive
integer n, we denote by p(n,w,A) the number of distinct blocks (or
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subblocks, or factors) of length n occurring in w. Obviously, putting
CardA = +∞ if A is infinite, we have

1 ≤ p(n,w,A) ≤ (CardA)n,

and both inequalities are sharp. Moreover, the function n �→ p(n,w,A)
is non-decreasing. It measures the complexity of the word w.

Definition A.1. An infinite word w = w1w2 . . . is ultimately periodic
if there exist integers r ≥ 0 and s ≥ 1 such that

wn+s = wn, for every n ≥ r + 1.

The word wr+1wr+2 . . . wr+s is a period of w. If r can be chosen equal
to 0, then w is periodic, otherwise, w1 . . . wr is a preperiod of w.

If b ≥ 2 is an integer and A is the alphabet {0, 1, . . . , b − 1}, then we
write p(·,w, b) instead of p(·,w,A).

The Diophantine exponent of an infinite word a, written over a finite
or an infinite alphabet, has been introduced in [6].

Let ρ ≥ 1 be a real number. We say that a satisfies Condition (*)ρ

if there exist two sequences of finite words (Un)n≥1, (Vn)n≥1 and a se-
quence of positive real numbers (wn)n≥1 such that:

(i) for any n ≥ 1, the word UnV wn
n is a prefix of the word a;

(ii) for any n ≥ 1, |UnV wn
n |/|UnVn| ≥ ρ;

(iii) the sequence (|V wn
n |)n≥1 is strictly increasing.

Definition A.2. The Diophantine exponent of the infinite word a, de-
noted by Dio(a), is the supremum of the real numbers ρ for which a

satisfies Condition (*)ρ.

It follows from its definition that the Diophantine exponent of every
ultimately periodic word is infinite.

A.2 Sturmian words

We begin this appendix with a seminal result from Morse and Hedlund
[524, 525].

Theorem A.3. Let w be an infinite word over a finite or infinite alpha-
bet A. If w is ultimately periodic, then there exists a positive constant C

such that p(n,w,A) ≤ C for every positive integer n. Otherwise, we
have p(n + 1,w,A) ≥ p(n,w,A) + 1 for every n ≥ 1, thus,

p(n,w,A) ≥ n + 1.
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Proof. Throughout the proof, we write w = w1w2 . . . and p(·,w)
instead of p(·,w,A).

Let w be an ultimately periodic infinite word, and assume that it has a
preperiod of length r and a period of length s. Fix h = 1, . . . , s and let n

be a positive integer. For every j ≥ 1, the block of length n starting at
wr+js+h is the same as that starting at wr+h. Consequently, there cannot
be more than r + s distinct blocks of length n, thus, p(n,w) ≤ r + s.

Let w be an infinite word for which there exists an integer n0 ≥ 1 such
that p(n0,w) = p(n0 + 1,w). This means that every block of length n0

extends uniquely to a block of length n0 + 1. It implies that p(n0,w) =
p(n0 + j,w) holds for every positive integer j. By definition of p(n0,w),
two among the words wj . . . wn0+j−1, j = 1, . . . , p(n0,w) + 1, are the
same. Consequently, there are integers k and � with 0 ≤ k < � ≤ p(n0,w)
and wk+m = w�+m for m = 1, . . . , n0. Since every block of length n0

extends uniquely to a block of length n0 + 1, this gives wk+m = w�+m

for every positive integer m. This proves that the word w is ultimately
periodic.

Consequently, if the infinite word w is not ultimately periodic, then
the inequality p(n + 1,w) ≥ p(n,w) + 1 holds for every positive integer
n. Then, one has p(1,w) ≥ 2 and an immediate induction shows that
p(n,w) ≥ n+1 for every n ≥ 1. The proof of the theorem is complete.

Corollary A.4. Let w be an infinite word over a finite alphabet A.
Let n be a positive integer. If w is not ultimately periodic, then there
exist letters a, a′, b, b′ in A and finite words V,W of length n such that
a �= a′, b �= b′ and each of the words aV, a′V,Wb,Wb′ occurs infinitely
often in w.

Proof. For m ≥ 0, let wm be the word w deprived of its first m

letters. By Theorem A.3, since p(n+1,wm,A) ≥ 1+ p(n,wm,A), there
exist finite words Vm,Wm of length n and letters am, a′

m, bm, b′m such
that am �= a′

m, bm �= b′m and amVm, a′
mVm,Wmbm,Wmb′m occur in wm.

Since the alphabet A is finite, there are finite words V,W of length n

and letters a, a′, b, b′ in A such that a �= a′, b �= b′ and aV, a′V,Wb,Wb′

occur infinitely often in w.

The next theorem shows the existence of uncountably many infinite
words w on {0, 1} such that p(n,w, 2) = n+1 for every positive integer n.

Theorem A.5. Let θ and ρ be real numbers with 0 < θ < 1 and θ

irrational. For n ≥ 1, set

sn :=
⌊
(n + 1)θ + ρ

⌋− ⌊nθ + ρ
⌋
, s′n :=

⌈
(n + 1)θ + ρ

⌉− ⌈nθ + ρ
⌉
,
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and define the infinite words

sθ,ρ := s1s2s3 . . . , s′
θ,ρ := s′1s

′
2s

′
3 . . .

Then we have

p(n, sθ,ρ, 2) = p(n, s′θ,ρ, 2) = n + 1, for n ≥ 1.

The infinite words sθ,ρ and s′
θ,ρ are called the Sturmian words with slope

θ and intercept ρ. Conversely, for every infinite word w on {0, 1} such
that p(n,w, 2) = n + 1 for n ≥ 1, there exist real numbers θw and ρw

with 0 < θw < 1 and θw irrational such that w = sθ,ρ or s′
θ,ρ .

For θ and ρ as in Theorem A.5, the words sθ,ρ and s′θ,ρ differ only by
their first letters. Classical references on Sturmian words include [310,
Chapter 6] and [450, Chapter 2].

The combinatorial structure of Sturmian words has been much stud-
ied. A first result was proved in [305], and the current state of the art is
summarized in the next two theorems.

Theorem A.6. Let θ be a real irrational number in (0, 1) and s be a
Sturmian word of slope θ. There are arbitrarily long finite words W such
that s begins with W 2. Moreover, if the sequence of partial quotients of θ

is bounded, then there exist a positive real number ε and arbitrarily long
finite words W such that s begins with W 2+ε .

The first statement of Theorem A.6 was proved in [42]; see also [256].
The last statement is more difficult. It was shown by Berthé, Holton and
Zamboni [79], but, since it is not pointed out there, we briefly explain
how it follows from the results proved in that paper.

Proof. Since the sequence a1, a2, . . . of partial quotients of θ is boun-
ded, there are positive integers s ≥ 2 and t such that either

ak = s, ak+1 = t, for infinitely many k,

or

ak = ak+1 = 1, ak+2 = t, for infinitely many k.

Setting ε = (4(s + 1)(t + 1) + 1)−1, the combination of Propositions 5.1
and 5.2 from [79] asserts then that, whatever the value of the intercept
ρ, there are arbitrarily long finite words W such that the Sturmian word
sθ,ρ begins with W 2+ε .

Theorem A.6 does not cover the (easier) case of Sturmian words whose
slope has an unbounded sequence of partial quotients, which was treated
in [13].
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Theorem A.7. Let θ in (0, 1) be a real number having an unbounded
sequence of partial quotients. Let s be a Sturmian word of slope θ. Then,
the Diophantine exponent of s is infinite.

Proof. This follows from the proof of [13, Proposition 11.1].

The next result, established by Cassaigne [179], describes the non-
ultimately periodic infinite words with very low complexity.

Theorem A.8. Let b ≥ 2 be an integer and w be an infinite word on
{0, 1, . . . , b − 1}. Assume that there are positive integers k and n0 such
that

p(n,w, b) = n + k, for n ≥ n0.

Then there exist finite words W,W0,W1 on {0, 1, . . . , b− 1} and a Stur-
mian word s on {0, 1} such that

w = Wφ(s),

where φ(s) denotes the infinite word obtained by replacing in s every 0
by W0 and every 1 by W1.

A word w as in Theorem A.8 is sometimes called a quasi-Sturmian
word; see [42].

A.3 The Thue–Morse infinite word

The Thue–Morse word was introduced by Thue [685] and Morse [523],
independently; see [45, 488] and [46, pp. 208–209] for further references.

