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PREFACE

The theory of uniform distribution modulo one (Gleichverteilung modulo
Eins, équirépartition modulo un) is concerned, at least in its classical setting,
with the distribution of fractional parts of real numbers in the unit interval
(0, 1). The development of this theory started with Hermann Weyl’s celebrated
paper of 1916 titled: “Uber die Gleichverteilung von Zahlen mod. Eins.”
Weyl’s work was primarily intended as a refinement of Kronecker’s approxi-
mation theorem, and, therefore, in its initial stage, the theory was deeply
rooted in diophantine approximations. During the last decades the theory
has unfolded beyond that framework. Today, the subject presents itself as
a meeting ground for topics as diverse as number theory, probability
theory, functional analysis, topological algebra, and so on. However, it
must be said that the germs of various later developments can be found in
Weyl’s 1916 paper.

This book attempts to summarize the results of these investigations from
the beginning to the present, with emphasis on the work done during the last
20 years. Because the literature on the subject is vast, it was inevitable that
now and then choices had to be made and selection criteria had to be applied
that reflect the personal taste of the authors. As a rule, we have endeavored
to produce a comprehensive coverage of the methods used in the theory of
uniform distribution. In some instances, we did not present a result in its
most general version, but rather tried to describe the underlying principles
and ideas, which might otherwise be shrouded in technicalities. The title we
have chosen indicates that we have resolved the dilemma of ‘“‘asymptotic
distribution” versus “uniform distribution” in favor of the latter, since it is
this aspect to which most of our exposition is devoted. We believe that this
book should prove a useful introduction to the subject for students in number
theory and analysis and a reference source for researchers in the field.

An important role in our presentation is played by the notes at the end
of each section. These not only contain the pertinent bibliographical refer-
ences, but also provide the reader with a brief survey of additional results
relating to the material of that section. The exercises we include range from
simple applications of theorems to proofs of propositions more general

vii



viii PREFACE

than, or shedding further light on, results in the text. The reader is encouraged
to try his hand at many of these problems in order to increase his under-
standing of the theory.

The following is a brief outline of the contents of the book. The first
chapter deals with the classical part of the theory. It assumes that the reader
has a good background in real analysis. Important properties of uniformly
distributed sequences of real numbers are developed in the early sections and
specific examples of uniformly distributed sequences are described through-
out. A central position in the theory is taken by the so-called Weyl criterion.
As a means for investigating sequences with respect to uniform distribution,
it caused in the early years of the development of the theory of uniform
distribution a strong interest in exponential sums. One of the equivalents of
the definition of a uniformly distributed sequence modulo 1 of real numbers
is the functional definition. This form of the notion of uniform distribution
reveals the measure-theoretic and topological character of the definition.
To avoid repetition, we have, in the first chapter, concentrated on techniques
and results that depend on the special structure of the real number system.
Results that have analogues in a general setting (such as van der Corput’s
difference theorem and various metric theorems) will often be found in
stronger versions in the more abstract Chapters 3 and 4. Some extensions of
the theory are already touched on in Chapter 1, such as the multidimensional
case in Section 6 and distribution functions and asymptotic distribution with
respect to summation methods in Section 7. A study of normal numbers and
their relation to uniform distribution is carried out in Section 8. Uniform
distribution modulo 1 of measurable functions appears in Section 9.

In Chapter 2, the results of the preceding chapter are studied and comple-
mented from a quantitative point of view. Here a modest background in
number theory would be helpful. Many of the results presented here are
current. The important results of K. F. Roth and W. M. Schmidt on ir-
regularities of distribution, as well as the celebrated inequalities of Erdds-
Turan and LeVeque, are proved in Section 2, The next section is concerned
mainly with the sequences (n0), n =1, 2 ..., with 0 irrational. This leads
one back to the number-theoretic origins of the theory. Number-theoretic
integration methods which derive from the theory of uniform distribution
are treated in Section 5. This part of the book should be of interest to
numerical analysts.

In Chapters 3 and 4, we develop in greater detail the theory of uniform
distribution in compact Hausdorff spaces and in topological groups, re-
spectively. A background in topology and measure theory is required.
Furthermore, for Chapter 4 a knowledge of topological groups is desirable,
but all the required results from structure theory and duality theory are
stated. Many interesting relations to probability theory, ergodic theory,
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summability theory, and topological algebra emerge in these portions of the
book. In Section 2 of Chapter 4 a detailed treatment of the method of
correlation functions is given. Section 4 of Chapter 4 contains an in-depth
discussion of the theory of monothetic groups.

The most recent branch of the theory is based on the notion of a uniformly
distributed sequence of rational integers. It is not surprising that, sub-
sequently, attention has been paid to the distribution of sequences of a
more general type of integers, such as the p-adic ones, and of sequences of
elements of the ring of polynomials over a finite field. These developments
are described in Chapter 5. The reader should be familiar with the rudiinents
of p-adic number theory and the theory of finite fields.

Because of space limitations a number of topics could not be covered as
fully as we wished or had to be omitted completely in our presentation. Topics
in the latter category include metric quantitative results, relations between
uniform distribution and harmonic analysis, and the theory of weak con-
vergence of probability ineasures. However, the notes in the appropriate
sections contain a survey of the literature on these aspects.

A graduate course in uniform distribution emphasizing the number-
theoretic connections could be based on Chapters 1, 2, and 5 of the book
and mnay be complemented by selections from the remaining chapters. The
prerequisites for each chapter have been mentioned above.

It is with great pleasure and gratitude that we acknowledge helpful con-
versations and/or correspondence with I. D. Berg, D. L. Carlson, J. Cigler,
S. Haber, J. H. Halton, W. J. LeVeque, H. G. Meijer, L. A. Rubel, W. M.
Schmidt, R. Tijdeman, and S. K. Zaremba. Special thanks are due Professor
Walter Philipp, who read drafts of the manuscript and made a number of
valuable suggestions. The second author would like to express his in-
debtedness to Professor Edmund Hlawka, who guided his first steps into the
theory of uniform distribution and whose supreme mastery of the subject
was a constant source of enlightenment for his students. He also wants to
thank the University of Illinois for its hospitality during a crucial period of
the writing.

The enormous task of converting our drafts into a typewritten manuscript
was mastered by Miss Pat Coombs, whose skill and unfailing patience we
learned to admire. We extend our sincere gratitude to the staff of Wiley-
Interscience for its care and professionalism in the production of the book.

October 1973 L. KUIPERS
H. NIEDERREITER
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UNIFORM
DISTRIBUTION
MOD 1

In this chapter, we develop the classical part of the theory of uniform
distribution, We disregard quantitative aspects, which will be considered
separately in Chapter 2.

1. DEFINITION

Uniform Distribution Modulo 1

For a real number z, let [¢] denote the integral part of x, that is, the greatest
integer <z; let {x} = x — [2] be the fractional part of x, or the residue of
@ modulo 1. We note that the fractional part of any real number is contained
in the unit interval I = [0, 1).

Let w = (=), n =1,2,..., be a given sequence of real numbers. For a
positive integer N and a subset E of 7, let the counting function 4(E; N; o)
be defined as the number of terms 2,, | <#» < N, for which {z,} € E. If
there is no risk of confusion, we shall often write A(E; N) instead of
A(E; N; w). Here is our basic definition.

DeriNiTION 1.1, The sequence w = (x,), n = 1,2, ..., of real numbers is
said to be uniformly distributed modulo 1 (abbreviated u.d. mod 1) if for
every pair a, b of real numbers with 0 < a < b < 1 we have
. A(la, b); N; w)
lim ————

N-w

=b—a. (1.1)

1



2 UNIFORM DISTRIBUTION MOD 1

Thus, in simple terms, the sequence (z,) is u.d. mod 1 if every half-open
subinterval of I eventually gets its ‘““proper share” of fractional parts. In
the course of developing the theory of uniform distribution modulo 1
(abbreviated u.d. mod 1), we shall encounter many examples of sequences
that enjoy this property (for an easy example, see Exercise 1.13).

Let now cge .5 be the characteristic function of the interval [a, b) C I
Then (1.1) can be written in the form

N 1
lin 3 caan((ed) = [ (@ da (12)

N-ow N a=1 0

This observation, together with an important approximation technique,
leads to the following criterion.

THEOREM 1.1. The sequence (z,), n =1,2,..., of real numbers is
u.d. mod 1 if and only if for every real-valued continuous function f defined
on the closed unit interval I = [0, 1] we have

N 1
lim - 3 () = [ s da: (1.3)
N-o N =1 0

PROOF. Let (z,) be u.d. mod 1, and let f(2) = 75 dica,.a,, (@) be a
step function on I, where 0 = gy < @, < * * * < a;, = 1. Then it follows from
(1.2) that for every such f equation (1.3) holds. We assume now that fis a
real-valued continuous function defined on 7. Given any ¢ > 0, there exist,
by the definition of the Riemann integral, two step functions, f; and f,
say, such that f;(z) < f(z) < fy(z) for all @ € [ and s (fa®) — fi(@)) da L &.
Then we have the following chain of inequalities: .

1 1 . 1 N
[ da— e <[ 5@ de = lim - 5 figa)

Now N a=1

. —-1— N —_ i N
<im L S sty <Tm L 3 ()

N-w n=1 N-»

N 1 1
<lim L 3 fife)) = f fi®) da < f f(@)de + ¢,
N 0 0

o N a=1

so that in the case of a continuous function f the relation (1.3) holds.
Conversely, let a sequence (x,) be given, and suppose that (1.3) holds

for every real-valued continuous function f on I. Let [a, b) be an arbitrary

subinterval of I. Given any & > 0, there exist two continuous functions, g;
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and g, say, such that g;(%) < ¢pq,5(®) < g,(2) for x € I and at the same time
[ (g2(®) — g1(®)) dv < &. Then we have

b—a—z¢ <f gx)da — ¢ <f gi(®)de = llm - Egl({t"})

< lim A(la, b); N) < fm =— A(la, b); N)
Noow N—-ow N
1 1
='[ gy(%) du g'[ g(@der+e<b—a+e
0 0
Since ¢ is arbitrarily small, we have (1.1). [}

COROLLARY 1.1. The sequence (,) is u.d. mod 1 if and only if for every
Riemann-integrable function f on I equation (1.3) holds.

_ 2 gz({’vn})

PROOF. The sufficiency is obvious, and the necessity follows as in the
first part of the proof of Theorem 1.1. [

COROLLARY 1.2. The sequence (%,) is u.d. mod 1 if and only if for
every complex-valued continuous function f on R with period 1 we have

lim ~ 2 f(z,) = f lf(x) da, (1.4)

N-wo N

PROOF. By applying Theorem 1.1 to the real and imaginary part of f,
one shows first that (1.3) also holds for complex-valued f. But the periodicity
condition implies f({z,}) = f (,), and so we arrive at (1.4). As to the
sufficiency of (1.4), we need only note that in the second part of the proof
of Theorem 1.1 the functions g; and g, can be chosen in such a way that
they satisfy the additional requirements g,(0) = g,(1) and g,(0) = g,(1), so
that (1.4) can be applied to the periodic extensions of g, and g, to R. i

Some simple but useful properties may be deduced easily from Definition
1.1. We mention the following results.

LEMMA 1.1. If the sequence (x,),n =1,2,...,is u.d. mod 1, then the
sequence (v, + «), n = 1,2, ..., where « is a real constant, is u.d. mod 1.

PROOF. This follows immediately from Definition 1.1. [JJij

THEOREM 1.2. If the sequence (2,), n=1,2,..., is ud. mod 1, and
if (y,) is a sequence with the property lim,,_, , (#, — ¥,) = «, a real constant,
then (y,) is u.d. mod 1,

PROOF. Because of Lemma 1.1 it suffices to consider the case o« = 0.
Sete, =2, —y,forn>1 Let0 < a < b <1, and choose ¢ such that

0 < ¢ < min (a,l-—b,b—;—a).
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There exists an Ny = Ny(¢) such that —e < ¢, < eforn > N,. Let n > N,,
then a + ¢ < {x,} < b — ¢ implies a < {y,} < b, and on the other hand
a<{y,} <b implies a —e < {&,} <b+ e Hence, if ¢ =(x,) and
o = (y,), then

b—¢) N; . ,b); N;
b—a—2e=limA([a+e &) U)Shmw
N-w N Now
T b); N; . A(fla — e, :N;
SlimA([a, ) N w)ghm ([a —¢,b +¢€); N; 0)

N-w N Noow N
=b—a+ 2e

Since ¢ can be taken arbitrarily small, the sequence w satisfies (1.1) for all
a and b with 0 < a < b < 1. To complete the proof, one uses the result
in Exercise 1.2. 1}

Uniform Distribution Modulo a Subdivision

We mention briefly one of the many variants of the definition of u.d. mod 1.
Let A: 0 =z, < 2z < 2z, < -- - be a subdivision of the interval [0, c0) with
lim,_,, % = . Forz_; < <z, put

& — 2
(2]s = 21 and {2}s = —=
T %

so that 0 < {z}, < 1.

DeriNiTioN 1.2, The sequence (z,), n = 1, 2,..., of nonnegative real
numbers is said to be uniformly distributed modulo A (abbreviated u.d. mod
A) if the sequence ({z,},),n =1,2,...,isu.d. mod 1.

If A is the subdivision A, for which 2, = k, this concept reduces to that
of u.d. mod 1. An interesting case occurs if (z,) is an increasing sequence
of nonnegative numbers with lim,_,, ®, = co. Then we let A(z, &) be the
number of x, <z with {z,}, < «, and we set 4(x) = A(z, 1). Clearly,
the sequence (#,) is u.d. mod A if and only if for each « € (0, 1),

. A(z, o)
lim——— =
x— o0 A(’lf)
The following remarkable result can be shown.

(1.5)

THEOREM 1.3. Let (v,) be an increasing sequence of nonnegative
numbers with lim, ., x, =oc0. A necessary condition for (,) to be u.d.
mod A is that

lim A(zg1) —

k— oo A(Zk) (16)
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PROOF. Suppose (%,)is u.d. mod A, Since

AG(z + 2141 3) — Az, ) = AG (2 + 240) — Az),

we have
AGGz + %4), B) _ Az, 3) AG Gy + 2144)) — A(z)
Ao+ 241)  AGG + 2400) Ay + 214)
_ Az, 3) A(z) [ — A(z)
A(z) ARG + 240)) ARGz + 2.42))
A(z) Az,
GGz, + zkﬂ»( A(zk;} '-1). an

Now the extreme left member of (1.7) goes to 4 as k — oo, according to
(1.5) and the assumption about the sequence (w,). Similarly, the second
factor of the second term of the extreme right member of (1.7) goes to —%

as k — oo. Hence, (1.7) implies

Az,
Jim — A _ (1.8)
ko A(3(2, + zk+1))
In a similar way, it can be shown that
A(zk-H) (1.9)

lim - =
ko A(3(2 + 2441)
From (1.8) and (1.9) we obtain (1.6). |}

Notes

The formal definition of u.d. mod 1 was given by Weyl [2, 4]. The distribution mod 1
of special sequences was already investigated earlier (see the notes in Section 2). Theorem
1.1 and its corollaries also come from Weyl (2, 4]. The notion of u.d. mod A was intro-
duced by LeVeque [4] and was studied further by Cigler [1], Davenport and LeVeque
[1], Erd6s and Davenport [1], W. M. Schmidt [10], and Burkard [1, 2].

A detailed survey of the results on u.d. mod 1 prior to 1936 can be found in Koksma
[4, Kap. 8, 9]. The period from 1936 to 1961 is covered in the survey article of Cigler
and Helmberg [1]. An expository treatment of some of the classical results is given in
Cassels [9, Chapter 4]. The survey article of Koksma [16] touches upon some of the
interesting aspects of the theory.