Definition A.9. The Thue–Morse word t = (tn)n≥0 on the alphabet
{a, b} is defined for n ≥ 0 by tn = a if the sum of digits in the binary
representation of n is even and by tn = b otherwise. Thus, we have

t = abbabaabbaababbabaababba . . .

Among the many definitions of t, we emphasize that t is the fixed point
starting with a of the morphism τ defined by τ(a) = ab and τ(b) = ba.

Theorem A.10. The Thue–Morse word t contains no overlap. In par-
ticular, it is not ultimately periodic.

This is an important property of the infinite word t. Although there
are uncountably many overlap-free words on {a, b}, the word t is, roughly
speaking, the ‘canonical’ example.
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Proof. This is Theorem 1.6.1 in [46]. An alternative proof is given in
[488]; see Exercise A.2.

In this section, we are mainly interested in less classical properties of
the infinite word t and of infinite words related to it.

We begin with a structure theorem of Karhumäki and Shallit [372] for
the infinite words having only short overlaps. Recall that ε denotes the
empty word.

Theorem A.11. Let x be an infinite word on {a, b} which does not
contain any 7/3-powers. Then, there exist W in {ε, a, b, aa, bb} and an
infinite word y on {a, b} such that x = Wτ(y) and y does not contain
any 7/3-powers.

We introduce an infinite word closely related to t.

Definition A.12. Let z be the fixed point of the morphism σ defined
by σ(1) = 2 and σ(2) = 211. Thus, we have

z = 211222112112112221122211 . . .

The infinite word z is not ultimately periodic; see Exercise A.3. Set
A0 = 2, A1 = 211, and, for an integer k ≥ 2, set Ak = σk(2). The
sequence of finite words (Ak)k≥0 converges to the infinite word z. An
immediate induction shows that Ak = Ak−1Ak−2Ak−2 for k ≥ 2.

Let us define an ordering � for the (finite and infinite) words over the
alphabet {1, 2}. Let v and v′ be distinct words such that neither word
is a prefix of the other. Permuting v and v′ if necessary, there exists a
smallest positive integer k such that v and v′ have the same prefix of
length k−1 and their kth letters are 2 and 1, respectively. Then, we put
v � v′ if k is odd and v′ � v if k is even.

As in the proof of Corollary A.4, for a non-negative integer m and an
infinite word v, we write vm for the word obtained from v by deleting
its first m letters.

Theorem A.13. The word z is the smallest non-periodic infinite word
satisfying z � zm for every integer m ≥ 1.

Proof. Let W be the set of all infinite non-periodic words v over the
alphabet {1, 2} satisfying v � vm for every positive integer m. We need
to show that z is in W and that, for any v ∈ W \ {z} we have v � z.

Let v be in W. Since v is non-periodic, it contains infinitely many
occurrences of 2, thus, it must begin with a 2. Similarly, it contains
infinitely many blocks 21, thus it must begin with 21. If v begins with 212
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or with 2111, then v � z. So, we can assume that v belongs to the subset
W1 of W composed of the words beginning with 2112. In particular,
v contains no occurrence of 212 and of 2111. It must be obtained by
concatenation of the blocks

A0 = 2 and A1 = 211.

Since v is non-periodic, it contains infinitely many occurrences of the
block A1A0 = 2112. If v begins with A1A0A1 or A1A0A0A0A0 or
A1A0A0A0A1, then v � z, thus v begins with A1A0A0A1 and it be-
longs to the subset W2 of W composed of the words beginning with
A2 and obtained by concatenation of the blocks A1 and A2. Since the
lengths of A2 and A1 have the same parity, as do the lengths of A1 and
A0, we can repeat the same argument with A2 and A1 in place of A1

and A0, respectively, and so on. We thus obtain a sequence of sets

· · · ⊂ W3 ⊂ W2 ⊂ W1 ⊂ W.

Here, Wk is the subset of W composed of the words v beginning with
Ak and obtained by concatenation of the blocks Ak−1 and Ak, and such
that v � z. But the intersection of all the sets Wk is the word be-
ginning with Ak for every k ≥ 1, that is, the word z. We have also
established that z has no subword or the form 212, 2111, AkAk−1Ak,
AkAk−1Ak−1Ak−1Ak−1, AkAk−1Ak−1Ak−1Ak for k ≥ 1.

The next result follows from the proof of Theorem A.13.

Theorem A.14. Let v be a non-periodic word and m ≥ 2 be an integer.
Then, either Am occurs infinitely many times in v, or there exists a finite
word W such that W � z and W occurs infinitely many times in v.

Proof. Assume that Am appears in v only finitely many times. If
m = 2, then v contains infinitely many occurrences either of 212 or
of 2111. Otherwise, v contains infinitely many occurrences either of 212,
or of 2111, or, for some � = 1, . . . ,m − 1, of A�A�−1A�, or, for some
� = 1, . . . ,m − 2, of A�A�−1A�−1A�−1A�−1, or of A�A�−1A�−1A�−1A�.
Since these words are all greater than z, the theorem is proved.

Lemma A.15. With respect to the ordering �, the largest word of length
four which is a subblock of z is 2112 and the smallest word of lenth five
which is a subblock of z is 12112.

Proof. The four largest words of length four are

2121 � 2122 � 2111 � 2112
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and the four smallest words of length five are

12121 ≺ 12122 ≺ 12111 ≺ 12112.

The definition of z implies that 111 and 212 are not subblocks of z.
But 2112 and 12112 are.

Let u = u1u2 . . . = 12112221121 . . . be the word formed by the number
of consecutive symbols in the Thue–Morse word t. The word u is not
ultimately periodic. It is written on the alphabet {1, 2}, since t does not
contain cubes.

Theorem A.16. The word z coincides with the infinite word u2u3 . . .

Proof. This statement can be proved using the strategy described in
[39]. The details are left to the reader as Exercise A.4.

A.4 Exercises

Exercise A.1. Let v = v0v1v2 . . . and v′ = v′0v
′
1v

′
2 . . . be distinct infi-

nite words on the alphabet Z≥1. Establish that v � v′ if, and only if,
[v0; v1, v2, . . .] > [v′0; v

′
1, v

′
2, . . .].

Exercise A.2. Prove that every subblock W of length ≥ 4 of t can
be factorized in a unique way under the form ε1W ε2 = τ(W ′), with
|W ′| < |W |. Assume that there exists a subblock of t of the form
w1 . . . w�w1 . . . w�w1, where � ≥ 4 and w1, . . . , w� are in {a, b}. Prove
that the above property of unique facorization implies that � must be
even. For � even, show that there exists a word W ′ of first letter w′ and
of length |W ′| < � such that W ′W ′w′ is a subblock of t. Conclude.

Exercise A.3. Prove that the infinite word z is not ultimately periodic.

Exercise A.4. Prove Theorem A.16.



Appendix B

Some elementary lemmata

Several proofs require some classical lemmas from number theory, which
we state and establish below.

We use the following notation. For a non-zero integer a and a prime
number p, we write ordp(a) for the largest integer e such that pe di-
vides a. Furthermore, if p does not divide a and if h is a positive integer,
then ord(a, ph) denotes the smallest positive integer � such that a� is
congruent to 1 modulo ph.

Theorem B.1. Let n ≥ 2 be an integer, and x, y be non-zero relatively
prime integers. Then we have

gcd
(
x − y,

xn − yn

x − y

)
= gcd(x − y, n).

Proof. Observe that the binomial theorem gives

xn − yn

x − y
=

((x − y) + y)n − yn

x − y

= (x − y)n−1 +
(

n

1

)
y(x − y)n−2

+ · · · +
(

n

n − 2

)
yn−2(x − y) + nyn−1

= a(x − y) + nyn−1,

for a suitable positive integer a. Since x − y and y are coprime, this
implies the theorem.

Lemma B.2. Let a and b be distinct non-zero integers. Let p be an odd
prime number which divides a− b but does not divide b. Then, for every
positive integer r, we have

ordp(apr − bpr

) = r + ordp(a − b). (B.1)

231
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If 2 divides a− b and b is odd, then, for every positive integer r, we have

ord2(a2r − b2r

) ≥ r + ord2(a − b). (B.2)

Proof. Write a = b + kpe with e ≥ 1 and gcd(k, p) = 1. By the
binomial theorem, we get that

ap = bp +
p−1∑
j=1

(p

j

)
bp−j(kpe)j + kpppe.

Since p divides p(p − 1)/2, we see that

ordp(ap − bp − pbp−1kpe) ≥ min{1 + 2e, 3e},
hence

ordp(ap − bp) = ordp(pbp−1kpe) = 1 + e = 1 + ordp(a − b).

This proves (B.1) when r = 1. An easy induction on r gives then (B.1).
If 2 divides a − b and a is odd, then ord2(a + b) ≥ 1 and

ord2(a2 − b2) = ord2(a + b) + ord2(a − b) ≥ 1 + ord2(a − b).

This proves (B.2) when r = 1. An easy induction on r gives then (B.2).

Corollary B.3. Let p be an odd prime and b be an integer not divisible
by p. For any positive integer e, we have

ord(b, pe) = pe−hord(b, p),

with h = min{e, ordp(bord(b,p) − 1)}.
Proof. Set � = ord(b, p). Let t be a positive integer and write t = pem,
with e ≥ 0 and m not divisible by p. By Theorem B.1 applied with
n = m, x = b� and y = 1, we get that p does not divide (b�m−1)/(b�−1),
since p divides b� − 1 but does not divide m. This implies that

ordp(b�m − 1) = ordp(b� − 1).

We then deduce from Lemma B.2 that

ordp(b�mpe − 1) = e + ordp(b�m − 1),

hence

ordp(b�t − 1) = ordp(t) + ordp(b� − 1).

This proves the corollary.
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Corollary B.4. Let a be a positive integer. For any positive integer
m, the integer (a + 1)am − 1 is divisible by am+1.

Proof. Let p be a prime divisor of a and set v = ordp(a). Let m be a
positive integer. By Lemma B.2, we have

ordp

(
(a + 1)pvm − 1

) ≥ vm + ordp(a) = v(m + 1),

thus (a + 1)pvm − 1 is divisible by pv(m+1). Since pvm divides am, the
integer (a + 1)am − 1 is divisible by (a + 1)pvm − 1, hence, by pv(m+1).
Letting p run through all the prime divisors of a, we get the lemma.
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Measure theory

In this appendix we recall some basic facts from measure theory. We
begin with the easy half of the Borel–Cantelli lemma and the definition
of the Hausdorff dimension. Then, we define the standard measure on
the middle third Cantor set and establish some of its useful properties.
We conclude with a few words on ergodic theory.

C.1 The easy half of the Borel–Cantelli lemma

We start with an easy and well-known lemma, often referred to as the
(easy half of the) Borel–Cantelli lemma. Since Cantelli pointed out that
the total independence of the events was not needed in the proof of
Lemma C.1, the next lemma should perhaps be called the Cantelli
lemma.

Lemma C.1. Let S be a set equipped with a measure μ. Let (Ej)j≥1 be
a sequence of measurable sets in S and set

E∞ := {s ∈ S : s ∈ Ej for infinitely many j ≥ 1}.
If the sum

∑
j≥1 μ(Ej) converges, then we have μ(E∞) = 0.

Proof. By definition, the set E∞ is the limsup set

E∞ =
+∞⋂
N=1

+∞⋃
j=N

Ej .

Consequently, for every positive integer N , the set E∞ is included in the
infinite union EN ∪ EN+1 ∪ . . . and

μ(E∞) ≤
+∞∑
j=N

μ(Ej).

234
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By a suitable choice of N , the latter sum can be made arbitrarily small
since

∑
j≥1 μ(Ej) converges. This proves that the μ-measure of E∞ is

zero.

C.2 Hausdorff dimension

Hausdorff’s idea [339] consists in measuring a set by covering it by an
infinite, countable family of sets of bounded diameter, and then in look-
ing at what happens when the maximal diameter of these covering sets
tends to 0. The reader interested in the theory of Hausdorff dimension is
directed, for example, to the books of Rogers [613], Falconer [288, 289]
and Mattila [484].

If U is a bounded subset of R, we denote by |U | the length of the
shortest interval containing U . Let J be a finite or infinite set of indices.
If for some positive real number δ the sets E and Uj satisfy E ⊂ ⋃j∈J Uj

and 0 < |Uj| ≤ δ for any j in J , then {Uj}j∈J is called a δ-covering of E.
Let s be a positive real number. For any positive real number δ, set

Hs
δ(E) := inf

∑
j∈J

|Uj |s,

where the infimum is taken over all the countable δ-coverings {Uj}j∈J

of E. Clearly, the function δ �→ Hs
δ(E) is non-increasing. Consequently,

Hs(E) := lim
δ→0

Hs
δ(E) = sup

δ→0
Hs

δ(E)

is well-defined and lies in [0,+∞]. If E1 and E2 are two real subsets
with E1 included in E2, we then have Hs(E1) ≤ Hs(E2). Furthermore,
Hs is subadditive and is a regular outer measure for which the Borelian
sets are measurable (see [484, 613]), called the s-dimensional Hausdorff
measure.

Lemma C.2. Let r, s, t be real numbers with 0 < r < s < t. If the set
E satisfies 0 ≤ Hs(E) < +∞ (resp. 0 < Hs(E) ≤ +∞), we then have
Ht(E) = 0 (resp. Hr(E) = +∞).

Proof. Assume that E satisfies 0 ≤ Hs(E) < +∞ and let ε be a
positive real number. There exists δ > 0 such that xt ≤ εxs/(Hs(E)+1)
for any x with 0 < x < δ. For any positive real number δ′ less than δ,
there exists a countable δ′-covering {Uj}j≥1 of E such that∑

j≥1

|Uj |s ≤ Hs(E) + 1,
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whence ∑
j≥1

|Uj |t ≤ ε.

This means that Ht
δ′(E) ≤ ε and yields Ht(E) = 0. Replacing the real

numbers s and t by r and s, respectively, we get by contraposition the
result asserted in brackets.

We define H0 as the counting measure: H0(E) is equal to the cardinal-
ity of the set E. Furthermore, H1 coincides with the Lebesgue measure
on R. We check that the function s �→ Hs(E) is non-increasing on R≥0.

We display an immediate consequence of Lemma C.2.

Corollary C.3. Let E be a real set. If there exists s ≥ 0 such that
Hs(E) < +∞, then Hs+ε(E) = 0 for any ε > 0. If there exists s > 0
such that Hs(E) > 0, then Hs−ε(E) = +∞ for any ε in ]0, s].

Corollary C.3 shows that there is a critical value of s at which Hs(E)
‘jumps’ from +∞ to 0. This value is called the Hausdorff dimension
of E.

Definition C.4. The Hausdorff dimension of a real set E, denoted by
dim E, is the unique non-negative real number s0 such that

Hs(E) = 0 if s > s0

and

Hs(E) = +∞ if 0 < s < s0.

In other words, with the notation of Definition C.4, we have

dim E = inf{s : Hs(E) = 0} = sup{s : Hs(E) = +∞}.
The main properties of Hausdorff dimension for real sets E,E1, . . . are
(see e.g. [146, p. 93]):

(i) dim E ≤ 1;
(ii) if λ(E) is positive, then dimE = 1;
(iii) if E1 ⊂ E2, then dimE1 ≤ dim E2;
(iv) dim∪+∞

j=1 Ej = sup{dim Ej : j ≥ 1};
(v) the Hausdorff dimension of a finite or countable set of points is zero;
(vi) two sets differing by a countable set of points have the same Haus-

dorff dimension.

Observe that there exist sets of Hausdorff dimension zero which are
uncountable (e.g. the set of Liouville numbers) as well as uncountable
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sets of Lebesgue measure zero and with Hausdorff dimension one (e.g.
the set of badly approximable real numbers).

By the property (iv), to determine the Hausdorff dimension of a real
subset E, it is enough to know the Hausdorff dimension of intersections
of E with bounded intervals.

The Hausdorff dimension is a useful tool to discriminate between sets
of zero Lebesgue measure. We can be even more precise by replacing the
functions x �→ xs in the definition of Hs by general functions x �→ f(x)
which satisfy limx→0 f(x) = 0 and are strictly increasing and continuous
on some open interval (0, t) with t positive. This allows us to discriminate
between sets having the same Hausdorff dimension.

Different methods, more or less sophisticated, allow one to bound from
below and from above the Hausdorff dimension of a real set. It is often
possible to bound the Hausdorff dimension of a Cantor-type set from
below by using the so-called mass distribution principle (or the easy
half of the Frostman lemma [313]). This corresponds to the first part of
Lemma C.5.