Let A be the Lebesgue measure in 1. If () is u.d. mod 1, the limit relation

1
lim — 4A(E; N) = ME)
Noowo N
willstill hold for all Jordan-measurable (or A-continuity) sets E in I (see Chapter 3, Theorem

1.2) but not for all Lebesgue-measurable sets E in I (see Exercise 1.9). See also Section 1
of Chapter 3 and Rimkeviciite [1]. Similarly, the limit relation (1.3) cannot hold for all
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Lebesgue-integrable functions f on I. See Koksma and Salem [1] for strong negative
results. The following converse of Theorem 1.1 was shown by de Bruijn and Post [1]:
if f is defined on Tandif limN_,ao(l/N)Z‘;':l S ({»,}) exists for every (v,) u.d. mod 1, then f
is Riemann-integrable on 7. Binder [1] gives an alternative proof and a generalization.
See also Bass and Couot [1]. Rudin [2] discusses a related question.

Elementary criteria for u.d. mod 1 have been given by O’Neil [1] (see also the notes
in Section 3 of Chapter 2) and Niederreiter [15]. Sequences of rationals of the type con-
sidered in Exercise 1.13 were studied by Knapowski [1] using elementary methods.

In the sequel, we shall discuss many variants of the definition of u.d. mod 1. One rather
special variant was introduced by Erdds and Lorentz (1] in the context of a problem
from probabilistic number theory. A sequence (w,,) is called homogeneously equidistributed
mod 1 if (1/d)v,g), n=1,2,...,is ud. mod 1 for every positive integer d. This notion
was also studied by Schnabl [1].

For the result in Exercise 1.14, see POlya and Szegd [!, IL. Abschn., Aufg. 163].

Exercises

1.1. A definition equivalent to Definition 1.1 is the following: A sequence
(z,) of real numbers is u.d. mod 1 if limy_,, A([0, ¢); N)/N = ¢ for
each real number c with 0 < ¢ < 1.

1.2. If (1.1) holds for all @, b with 0 < a < b < 1, then it holds for all
a,bwith0<a<b<l.

1.3. A sequence (z,) is u.d. mod 1 if and only if (1.1) is satisfied for every
interval [a, b) C I with rational end points.

1.4. A sequence (z,) is u.d. mod 1 if and only if limy_, , 4([a, b]; N)/N =
b—aforallg, bwith0<a<b<l.

1.5. A sequence (z,) is u.d. mod 1 if and only if limy_.,, 4((a, b); N)/N =
b—aforallag, bwith0<a<b<l.

1.6. If (z,) is u.d. mod 1, then the sequence ({z,}) of fractional parts is
everywhere dense in 1.

1.7. If we leave out finitely many terms from a sequence that is u.d. mod 1,
the resulting sequence is still u.d. mod 1. What additional condition is
needed if ““finitely” is replaced by “infinitely” ?

1.8. If finitely many terms of a sequence that is u.d. mod 1 are changed
in an arbitrary manner, the resulting sequence is still u.d. mod 1.
Generalize as in Exercise 1.7.

1.9. Let (z,) be an arbitrary sequence of real numbers. Construct a
Lebesgue-measurable subset E of I with A(E)=1 and limy_,
A(E; N)][N = 0. Hint: Consider the complement in I of the set
determined by the range of the sequence ({z,}).

1.10. Let (,) be u.d. mod 1. Then the relation (1.3) is not valid for every
Lebesgue-integrable function f on 1.

1.11. Let (»,) and (y,) be u.d. mod 1. Then the sequence xy, ¥;, ¥z, Y2, - - -,
Xy Yuy - - - is u.d. mod 1.
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1.12. If r is a rational number, then the sequence (nr), n=1,2,..., is
not u.d. mod 1. Is there a nonempty proper subinterval [a, b) of I for
which (1.1) holds?

1.13. Prove that the sequence 0/1, 0/2, 1/2,0/3,1/3,2/3,...,0/k, 1]k, .. .,
(k — D/k, ...isu.d. mod 1.

1.14. Let (x,) be a sequence in I. For a subinterval [a,b) of Tand N > 1,
let S([a, b); N) be the sum of the elements from a,, 2, . .., zy that
are in [a, b). Then (z,) is u.d. mod 1 if and only if

. S(la, b); N)
lim ———

N-w
for all subintervals [a, b) of I.

=} — a*)

2. THE WEYL CRITERION
The Criterion

The functions f of the form f () = *"™*, where & is a nonzero integer,
satisfy the conditions of Corollary 1.2. Thus, if (x,) is u.d. mod 1, the
relation (1.4) will be satisfied for those f. It is one of the most important
facts of the theory of u.d. mod 1 that these functions already suffice to
determine the u.d. mod 1 of a sequence.

THEOREM 2.1: Weyl Criterion. The sequence (%,), n=1,2,..., is
u.d. mod 1 if and only if

N ry
lim *;; > & =0 for all integers h # 0. 2.1
N-w© n=1

PROOF. The necessity follows from Corollary 1.2. Now suppose that (x,)
possesses property (2.1). Then we shall show that (1.4) is valid for every
complex-valued continuous function f on R with period 1. Let & be an
arbitrary positive number. By the Weierstrass approximation theorem, there
exists a trigonometric polynomial ¥'(z), that is, a finite linear combination
of functions of the type *™*, h € Z, with complex coefficients, such that

sup |f(») —¥(2)| <e. (2.2)
0<e<1
Now we have

[r@da - 3 s

< ’ [u@-vanas

+

LI‘I"(a:) de — % :}::1‘}"(%)

1y .
+’ L S (@) = W)
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The first and the third terms on the right are both <& whatever the value
of N, because of (2.2). By taking N sufficiently large, the second term on

the right is <¢ because of (2.1). |l

Applications to Special Sequences

EXAMPLE 2.1. Let 0 be an irrational number. Then the sequence (n0),
n=1,2,...,1is ud. mod 1. This follows from Theorem 2.1 and the in-

equality
2mihNO __ 1l 1

_ le

1 N
— 2rihn8
\ Ee 2mih6 H

N |e — 1] 7 N|sin 7h0)|

N n=1
for integers h # 0. [l

EXAMPLE 2.2. Let 6 = 0.1234567891011121314 - - - in decimal notation,
Then 8 is irrational. Therefore, the sequence (#8) is u.d. mod 1 by Example
2.1. It follows that the sequence ({nf}) is dense in I (see Exercise 1.6). One
can even show that the subsequence ({10"0}) is dense in I. For let o{ =
0.aa," - a, be a decimal fraction in 7. One chooses » such that {1078}
begins with the digits ay, a,, ..., a, followed by r zeros. Then we have
0 < {10"} — x < 10* . |

EXAMPLE 2.3. Thesequence ({ne}),n=1,2,...,isu.d. mod 1 according
to Example 2.1. However, the subsequence ({n!e}) has 0 as the only limit
point. We have

1 e

—_— + ,
n!  (m+ !
so that nle =k + ¢*/(n + 1), where k is a positive integer. Hence, for
n>2weget{nle}=efn+1)<efn+1). W

1 1
e—1+1!+2!+ + 0<a<l,

EXAMPLE 2.4. The sequence (logn), n=1,2,..., is not ud. mod 1.
In order to show this we use the Euler summation formula. If F(t) is a
complex-valued function with a continuous derivative on 1 <t < N, where

N 2 1is an integer, then

N N N
> F(n) =f F(i) dt + ¥(F(Q1) + F(V) + f {1y — DF@ dr. (23)

n=1 1
Let F(t) = e*"' ¢! and divide both sides of (2.3) by N. Then the first
term on the right of (2.3) is equal to

NlevI flog N __ 1
NQmi + 1)
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and this expression does not converge as N — co. The second term on the
right of (2.3), divided by N, tends to zero as N — oo, as does the third
term on the right of (2.3) divided by N, as follows from

N dt

| f " - HFO dr‘ < f <

Hence, (2.1) with z, = log n and /i = 1 is not satisfied. [}

EXAMPLE 2.5. In the previous example it was shown that (log ») is not
u.d. mod 1. This general statement, however, does not describe the behavior
of (log n) mod 1 with regard to a particular interval [a, b) C I. In the follow-
ing we show in an elementary way that for every proper nonempty sub-
interval [a, b) of I the sequence (log n) fails to satisfy (1.1). Consider first
an interval [a, b) with 0 < @ < b < 1. Choose a sequence of integers (N,,),
m > mg, such that e < N, < e™* for m > my Now the number of
indices n =1,2,..., N, for which a < {logn} <b, or k + a <logn <

k+b,orefte <n< e k=0,1,...,m,Iis given by the expression
m m+1 m
Z(ek+b — e G(k)) = (b — ea)e_._l + > 0(k),
¥=0 e— 1 ¥=0

with 0 < 0(k) < 1.

Now it is clear that the fraction obtained by dividing this expression by N,,,
which was chosen between e™*® and ¢™*!, is not convergent as m — oo for
every choice of the sequence (N,,). If 0 < a < b = 1, one works in a similar
way with a sequence (N,,) satisfying e™ < N,, < e™*% for m > m,. With a
slight modification of the calculation, one may show the same with respect
to the sequence (clogn),ceR,n=1,2,.... Ik

EXAMPLE 2.6. Suppose we are given an infinitely large table of the Brigg
logarithms (*®log n), n = 1, 2, ..., in decimal representation, and consider
the sequence of the consecutive digits in the kth column after the decimal
point for some fixed k > 1. Let ¢ = 10*(log 10)~*; then

¢ log n = 10" ¥og n.

If for some n we have {logn} = 0.byb, b+, then {clogn} =
0.5b,.4y * * + . Thus, we observe that the digit b, at the kth decimal place of
Wlogn is equal to g, g=0,1,...,9, if and only if g/10 < {clogn} <

(g -+ 1)/10. Now the sequence (c log n) has the property described in Example
2.5. This implies that the relative frequency with which the digit g appears
in the kth column of the table is not equal to 1/10. i
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Applications to Power Series

In the following, some interesting results in the theory of power series are
deduced from the fact that the sequences (no) with irrational ¢ are u.d. mod 1
(see Example 2.1).

THEOREM 2.2. Let « be a real number, and let g be a polynomial over
C of positive degree. Define

6() = 3. g(lnaa
Then G(z) is a rational function if and only if « is a rational number.
PROOF. The proof is based on the following auxiliary result: Let « be an

irrational number, and let S be a finite set of nonintegral real numbers.
Then there are infinitely many positive integers m such that

[{me} + 5] = [4] forall n e S, 2.4)
and also infinitely many positive integers # such that
e} + 71 =1+ [n] for all n e S. 2.5)

Observe that (2.4) is equivalent to
0 < {ma} + {9} <1 for all €S,
and that (2.5) is equivalent to
0L e} +{n}—1<1 forall 5 €S,

and also that these relations follow easily from the fact that the sequence
(ne), n=1,2,..., is ud. mod 1—or in fact from the property that the
sequence ({na}) is everywhere dense in [.

Now we turn to the proof of the theorem. Let o be irrational. If G(x)
were rational, then polynomials A(x) and B(z), of degrees a > 1 and b,
respectively, would exist such that G(z) = B(z)/4(x). Assume that

A@@) = 2% —ca®t — - — ¢ — .
From A(z)G(x) = B(w) it follows, by equating corresponding coefficients,
that
g([nal) = > g(lne + ral)e,  forn > max(0,b —a + 1). (2.6)
r=1

Since g is a polynomial of degree p > 1, we have

limg_(_["i___'*'m]_) = i ‘[‘M:l,

now  g([nal) e [na]?
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so that (2.6) implies
cGgt+e+ -+, =1 2.7

' Moreover, (2.6) and (2.7) imply

Tg (g([na + ra]) — g(lnal))ec, = 0. 2.8)
We have [no + ra] = [{na} + ra] + [ne], and so

P (L)
gl + ra)) — gllna) = 35 1 ( )

[{na} + ral”.

Therefore, after multiplying both sides of this last equality by ¢, and summing
from r = 1 to r = a, for large n one obtains using (2.8),

(k)([noc )

et + e, =0, @29)

él [{no} + role, + i i

For p = 1 the last sum on the left of (2.9) is empty, and if p > 2, we have

g™([
i —(E——){ ) +ralf=0 for2<k<p and 1<r<a.
n—+oo g {{NA
So we arrive at
lim Y [{na} + ra]c, = 0. (2.10)
noror=1

The numbers r« in (2.10) are not integers. Thus, according to the auxiliary
result and (2.10) we can find integers m and n such that the expressions

a

> [{ma} + roc g

r=1
and

a
[{na} + raJe, = 3 (1 + [ra))e,
r=1 r=1
differ from 0 as little as we please, which contradicts (2.7). In this way,
it is shown that if « is irrational, G(x) is not a rational function.

Now assume that « is rational. Set « = c/d, where ¢ and d are integers
with d > 0. Applying the division algorithm, we have n = md + r with
0<r<d—1,andso

nc  (md + r)c re
noc=—=———‘—=mc+;,

d d
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so that [na] = mc + [g} Then

G(z) = Zg([noc Dot =3 §g(,,,c +[ D'LM

n=0 r=0 m=0
d-1 o (k)
re 3
z z z ([ / ) nc)kx'md+r
r=0 m=0 =0

=l_zli (”([’c/d) k rz”k m(l.

=0 k=0 k! =0

0 d J

> mfa™ = ('L —) 1 —a)?
m=0 dx
is rational, and so it is shown that G (%) is rational. JJj

THEOREM 2.3. Let « be a positive number and let
F(z) = 3 ol

t=1
Then F(z) is a rational function if and only if « is rational.

Now

PROOF. Suppose that o is irrational. Let X(i) be the number of solutions
of n = [t«] in positive integers 7. Then

F(2) = z X(n)a™.

n=0

Now X(n) is the number of integers  satisfying n < fo. < n + 1; hence,

X(n) = |:n + 1j| - I:Ej|,
o oL
and therefore, F(x) = (1 — @)X, [n/a]¥"~. According to Theorem 2.2,

F() is not a rational function,
Suppose that o is rational. Write o = c¢/d with positive integers ¢ and d.

Then, using t = md + r with0 < r < d — 1, we have

0 d—1 o d—1
14 F(:L) — z 2lte] — z z pmetire/dl _ (1 _ xc)—lzx[rc/d],
t=0 r=0

r=0 m=0

so that F(2) is rational. ||

THEOREM 24. Let f be a Riemann-integrable function on [0, 1] for
which f§f ()e*™"* dv % 0 for all but finitely many positive integers n.
Let o« be irrational. Then the power series

G(z) =7§lf({noc})z"

cannot be analytically extended across the unit circle {z € €: 2| = 1}.
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PROOF. We recall the following theorem of Frobenius (see Knopp [1,
pp. 507-508] and G. M. Petersen [2, pp. 48-49]). Let (c,), n =1,2,...,
be a sequence of complex numbers with the property that

lim (/N)(ey + ¢+ + ¢cp)

Now

exists and equals ¢. Set ®()=>7; c¢,"; then we have lim,, ,
(1 — o) = .

Now we turn to the proof of our theorem. We have, according to the
definition of G(z),

G(’_eznima) — z f({na})ezninma’.n for —1<r <1 and melZ.
n=1

Since (na) is u.d. mod 1, one obtains from Corollary 1.1 the relation

N 1
llm % Zf({na})e%inma =ff($)e2ni7izm diL — dm’ say.
n=1 0

N—
Using the theorem of Frobenius, we get
lim (1 — r)G@re*™ ™) = d,,. (2.11)
r—1-0
For m > m, we have d,, # 0. So (2.11) implies that if z — ¢**™* along the
radius, the function value G(z) tends to oo, and therefore, G has singularities
on an everywhere dense subset of € C: 2| = 1}. |

Fejér’s Theorem

As another consequence of the Weyl criterion, we obtain a theorem that
will provide many more examples of sequences that are u.d. mod 1.