Lemma C.5. Let μ be a probability measure with support in a bounded
real set K. If there exist positive real numbers s, κ and δ such that

μ(J) ≤ κ|J |s

for any interval J with length |J | ≤ δ, then we have dimK ≥ s. If there
exist positive real numbers s, κ and δ such that

μ(J) ≥ κ|J |s

for any interval J with length |J | ≤ δ, then we have dimK ≤ s.

Lemma C.5 is a consequence of [289, Proposition 4.9].
We are often in a position to apply the next theorem to bound from

below the Hausdorff dimension of sets arising in Diophantine approxi-
mation.

Theorem C.6. Let E0 be a bounded real interval. Assume that, for
any positive integer k, there exists a finite family Ek of disjoint compact
intervals in E0 such that any interval belonging to Ek is contained in
exactly one of the intervals of Ek−1 and contains at least two intervals
belonging to Ek+1. We also suppose that the maximum of the lengths
of the intervals in Ek tends to 0 when k tends to infinity. For k ≥ 0,
we denote by Ek the union of the intervals belonging to the family Ek.
Assume further that there exists a positive integer k0 such that, for any
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k ≥ k0, each interval of Ek−1 contains at least mk ≥ 2 intervals of Ek,
these being separated by at least εk, where 0 < εk+1 < εk. We then have

dim
+∞⋂
k=1

Ek ≥ lim inf
k→+∞

log(m1 . . .mk−1)
− log(mkεk)

.

Proof. See [289, Chapter 4] or [146, Section 5.3].

The combination of Lemma C.1 and Theorem C.6 shows that the
Hausdorff dimension of the middle third Cantor set equals (log 2)/(log 3).

C.3 The standard measure on the middle third Cantor set

In this section, we establish several classical results on the standard
measure on the middle third Cantor set. This measure is the restriction
of the (log 2)/(log 3)-dimensional Hausdorff measure to the middle third
Cantor set; see [288, Theorem 1.14] or [289, p. 55].

Definition C.7. Set E0 = [0, 1]. For k ≥ 1, denote by Ek the union of
the closed intervals[a13k−1 + · · · + ak−13 + ak

3k
,
a13k−1 + · · · + ak−13 + ak + 1

3k

]
,

over a1, . . . , ak in {0, 2}. The middle third Cantor set K is the set

K :=
⋂
k≥0

Ek.

The standard measure on K, denoted by μK , is such that, for k ≥ 0,
each of the 2k intervals of length 3−k in Ek carries a mass 2−k.

It follows from Definition C.7 that, for a real number ξ in E0 which
can be expressed as ξ = a13−1 + a23−2 + · · · , with ak ∈ {0, 1, 2} for
k ≥ 1, we have

μK([0, ξ]) =
∑

k:ak≥1

2−k.

Denoting by μk the measure on [0, 1] giving to each interval of length
3−k in Ek a mass 2−k, Definition C.7 asserts that μK is the weak star
limit of the sequence of measures (μk)k≥1. In particular, the Fourier
transform of μK is the pointwise limit of the Fourier transforms of the
μk, thus, for any continuous function f on [0, 1], we have∫ 1

0

f(ξ) dμK(ξ) = lim
k→+∞

2−k
∑

a1,...,ak∈{0,2}
f(a13−1 + · · · + ak3−k).
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Our first auxiliary lemma points out a decay property of the measure
μK . For a real number x and a positive real number ρ, we denote by
B(x, ρ) the open interval (x − ρ, x + ρ).

Lemma C.8. For every x in K and every real number ε and ρ with
0 < ρ < 1 and 0 < ε ≤ 1, we have

(4 · 3γ)−1εγμK(B(x, ρ)) ≤ μK(B(x, ερ)) ≤ 4 · 3γ εγμK(B(x, ρ)), (C.1)

where γ = (log 2)/(log 3).

Proof. Let k be the integer such that 3−k−1 ≤ |B(x, ερ)| < 3−k.
Then, B(x, ερ) intersects exactly one of the intervals of Ek, and, since x

is in K, it contains at least one of the intervals of Ek+2. Consequently,
we have

μK(B(x, ερ)) ≥ 2−k−2 ≥ 2−2 · 3−γk ≥ 2−2(2ερ)γ (C.2)

and

μK(B(x, ερ)) ≤ 2−k ≤ 3−γk ≤ (6ερ)γ . (C.3)

Since (C.2) and (C.3) hold for ε = 1, we have

2−2(2ρ)γ ≤ μK(B(x, ρ)) ≤ (6ρ)γ ,

which, combined with (C.2) and (C.3), gives (C.1).

The second auxiliary lemma shows that the measure μK is absolutely
decaying in the sense of [131]; see Definition 7.19.

Lemma C.9. For every x in K, every y in [0, 1], and every real number
ε and ρ with 0 < ε < 1 and 0 < ρ < 1/3, we have

μK(B(x, ρ) ∩ B(y, ερ)) ≤ (4 · 3γ)2(3ε)γμK(B(x, ρ)).

Proof. Without any loss of generality, we assume that μK(B(x, ρ) ∩
B(y, ερ)) is positive and we let y′ be in K ∩ B(x, ρ) ∩ B(y, ερ). Then,
we have

μK(B(x, ρ) ∩ B(y, ερ)) ≤ μK(B(y′, 2ερ))

≤ 4 · 3γ εγμK(B(y′, 2ρ))

≤ 4 · 3γ εγμK(B(x, 3ρ)) ≤ (4 · 3γ)2(3ε)γμK(B(x, ρ)),

by Lemma C.8, since B(y′, 2ρ) is contained in B(x, 3ρ).
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C.4 Ergodic theory

We very briefly discuss certain basic notions from ergodic theory and
state several results without proof. Classical references include the mo-
nographs [212, 726].

Let (X,B, μ) be a probability space and T : X → X be a transforma-
tion. We say that T is measurable if T−1(B) is included in B for every
set B in B. If furthermore μ(T−1(B)) = μ(B) holds for every set B in
B, then T is measure-preserving.

Let T : (X,B, μ) → (X,B, μ) be a measure-preserving transformation.
We say that T is ergodic with respect to μ if, for every set B in B such
that T−1(B) = B, we have μ(B) ∈ {0, 1}.

A fundamental result in ergodic theory, namely Birkhoff’s (pointwise)
ergodic theorem, can be stated as follows. We keep the above notation.

Theorem C.10. Let T : (X,B, μ) → (X,B, μ) be a measure-preserving
transformation. Let f be in L1(μ). If T is ergodic with respect to μ, then

lim
n→+∞

1
n

n−1∑
i=0

f(T i(x)) =
∫

X

f dμ, for μ-almost all x ∈ X.

Let b ≥ 2 be an integer. Since the transformation Tb : [0, 1] → [0, 1)
defined by Tb(x) = {bx} for x in [0, 1] is ergodic with respect to the
Lebesgue measure, it follows from Theorem C.10 that, for almost all
real numbers ξ, the sequence (ξbn)n≥1 is uniformly distributed modulo
one.

Since the Gauss map TG defined by TG(0) = 0 and TG(x) = {1/x}
for x in (0, 1) is ergodic with respect to the Gauss measure defined in
Section 9.1, it follows from Theorem C.10 that almost all real numbers
have a normal continued fraction expansion.



Appendix D

Continued fractions

In this appendix we review basic results on continued fractions and state
several slightly less-known theorems. We omit most of the proofs and
refer the reader to a text of Van der Poorten [580] and to the books of
Bugeaud [146], Cassels [181], Dajani and Kraaikamp [212], Hardy and
Wright [334], Iosifescu and Kraaikamp [351], Khintchine [380], Perron
[557], Schmidt [635] and Schweiger [641], among many others.

Let x0, x1, . . . be real numbers with x1, x2, . . . positive. A finite con-
tinued fraction denotes any expression of the form

[x0;x1, x2 . . . , xn] = x0 +
1

x1 +
1

x2 +
1

. . . +
1
xn

.

We call any expression of the above form or of the form

[x0;x1, x2, . . .] = x0 +
1

x1 +
1

x2 +
1
. . .

= lim
n→+∞ [x0;x1, x2 . . . , xn]

a continued fraction, provided that the limit exists. Throughout this
book, when we refer to a continued fraction expansion, we implicitly
mean that x0 is an integer and x1, x2, . . . are positive integers.