THEOREM 2.5. Let (f(n),n=1,2,...,beasequence of real numbers
such that Af(n) = f(n + 1) — f(n) is monotone as »n increases. Let,
furthermore,

limAf(n) =0 and lim n |Af(n)| = oo. (2.12)

n—+ow n—+ oo

Then the sequence (f (1)) is u.d. mod 1.
PROOF. For every pair of real numbers « and v we have
|eznixc — 2T 27ri(u . v)e‘zni‘vl — |62m‘(u—v) -1 - 27Ti(ll _ U)|

U—v X
f (u — v — W)™ dw
0

= 4n*

< 4x?

f—(u——v—w)dw
0

= 2n%(u — v)%. (2.13)
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Now set u = /if (n + 1) and v = hf (n), where 1 is a nonzero integer. Then,
according to (2.13),

27 ihf(n+1) e2rrihf(1z)

Af(n) B Af(n)

e

— 2wihe®T M | < 27HE|Af(n)]  forn = 1;

hence,
2rihf(n+1) 2nihf(n)
e _ e _ 27Tihe2m'hf(n)
Af(n+ 1)  Af(w)
1
< — + 27 % |Af(n forn = 1. (2.14
- ‘Af(n) Af(n + 1) ™A ) "= (2.14)
Then,
N—1
2aih z eZnihf(n)
n=1
N—1 2aihf(n-+1) 2rihf(n) 2rihf(N) 2rikf(1)
~|'> (2minetrnsn — € + € ) + —<
ngl( Af(n 4+ 1) Af(n) Af(N) Af(1)
N—-1 ) 2mikf(n+1) e2m'hf(n) 1 1
<'S | 2minetrm o) — 5 + + +
nzl Af(n + 1) Af(m) [Af(N)] - Af(D)]

1
< +7r“A + ,
P Mw ANHJJ E“W”|MwnﬂMm|

where we used (2.14) in the last step. Because of the monotonicity of Af (),
we get

L g | ¢ L (L — )y I S,
N a=1 w | \N |Af(1)] ~ N |Af(N)] N =21

and therefore, in view of (2.12),

X 1 N—-1
lim — z eznmf(n)= 0. .

N~ ®© N =1
COROLLARY 2.1: Fejér’s Theorem. Let f(x) be a function defined for
x > 1 that is differentiable for @ > a,. If f'(z) tends monotonically to 0 as
a — oo and if lim,_,, x| f'(%)] = oo, thenthesequence (f(m),n=1,2,...,
is u.d. mod 1.

PROOF. The mean value theorem shows that Af (n) satisfies the conditions
of Theorem 2.5, at least for sufficiently large #. The finitely many exceptional
terms do not influence the u.d. mod 1 of the sequence. [l

EXAMPLE 2.7. Fejér’s theorem immediately implies the u.d. mod 1 of the
following types of sequences: (i) (en’log'n), n=2,3,..., with o # 0,



5. THE WEYL CRITERION 15
0 < o <1, and arbitrary =; (ii) («log' n), n =1,2, ..., with o 5 0 and
7> 1; (iii) (enlogin), n=2,3,..., witho % 0and 7 < 0. [l

The following simple result shows that the second condition in (2.12)
cannot be relaxed too much.

THEOREM 2.6. If a sequence (f (1), n=1,2,...,isu.d. mod 1, then
necessarily lim,,_, ., 7 |Af (n)| = co.

PROOF. Supposethat(f (n))isu.d. mod 1 and that EH,M, n|Af ()] < co.
For any two real numbers u and », we have

¥ — ™| < 27 |u — 0], (2.15)
and so,

le”’”‘"‘“’ _ e2ﬂif('ﬂ)| < 27 IAf(n)I — O(l)
n
On the other hand,

1Y,
lim — > it = 0,

N— o N a=1
By a well-known Tauberian theorem (Hardy [2, p. 121], G. M. Petersen [2,
p. 51)) it follows that lim,, ., e27/(") = 0, an obvious absurdity. i

An Estimate for Exponential Sums

Although Corollary 2.1 is a very powerful result, there are various interesting
sequences to which it does not apply. For instance, the question whether
(nlogn), n=1,2,..., is ud. mod 1 cannot be settled by appealing to
Fejér’s theorem. In such cases, the following estimate may prove to be
useful. We first need some technical lemmas. The values of the absolute
constants will not be important in these estimates.

LEMMA 2.1. Suppose the real-valued function fhas a monotone derivative
S’ on [a,b] with f'() > 2> 0 or f'(x) < —4 < 0 for z € [a, b]. Then, if
J = [L " gx. we have |J| < 1/A.
PROOF. We have
1 J‘b detrif(z)

C27mide fl2)
and therefore, an application of the second mean value theorem yields,
with some 2, € [a, b],

_1_( 1 f%d 20if () 1 v e {f(m))
e + de”™
27i \f'(a) Ja J'(b) Je,

i( 2 2 \_2 _1
< 2w(lf’(a)l * If’(b)l) s =

Wl =
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LEMMA 2.2. Let f be twice differentiable on [a, b] with f"(x) > p > 0
or f’() £ —p <0 for v €[a, b]. Then the integral J from Lemma 2.1
satisfies |J| < 4/\/7)

PROOF. We may suppose that f“(x) > p for x € [a, b]; otherwise, we
replace f by —f. We note that f’ is increasing. Suppose for the moment that

f'is of constant sign in [a, b], say f* > 0.Ifa < ¢ < b, thenf'(x) > (¢ — a)p
for ¢ < # < b by the mean value theorem. Therefore, by Lemma 2.1,
1

fbe2ﬂif(a:) dz [ S
P (c — a)p ’

and choosing ¢ so as to make the last sum a minimum, we obtain |J| <

anf(m) dz

I < + <(—-a+

2/\/p. In the general case, [a, b] is the union of two intervals in each of which
[’ is of constant sign, and the desired inequality follows by adding the
inequalities for these two intervals. [l

LEMMA 2.3. Letf’ be monotone on [a, b] with | f'(x)| < % for x € [a, b].
Then, if J, = fo ({2} — ) de*™®, we have

|J £ 2. (2.16)
PROOF. We start from the Fourier-series expansion

@) — 3=~ 3 (sin 2mhe)jmh,

valid for all x ¢ Z. For m > 1, let x,,(¥) = — v, (sin 2wha)[mh, x € R, be
the mth partial sum. The functions x,,, m = 1, 2, . . . , are uniformly bounded
as is seen easily after summation by parts. Therefore,

b
Ji=1lim | g,.(x) de*™), (2.17)
m— oo aQ

Now for m > | we have

b
fxm(x) de2ﬂif(m)
o1’ Qi N2rifle) s
;Z:l;; (—2i sin 27ha)e 'f'(x) dx
11 f (e-—Zﬂth . 2ﬂ:hm)e2mf(my (x) dz
;,=1 1

b f(®) deZni(f(m)-—hm)_ i f'(®) deZﬂi(f(a:)-Hzm))

’"11
Zh(af’(m)—h of (%) + h
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Since the functions f'/(f’ & k) are monotone and |f’| < %, an application
of the second mean value theorem shows that

b f'(®) geriv@snn| 2
of (%) £ h Th—%’
and so
b . m
e d 2mif{e) 2.18
ax()e 2:(lz—l) (2.18)

Equations (2.17) and (2.18) imply (2.16). |}

THEOREM 2.7. Let a and b be integers with a < b, and let f be twice
differentiable on [a, b] with f”"(2) > p > 0 or f"(x) < —p < 0 forz € [a, b].
Then,

S | < (78 - @+ (-5 + o 3). (2.19)
PROOF. We write
iez""""’= f S, (2.20)
with e e
S, = > e2ristm, (2.21)

asn<p
p—1/2<f'(n) <p+1/2

The sum over p in (2.20) is in reality just a finite sum. Let p be an integer
for which the sum in (2.21) is nonvoid. Since f is monotone, this sum is
over consecutive values of n, say fromn = a,ton = b,. With F,(v) = f(x) —
pr, we get

S — Z ezrr:f(n) Z e2rr11‘,.(n)

n=a, n=a,

b,
=f :ezm'F,,(a:) dz + %(ezrriF,.(a,,) + ezrriF,,(bp))
ap

bl‘ .
+f ({’L} _ %) deszp(cv) (222)

by the Euler summation formula; compare with (2.3). Now the first integral
in (2.22) is in absolute value less than 4/\/p by Lemma 2.2. The second
integral in (2.22) is in absolute value at most 2 because of |F,(2)] < % for
z € [a,, b,] and Lemma 2.3. Therefore, |S,| < (4/\/p) + 3. Since there are
at most | f'(b) — f'(a)| + 2 values of p for which S, is a nonvoid sum, we
arrive at (2.19). I}
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EXAMPLE 2.8. From Theorem 2.7 we infer that

_1__ %ezrrihnlogn < _l(lhl IOg N + 2)(4 E + 3)
N a1 - N fh|

for all nonzero integers /2, and so, the sequence (nlogn), n =1,2,...,is
u.d. mod 1 by the Weyl criterion. More generally, the method yields that
(anlog'm), n=1,2,...,0%# 0, 7>0,is ud. mod 1. In the same way,
the sequence (nloglogn), n =2,3,..., can be shown to be u.d. mod 1.
Compare also with Exercises 2.23-2.26. i

Uniform Distribution of Double Sequences

DEeriNITION 2.1. A double sequence (s;), j=1,2,...,k=1,2,..., of
real numbers is said to be u.d. mod 1 if for any ¢ and b such that 0 < a <
b <1,
. A([a, b); M, N)
lim ———— =
M,N-® MN
where A([a, b); M, N) is the number of s;, 1 <j <M, 1 <k <N, for
which a < {s;,} < b.
THEOREM 2.8, The double sequence (s;;) is u.d. mod 1 if and only if
for every Riemann-integrable function f on I we have

b— a, (2.23)

1 M N

i~ 3 3 () = /@) d

M.N-w MN 51,21
THEOREM 2.9. The double sequence (s;;,) is u.d. mod 1 if and only if

M N
lim —— 2 2™ =0  for all integers h 5 0.
M.N-o MN j=1 k=1
The proofs of these theorems can be given along the same lines as those of
Corollary 1.1 and Theorem 2.1, respectively.

EXAMPLE 2.9, Let 0 be irrational and « an arbitrary real number. Then
(0 + ko), j=1,2,..., k=1,2,..., is ud. mod I, as follows easily
from Theorem 2.9. [}

Any u.d. double sequence (s;,) can be arranged into a u.d. single sequence
(5,), say. One just has to choose (s,) in such a way that its first M? terms
consist exactly of all numbers s, with 1 <j, ¥ < M. For instance, the
arrangement Syy, Sa1, Sa2, S12, S31, Sazs Sags S2a> S13s Sa1s - - + » Sua, - - - Satisfies this
property. To prove our assertion, we note that for a given positive integer m
there exists a unique integer M with (M — 1) < m < M?, which implies
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ME—m<2M—1. Set AQm)= A([a,b); m: (s,) and A(M, M) =
A([a, b); M, M). Let ¢ be an arbitrary positive number. Then there exists an
integer Ny = Ny(e) such that for M > N, and M2A(m) > mA(M, M),

’ A(m)  AM, M) _ M?A(m) — mAM, M)

m M? M%m
< (M?* — m)A(m) < 2M — 1 <
- M®*m M? ’

and for M > Ny and M?*A(m) < mA(M, M),
Am) A(M M) mA(M M) — M*4A(m)

m M®m
AM, M A 2M — 1
o MAG, M) — AG) <.
M?m M?

From these 1nequalities it follows that lim,, ,, A(m)/m = b — a, since we
have limyr ., A(M, M)IM? = b — a by (2.23).

A weaker concept of u.d. for double sequences, for which the above
argument holds as well, is the following one: We call the double sequence
(s;%) w.d. mod 1 in the squares 1 <j, k<N as N— oo if limy.,
A([a, b); N, N)[N*=b —a for 0 <a < b < 1. As is easily seen, this is
equivalent to

N N

lim = Z > =0  for all integers h # 0. (2.24)
N-oo N2 =11

It is interesting that an analogue of Fejér's theorem can be shown for this
type of u.d. We first need the following simple generalization of the Euler
summation formula.

LEMMA 24. For integers M > 2 and N > 2, let g = g(=, y) be defined
forl <2 < M,1<y <N, with g, continuous in this region. Then,
M N

> 280, k)

j=2 k=2

N rM SN P
=£ fl gz, y) de dy +J1 fl {y}g,(z, y) dz dy

N A N M
H [ @emodey+ [ [ @ e dray. @29
1 1 1 1
PROOF. We may write (2.3) in the form

N N N
.ZzF(k) =f F(t) dt +f {t}F'(t) dt. (2.26)
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For fixed j, 2 < j < M, apply (2.26) with F(y) = g(j, ¥), and we get

N N N
2,80, 1) =fl g(i, ) dy +fl ()&, v) dy. (2.27)

Summing up the equations (2.27) from j = 2 to M, and applying again
(2.26), we arrive at (2.25). |

THEOREM 2.10. Let the real-valued function f = f (%, y) be defined for
& > 1,y > 1, with £, continuous in this region. Let f be increasing in  and
y, and let £, be nonincreasing in « and y. Assume that lim,_, f,(z, 1) =0,
lim, ., f,(1,%) = 0, and lim,_,,, f (%, ®)/2* = 0. Furthermore, suppose that
the integrals [¥ f‘\f;(?, 9 f,(x,y) dvdy and [y dJ/f;c(N y) are both o(N?).
Then the double sequence (f(j, k), j=1,2,..., k=1,2,..., is ud.
mod 1 in the squares 1 < j, k < N as N — oo,

PROOF. We verify (2.24) for all /i %2 0. To this end, we use (2.25) with
g, y) = MY This yields

N .
EeZthU &)

1 k=1
f f 2rihf{x, y)d,b dj

+ thJ {J}f,,(m Y@ gy dy
1

Mz

j

I

+ Zﬂillf f {x} fulm, ) M=V dy dy
1 1
N[N ‘

+ 271th {2y} fur(, M=V o dy
1 1

N N
+ @b | [ (e} 0, 94, D s dy + o(N,

The first double integral is o(N%) because of Lemma 2.1, the condition on
fo» and

= o(N?).
TR B

The last double integral is o(N?) because of

N N
[ [ 5 st v dway = oo
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As to the third double integral, note that

1\7 AY
f {’L}f,;('b, y)e2nihf(w.-u) dx dy
1 1

N (N N
= (N = DN, ) ~ f(1, 1)) = o(N?).

The second double integral is treated in a similar fashion (note that our
conditions imply that f, is nonincreasing in ). Finally, for the fourth double
integral we have

N N
[ w301 oo

<[ [t i ey

= ~f(N, N) + f(1, N) + f(N, 1) = f(1,1) = o(N*).
EXAMPLE 2.10. Let « and 8 be positive numbers. Let f (¢) be increasing
for t > 0, f'(t) — 0 (monotonically), ¢f'(t) - o as t — oo, and f”(¢) con-
tinuous for + > 0. Then the double sequence (f(aj 4+ k), j=1,2,...,
k=1,2,...,1is ud. mod 1 in the squares 1 <j, k < N as N — o, as
follows from Theorem 2.10. See also Exercises 2.28-2.30. i}

Notes

The fundamental Theorem 2.1 was first shown by Weyl [2, 4]. Many proofs of this result
can be found in the literature, most of them proceeding along the same lines as Weyl’s
original proof, which we reproduced here. See Artémiadis and Kuipers [1], Cassels [9,
Chapter 4], Chandrasekharan [1, Chapter 8], Niven [1, Chapter 6], and Exercises 2.6
and 2.7 of Chapter 2. We shall encounter various generalizations of the Weyl criterion
in Sections 6 and 7 of this chapter and in Chapters 3 and 4. See also Exercises 2.1, 2.2,
and 2.3, as well as the papers of Blum and Mizel [2], Brown and Duncan [1], Holewijn
[3], Kuipers and Stam [1], Loynes [1], and Robbins [1].

Because of the Weyl criterion, there are intimate connections between the theory of
u.d. mod 1 and the estimation of exponential sums. Concerning the latter, we refer to the
monographs and articles of Hua [1, 2], Koksma [4, Kap. 9], Teghem [2], Vinogradov
[5], and Walfisz [1].

The fact that (u8), n =1,2,...,is u.d. mod 1 for irrational 8 was established inde-
pendently by Bohl [1], Sierpinski [1, 2], and Weyl [1] in 1909-1910. Their proofs were
elementary. The proof in Example 2.1 comes from Weyl [2, 4]. For other elementary
proofs, see Callahan [1], Hardy and Wright [1, Chapter 23], Jacobs [1], Miklavc [1], Niven
[1, Chapter 6; 3, Chapter 3], O’Neil [1], and Weyl [4]. The problem of the distribution of
(n6) mod 1 had its origin in the theory of secular perturbations in astronomy. Weyl [3]
discusses this connection in detail. For a survey of the early literature, see Koksma [4, Kap.
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8]. We remark that Example 2.1 improves Kronecker’s theorem, which says that ({n6}) is
everywhere dense in [0, 1].

The distribution of (#8) mod 1 has been studied extensively, especially in connection
with certain conjectures of Steinhaus. Given a real 8, a positive integer N,and 0 < b < 1,
it turns out that the “‘gaps’’ between the successive values of n, 0 < n < N, for which
{n6} < b can have at most three lengths, and if there are three, one is the sum of the
other two (Slater [1], Florek [1]). Also, if N and 8 are as above, and if one arranges the
points 0, {6}, ..., {N6} in ascending order, the ‘“‘steps’’ between consecutive points can
have at most three lengths, and if there are three, one will be the sum of the other two
(S6s [2], Suranyi [1], Swierczkowski [1]). Further investigations along these lines have
been carried out by Hartman [3], S6s [1], Halton [2], and Graham and van Lint [1].
Slater [3] gives a summary of these results with simple proofs. For quantitative results on
(n) with 8 irrational, see Section 3 of Chapter 2.

Interesting relations between (#), 6 irrational, and ergodic theory are discussed in
Hartman, Marczewski, and Ryll-Nardzewski [1] and Postnikov [8, Chapter 2]. In this
context, the remarkable work of Veech [1, 2, 4] should also be mentioned. See also Hlawka
[27]. In a different direction, Hardy and Littlewood [6] investigate for which 8 one has
limy—(1/N) Z‘,Ll f{nb}) = j(l,f(.'c) dx for a class of functions f'having infinities at # = 0
and 1. Mostly, questions of this type have been considered from the metric viewpoint
(see the notes in Section 4 of this chapter). Erdos [7, pp. 52-53] states an open problem
concerning (10).

Various subsequences of (1), 8 irrational, have been studied. For instance, it is known
that (p,8),n =1,2,...,isu.d.mod 1, wherep; = 2,p, = 3,...,py, ... is the sequence
of primes arranged in ascending order (Vinogradov [3, 4; 5, Chapter 11], Hua [1]). If
w(n) is the number of prime divisors of #, then (w(#)6) is u.d. mod 1 (Erdos [3], Delange
[4]). Let (g,,) be an increasing sequence of integers >1 and setr, =g, - - - g, forn > 1; then
Korobov [5] characterized the numbers 8 for which (r,,6) is u.d. mod 1. Some improvements
were obtained by Salat [2]. For other results on subsequences of (16), see Sections 4 and
8 of this chapter and Section 3 of the next. In particular, it will turn out that for the number
6 in Example 2.2 the sequence (10”6) is u.d. mod 1.

Concerning the sequences (c log ) considered in Examples 2.4, 2.5, and 2.6, we refer
to Franel [3], Pélya and Szegd [1, II. Abschn., Aufg. 179-181], and Thorp and Whitley
[1]. We shall return to these sequences in Section 7. Wintner [1] showed that (log p,) is
not u.d. mod 1, where (p,) is the sequence of primes. The sequences of logarithms of
natural numbers are related to an amusing problem in elementary number theory. See
Bird [1] and Exercises 2.14 to 2.17.

Theorems 2.2 and 2.3 are from Newman [1], and Theorem 2.4 which is essentially due to
Mordell [3, 4] generalizes a result of Hecke [1]. More general results are known, and they
can be found in Cantor [3], Carroll [1, 2], Carroll and Kemperman [1], Davenport [3],
Meijer [1], Mordell [1, 2, 3, 4], Popken [1], Salem [1], Schwarz [1, 2], Schwarz and
Wallisser [1], and Wallisser [1, 2]. Most of the proofs depend on results from the theory of
u.d. mod 1. Some of these papers generalize, or are connected with, the classical theorem of
Carlson-Pélya to the effect that a power series z:o:o a,z" with integer coefficients a,, that

convergesfor {z] < 1 either represents a rational function or has the unit circle as its natural
boundary. Quantitative versions of Hecke’s result are in Hlawka [28] and Niederreiter [19].

Theorem 2.5 is from van der Corput [S]. The special case enunciated in Corollary 2.1
was already known earlier (Polya and Szegd [1, II. Abschn., Aufg. 174]). For other ap-
proaches to Fejér’s theorem, see Tsuji [2] and Niederreiter [2]. Kuipers [3] proves some
analogues of Fejér’s theorem. See also Theorem 9.8 and Koksma [2; 4, Kap. 8]. Theorem
2.6 is essentially from Kennedy [1]. A special case was shown earlier by Kuipers [3].
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Our proof follows Kano [1]. In a certain sense, the result is best possible (Kennedy [1]).
For a thorough investigation of slowly growing sequences, see Kemperman {4].

The estimate in Theorem 2.7 is a result of van der Corput [1]. For various generalizations,
see van der Corput {2, 3, 4] and Koksma [4, Kap. 9].

The presentation of u.d. of double sequences is based on the work of Cigler [1] and
Hiergeist {1]. Using the same method as in the proof of Theorem 2.10, a result concerning
the u.d. mod 1 of (f(j, k)) can be shown (Cigler [1]).

For the result in Exercise 2.27, see Koksma and Salem [1].

Exercises

2.1

2.2.

2.3.

2.4,

2.5.

2.6.

2.7.

2.8.
2.9.
2.10.
2.11.

The sequence (,) is u.d. mod 1 if and only if (2.1) holds for all positive
integers .

Let fi(2), f2(®), ..., f,(®), .. . be a sequence of continuous functions
on I that is dense in the space of all continuous functions on 7 in the
sense of uniform convergence. Prove that (z,) is u.d. mod 1 if and
only if

11m zf,,({zn}) _flfh(x) de forallh=1,2,....

Prove that the sequence (#,) is u.d. mod 1 if and only if

hm— x”—-—* forallh =1,2,...
Now N nz{ "} h+1

If (x,) is u.d. mod 1, then (m=,) is u.d. mod 1 for every nonzero integer

m.

Let 0 be an irrational number. Then the sequence (a0), a = 0, 1, —1,

2, —2,...,isu.d. mod 1.

Let 6 be an irrational number, and let a and d be integers with a > 0

and d > 0. For n > 1, one sets ¢, = 1 if the integer closest to nf is

to the left of nf; otherwise, ¢, = 0. Then we have

AIII_I'IL ~]1§ g18a+nd = %
Prove that the sequence ({sinn}), n = 1,2, ..., is dense in I but not
u.d. mod 1.
Prove the first part of Exercise 1.12 using the Weyl criterion,
Prove Lemma 1.1 using the Weyl criterion.
Prove Theorem 1.2 using the Weyl criterion.
If (z,) is u.d. mod 1 and (y,) satisfies

lim — . =0,
NEIJI

N-w

then (z, + ¥,) is u.d. mod 1,
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2.12.

2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

2.21.

2.22.

2.23.

2.24.
2.25.

2.26

UNIFORM DISTRIBUTION MOD 1

Let (v,) be a sequence of real numbers and Q a natural number. If

each of the Q sequences @) = @gnie»r 0L g < Q0 —1,isud. mod1,

then so is (z,,).

The sequence (clogn), n=1,2,..., where ¢ is a constant, is not
u.d. mod 1.
Let b > 2 be an integer. A set S of positive integers is called extendable

in base b if for every finite string of b-adic digits, there exists an s € .S
whose initial digits in b-adic representation coincide with the given
string of digits. Prove that § = {s, s,, .. .} is extendable in base b if
and only if the sequence ({’logs,}), n = 1,2, ..., of fractional parts
is dense in I.
For a given positive integer k, prove that the set {*: n=1,2,...}
is extendable in any base (see Exercise 2.14).
Let b > 2 and k a positive integer that is not a rational power of b.
Prove that the set {k™: n =1,2,...} is extendable in base b (see
Exercise 2.14).
Theset {n": n=1,2,...}isextendable in any base (see Exercise 2.14).
Let § be an arbitrary real number. Prove Theorem 2.4 with {na}
replaced by {na 4 f}.
Let « be irrational and feR arbitrary. Then the power series
>% i {na + B}z"* has the unit circle as its natural boundary. What
happens if « is rational ?
Let the Bernoulli polynomials B,(¥) be defined recursively by B, (x) =
x — } and Bi,,(x) = (k + 1)By(x) and [§ By () dx =0 for k > 1.
Prove that the power series Dy By({no + B})2" has the unit circle as
its natural boundary, whenever o is irrational, § € R, and k > 1.
Prove the Euler summation formula (2.3). Hint: Start from the identity
WLFE() dt = 3(F(n) + F(n + 1)) — {2 ({t} — DF' (1) dt for integers
n.
Use the Weyl criterion and the Euler summation formula to prove the
following version of Fejér’s theorem: Let f(z) have a continuous
derivative for sufficiently large @ with f”(«) tending monotonically to 0
as ¥ — oo and lim,_,, 2 |f'(®)] = co; then (f (), n=1,2,..., is
u.d. mod 1.
Use Theorem 2.7 to show that the sequence (an”), n=1,2,...,
a#0,1<0<2 isud modl.
Prove that the sequence (n loglogn), n =2,3,...,is ud. mod 1.
Define log;, @ recursively by log, x = log  and log; ¥ = log;_;(log %)
for k > 2. For each k > 1, prove that (nlog, n), n = ny(k), ny(k) +
1,...,is u.d. mod 1, where ny(k) is the least integer in the domain of
log; .
. Deduce the following result from Theorem 2.7: Let f () be defined
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for ¥ > 1 and twice differentiable for sufficiently large « with f“()
tending monotonically to 0 as ¥ — 0. Suppose also

1 AN\2
lim f'(x) = £  and lim w— =0
@~ a0 T 'f (.’L)l
Then (f(n)),n=1,2,...,is ud. mod 1.
2.27. Let fe L2[0, 1] be a function with period 1 and with § f () dv = 0.
Then for any sequence (x,,) that is u.d. mod 1, one has

1
lim f
N- o JO

Hint: Expand finto a Fourier series.

2.28. Consider the double sequence (s;;) with s;, = jfk if j < k and 5, = kj
if j > k. Then (s;;) is not u.d. mod 1, but (s;;) is u.d. mod 1 in the
squares 1 <j, k < NasN— 0.

2.29. Let (s,), k =1,2,..., beu.d. mod | and define s;;, = s forall j, k =
1,2,.... Then the double sequence (s;,) is u.d. mod 1.

2.30. Letecand 8 be positivenumbers. Thenthe doublesequences ((«j + £k)7),
Sk=1,2,...,0<0<1, and (log («f + L)), j,k=1,2,...,
7> 1, are u.d. mod 1 in the squares 1 <j, k < Nas N —» .

2.31. See the proof of Theorem 2.2. Show in detail that A(x)G(x) = B(w)
implies (2.6).

N

2 [t + =)

2
1 dt = 0.
N

3. DIFFERENCE THEOREMS

Van der Corput’s Difference Theorem

LEMMA 3.1: Van der Corput’s Fundamental Inequality. Let u,,...,uy
be complex numbers, and let H be an integer with 1 < H < N. Then

N 2 N
H2 zun S H(N + H — l)ziuniz
n=1 n=1
H-1 N—h
+ 2N+ H—1)> (H—DReY u,il,
h=1 n=1

where Re z denotes the real part of z € €.

PROOF. Define u, = 0 for all n < 0 and all # > N. Then we have

N N+H~1 H~1

HYu,= 2 > u,, 3.1

=1 p=1 h=0
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Using the Cauchy-Schwarz inequality, one obtains

H—1 2

2 “zz—h
h=0

2 N+H-1

<(N+H-1 3

p=1

=(N+H-— 1)N+§_1 (HE_lup—r) (Igﬂ»—s)

r==] r=0

N

Eu

n=1

N+H—-1 H-1

=(N+H-1) qgl ’golu,,_hlz

N+H-1 H1

+2(N+ H—DRe Y Eu_,,,s
p=1 p,5=0

= (N + H — 1)(Z; + 2Re Z,).

By (3.1) we see that X, is equal to H>N | |u,|2. The sum X, contains terms
of the form u,d,,, withn =1,2,... ,Nandh=r—s=1,2,... ,H— 1.
For fixed n, 1 <n < N, and 5, 1 g h < H — 1, the possible choices for
(r, s) yielding the term u,@,,,, can be enumerated explicitly, namely, (%, 0),
th+1,1),...,(H—1,H— h — 1). For each such choice, the value of p
is uniquely determined. Thus, we have precisely H — /i occurrences of
U, i, in Z,. Thus, we can write

H

3, = E(H - h)zu lnine

n=1
Now u,, = 0 for n > N; hence the summation over » can be restricted to

1<n<N—h H

THEOREM 3.1: Van der Corput’s Difference Theorem. Let (z,) be a
given sequence of real numbers. If for every positive integer /1 the sequence
@, — ), n=1,2,...,isu.d. mod 1, then (z,) is u.d. mod 1.

PROOF. Let m be a fixed nonzero integer. We apply Lemma 3.1 with

u, = "™ and, dividing by H2N?, we get
1 3 srime N+ H- HI(N 4+ H — 1)(H — h)(N — k)
- e may —_ - + 2
‘ N n§=:1 S HN g HEN®
1 N,
._.__h Ele rim{@n—an+n) . (3.2)
- n==

The sequence (%, — 2,,,) is u.d. mod 1 for every /1 > 1; hence,

N—h
lim N E etrimlan—enit) — 0 for every h > 1. (3.3)
N- o — h n=
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By (3.2) and (3.3) we obtain

-— LS|
lim —
N-ow H
and since (3.4) holds for every positive integer H, we havg

1 X .
11m —_ zezrrnnacn — 0 .

Now N a=1

< (34)

QLA
= zezrrunwn

n=1

This theorem yields an important sufficient condition for u.d. mod 1, but
not a necessary one, as is seen by considering the sequence (#8) with 6
irrational. One of the many applications of Theorem 3.1 is to sequences of
polynomial values.