Any rational number r has exactly two different continued fraction
expansions. These are [r] and [r − 1; 1] if r is an integer and, otherwise,
one of them reads [a0; a1, . . . , an−1, an] with an ≥ 2, and the other one is
[a0; a1, . . . , an−1, an−1, 1]. Any irrational number has a unique expansion
in continued fraction.

241
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Theorem D.1. Let ξ = [a0; a1, a2, . . .] be an irrational number. For
k ≥ 1, set pk/qk := [a0; a1, a2, . . . , ak] with pk and qk coprime. Let n be
a positive integer. Putting

p−1 = 1, q−1 = 0, p0 = a0 and q0 = 1,

we have

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2, (D.1)

and

pn−1qn − pnqn−1 = (−1)n. (D.2)

Furthermore, setting ξn+1 = [an+1; an+2, an+3, . . .], we have

ξ = [a0; a1, . . . , an, ξn+1] =
pnξn+1 + pn−1

qnξn+1 + qn−1
,

thus

qnξ − pn =
(−1)n

qnξn+1 + qn−1
,

and
1

(an+1 + 2)q2
n

<
1

qn(qn + qn+1)
<
∣∣∣ξ − pn

qn

∣∣∣
<

1
qnqn+1

<
1

an+1q2
n

<
1
q2
n

.

(D.3)

Under the assumption of Theorem D.1, the rational number pk/qk is
called the kth convergent to ξ and the positive integers a1, a2, . . . are
its partial quotients. The next result is sometimes termed the mirror
formula.

Theorem D.2. Let n ≥ 2 be an integer and a1, . . . , an be positive
integers. For k = 1, . . . , n, set pk/qk = [0; a1, . . . , ak]. Then, we have

qn−1

qn
= [0; an, an−1, . . . , a1].

Proof. We get from (D.1) that
qn

qn−1
= an +

qn−2

qn−1
,

for n ≥ 1. The theorem then follows by induction.

The next theorem is a particular case of the Folding Lemma, first
proved by Mendès France [501] and later rediscovered by many authors;
see [157] for references.
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Theorem D.3. Let a/m = [0; 1, 1, a3, . . . , an−1, an], with n ≥ 4 and
an ≥ 2, be a rational number. Then we have

ma + (−1)n

m2
= [0; 1, 1, a3, . . . , an−1, an + 1, an − 1, an−1, . . . , a3, 2]

and, for any integer t ≥ 2,

tma + (−1)n

tm2
= [0; 1, 1, a3, . . . , an−1, an, t − 1, 1, an − 1, an−1, . . . , a3, 2].

Proof. We treat only the case t ≥ 2 and leave the remaining case to
the reader. For k = 3, . . . , n, set pk/qk = [0; 1, 1, a3, . . . , ak]. We deduce
from Theorem D.2 that

β := [0; t − 1, 1, an − 1, an−1, . . . , a3, 2]

=
1

t − 1 +
1

1 +
1

qn

qn−1
− 1

=
1

t − 1 +
qn − qn−1

qn

=
qn

tqn − qn−1
.

By Theorem D.1, we have

[0; a1, . . . , an−1, an + β] =
pn−1(an + β) + pn−2

qn−1(an + β) + qn−2

=
pn + βpn−1

qn + βqn−1
=

pn(tqn − qn−1) + qnpn−1

qn(tqn − qn−1) + qnqn−1
.

It then follows from (D.2) and the above equalities that

[0; a1, . . . , an−1, an, t − 1, 1, an − 1, an−1, . . . , a3, 2] =
tpnqn + (−1)n

tq2
n

.

This proves the theorem.

We continue with a useful result on continuants.

Definition D.4. Let m ≥ 1 and a1, . . . , am be positive integers. The
continuant of a1, . . . , am, usually denoted by Km(a1, . . . , am), is the de-
nominator of the rational number [0;a1, . . . , am].

Theorem D.5. For any positive integers a1, . . . , am and any integer k

with 1 ≤ k ≤ m − 1, we have

Km(a1, . . . , am) = Km(am, . . . , a1), (D.4)

2(m−1)/2 ≤ Km(a1, . . . , am) ≤ (1 + max{a1, . . . , am})m, (D.5)
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and

Kk(a1, . . . , ak)·Km−k(ak+1, . . . , am) ≤ Km(a1, . . . , am)

≤ 2Kk(a1, . . . , ak) · Km−k(ak+1, . . . , am).
(D.6)

Proof. The first statement is an immediate consequence of Theorem
D.2. For the second statement, letting a be the maximum of a1, . . . , am,
it follows from the recursion (D.1) that

Km(1, . . . , 1) ≤ Km(a1, . . . , am) ≤ Km(a, . . . , a) ≤ (a + 1)m.

Since K1(1) = 1, K2(1, 1) = 2 and 2�/2 ≤ 2(�−1)/2 + 2(�−2)/2 for � ≥ 2,
an immediate induction gives the first inequality of (D.5).

Combining

Km(a1, . . . , am) = amKm−1(a1, . . . , am−1) + Km−2(a1, . . . , am−2)

with (D.4), we get

Km(a1, . . . , am) = a1Km−1(a2, . . . , am) + Km−2(a3, . . . , am),

which implies (D.6) for k = 1. Let k be in {1, 2, . . . ,m − 2} such that

Km :=Km(a1, . . . , am) = Kk(a1, . . . , ak) · Km−k(ak+1, . . . , am)

+ Kk−1(a1, . . . , ak−1) · Km−k−1(ak+2, . . . , am),
(D.7)

where we have set K0 = 1. We then have

Km = Kk(a1, . . . , ak) · (ak+1Km−k−1(ak+2, . . . , am)

+ Km−k−2(ak+3, . . . , am)
)

+ Kk−1(a1, . . . , ak−1) · Km−k−1(ak+2, . . . , am)

= Km−k−1(ak+2, . . . , am) · (ak+1Kk(a1, . . . , ak)

+ Kk−1(a1, . . . , ak−1)
)

+ Kk(a1, . . . , ak) · Km−k−2(ak+3, . . . , am),

giving (D.7) for the index k + 1. This shows that (D.7) and, a fortiori,
(D.6) hold for k = 1, . . . , m − 1.

We conclude this appendix with two classical results and one definition.

Theorem D.6. The real irrational number ξ = [a0; a1, a2, . . .] has a
periodic continued fraction expansion (that is, there exist integers r ≥ 0
and s ≥ 1 such that an+s = an for all integers n ≥ r) if, and only if, ξ

is a quadratic irrationality.
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The ‘only if’ part of Theorem D.6 is due to Euler [282], and the ‘if’
part was established by Lagrange [419] in 1770. Theorem D.7 was proved
by Legendre [422].

Theorem D.7. Let ξ be an irrational real number. If the rational num-
ber a/b satisfies |ξ − a/b| < 1/(2b2), then a/b is a convergent to ξ.

Theorem D.7 gives a partial converse to the right inequalities of (D.3).

Definition D.8. An irrational real number ξ := [a0; a1, a2, . . .] is a
badly approximable number if there exists a positive constant c such
that |ξ − p/q| > c/q2 holds for every rational number p/q with q ≥ 1.

It follows from (D.3) that an irrational real number ξ := [a0; a1, a2, . . .]
is a badly approximable number if, and only if, the sequence (an)n≥0 is
bounded.



Appendix E

Diophantine approximation

In this appendix, we survey classical results on approximation to real
(algebraic) numbers by rational numbers and, more generally, by alge-
braic numbers of bounded degree. For additional results (and proofs),
the reader is directed to the monographs [111, 466, 635].

E.1 Rational approximation

Definition E.1. The irrationality exponent μ(ξ) of the real number ξ

is the supremum of the real numbers μ for which the inequality

0 <
∣∣∣ξ − p

q

∣∣∣ < 1
qμ

has infinitely many solutions in non-zero integers p and q.

We begin with an easy result.

Theorem E.2. Let ξ be a real number. We have μ(ξ) = 1 if ξ is
rational, and μ(ξ) ≥ 2 otherwise.

Proof. Since ||qξ|| < 1 for every positive integer q, we get that μ(ξ) ≥
1. If ξ is the reduced rational a/b and if p/q differs from ξ, then |ξ−p/q|
is at least equal to 1/|bq| and μ(ξ) ≤ 1. If ξ is irrational, then, by (D.3),
there are infinitely many rational numbers p/q such that |ξ−p/q| < 1/q2,
which shows that μ(ξ) ≥ 2.

Theorem E.3. With respect to the Lebesgue measure, almost all real
numbers have an irrationality exponent equal to 2.

Proof. Let ε be a positive real number. Since the sum
∑
q≥1

q
2

q2+ε

246
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converges, it follows from Theorem C.1 that the set of real numbers ξ in
[0, 1] such that ∣∣∣ξ − p

q

∣∣∣ < 1
q2+ε

holds for infinitely many rational numbers p/q with q ≥ 1 has zero
Lebesgue measure. This proves that the set of real numbers whose irra-
tionality exponent exceeds 2 has zero Lebesgue measure, as asserted.

The irrationality exponent of a real number ξ can be read on its con-
tinued fraction expansion; see Exercise E.1. When ξ is given by its expan-
sion in an integer base or by some formula, it is in general very difficult
to determine the exact value of μ(ξ). The case of algebraic numbers is
of special interest and has a long history.

Definition E.4. The height of a polynomial with complex coefficients

P (X) = adX
d + · · · + a1X + a0 = ad(X − α1) . . . (X − αd),

denoted by H(P ), is the maximum of the moduli of its coefficients. The
height of an algebraic number α, denoted by H(α), is the height of its
minimal polynomial over Z (that is, of the integer polynomial of lowest
positive degree, with coprime coefficients and positive leading coefficient,
which vanishes at α).

We begin with a result of Liouville [445, 446] proved in 1844.

Theorem E.5. The irrationality exponent of a real algebraic number
does not exceed its degree. More precisely, if ξ is an irrational, real al-
gebraic number of degree d and height at most H, then∣∣∣ξ − p

q

∣∣∣ ≥ 1
d2H(1 + |ξ|)d−1qd

(E.1)

for all rational numbers p/q with q ≥ 1.

Proof. Inequality (E.1) is true when |ξ − p/q| ≥ 1. Let p/q be a
rational number satisfying |ξ−p/q| < 1. Denoting by P (X) the minimal
defining polynomial of ξ over Z, we have P (p/q) �= 0 and |qdP (p/q)| ≥ 1.
By Rolle’s theorem, there exists a real number t lying between ξ and p/q

such that

|P (p/q)| = |P (ξ) − P (p/q)| = |ξ − p/q| × |P ′(t)|.
Hence, we have |t − ξ| ≤ 1 and

|P ′(t)| ≤ d2H(1 + |ξ|)d−1.

This proves the theorem.
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Liouville applied Theorem E.5 to prove the existence of transcendental
numbers by constructing explicit examples of such numbers. Indeed,
it follows from Theorem E.5 that any real number whose irrationality
exponent is infinite is transcendental.

Definition E.6. A Liouville number is a real number whose irrational-
ity exponent is infinite.

Thue [684] established in 1909 the first significant improvement on
Liouville’s Theorem E.5. There was subsequent progress by Siegel, Dyson
and Gelfond, until Roth [614] proved in 1955 that, as far as the irra-
tionality exponent is concerned, the irrational, real numbers do behave
like almost all real numbers.

Theorem E.7. The irrationality exponent of every irrational, real al-
gebraic number is equal to 2.

Theorem E.7 can be restated as follows. Let ξ be a real algebraic
number of degree at least 2. Then, for any positive real number ε, there
exists a positive constant c(ξ, ε) such that

∣∣∣ξ − p

q

∣∣∣ > c(ξ, ε)
q2+ε

for any rational number p/q with q ≥ 1.
For a prime number � and a non-zero rational number x, we set |x|� :=

�−u, where u ∈ Z is the exponent of � in the prime decomposition of x.
Furthermore, we set |0|� = 0. The next theorem, proved by Ridout [610],
extends Theorem E.7.

Theorem E.8. Let S be a finite set of prime numbers. Let ξ be a real
algebraic number. Let ε be a positive real number. The inequality

∏
�∈S

|pq|� · min
{

1,
∣∣∣ξ − p

q

∣∣∣} <
1

q2+ε
(E.2)

has only finitely many solutions in non-zero integers p, q.

Theorems E.7 and E.8 are ineffective, in the sense that their proofs
do not allow us to compute explicitly either a suitable value for c(ξ, ε),
or an integer q0 such that (E.2) has no solution with q greater than q0.
Nevertheless, we are able to bound explicitly the number of primitive
solutions to an inequality like (E.2). The first result in this direction
was proved in 1955 by Davenport and Roth [217]. Here, we quote a
consequence of [163, Theorem 5.1].
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Theorem E.9. Let ξ be a real algebraic number of degree d ≥ 1 and
height at most H. Let ε be a positive real number. The inequality∣∣∣ξ − p

q

∣∣∣ < 1
q2+ε

has at most

1010(1 + ε−1)3 log(6d) log((1 + ε−1) log(6d))

solutions in non-zero coprime integers p, q with q > max{2H(ξ), 24/ε}.
Let b ≥ 2 be an integer. The inequality∣∣∣ξ − p

bn

∣∣∣ < 1
(bn)1+ε

has at most

1010(1 + ε−1)3 log(6d) log((1 + ε−1) log(6d))

solutions in non-zero integers p, n with bn > max{2H(ξ), 24/ε} and p

not divisible by b.

E.2 The Schmidt Subspace Theorem

The Schmidt Subspace Theorem [632, 633, 635] is a powerful multi-
dimensional extension of the Roth Theorem, with many outstanding
applications [99, 153, 747]. We quote below a version of it (proved by
Schlickewei [624]) which is suitable for our purpose, but the reader should
keep in mind that there are more general formulations.

Theorem E.10. Let m ≥ 2 be an integer. Let S be a finite set of prime
numbers. Let L1, . . . , Lm be m linearly independent linear forms with
real algebraic coefficients. Let ε be a positive real number. Then, the set
of solutions x = (x1, . . . , xm) in Zm to the inequality

∏
�∈S

m∏
i=1

|xi|� ·
m∏

i=1

|Li(x)| ≤ (max{|x1|, . . . , |xm|})−ε (E.3)

lies in the union of finitely many proper subspaces of Qm.

Note that Theorem E.10 is ineffective in the sense that its proof does
not yield an explicit upper bound for the heights of the subspaces con-
taining all the solutions to (E.3). However, Schmidt [636] was able to
bound the number of these subspaces; see [284] for a common generaliza-
tion of Theorems E.9 and E.10, usually called the Quantitative Subspace
Theorem.
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The next corollary extends Theorem E.7 to the approximation of real
algebraic numbers by real algebraic numbers of smaller degree.

Corollary E.11. Let ξ be a real algebraic number of degree d ≥ 2.
Let n be an integer with 1 ≤ n ≤ d − 1. For any positive real number ε,
there exists a positive constant c(ξ, n, ε) such that

|ξ − α| > c(ξ, n, ε)H(α)−n−1−ε ,

for any algebraic number α of degree at most n.

Corollary E.11 shows that, as far as approximation by algebraic num-
bers of degree bounded by n is concerned, algebraic numbers of degree
greater than n do behave like almost all real numbers.

E.3 Approximation by algebraic numbers

The set of real numbers splits into algebraic and transcendental numbers.
These two subsets are far from having the same size, the former being
countable, while the latter has the power of continuum. Such a crude
classification of real numbers is rather unsatisfactory, and one aims to
find some way to classify the transcendental numbers. A possibility could
be to take their irrationality exponent into account; this would, however,
not meet a natural requirement asking that two algebraically dependent
real numbers should belong to the same class.

An attempt towards a ‘reasonable’ classification was made in 1932 by
Mahler [461], who proposed to subdivide the set of transcendental real
numbers into three classes according to, roughly speaking, their prop-
erties of approximation by algebraic numbers. In Mahler’s classification
any two algebraically dependent transcendental real numbers belong to
the same class. It has been widely studied, as well as the closely related
Koksma’s classification, which was proposed a few years later [390]; see
[146, Chapter 3].

Definition E.12. Let ξ be a real number and n a positive integer. Let
wn(ξ) denote the supremum of the real numbers w for which there exist
infinitely many integer polynomials P (X) of degree at most n satisfying

0 < |P (ξ)| ≤ H(P )−w.