THEOREM 3.2. Let p(®) = o0, 2" + o, ™1 4 -+ oy, m 21, be a
polynomial with real coefficients and let at least one of the coefficients «;

with j > O be irrational. Then the sequence (p(n)), n =1,2,..., is ud.
mod 1.
PROOF. The case m = 1 is settled as in Example 2.1, and so, we may
suppose m > 2. Let first oy, ..., a, be rational and «, irrational. Then
write p(x) = P(x) + o,& + op. Let D be the least common multiple of the
denominators of o, . . . , «,,. We have {P(Dk + d)} = {P(d)} for k > 0 and
d > 1. Therefore, for every nonzero integer A,
i §e2rrihp(n) - i & e2rr1’h;p(n)
N n=1 N a=[N/DI1D+1
1 D[N/D}l-1
+ = ezmh(P(Dk+d)+a1(Dk+d)+ao)
Nd=t i=o
_1_ 27 iho(n)

= > e
N a=[N/DID+1

+ (§e2rrih(P(d)+a1d+ao)) (i[N/ED:]—lezrrihaka) (3 5)

i=1 N i . '
Since «, is irrational, the sequence («,Dk), k =0,1,..., is u.d. mod I,
so that the second term on the right of (3.5) tends to 0 as N — oo. The
first term on the right of (3.5) is in absolute value less than D/N. According
to Theorem 2.1 the sequence (p(n)) is u.d. mod 1 in this special case.

In order to show Theorem 3.2 we use induction. Let p(x) be a polynomial
whose highest degree term with irrational coefficient is «2? Because of the
above argument, the theorem is true for ¢ = 1. Now let ¢ be any integer
with m > ¢ > 1. Then every polynomial

Ph(’v)=P(x+h)_P(x)s h=1,2,...;,
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has the property that the term of largest degree with an irrational coefficient
is the term containing the factor x?~1. Because of the induction hypothesis
the sequence (p,(n)), n = 1,2, ... ,isu.d. mod 1. Finally, applying Theorem
3.1, we conclude that the sequence (p(n)) is u.d. mod 1. i}

EXAMPLE 3.1. As a sample result exhibiting the usefulness of Theorem
3.2 in diophantine problems, we shall prove that the system of inequalities

20 4 Taty? <yt — y 4+ 1 < 2220 4 210 — 2a?y? (3.6)

has infinitely many solutions in positive integers x and y. We set y = a5 ¥/2 +
d with |6} < 1 and substitute in (3.6). Upon substitution we divide the

members of (3.6) by 4a:1® /8. The system (3.6) can then be written in the form
e(®) — W2 <28 V2 — y < £y(2), 3.7
where & (x) and g,(2) have the property that they tend to 0 as  — co. Let

n be a positive number <1sV2. Then from a certain @ = «, on, we have
—n<éeE)<7yand —n< & () < 7. Instead of (3.7) we consider the

system 3 — «}\/2<x5\4/2—y< —n, or
14+ 71— 32 <2< 1 — 5 (mod 1), (3.8)

We note that the sequence w = (n® \4/5), n=1,2,...,is ud. mod 1 by
Theorem 3.2, and so,

—I{;A((1+n—%\/§,1 i Niw) >33 — 2  as N .

Hence, there are infinitely many positive integers a satisfying (3.8) and
therefore infinitely many pairs (%, y) of positive integers satisfying (3.7). [}

Other Difference Theorems
THEOREM 3.3. If a sequence (2,), n = 1,2, ..., has the property

Ax, = x,,, — v, — 0 (irrational) as #— o0, 3.9)
then the sequence (w,) is u.d. mod 1.

PROOF. If ¢ is a positive integer, then by (3.9) there exists an integer
8o = 8o(q) such that for any integers n > g > g,

n—~1

S (Aw, — 9)\ <i=£ (3.10)
j=0 q

Hence, if A is an integer 0, then (3.10) and (2.15) yield

le, — %, — (n — )f| =

; ; — 27 |hl (n —
Ie21rzhxn _ e2rr1h(xy+(n v)ﬂ)l S | ‘(2 g) ,

(3.11)
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and from (3.11) and the triangle inequality

g+a—1

oni
E e mihen S

n=g
where K stands for [sin #A8|~! + = |A]. Thus, by (3.12), for every positive
integer H,

9+q—1
2"”" Sh-p<K (12

n=g

g+q—1
E lerih(%+(n—0)6)

n=g

9—1+Ha

‘ E lerﬂm‘n

n=g

< HK. (3.13)

So for every integer N > g we have from (3.13),

N .
z e‘arnha:n

n=1

N —

<g—1+4 EK+q
q

Keeping ¢ fixed, we obtain

<

1 < 2 i
= wihan
N ngl q

Since ¢ can be as large as we please, the theorem follows. [l

lim

N

We define recursively the difference operator A* on a sequence (z,) by
A, = Az, =2, — =2, and Afx, = A(A*'2,) for k > 2. With this
notation, the following generalization of Theorem 2.5 can be established
by means of Theorem 3.1.

THEOREM 34. Let(f(n),n=1,2,...,beasequence of real numbers,
and let k be a positive integer. If A*f (n) is monotone in n, if A¥{(n) — 0 and
n |A¥f (n)] — oo as n — oo, then the sequence (f (n)) is u.d. mod 1.

PROOF. We proceed by induction on k. For & = 1, the theorem reduces
to Theorem 2.5. Suppose the theorem is true for the positive integer k, and
let ( f (1)) be a sequence with A**1f (1) monotone in n, lim,_,,, A**f (1) = 0,
and lim,_, n |A*f (n)] = oo. For a fixed positive integer 4, we have
f+mn— f)y=2100f(n+j), and so A(fm+h)—f(n)=
120 A (n + ). In view of the assumptlons this leads to the following
prope1t1es A¥(f (n + h) — f(n)) is monotone in i, lim,_,,, A*(f(n + h) —
f@) =0, and lim,_, n|A*(f(n + 1) — f ()| = oo (here we use that
A*1f (1) has constant sign). By the induction hypothesis we obtain that the

sequence (f(n+ h)y—f(n), n=1,2,..., is ud. mod 1, and this for
each /1 > 1. Thus, according to Theorem 3.1, the sequence (f (1)) is u.d.
mod 1. i

By using similar ideas, we may extend Fejér’s theorem to the following
result.

THEOREM 3.5. Let k be a positive integer, and let f(¥) be a function
defined for « > 1, which is k times differentiable for x > @,. If £ *)(2) tends
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monotonically to 0 as # — co and if lim,_, , # | f*¥(x)| = oo, thenthesequence
(fm),n=1,2,...,isud mod 1.

PROOF. We use induction on k. For k = 1, the assertion was shown in
Corollary 2.1. Let f be a function satisfying the conditions of the theorem
with k replaced by k + 1. For a positive integer A, set g,(x) = f(z + h) —
f (@) forz > 1. Thengi(x) = f ¥ (x + h) — f B () fora > a, and it isthus
easily seen that the induction hypothesis can be applied to g,. Hence,
(gn(m),n=1,2,...,isud. mod 1, and by Theorem 3.1 we are done. i

The above theorem leads to many interesting new classes of sequences
that are u.d. mod 1. We refer to Exercises 3.9, 3.10, and 3.11.

Notes

Lemma 3.1 is from van der Corput [4, 5], who also showed Theorem 3.1 (van der Corput
[5)). Theorem 3.2 was already proved earlier by Weyl [2, 4], who used more complicated
methods. See also Hardy and Littlewood [1, 2] for weaker results. For an exposition of
Weyl’s method, see Titchmarsh [1, Chapter 5] and Walfisz [1]. Lemma 3.1 may also be
found in Titchmarsh [1, Chapter 5] and Cassels [9, Chapter 4]. In the latter monograph
one also finds a slightly different proof of Theorem 3.2, An interesting approach to Theorem
3.2 is possible by means of ergodic theory. See Furstenberg [1, 2], F. J. Hahn [1], and
Cigler [14]. For applications of Theorem 3.2 to ergodic theory, see Akulini¢ev [1] and
Postnikov [8, Chapter 2]. The statement of Theorem 3.2 holds also if # only runs through
the sequence of primes (Vinogradov [4, 5], Hua [1], Rhin [4]).

For Example 3.1 and related problems, see van der Corput [5]. The same author [6]
also developed other methods for the study of diophantine inequalities. Theorems 3.3 and
3.4 are also from van der Corput [5]. For an application of Theorem 3.3, see Exercise 3.3
and the papers of Brown and Duncan [2, 4], Duncan [1], and Kuipers [11]. The sequences
considered in Exercise 3.9 were first shown to be u.d. mod 1 by Csillag [1]. For u.d. mod 1
of sequences of values of entire functions, see Rauzy [3]. Karacuba [1] proves the u.d. mod 1
of (f(m)) with f growing somewhat faster than a polynomial, e.g., f(x) = ectog®)? vy
¢>0and ! <y < 2. Brezin [1] proves the u.d. mod 1 of a specific sequence arising from
nilmanifold theory. Elliott [2] investigates sequences arising from zeros of the Riemann
zeta-function. Blanchard [1, Chapter 6] studies sequences connected with prime number
theory for Gaussian integers.

Important generalizations of the difference theorem (Theorem 3.1) will be shown in
Chapter 4, Section 2. The following result of Korobov and Postnikov [1] may already
be mentioned here: namely, if (z,) satisfies the assumptions of Theorem 3.1, then Eontr)s
n=1,2,...,is ud mod I, where ¢ > 0 and » > 0 are integers. A detailed study of
various difference theorems was carried out by Hlawka [8]. See Section 6 of Chapter 2
for quantitative versions of the difference theorem.

Exercises

3.1. See Theorem 3.2, If all the coefficients «; with j > 0 are rational, then
the sequence (p(»)) is not u.d. mod 1.
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3.2,

3.3.

3.4.

3.5,

3.6.

3.7

3.8.
3.9.
3.10.
311
3.12.

3.13.
3.14.
3.15.

3.16.

3.17.

The sequence (18 + sin (277'\/;;)), n=1,2,...,80 irrational, is u.d.
mod 1.

Consider the sequence (F,) of Fibonacci numbers defined by Fy =
F,=1 and F,=F, ; + F,_, for n > 3. Prove that the sequence
(log F,) is u.d. mod 1. Hint: Show first that lim,_ ., F,,:/F, =
a + V32

The set {F,: n=1,2,...} of Fibonacci numbers is extendable in
any base (see Exercise 2.14),

Let f(x) be a function defined for « > 1 that is differentiable for
sufficiently large «. If lim,_,,, f'(x) = @ (irrational), then the sequence
(f@m),n=1,2,...,isud mod 1.

Let (,) be a sequence of real numbers with the propertylim,_, (Afz, =
6 (irrational) for some integer £ > 1. Then (x,) is u.d. mod 1.

Let k be a positive integer, and let f(x) be a function defined for
« > 1 that is k times differentiable for sufficiently large 2. If

lim f®(2) = @ (irrational),

T—0
then the sequence (f (), n =1,2,...,is u.d. mod 1.
The sequence (#%0 + sin (277\/n)), n=1,2,..., with 8 irrational, is
u.d. mod 1.
Let o £ 0 and o > 0 with ¢ not an integer. Then the sequence (an”),

n=1,2,...,isud mod 1.
Let o and o be as in Exercise 3.9, and let 7 be arbitrary. Then the

sequence (on’ log"n), n = 2,3,...,is ud. mod 1.
Let & be a positive integer, let « ¢ 0 and 7 < 0. Then the sequence
(an*log' n), n =2,3,...,is ud. mod 1. The same is true for 7 > 1.

Prove that (n%log n) is u.d. mod 1. Hint: Use the difference theorem
and Theorem 2.7.

Prove that (n?loglogn), n =2,3,...,isud mod 1.

For o # 0 and 0 < 7 <1, prove that (anlog’n) and (an®log n)
are u.d. mod 1.

Let o > 0 and let g(«) be a nonconstant linear combination of arbitrary
powers of x. Prove that the sequence (n’g(logn)), n=2,3,...,is
u.d. mod 1. Hint: Distinguish between 0 € Z and o ¢ Z.

For an arbitrary sequence (z,) of real numbers, prove that

E k
Akx, = E (— 1)1( ) X kot
i=o i

forn>1andk > 1.
For any ¢ > 0, there exist arbitrarily large « with cos2® > 1 — ¢ and
cos(@+ 12 < —1+e.
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3.18. Prove that lim,_,, |zfz " sin ¢2 dt| = 1. Hint: Use integration by parts
and Exercise 3.17.

4. METRIC THEOREMS

Some Basic Results

Let (u,(x)), n=1,2,..., for every « lying in some given bounded or
unbounded interval J, be a sequence of real numbers. The sequence (u,,(x))
is said to be w.d. mod 1 for almost all x if for every x € J, apart from a set
which has Lebesgue measure 0, the sequence (v, (%)) is u.d. mod 1. An early
result of this type is the following one.

THEOREM 4.1. Let (a,), n=1,2,..., be a given sequence of distinct
integers. Then the sequence (a,%), n =1,2,..., is u.d. mod 1 for almost
all real numbers =.

PROOF. It suffices to prove that (a,%) is u.d. mod 1 for almost all x € I =
[0, 1). For if k is an integer, then {a,(k + %)} = {a,2} implies that the set
of y € [k, k + 1) for which (a,y) fails to be u.d. mod 1 is just the translate
by k of the set of « € I for which (a,2) fails to be u.d. mod 1, and so also a
null set. Since the countable union of null sets is again a null set, we are
then done. For a fixed nonzero integer /, define

N
S(N, 2) =—11; ettt for N>1 and 0<L=z<1.

n=1
Then
N )
|S(N, m)lz = S(N’ a:)S(N’ a;) = i—z- E ezmh(am—an)w’
m,n=1

and so

! 2 1 Y ! 2rihlam—an)@ 1

. IS(N, »)|* dx = I m%l € do = 5’ 4.1

since the only contribution to the double sum comes from the terms with
m = n. Now (4.1) implies

w0

© 1
S [isov otde =3 L < o,
N=1Jo N

and then Fatou’s lemma yields

1 w
2 IS(N% 2)|* dz < oo,

0 N=1
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so that Y%, IS(N%,2)]? < oo for almost all a€[0,1]. Consequently,
limy_, o S(N%, %) = 0 for almost all 2 € [0,1]. Now, given N > 1, there
exists a positive integer m such that m* < N < (m + 1)% Then, by trivial
estimates,

2

VN

It follows that limy_., S(N,2) =0 holds for almost all z € [0, 1], the
exceptional set depending on the integer 4 chosen earlier. Forming the count-
able union of all the exceptional sets corresponding to h = £1, £2,...,

we arrive at a null set B. The Weyl criterion shows that (a,®) is u.d. mod 1
forallze[0,1\B. |

In the proof of Theorem 4.1 a more general principle is hidden. Let
(u,(®), n=1,2,..., be a sequence depending on a real parameter z,
each u, being a real-valued Lebesgue-measurable function on the interval
[a, b]. For integers & 2 0 and N > 1, we set

IS(N, 2)] < |S(m?, #)] + 27’;1 < (S(m?, 2)] +

N
Sh(N, ,v) =§ Ee‘znihun(m) for a <z< b,

n=1
and also

b
Ih(N) =f |Sh(N, x)lz dx.
Then the following general result holds.

THEOREM 4.2. If the series > n_; I,(N)/N converges for each integer
h # 0, then the sequence (u,(x)) is u.d. mod 1 for almost all z € {a, b].

PROOF. We keep / fixed, and so drop the reference to h. Since 3 %_,I(N)/N
converges, there exists an increasing sequence (A(N)), N = 1,2, ..., of real
numbers >1 with A(N)— oo such that X %_, I(N)A(N)/N still converges
(see Exercise 4.9). Let M; < M, < - -+ be positive integers such that

A
M = |:A(M,) —1

Let N, be an integer in the range M, < N < M, , for which I(N) attains
its least value. Then

M,] +1 for r > 1. 4.2)

1 Myy1 M,,_, L My )/
Ny L ——— INL————— I(N)/N.
(N, M, — M, N=%,+l (V) M., — M, N=%,+1 (

Since, according to (4.2),

M
——— < AM,),
Mr+1 — M,
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we have
Mry1 I(N)Z(N)
NS 32—,

N=,#1 N
so that 372, I(N,) < . As in the proof of Theorem 4.1, one shows that
then lim,_, o, S(V,, #) = 0 for almost all z € [a, b]. We note that M, ,/M, — 1
as r — oo according to (4.2), and so, we have N, /N, — 1 as r — c0. Now
if N, < N < N,,,, then
Nr+1 — N,

N,

whence limy,_, S(N,*) = 0 for almost all « € [a, b]. The proof is then
completed as in Theorem 4.1. |

IS(N, #)] < |S(N,, »)| +

H

EXAMPLE 4.1. The above theorem yields immediately the following
generalization of Theorem 4.1. Let ¢ be a positive function with

> w2 < co.
n=1

Let (a,), n=1,2,..., be a sequence of integers for which a,, = a, for
at most Y(N) ordered pairs (m, n) with 1 < m, n < N. Then the sequence
(a,x),n=1,2,...,is ud. mod I for almost all real numbers z. [}

Koksma’s General Metric Theorem

THEOREM 4.3. Let (v,(®)),n =1,2,..., beasequence of real numbers
defined for every « in an interval [a, b]. For every n > 1, let u,(x) be con-
tinuously differentiable on [a, b]. Suppose that, for any two positive integers
m 7 n, the function u,,(x) — uy(x) is monotone with respect to x and that
[t () — up(®)] > K > 0, where K does not depend on x, m, and n. Then
the sequence (u,,(%)) is u.d. mod 1 for almost all « in [a, b].

PROOF. For a fixed integer i 5 0, we set again

AY
Sh(N, ,v) — _1%]_ zehihun(x) fora < 2 < b.

n=1
Then,
N b
Ih(N) f ISh(N :L‘)|2 de = — z 2mh(um(x)—un(x))dx
m n=14Ja
% i 2m ik (um(x) (e))
S— feﬂlll(mx—llnx dx
N2 m,n=1
N m—1
b—a z z f Prittumta)—unta) 1o |
N N m=2 n= a
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To each of the integrals appearing in the last expression, we apply Lemma
2.1. Since |u},(¥) — u,(2)| attains its minimum at one of the end points of
[a, b], we obtain

LM<=y 2 %milmax( ! ! )
TN R N eSS (@) — @)l (b) — wi(b)|

b—a 2 XN ’"“‘( 1 1 )
— + —— .
< N |h] N* m§=:2 ngl [te),(a) — wi(a)] + [t17,(D) — ui(b)]

4.3)
For fixed v € [a,b] and 2 <m < N, we can order the numbers u, (%),

up(®), . .., un(®) according to their magnitude. In the new ordering, the
difference of any two consecutive numbers will be > K. Therefore,

m—1 1 N 1 2
— < 23> — < =log(3N). 4.4
2 ) — ) <2k S g BCM 449
Combining (4.3) and (4.4), we obtain
b—a 8 log(3N)
L(N + . .
(W) < N K N
The rest follows from Theorem 4.2. [l

The above theorem contains many interesting special cases. We mention
a few of them.
COROLLARY 4.1. Let 6 be a positive constant, and let (F(n)), n =
1,2,..., be asequence of numbers >1 with |F(m) — F(n)| > 0 for m # n.
Then the sequence (A, 250, n=1,2,...,isud mod 1 for almost
alla > 1.
PROOF. Let k be a positive integer, and set u,(z) = 22¥™ for k < x <
k + 1. For m 5£ n, the function u),(2) — u},(2) = AF(m)? ™ — Fn)aF ™)
is monotone in x since uj,(x) — u, () has the sign of A(F(m) — F(n)). More-
over, form 2 nand k < x < k + 1, one has

() ~ up(@)] = |4 2”7 (qa*™ — p) 2 1A (¢ — p) 2 |41 5,

where p = min (F(m), F(n)) and ¢ = max (F(m), F(n)). Theorem 4.3 implies
that (22F™) is u.d. mod 1 for almost all « € [k, k + 1]. The countable
union of these exceptional sets leads to a null set in [1, ). [}

COROLLARY 4.2. The sequence (¢"), # =1,2,..., is ud. mod 1 for
almost all @ > 1.

PROOF. Immediate from Corollary 4.1. |}

COROLLARY 4.3. Letdbe apositive constant, andlet (1,)),n=1,2,...,
be a sequence of real numbers with |4, — 4,| = 6 for m 5 n. Then the
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sequence (4,x), n =1,2,..., is u.d. mod 1 for almost all real numbers z.

PROOF. For a fixed integer k, Theorem 4.3 yields that (1,2) is u.d. mod 1
for almost all z € [k, k + 1]. The countable union of these exceptional sets
leads to a null set in R. i

Concerning Corollary 4.2, it is interesting to note that one does not know
whether sequences such as (e"), (7"), or even ((3/2)") are u.d. mod 1 or not.
However, as we shall see below, one can say something about the exceptional
set.

EXAMPLE 4.2. A real number « > 1 is called a Pisot-Vijayaraghavan
number (abbreviated P.V. number) if « is an algebraic integer all of whose
conjugates (apart from « itself) lie in the open unit circle {ze C: |z| < 1}.
In other words, o > 1 is a P.V. number if there exists a polynomial f () =
a4+ @, 2"+ -+ ay, a;€ Z, irreducible over @ such that f(x) =
(x — o) (xr — a,) with a; = « and |«,| <1 for 2 < j < m. Trivially,
every rational integer >1 is a P.V. number. A less trivial example is « =
1+ \/5)/2. We claim that, for a P.V. number «, the only possible limit
points of the sequence ({«"}), n =1, 2,...,are 0and 1, so that the sequence
(«™) can obviously not be u.d. mod 1. With the above notation, we set
T, (o) = oy® + -+ + o, for n > 1. Since T,(«) is defined as a symmetric
function of ¢, ..., a, with integral coefficients, T, («) is in fact a rational
integer. Now |o* — T,(2)] = [0y — T, ()| < o™ + - + e, |", and so
lim f«® — T,(2)| = 0. This proves the assertion. [Jj

n—r 00

Trigonometric Sequences

There are some interesting classes of sequences for which the conditions of
Theorem 4.3 are not satisfied, among them, trigonometric sequences. We
indicate how a more refined method can lead to a metric result for this case.

THEOREM 44. Let (a,), n=1,2,..., be an increasing sequence of
positive integers. Then the sequence (a,, cos a,2) is u.d. mod 1 for almost all
real numbers 2.

PROOF. It clearly suffices to prove that the sequence is u.d. mod 1 for
almost all & € [0, 27]. For an integer 1 ¢ 0 we have
2n 2
L(N) =f dx

1 N
Z e2m‘han cosanZ

2r
271, —
f e nih(am cos amaz—an cos anx) dx
0

2r
2 — "
f e wihlam cos amx—an cos anw) dz

. 4.5)
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We estimate the integral occurring in the last expression for fixed m and »
with 1 < m < n. Set G(x) = a,, cos a,x — a, cos a,x and g(x) = G'(x) =
a,?sina,® — a,%sin a,». We divide [0, 2] into three parts. Let E, be the
set of v € [0, 27] for which |g(2)] > }a,(a, — a,,)/% Let E, be the set of
x € [0, 27] for which |g(2)| < }a,(a, — a,)"? and [sin a,z| > (a, — a,,) /2
Let E; be the set of a € [0, 2] for which |g(2)| < 4a,(a, — a,,)V/? and
Isin a,z| < (a, — a,,)""% The Lebesgue measure of the set of z € [0, 27]
for which |sin a,2| < (a, — a,,)"V/2is clearly O((a, — 4,,)7V/?), and since the
integrand is of absolute value 1, we get

f e21r1'hG(:v) dz = O((a,, . am)—l/z)' (46)
E,

Since g(z) = +ia,(a, — a,)"/? for O(a,) values of = € [0, 27], it follows
that E, is the union of O(a,) intervals. Furthermore, since g'(z) has O(a,)
zeros in [0, 27], we see that E; can be decomposed into O(a,) intervals J
in each of which g(x) is monotone. For such an interval J, Lemma 2.1 implies

ee”th(m) d:v = O(a‘"—_l(a‘n — a’"l)_l/z)'

It follows that
f eZIriIzG(a:) da = 0((a" _ am)—l/z)' (47)
El
For x € E,, we have |g(®)| < }a,(a, — a,)| sina,x|. We claim that this
inequality implies
Ig,('z’)l 2 c(an4 - a'm4)1/2(a712 - amz)l/2 (48)

with some absolute constant ¢ > 0. First of all, since both hypothesis and
conclusion remain unchanged when replacing z by —=z, we can suppose
that sin @,z > 0. Then,

g(®) = a,’sina,x — a,’sina,x = (1 — fa,’sin a,x

with 3 + a,,/2a, < t < 3/2 — a,,/2a,. Thus, we can write

ta,?sin a,x = a,” sin a,,2. (4.9)
We also have

a,’cos a,x =n + a,° cos a,,z, (4.10)

where 7 = g'(z). By squaring the equations (4.9) and (4.10) and using
_sin? a,& + cos? a,x = 1, we obtain

4 2 2 8 2 " 2 3 . 2 6 4 2 2. 2 _
(a,'a,t — t’a,®) cos® a,,& — 2t*pa,’ cos a,x + ta,® —a,'a,” — t'n" =0,
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Hence, the discriminant of this quadratic equation in cos a,,# must be
nonnegative; after simplifying, we arrive at

2

6 6 2 4.2
n >am +an —amant -

a'7114a112

o
Call the expression on the right-hand side of this inequality s(¢). The following
statements are easily verified: s(7) is concave downward for t > 0, s(a,,/a,) =
s(1) = (a,* — a,9a,® — a,%), and s(a,/a,,) = 0. The first and second of

these facts imply |7] > (@,} — @,4)/%(a,* — a,2)* when } + a,,/2a, < { <
1, and the three together imply that

(1 + aﬂ/aﬂl
s ———nl

l22) > js),

so that |5 > (3(a,* — a,)(@,? — a,))V? for 1 <t <} + a,/2a,, Since
3/2 — a,[2a, < } + a,/2a,, the inequality (4.8) is shown. We shall only
use the weaker inequality

Ig’(w)l Z canz(an - am) fora e EZ' (411)

We note that E, is the union of O(a,) intervals K. Moreover, by the mean
value theorem and (4.11) the length of such an interval X is

o lg(z)| + |8()] _ au(@n — a )"
sup I:Iq - "LZI S. , s 2 ’
zy, mee K z, 21, w26 K ‘g ((L)I ca, (.an - am)

and so the Lebesgue measure of E, is O((a, — a,,)"*/%). Consequently, we have

f e2ﬂ1”lG(w') dx = O((a11 _ am)—l/Z)’ (4.12)
I,

and (4.6), (4.7), and (4.12) imply
27 .
f eZnih(amcosamw——an cos ana) do = O((a72 . am)-llz) for 1 S m < n.
0

Combining this with (4.5), we arrive at

L(N)=0 ( Z El(a - am)‘”z)

72—2 m=1
But
N n1 n—1
@y — a " <3S (1 = my = O,
»
n=2 m=1 n=2 m=1

and so I,(N) = O(N-V?). The rest follows from Theorem 4.2. |Hi
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Notes

Theorem 4.1 is a result of Weyl [2, 4]. The case a,, = b for some integer b > 2 was studied
earlier by Hardy and Littlewood [1]. Sequences (a,2) with integers a, have been investi-
gated extensively from the metric point of view. See R. C. Baker [5], Erdés [4, 7], Erdos and
Taylor [1], Hardy and Littlewood [6], Kahane and Salem [1], Khintchine [4], and Koksma
[12, 14]. For the special case a, = b™, see also Section 8. A growth condition (see e.g.
Exercise 4.5) is needed in these results: Dress [1] shows that if (a,) is nondecreasing with
a, = o(log n), then for no real = is (@,%) u.d. mod 1. Some metric theorems arise from the
individual ergodic theorem (Khintchine [6], Riesz [1], Franklin [1]). The following was a
long-standing conjecture of Khintchine [1]: Let E be a Lebesgue-measurable subset of I;
then for almost all 8 the sequence () satisfies limy—.A(E; N)/N = A(E). This was dis-
proved by Marstrand [1]. The sequences (4,x) with arbitrary real numbers 1, have also
been studied, especially in the case where 4,.,/A, = ¢ > 1 for all n > 1 (the so-called
lacunary case). See Erdos [4], Furstenberg [3], Helson and Kahane [1], Kac, Salem, and
Zygmund [1], and Koksma [10, 15]. A related subject is that of normal sets (see the
notes in Section 8). For quantitative refinements, we refer to the notes in Section 3 of
Chapter 2. A survey of results on the above classes of sequences can be found in Erdos
[7] and Koksma [16]. For the early literature on the subject, see Koksma [4, Kap. 9].

The important Theorem 4.2 comes from Davenport, Erdos, and LeVeque [1]. See
also Kuipers and van der Steen [1] and Philipp [2]. Holewijn [2] applies this theorem to
u.d. of random variables. See also Loynes [1] and Lacaze [2] for related applications of
metric theorems to stochastic processes. In a certain sense, Theorem 4.2 is best possible
(Davenport, Erdds, and LeVeque [1]).

Theorem 4.3 was shown by Koksma [3]. Some variations of this theme, and some
more consequences, can be found in LeVeque {11, Franklin 2], and Kuipers and van
der Steen [1]. See Koksma [10] for a related question, and Erdés and Koksma [2] and
Cassels [1] for quantitative versions. Generalizations of Theorem 4.3 to more abstract
settings have been given by F. Bertrandias [1] and de Mathan [3].

For expository accounts of the theory of P. V. numbers introduced in Example 4.2,
we refer to Cassels [9, Chapter 8] and Salem [3]. A good bibliography is given in the
paper of Pisot [1]. For recent work, see Amara [1], Boyd [1], Cantor [1], Halter-Koch
[1], Mahler [7], Pathiaux [1], Pisot and Salem [1], Senge [1], Senge and Straus [1], and
Zlebov [1]. There are interesting relations between P.V. numbers and questions in harmonic
analysis. See Salem [3] and Meyer [3, 5] and the literature given there. A well-known
problem is connected with the sequences (*"), n = 1,2, ..., where r > 1 is a nonintegral
rational (Mahler [1, 2, 4, 7], Tijdeman [1]). Supnick, Cohen, and Keston [1] study multi-
plicities in the sequences ({6"}) with 6 > 1. Forman and Shapiro [1] discuss arithmetic
properties of the sequences ([(4/3)"]) and ([(3/2)"]) of integral parts. See also Shapiro and
Sparer [1].

Theorem 4.4 derives from LeVeque [3], who also has more general results. Dudley
[1] improves some of LeVeque’s theorems.

By identifying sequences in I with elements of the infinite-dimensional unit cube I® =
H,f”:l I;,1; = Ifor j > 1, it can be shown that “almost all’’ sequences in I are u.d. mod 1
(see Chapter 3, Theorem 2.2). Here “almost all’’ has to be taken in the sense of the product
measure in I® induced by Lebesgue measure in I.

We remark that metric results are also available for u.d. mod A. See LeVeque [4],
Davenport and LeVeque [1], Erdés and Davenport [1], and W. M. Schmidt [10]. In a
different direction, Petersen and McGregor [2] prove that a sequence is u.d. mod 1 if and



40 UNIFORM DISTRIBUTION MOD 1

only if “almost all’’ subsequences are u.d. mod 1. For a study of u.d. mod 1 subsequences
of a given sequence, see Mendes France [8] and Dupain and Lesca [1].

Exercises

4.1. In Corollary 4.1 the condition “F(n) > 1" can be replaced by “(F(n))
is bounded from below™.

4.2. Let (F(n)) be a sequence of positive integers with F(p) # F(q) for
p # q. Then the sequence (A2¥™), 1 £ 0, is u.d. mod 1 for almost all
2 > 1, and also for almost all z < —1.