Let w∗
n(ξ) denote the supremum of the real numbers w∗ for which there

exist infinitely many real algebraic numbers α of degree at most n

satisfying
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0 < |ξ − α| ≤ H(α)−w∗−1. (E.4)

To justify the −1 occurring in (E.4), we recall that if P (X) is an integer
polynomial of degree n ≥ 1 and if ξ is a real number such that P (ξ) is
non-zero, then P (X) has a root α satisfying |ξ − α| ≤ n |P (ξ)|/|P ′(ξ)|.
Furthermore, |P ′(ξ)| can be as large as H(P ) and, when |P (ξ)| is small,
|P ′(ξ)| has no reason to be small as well (unless P (X) has two or more
roots close to ξ). Consequently, |ξ−α| is ‘often’ less than H(P )−1|P (ξ)|.

According to Mahler, we classify the real numbers by means of the
exponents wn.

Definition E.13. Let ξ be a real number and set

w(ξ) = lim sup
n→+∞

wn(ξ)/n.

We say that ξ is an

A-number , if w(ξ) = 0;

S-number , if 0 < w(ξ) < +∞;

T -number , if w(ξ) = +∞ and wn(ξ) < +∞ for any n ≥ 1;

U -number , if w(ξ) = +∞ and wn(ξ) = +∞ from some n onwards.

Following Koksma, we define the classes A∗, S∗, T ∗ and U∗ exactly as
in Definition E.13, with, however, the functions wn replaced everywhere
by the functions w∗

n.
The next theorem gathers several basic and classical results on the

classifications of Mahler and Koksma.

Theorem E.14. The classifications of Mahler and of Koksma coin-
cide, in the sense that any S-number (resp. T -number, U -number) is an
S∗-number (resp. T ∗-number, U∗-number). The A∗-numbers (resp. A-
numbers) are exactly the algebraic numbers. If ξ is an algebraic number
of degree d, then

w∗
n(ξ) = wn(ξ) = min{n, d − 1}, for n ≥ 1.

Every transcendental real number ξ satisfies

wn(ξ) ≥ n, for n ≥ 1.

Almost every real number ξ is an S-number and satisfies

w∗
n(ξ) = wn(ξ) = n, for n ≥ 1.
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The set of T -numbers (resp. of U -numbers) is non-empty and has Haus-
dorff dimension zero. For every n ≥ 2, there exist real numbers ξ for
which wn(ξ) �= w∗

n(ξ).

The reader is referred to Chapters 3 and 5 of [146] for the proof of
Theorem E.14 and for subsequent results on the functions wn and w∗

n.

E.4 Exercises

Exercise E.1. Let ξ = [a0; a1, a2, . . .] be an irrational real number with
convergents p0/q0, p1/q1, . . . Prove that we have

μ(ξ) = 2 + lim sup
n→+∞

log an

log qn−1
,

if this limsup is finite, and μ(ξ) = +∞ otherwise.

Exercise E.2. Prove that Theorem E.10 implies Theorem E.8.

Exercise E.3. Let ξ be an algebraic number of degree at least three.
Let ε > 0 be a real number. Apply Theorem E.10 to prove that there
are only finitely many triples (p1, p2, q) of integers such that q ≥ 1 and
max{|qξ − p1|, |qξ2 − p2|} ≤ q−1/2−ε .



Appendix F

Recurrence sequences

In this appendix, we recall some basic facts on recurrence sequences.
A homogeneous linear recurrence sequence with constant coefficients

(recurrence sequence for short) is a sequence (un)n≥0 of complex numbers
such that

un+k = vk−1un+k−1 + vk−2un+k−2 + · · · + v0un (n ≥ 0), (F.1)

for some complex numbers v0, v1, . . . , vk−1 with v0 �= 0 and with initial
values u0, . . . , uk−1 not all zero. The positive integer k is called the order
of the recurrence.

The companion polynomial to a recurrence as above is given by

G(X) = Xk − vk−1X
k−1 − · · · − v0. (F.2)

Let

G(X) =
s∏

j=1

(X − ωj)aj (F.3)

be its factorization over C, where the roots ω1, . . . , ωs are distinct and
a1, . . . , as are positive integers.

A recurrence sequence may satisfy different relations of the form (F.1),
however, for every recurrence sequence, there is a unique recurrence of
minimal order. In the sequel, the order, the recurrence coefficients, the
roots of a recurrence sequence are always all meant with respect to this
unique recurrence of minimal order.

The following theorem is fundamental in the theory of recurrence se-
quences.

Theorem F.1. Let (un)n≥0 be a sequence of complex numbers satisfy-
ing relation (F.1) with v0 �= 0. Let G(X), ω1, . . . , ωs and a1, . . . , as be
determined by (F.2) and (F.3). Let K be the field generated over Q by
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u0, . . . , uk−1, ω1, . . . , ωs. Then there exist uniquely determined polynomi-
als fj(X) in K[X] of degree less than aj (j = 1, . . . , s) such that

un =
s∑

j=1

fj(n)ωn
j (n ≥ 0). (F.4)

Furthermore, putting u(z) =
∑

n≥0 unzn, there exist uniquely deter-
mined complex numbers βij in K and a polynomial P (X) with coeffi-
cients in Q(u0, . . . , uk−1, v0, . . . , vk−1) such that

u(z) =
s∑

j=1

aj∑
i=1

βij

(1 − ωjz)i
=

P (z)
zkG(1/z)

.

Conversely, let ω1, . . . , ωs be distinct complex numbers and a1, . . . , as be
positive integers. Set k = a1 + · · · + as and define v0, v1, . . . , vk−1 by
(F.3) and (F.2). For j = 1, . . . , s, let fj(X) be a polynomial of degree
less than aj. Then the sequence (un)n≥0 defined by (F.4) satisfies the
recurrence relation (F.1).

Proof. See e.g. [651, Chapter C].

A recurrence is called algebraic (rational, integral) if all the initial
values and recurrence coefficients are algebraic (rational, integral, re-
spectively). The resulting sequence is then called an algebraic (rational,
integral, respectively) recurrence sequence.

Theorem F.2. A recurrence sequence of algebraic (rational, integral)
numbers is an algebraic (rational, integral) recurrence sequence.

Proof. The statement for an algebraic (rational) recurrence sequence
is an easy consequence of Cramer’s rule. A lemma of Fatou [300] implies
the requested result for a recurrence sequence of integers. Let us give
some more details. Assume that un is a rational integer for n ≥ 0 and
write

u(X) =
∑
n≥0

unXn =
P (X)
Q(X)

=
p� + p�−1X + · · · + p0X

�

qk + qk−1X + · · · + q0Xk
,

where the above rational function is irreducible. The coefficients p0, . . . ,

p�, q0, . . . , qk are rational numbers and are wholly determined up to a
constant factor. Without loss of generality, we assume that they are
integers and that they have no common divisor ≥ 2. This implies that
the integer polynomial Q(X) is primitive.



Recurrence sequences 255

Since P (X) and Q(X) have no common divisor, there exist integer
polynomials A(X) and B(X) and a positive integer m such that

P (X)A(X) + Q(X)B(X) = m.

From m = Q(X)(A(X)u(X) + B(X)) and the fact that Q(X) is primi-
tive, we deduce that all the coefficients of the series A(X)u(X) + B(X)
are divisible by m. But m is equal to qk times A(0)u(0) + B(0). This
shows that qk = ±1.

Theorem F.3. A sequence (un)n≥0 of complex numbers is a recurrence
sequence if, and only if, the determinants Δn of the Hankel matrices

Mn =

⎛
⎜⎜⎝

u0 u1 . . . un

u1 u2 . . . un+1

. . . . . . . . . . . .

un un+1 . . . u2n

⎞
⎟⎟⎠

are zero for every sufficiently large integer n.

Proof. If the sequence (un)n≥0 satisfies (F.1), then, for every integer
n ≥ k + 1, the (k + 1)th column of the Hankel matrix Mn is a linear
combination of the first k columns. Consequently, Δn = 0 for n ≥ k +1.

Assume now that Δn = 0 for every large integer n, and let k be the
largest integer such that Δk = Δk+i = 0 for i ≥ 0. We have k ≥ 1, since
otherwise un = 0 for n ≥ 0. By assumption, the last column of Mk is a
linear combination of the first k columns. This implies that there exist
complex numbers v0, . . . , vk−1 such that

v0uj + v1uj+1 + · · · + vk−1uj+k−1 + uj+k = 0, 0 ≤ j ≤ k.