4.3. For real 0 with |8] > 1, the sequence (6") is u.d. mod 1 for almost all x.

4.4. Using results of this section, prove that for 4 5 0 the sequence (An%)
is u.d. mod 1 for almost all x > 0. (Note: Using results of earlier
sections, one can in fact describe the exceptional set explicitly).

4.5. Let (a,) be a sequence of integers for which there exist positive constants
¢ and ¢ such that a,, £ a, whenever |m — n| > cn/(log n)'*¢. Prove
that (a,z) is u.d. mod 1 for almost all 2.

4.6. Let (4,) be a sequence of real numbers for which there exist positive
constants ¢ and & such that |, — A,| > 0 whenever |m — n| >
n/(log n)*¢ (Weyl’s growth condition). Then (4,2) is u.d. mod 1 for
almost all 2.

4.7. Prove that o = (1 + \/g)/Z is a P.V. number.

4.8. Prove that the unique root >1 of the polynomial 23 — 2 — 1 is a
P.V. number.

4.9. Let Y, u, be a convergent series of positive terms. Set r(n) = X2, u;
and A(n) = (m + \/r(n + 1)) for » > 1. Show that A(n) —> oo
monotonically as # — oo and that 3,2, u,A(n) is convergent.

5. WELL-DISTRIBUTED SEQUENCES MOD 1

Definition and Weyl Criteria

Let (z,),n = 1,2, ..., be a sequence of real numbers. For integers N > 1
and k > O and a subset E of I, let A(E; N, k) be the number of terms among

{%a)s ®raeds - - -5 (T} that are lying in E.

DerFINITION 5.1.  The sequence (z,), n=1,2,..., is said to be well-
distributed mod 1 (abbreviated w.d. mod 1) if for all pairs g, b of real numbers
with 0 < a < b < | we have
. A([a, b); N, k)
lim———————— =

N- o

b—a uniformlyink =0,1,2,....
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Evidently, a sequence that is w.d. mod 1 is also u.d. mod 1. The converse
is not true, as is shown by the following counterexample.

EXAMPLE 5.1. Letw = (z,),n=1,2,..., beu.d. mod l. Now form a
sequence 0 = (¥,), n =1,2,..., by settingy, =0if m* 4+ 1<n <m® +
m,m=1,2,...,and y, = %, for all other values of n. The sequence o is

u.d. mod 1, since it is obtained from by replacing a sufficiently small
number of terms z, by zeros. For a detailed proof, we note that for each
integer N > 1 there is an integer p > 1 such that p? < N < (p + 1)%
Then for any subinterval [a, ) of I,

|A([a, b); N; w) — A([a,b); N; o) <1 4+ 2 4 -+ 4 p < N3,
and so
. A([a, b); N;o) . A([a, b); N: w)
Im————————— =|llm ———————— =
N-w N N-w N
On the other hand, ¢ is not w.d. mod 1. To see this, choose e with0 < ¢ < 1.
If o were w.d. mod 1, there would exist a positive integer Ny = Ny(¢),
independent of k, such that for N > N, and for the sequence o,

A0, 1); N, k) 1
_(L_M)_—‘<g forall k > 0,
N 2

b—a

and therefore also
‘A([o, DN, N 1
N, 2
However, A([0, 1/2); N, N3 = N for every N > 1, since all elements y,

with N°*+ 1 <n < N*+ N are 0. Hence, (5.1) gives ¢ > 1/2, which
contradicts the assumption concerning ¢. i

‘ <e. (5.1)

The Weyl criteria for w.d. mod 1 are those for u.d. mod 1 with an ad-
ditional uniformity condition in k. We omit the proofs. The interested
reader is encouraged to consult Section 3 of Chapter 3.

THEOREM 5.1. The sequence (z,), n=1,2,...,is w.d. mod 1 if and
only if for all continuous functions f on I we have

1 E+N 1
lim = 3 f({z.}) =ff(rc) de  uniformlyink =0,1,2,....
Now N askt1 0
THEOREM 5.2. The sequence (x,), n=1,2,..., is w.d. mod 1 if and
only if for all integers i % 0 we have
E+N

lim — > €™ =0  uniformlyin k =0,1,2,....
Now N n=ki1
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EXAMPLE 5.2. Using the same argument as in Example 2.1, Theorem
5.2 shows that the sequence (n8), n = 1,2, ..., with 8 irrational is w.d.
mod 1. [

Since w.d. mod 1 is a comparatively rare phenomenon (see the notes for
a rigorous interpretation of this statement), there are many negative results
about w.d. mod 1. One such result is as follows.

THEOREM 5.3. The sequence (p"6), n=1,2,..., where p is some
integer and 0 is real, is not w.d. mod 1.

PROOF. Let|p| > 2 and 6 7 O (all other cases are trivial). Set =, = p"6
and consider the expression

k+N i N . N -
Z e2mxn — z e2nmn4k — z e2rnp .
n=k+41 n=1 n=1
We have
k+N . N N
> e > | Scos 2mpTay | = | X cos 2w |p|" {x} | (5.2)
n=k4+1 n=1 n=1

If we assume that the sequence (p"0) is w.d. mod 1, then O is a limit point
of the sequence ({z,}). Hence, to any N > 1 there is a k() such that

1
{mn} <3~
: 6 |pl¥
With k& = k(N), the arguments in the last expression in (5.2) satisfy

0 < 27 |pI" {zean} < 27 [P1Y {@un} < 7—; for1 < n < N,

and so the cosine of each of these arguments is >$. Hence, for every N > 1,

1 EN)+N
= e2ﬂia:n

1
>
N n=i(d+1 2
and this contradicts Theorem 5.2. [}

This theorem should be compared with an immediate consequence of
Theorem 4.1, namely, that for an integer p with |p| > 2 the sequence (p"0),
n=1,2,...,Iis u.d. mod 1 for almost all real numbers 6.

Admissible Sequences

DEFINITION 5.2. A sequence (s,) of real numbers is said to be admissible
if whenever the sequence (x,) is w.d. mod 1, the sequence (z, + s,) is also
w.d. mod 1.



5, WELL-DISTRIBUTED SEQUENCES MOD 1 43

An obvious example of an admissible sequence is a constant sequence
(see Exercise 5.4). More generally, every convergent sequence is admissible
(see Exercise 5.5). The following is a sufficient condition for admissible
sequences going beyond these simple cases.

THEOREM 54. Let (t,) be a sequence of real numbers, and let s, =
Sy t;. Then the sequence (s,) is admissible if
1 k+N
lim = ¥ |t,| =0  uniformlyink=0,1,2,.... (5.3)

Noow N m=k+1

PROOF. Let the sequence (x,) be w.d. mod 1. Choose £ > 0 and a nonzero
integer h. According to the assumptions there exist positive integers P and
Q such that

lm

2mwihan

> e forall p > Pandall k > 0, (5.4)

D n=k+1

<

‘1 k+p

1 k+q e

= t, <—— for all and all k > 0, 5.5

q,,:%ql I AP 9290 e (5.5)
where A = 27 |h|. Suppose N is an integer >max (P + 1, Q, 3P/e). Then,
for any k > 0,

1 REN ) 1] k+N e )
—_- z e2rnh antsn) | — = zbr + 2 e2rnh Tn+-sn ,
N nsk41 Nlr=1 n=k4vP+1
where
k+rP
b. = z e2m‘h(mn+sn) and v = l:N.__— 1j|
r .
n=k+(—1) P+1 P
Now
k+N
e2ﬂ1‘h(mn+sn) S P
n=k+vP+1
Furthermore,
k+rP . k+r P . .
b, = gArihtents,y _1yp) 4 girihan( grihen __ G2rihs,;1yp),
n=k+(r—1) P+1 n=k+(r-1) P+1

so that, using (5.4) for the first and (2.15) for the second sum,
k+rP

eP
|br| < ? +4 2 |s'n - sk+(r—l)P|

n=k+{r—1) P+1

cP P
< ? + Az_:l(|tk+(r—1)P+1| + 0 F et paal)-
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Using (5.5) we obtain

v veP kN veP Ne _ 2Ne
b|<— + 4 Pltg<—+A4P— < —.
; T3 ,,%1 10 3 34P ~ 3
Hence,
_1_ 7\"51:\7 eZﬂill((t11+5n) < 2§ + £. < £
N ast41 -3 N~

and (z, + s,) is w.d. mod 1 by Theorem 5.2. |

Since (s,) is only relevant modulo 1, we may suppose without loss of
generality that |s,,; — §,| = |f,51l < § for n > 1. With this additional
hypothesis, the condition (5.3) is also necessary for the sequence (s,) to be
admissible, but this is by no means easy to show. In connection with (5.3)
we remark also that a sequence (u,,) is called almost convergent to the value
wiflimy o (1/N)S5N 3 4, = w uniformly in k = 0,1,2, . ...

Metric Theorems

THEOREM 5.5. If p and ¢ are positive integers, then for almost all real
numbers x the sequence ((p/g)"®), n =1,2,..., is not w.d. mod 1.

PROOF. Evidently, we may assume p > g. For a fixed integer N > 1, let
E be the set of z € R for which (prlg™™),n = 1,2,...,is not u.d. mod I.
Then, according to Corollary 4.3, we have A(Ey) = 0, where A denotes
Lebesgue measure. Hence, if E = Uy Ey, then A(E) = 0. We note that
for a sequence thatis u.d. mod I the sequence of fractional parts is everywhere
dense in I. Thus, if @ ¢ E, then for every N > 1 we can find a & = k(N)

such that
&
P } 1
— < — . 5.6

[qk-HV 6p1\ qA\ ( )

Now we consider the expression

k+N k+N .
2riptele® _ 2mig¥ (p"a/q"+¥)
2 € =2 €

n=k+1 n=k+1
— g:ezﬂa”(w"/q")(wkwlqk“") — IEV:eeriql‘""z:"(w"a‘/q"“").
ne=1 n=1
If ¢ E and k = k(N), then from (5.6) we have for 1 <n < N,
k N—n,n
pal g """ 1
Prap

0 S qN_"p"{f" — S _
qk+ 6p1\q1\ 6

This implies

1

1 KN)+N
= > =
2

oriptxla®
errm.r/q

N a=1{N)+1
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as in the proof of Theorem 5.3, and so, the sequences ((p/q)"x) with « ¢ E
are not w.d. mod 1 by Theorem 5.2. [l

For the proof of the following lemma, we need some results and notions
from Section 6. This lemma, which is highly useful in establishing that a
sequence is not w.d. mod 1, is also closely related to the material on complete
uniform distribution in Section 3 of Chapter 3 and is in fact a special case
of Theorem 3.12 of Chapter 3.

LEMMA 5.1. Let (¥,) be a sequence of real numbers such that for every
p > 1and every p-tuple (I, ..., ) 5 (0, ..., 0) of integers, the sequence
(e, + hoeyn + -0+ by, ), n=1,2,...,is u.d. mod 1. Then (z,)
is not w.d. mod 1.

PROOF. If (x,) is w.d. mod 1, then it is easily seen from Definition 5.1
that there exists an integer p > 1 such that at least one of any p consecutive
terms of ({x,}) liesin [0, }) (see Exercise 5.7). On the other hand, the sequence

((®ps Tpgrs - - o5 Bpyp1)), 1=1,2,...,is u.d. mod I in R” according to
Theorem 6.3. In particular, there is an N > 1 such that
({xA'}’ {‘Q"N+1}’ ey {xt\’+p~1}) € [%’ 1) X e X [%3 1),

the Cartesian product of p copies of [4, 1). This results in a contradiction. [l

THEOREM 5.6. Let (4,) be a sequence of nonzero real numbers such that
lim,_, o, |4,41/A,] = oo. Then for almost all real numbers « the sequence
(A®), n=1,2,...,1s not w.d. mod 1.

PROOF. We prove that the condition of Lemma 5.1 is satisfied for almost
all sequences (4,%). Consider a fixed p > 1 and a fixed p-tuple (4y, . .. , /,)
(0,...,0) of integers. Clearly, we may suppose /1, % 0. We write

hl}‘nx + e + hm}‘n+p—1x = bnx
with b, = A, + -+ + A, for n > 1, and we set H = max, .;, 4]
By hypothesis, there exists a positive integer N such that

1441l  (2p — DH

> +1 forall » > N.
|2, 7t
Then for n1 > n > N we have
by — b, = |MpApgps + -+ Ay — Mhyn s — 0 — Ayl

2 |hp| |}‘m+l)—1| - (ZP - 1)H|2m+p—2| 2 |hz)| |}‘m+p—2| 2 |hpl MNl,

and so Corollary 4.3 implies that the sequence (b,2) is u.d. mod 1 for almost
all real numbers «. Letting p run through all positive integers and considering
all p-tuples of integers that are permitted, we arrive at a countable union of
exceptional sets of @ that is still a null set. i
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Notes

The definition of a w.d. sequence mod 1 is from Hlawka [1] and G. M. Petersen [1]. The
criteria in Theorems 5.1 and 5.2 were also given by these authors. Example 5.1 is from
G. M. Petersen [1]. Theorem 5.3 derives from Dowidar and Petersen [1], who corrected
an erroneous statement in Keogh, Lawton, and Petersen [1, Theorem 5]. Admissible
sequences were introduced and studied by Petersen and Zame [1]. Theorem 5.5 is a
result of Petersen and McGregor [2]. Murdoch [1] proved that if o is any given real number,
then for almost all = the sequence («"2) is not w.d. mod 1. Theorem 5.6 is from Dowidar and
Petersen [1]. This result was improved by G. M. Petersen [4] and Zame [2], who showed
that lacunary sequences (4,) satisfy the same property, thereby settling a conjecture of
Petersen and McGregor [3]. For further improvements, see Zame [4]. Related results can
be found in Cigler [12], Erdos [7], Gerl [5], G. M. Petersen [3], and Petersen and McGregor
[1]. The construction of w.d. sequences mod 1 is discussed in Gerl [4] and Keogh, Lawton,
and Petersen [1].

An analogue of van der Corput’s difference theorem can be shown for w.d. sequences
mod 1. See Theorem 2.2 of Chapter 4 and Hlawka [1, 8]. It follows that the sequences
(p(m) from Theorem 3.2 are even w.d. mod 1. See Hlawka [8] and Lawton [1]. This
result may also be shown using ergodic theory (Furstenberg [2], Cigler [12, 14, 15].
Cigler [13] shows that the sequences ( f () in Theorem 3.5 are not w.d. mod 1. Burkard
[2] discusses sequences that are w.d. mod A (compare with Definition 1.2).

Dowidar and Petersen [1] show that in a certain sense almost no sequence is w.d. mod 1
(see Exercise 5.15). Also, in the sense of the product measure on I® (see the notes in
Section 4) almost no sequence is w.d. mod 1. See Chapter 3, Theorem 3.8, for a proof.
Further results on w.d. sequences can be found in Chapter 1, Section 6; Chapter 3, Sections
3 and 4; and Chapter 4, Sections 1, 2, and 4.