For j ≥ 0, set Lj+k = v0uj + v1uj+1 + · · · + vk−1uj+k−1 + uj+k. Let m

be an integer such that m > k and Lk = L1+k = · · · = Lm−1+k = 0.
Since

Mm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Mk−1

uk . . . um

. . . . . . . . .

u2k−1 . . . uk−1+m

uk . . . u2k−1

. . . . . . . . .

um . . . uk−1+m

u2k . . . uk+m

. . . . . . . . .

uk+m . . . u2m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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adding to every column C� with � ≥ k + 1 the linear combination
v0C�−k + v1C�−k+1 + · · · + vk−1C�−1 gives

Δm =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Mk−1

Lk . . . Lm

. . . . . . . . .

L2k−1 . . . Lk−1+m

uk . . . u2k−1

. . . . . . . . .

um . . . uk−1+m

L2k . . . Lk+m

. . . . . . . . .

Lk+m . . . L2m

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Mk−1

0 . . . . . . . . . . . . 0
. . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . 0

uk . . . u2k−1

. . . . . . . . .

. . . . . . . . .

um . . . uk−1+m

0 . . . 0 Lk+m

... . .. . ..
...

0 Lk+m . . . L2m−1

Lk+m Lk+m−1 . . . L2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ±Δk−1(Lk+m)m−k+1.

Since Δm = 0 and Δk−1 is non-zero, this shows that Lk+m = 0. Conse-
quently, the sequence (un)n≥0 is a recurrence sequence.
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dence of Sturmian or morphic continued fractions, J. Number Theory
91 (2001), 39–66. (Cited in Chapter 9 and Appendix A.)

[43] J.-P. Allouche and A. Glen, Distribution modulo 1 and the lexicographic
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Analytique des Nombres, 1ère–2ème années: 1984–1985, Exp. No. 31,
19 pp., Secrétariat Math., Paris, 1985. (Cited in Chapter 2.)
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[279] P. Erdős, Problems and results on Diophantine approximations. II.
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[299] D. Färm, T. Persson and J. Schmeling, Dimension of countable inter-

sections of some sets arising in expansions in non-integer bases, Funda-
menta Math. 209 (2010), 157–176. (Cited in Chapter 9.)



274 References

[300] P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30
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[379] A. Ya. Khintchine, Über eine Klasse linearer diophantischer Approxi-
mationen, Rendiconti Circ. Mat. Palermo 50 (1926), 170–195. (Cited in
Chapter 2.)

[380] , Continued fractions. The University of Chicago Press,
Chicago, IL, 1964. (Cited in Chapter 9 and Appendix D.)

[381] H. Ki and T. Linton, Normal numbers and subsets of N with given den-
sities, Fund. Math. 144 (1994), 163–179. (Cited in Chapter 4.)

[382] P. Kiss and S. Molnár, On distribution of linear recurrences modulo 1,
Studia Sci. Math. Hungar. 17 (1982), 113–127. (Cited in Chapter 3.)

[383] D. Kleinbock, E. Lindenstrauss and B. Weiss, On fractal measures and
Diophantine approximation, Selecta Math. 10 (2004), 479–523. (Cited
in Chapter 7.)

[384] D. Kleinbock and B. Weiss, Badly approximable vectors on fractals,
Israel J. Math. 149 (2005), 137–170. (Cited in Chapter 7.)

[385] V. Knichal, Dyadische Entwicklungen und Hausdorffsches Mass, Časopis
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[551] F. Parreau and M. Queffélec, M0 measures for the Walsh system, J.
Fourier Anal. Appl. 15 (2009), 502–514. (Cited in Chapter 7.)

[552] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci.
Hung. 11 (1960), 401–416. (Cited in Chapter 9.)

[553] R. P. Pass, On the partial quotients of algebraic integers, J. Number
Theory 11 (1979), 14–15. (Cited in Chapter 9.)

[554] C. E. M. Pearce and M. S. Keane, On normal numbers, J. Austral. Math.
Soc. Ser. A 32 (1982), 79–87. (Cited in Chapter 6.)

[555] D. Pellegrino, On normal numbers, Proyecciones 25 (2006), 19–30.
(Cited in Chapter 4.)

[556] Yu. Peres and W. Schlag, Two Erdős problems on lacunary sequences:
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[608] A. Rényi, Representations for real numbers and their ergodic properties,
Acta Math. Acad. Sci. Hung. 8 (1957), 477–493. (Cited in Chapter 9.)

[609] R. D. Richtmyer, M. Devaney and N. Metropolis, Continued fraction
expansions of algebraic numbers, Numer. Math. 4 (1962), 68–84. (Cited
in Chapter 9.)

[610] D. Ridout, Rational approximations to algebraic numbers, Mathematika
4 (1957), 125–131. (Cited in Appendix E.)

[611] T. Rivoal, On the bits counting function of real numbers, J. Austral.
Math. Soc. 85 (2008), 95–111. (Cited in Chapters 8 & 10.)

[612] I. Rochev, On distribution of fractional parts of linear forms, Fundam.
Prikl. Mat. 16 (2010), 123–137 (in Russian). (Cited in Chapter 2.)



References 291

[613] C. A. Rogers, Hausdorff Measures, Cambridge University Press, Cam-
bridge, 1970. (Cited in Appendix C.)

[614] K. F. Roth, Rational approximations to algebraic numbers, Mathematika
2 (1955), 1–20; corrigendum, 168. (Cited in Appendix E.)

[615] D. J. Rudolph, ×2 and ×3 invariant measures and entropy, Ergodic The-
ory Dynam. Systems 10 (1990), 395–406. (Cited in Chapters 2 & 10.)
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[618] T. Šalát, A remark on normal numbers, Rev. Roumaine Math. Pures
Appl. 11 (1966), 53–56. (Cited in Chapter 4.)

[619] R. Salem, Algebraic Numbers and Fourier Analysis, D. C. Heath and
Co., Boston, MA, 1963. (Cited in Preface and Chapter 2.)

[620] L. Schaeffer and J. Shallit, The critical exponent is computable for aut-
omatic sequences. Preprint. (Cited in Chapter 8.)

[621] J. Schiffer, Discrepancy of normal numbers, Acta Arith. 47 (1986),
175–186. (Cited in Chapter 4.)

[622] A. Schinzel, On the reduced length of a polynomial with real coeffi-
cients, Funct. Approx. Comment. Math. 35 (2006), 271–306. (Cited in
Chapter 3.)

[623] , On the reduced length of a polynomial with real coefficients.
II, Funct. Approx. Comment. Math. 37 (2007), 445–459. (Cited in
Chapter 3.)

[624] H. P. Schlickewei, On products of special linear forms with algebraic co-
efficients, Acta Arith. 31 (1976), 389–398. (Cited in Appendix E.)

[625] J. Schmeling, Symbolic dynamics for β-shifts and self-normal num-
bers, Ergodic Theory Dynam. Systems 17 (1997), 675–694. (Cited in
Chapter 9.)

[626] K. Schmidt, On periodic expansions of Pisot and Salem numbers, Bull.
London Math. Soc. 12 (1980), 269–278. (Cited in Chapter 9.)

[627] W. M. Schmidt, On normal numbers, Pacific J. Math. 10 (1960),
661–672. (Cited in Chapters 6 & 10.)
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[629] , Normalität bezüglich Matrizen, J. reine angew. Math. 214/215
(1964), 227–260. (Cited in Chapter 6.)
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[681] P. Szüsz and B. Volkmann, On numbers containing each block infini-
tely often, J. Reine Angew. Math. 339 (1983), 199–206. (Cited in
Chapter 8.)

[682] , On numbers with given digit distributions, Arch. Math.
(Basel) 52 (1989), 237–244. (Cited in Chapter 4.)

[683] , A combinatorial method for constructing normal numbers,
Forum Math. 6 (1994), 399–414. (Cited in Chapter 4.)

[684] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew.
Math. 135 (1909), 284–305. (Cited in Appendix E.)
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[734] F. Wielonsky, Hermite–Padé approximants to exponential functions and
an inequality of Mahler, J. Number Theory 74 (1999), 230–249. (Cited
in Chapter 2.)

[735] J. M. Wills, Zwei Sätze über inhomogene diophantische Approximation
von Irrationalzahlen, Monatsh. Math. 71 (1967), 263–269. (Cited in
Chapter 2.)

[736] S. M. J. Wilson, Limit points in the Lagrange spectrum of a quadratic
field, Bull. Soc. Math. France 108 (1980), 137–141. (Cited in Chapter 9.)

[737] R. Winkler, Some constructive examples in uniform distribution on finite
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