Exercises

5.1. Prove Theorem 5.1.
5.2. Prove Theorem 5.2.
5.3. The sequence (z,), n=1,2,..., is w.d. mod 1 if and only if, for
all Riemann-integrable functions f on I, we have
. 1 kN 1 .
lim = Y f({z,}) =ff(m) dx  uniformlyin k =0,1,2,....
N-ow N a=kt1 0
5.4. If the sequence (z,) is w.d. mod 1, then the sequence (x, + ¢) is
w.d. mod 1, where c is a real constant.
5.5. If the sequence (z,) is w.d. mod 1 and if (y,) is a sequence with the
property lim,_,, (x, — ¥,) = ¢, a real constant, then (y,,) is w.d. mod 1.
5.6. Prove in detail that the sequence (n8), n = 1, 2, .. ., with § irrational,
is w.d. mod 1.
5.7. Let J = [a, b) be a subinterval of I of positive length, and let (z,) be
w.d. mod 1. Show that there exists a positive integer Q such that at
least one of any Q consecutive terms of ({z,}) lies in J.
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5.8. Let (z,) be a sequence of real numbers with lim,,_,,, (., — @,) = 0.
Prove that (z,) is not w.d. mod 1. Hint: Use Exercise 5.7.
5.9. If (z,) and (y,) are w.d. mod 1, then the sequence 2, ¥, %3, ¥a, . . . ,
®ps Yns - - - 18 W.d. mod 1. Generalize.
5.10. Let (r,) and (s,) be admissible sequences, and let a and b be integers.
Prove that the sequence (ar, + bs,) is admissible.
5.11. If (s,) is admissible, then (As,) is admissible.
5.12. If o is transcendental, then for almost all = the sequence (a™z),
n=1,2,...,is not w.d. mod 1. Hint: Use Lemma 5.1.
5.13. Let (2,) be a sequence in I. For n > 1, define g, = [nz,]. Prove that
the sequence (v,) is w.d. mod 1 if and only if the sequence (a,/n) is

w.d. mod 1.

5.14. With the same notation as in Exercise 5.13, introduce the number
o = >, a,/nl. Prove that (z,) is w.d. mod 1 if and only if (r!e) is
w.d. mod 1.

5.15. Using Exercise 5.14, prove that “almost no” sequence in 7is w.d. mod 1
and specify in which sense this is meant.

5.16. Carry out the arguments in Exercises 5.13, 5.14, and 5.15 with “w.d.
mod 17 replaced by “u.d. mod 1”. Of course, in Exercise 5.15 “almost
no” has to be replaced by “almost all.”

5.17. Is the sequence in Exercise 1.13 w.d. mod 1?

6. THE MULTIDIMENSIONAL CASE

Definition and Basic Results

Let s be an integer with s > 2. Leta = (ay,...,a) and b= (by,...,b)
be two vectors with real components; that is, let a, b € Rs, We say that
a<ba<b)if a,<b, (aq; <b) for j=1,2,..., s. The set of points
x € Rssuch thata < x < b will be denoted by [a, b). The other s-dimensional
intervals such as [a, b] have similar meanings. The s-dimensional unit cube I*
is the interval [0, 1), where 0 = (0,...,0)and1 = (1, ..., 1). The integral
part of x = (%, ... ,&) is [X] = ([%],..., []) and the fractional part of
xis {x} = ({ea}, . .., {&}).

Let (x,), n=1,2,..., be a sequence of vectors in IR®. For a subset E
of I*, let A(E; N) denote the number of points {x,}, | < n < N, that lie in
E.

DerINITION 6.1.  The sequence (x,), n = 1,2, ..., is said to be w.d. mod 1
in R® if

A(a, b); N)  °
m =2 Y

li =11, - a)

N>
for all intervals [a, b) < I°.
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DerINITION 6.2, The sequence (x,), n = 1,2, ..., is said to be w.d. mod 1
in R¥if, uniformly ink = 0, 1, . . ., and for all intervals {a, b) C I*, we have
. A([a,b); N, k s
tim AR
N> N =1

where A({a, b); N, k) denotes the number of points {x,}, k + 1 <n <
k + N, that lie in [a, b).

DErFNITION 6.3, Let(z,),n =1, 2,. .., be a sequence of complex numbers.
Let Rez, =, and Im 2, = y,. Then the sequence (z,) is said to be u.d.
mod 1 in € if the sequence ((z,, ¥,)), n =1,2,...,isu.d. mod 1 in R2,

The closed s-dimensional unit cube I is the interval [0, 1]. Also, for x =
(@y,...,2)and y = (¥y, ...,y in R® let (x,y) be the standard inner
product in R?; that is, (x, y) = @9, + * -+ + 2¥,. Then we have the follow-
ing analogues of one-dimensional results.

THEOREM 6.1. A sequence (x,), n =1,2,...,is ud. mod I in R* if
and only if for every continuous complex-valued function f on I* the following
relation holds:

.1 X
lim = > f({x,}) =f_xf(x) dax. 6.1
Noow N n=1 7
THEOREM 6.2: Weyl Criterion. A sequence (x,), n=1,2,..., is
u.d. mod 1 in R# if and only if for every lattice point h e Z*, h = 0,
: 1 S 271<h, Xp)
lim — > ™ =, (6.2)
Now N a=1

The proof of Theorem 6.1 is similar to that of Theorem 1.1. The proof
of Theorem 6.2 follows from the fact that the finite linear combinations of
the functions e*"*%* h e Z*, with complex coefficients are dense with respect
to the uniform norm in the space of all continuous complex-valued functions
on I* with period 1 in each variable (see the proof of Theorem 2.1).

THEOREM 6.3. A sequence (x,),n=1,2,...,isu.d. mod ] in R*ifand
only if for every lattice point h eZ® h 7 0, the sequence of real numbers
((h,xy),n=1,2,...,is u.d. mod 1.

PROOF. This follows immediately from Theorems 6.2 and 2.1. |

EXAMPLE 6.1. If the vector 8 = (6,, ..., 0,) has the property that the
real numbers 1, 0y, . .., 6, are linearly independent over the rationals, then
the sequence (n0) = ((nf,,...,nb)), n=1,2,...,is u.d. mod | in R?
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For the proof, we simply note that for every lattice point h € Z*, h 7 0, the
real number ¢h, 8) is irrational, and so Theorem 6.3 can be applied. [l

EXAMPLE 6.2. For any lattice point h = (4, ..., k) in ZS, let |h] =
max; c;<; [, If p = (o, ..., «) is an arbitrary vector in R®, define the
vector ph by ph = (/1 . . ., o). We claim that if the set of all lattice
points in Z*® is ordered as a sequence hy, h,, .. . in such a way that |th, | <
|Ih,,| implies m < n, then the sequence phy, phy, . . . is u.d. mod 1 in R* for a
vector p with irrational coordinates. For the proof, let J = [a, b) C I* with
a=1(a;,...,a)and b= (by,...,b,), and setJ, = [a,, b,) for | <k <.
We note that it suffices to show

A(J; 2L + 1) S

lim AL CLA D) T (b, — ap). (6.3)
Low (2L + l)s k=1

By the construction of the sequence hy, hy, . . ., the first (2L 4 1)° terms of

this sequence are exactly all the lattice points h with [|h|| < L. Therefore,

AU QL+ 1) = TT Alla, b3 2L + 1; ) (6.4

where w, = (o,1), h =0,1, —1,2, —2,.... Now each of the sequences w;,
is u.d. mod 1 by Exercise 2.5. It follows that

. A(lay, by); 2L + 1; wy)
m =

li
Low 2L + 1

Together with (6.4) we obtain (6.3). [}

THEOREM 6.4. Let p(z) = (pi(%), ..., ps(x)), where all p,(x) are real
polynomials, and suppose p(z) has the property that for each lattice point
he Z*, h # 0, the polynomial ¢h, p(z)) has at least one nonconstant term
with irrational coefficient. Then the sequence (p(»)), n = 1,2, ..., is u.d.
mod 1 in R®,

by — a, for1 <k <s.

PROOF. According to Theorem 3.2 the sequence (p(n)), n=1,2,...,
where p(z) is a real polynomial that has a nonconstant term with an irrational
coefficient, is u.d. mod 1. Hence, Theorem 6.4 is true in view of Theorem

63. W

For the sake of completeness we mention without proof the following
general theorem.

THEOREM 6.5. Let Q denote a sequence of intervals Q of the form
Q = [a, b) with lattice points a < b inZ?®. To each @ € Q there corresponds
a positive integer n and, furthermore, 2n numbers o,, , (I < » < n) satisfy-
ing «, <f,<a,+1 for 1 <»<n, and n real-valued functions f,(x),
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1 < v < n, defined for each lattice point x € Q. For each Q €Q and ¢ > 0
we put

1 Oy .
T(Q ) z 2 e 2ri(h1f1{X) 4 +hnfn (X)) ,
N(Q) %@
where N(Q) denotes the number of lattice points x € Q, and where Dy is
to be extended over all lattice points h = (h;, ..., %,)# (0,...,0) that
satisfy
cn 2n
log

ﬂv — &%y ﬂv — %,
Assume that for each fixed value of ¢ we have T(Q; ¢) — 0 as Q runs through
Q. Then

th,| < forl1 <» <.

N(Q)
N(Q) H:'l=1 (ﬂv - 0(‘,)

where N,(Q) denotes the number of lattice points x € Q for which

«, < f,(x) < p, (mod 1) for1 <v<n

— 1 as Q runs through £,

Applications

THEOREM 6.6. Let f be Riemann-integrable on [0, 1], and let 1, 6, «
be linearly independent over the rationals. Then the power series G(z) =
ne1 f ({na})e” has the property that
lim (1 — 1)G@re*™ ™) = 0. (6.5)
r—+1-0

PROOF. By what we have seen in the proof of Theorem 2.4, the identity

lim (1 — #)G(ré**®) = lim — 2 f({na})e*

r—=+1-0 N-w
holds whenever the limit on the rxght-hand side exists. Since it is assumed
that 1, 6, and « are linearly independent over the rationals, the sequence
of vectors ((ner, n8)), n = 1,2, ... ,isu.d. mod 1 in R2 So for all Riemann-
integrable functions g on I2 we have

N 11
lxm = 2 g({na}, {n6}) —-f f g(x, y) dz dy

according to the two-dimensional analogue of Corollary 1.1 (see Exercise
6.3), and therefore

1 1
lim — zf({na})e?.ﬂmﬂ f f(m)e?niv dz dy = 0. .
0

N-w N a=1
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It should be remarked that, in case 6 = ma + p with integers m and p,
the proof of Theorem 2.4 shows that the limit in (6.5) is equal to the integral
d,, occurring in that proof.

For other types of applications, see, for instance, Chapter 4, Example 4.1,
and the proof of Theorem 1.8 of Chapter 5.

Notes

U.d. mod 1 in [R® was first considered by Weyl [2, 4], who proved Theorems 6.1-6.4 as
well as the result in Example 6.1. A discussion of the exceptional cases in this example
was also carried out by Weyl [4]. For further remarks concerning this example, see
Bergstrom [1], Jacobs [1], Rizzi [1], and Slater [2]. We refer also to the notes in Chapter 2,
Sections 3 and 5. Example 6.2 is from Volkmann [3, 5], who applied the result to additive
number theory. In connection with Theorem 6.4, see also Kovalevskaja [1] and the notes
in Chapter 2, Section 3. Results on other special classes of sequences can be found in
Delange [5], Karimov [1], Korobov [12], and Polosuev [2, 4]. For the many investigations
concerning the sequences (A"x), where A is a given real s X s matrix and x a given point
in [R?, see the notes in Section 8 of this chapter. Sequences in [R? of the form

((xn’ Tpals v o s xn+s—1))’

n=1,2,..., where (z,) is a given sequence in [R, have been studied by Carroll [2],
Cigler [2], Franklin [2], Hlawka [8], Kemperman [4], and Knuth [2, Chapter 3] (compare
also with Chapter 3, Section 3). Cigler [14, 15] shows that the sequences in Exercise 6.10 are
w.d. mod 1 in [R®. For further results on w.d. mod 1 in [R®, see Gerl [4, 6]. Koksma’s metric
theorem (Theorem 4.3) has been extended to the multidimensional case by LeVeque [2] and
Gerl [2], and Philipp [1, 3] has shown an analogue of Theorem 4.1. See also Carroll [2] for
another metric result. Definition 6.3 goes back to LeVeque [3], who proved that for almost
all z€ € with || > 1 the sequence ("), n = 1,2, ..., is u.d. mod 1 in C.

A general definition of #.d. mod 1 in sequences of intervals, which is the basis for Theorem
6.5, was given by van der Corput [5] (see also Koksma [4, Kap. 8]). A proof of Theorem
6.5 (also due to van der Corput) has never been published, although the theorem was
applied a number of times (see, €.g., Koksma [1], Teghem [1]). A refined version of Theo-
rem 6.5 was shown by Koksma [11]. Van der Corput [5] extends many of Weyl’s results to
u.d. mod 1 in sequences of intervals and also proves a difference theorem. For some further
results in the one-dimensional case, see Kuipers [4].

U.d. of sequences on curves and surfaces was studied by Gerl [1, 3]. For the case of a
sphere, see Arnol’d and Krylov [1] and Gerl [9]. We refer also to a related investigation
by Kazdan [1]. Jessen [1] proves a Weyl criterion for u.d. in I, the Cartesian product
of denumerably many copies of /. An even more general setting for u.d. will be developed
in Chapters 3 and 4.

For literature on Theorem 6.6 and related results, see the notes in Section 2. Luthar [1]
applies u.d. mod 1 in [R* to a lattice point problem, Pham Phu Hien [1] applies it to distri-
bution of functions, and Slater [2] discusses applications to gas theory (see also Hlawka
[19, 21, 23]). Further applications are presented in Chapter 2, Section 5.

Exercises

6.1. Prove Theorem 6.1 in detail.
6.2. Prove Theorem 6.2 in detail.
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6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.

6.15.
6.16.

6.17.

UNIFORM DISTRIBUTION MOD 1

A sequence (x,) is u.d. mod 1 in R* if and only if the relation (6.1)
holds for every Riemann-integrable function f on F.

A sequence (x,), n=1,2,...,in R® with x, = (2y,, ¥4y, - - - , ¥),
n=1,2,...,isud, mod Il in R?*if and only if

N s
lim “1" Z{fvln}hl e {"Usn}’“ = H(hi + 1)_1
N-w N a=t j=1

for all nonnegative integers iy, . . . , A,

If a sequence is u.d. mod 1 in R?, then all s coordinate sequences are
u.d. mod 1.

If a sequence (x,) is u.d. mod 1 in R’, then the sequence ({x,}) of
fractional parts is dense in I°.

If the real numbers 1,0;,...,0, are linearly dependent over the
rationals, then the sequence ((nf,,...,nf)), n=1,2,..., is not
u.d. mod 1 in R*. ‘
Let 6y, ..., 8, be irrational numbers. Then the sequence

((0,1%, B0* 2, .., O.n)),
n=1,2,...,isud. mod 1in R®.
Let a4, . .., a; be nonzero real numbers, and let 7,, . . . , 7, be distinct
positive numbers not in Z. Then the sequence ((ayn™, ..., on™)),
n=1,2,...,isu.d. mod I in RS
Let p(x) be a polynomial of degree s > 1 with irrational leading co-

efficient. Then the sequence ((p(n),p(n +1),...,p(n+ s — 1)),
n=1,2,...,isud. mod 1 in R®,

Prove that the sequence ((n%logn,nlogn)), n=1,2,..., is ud.
mod 1 in R2

Let (a,), n = 1,2, ..., be a sequence of distinct integers. Prove that
for almost all (ay, . .., «,) € R® (in the sense of Lebesgue measure) the
sequence ((@,%, ..., a,%)),n=1,2,...,isu.d. mod 1 in R®.

The sequence (x,), n=1,2,...,is wd. mod | in R?* if and only if
for every lattice point h €Z°, h % 0, we have

. 1 k+N x> .
lim — 3 &#®* =0  uniformlyin k =0,1,....
N N alrtt

Let the vector 0 be as in Example 6.1. Then the sequence (10), n =
1,2,...,is w.d. mod I in R,

If2e @ and |2|] < 1, then ("), n=1,2,...,is not u.d. mod | in C.
The sequence (n§), n=1,2,...,is ud. mod 1 in € where £ is a
primitive fifth root of unity.

The sequence (7)), n = 1,2,...,is not u.d. mod 1 in C.
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6.18. The power series F(z) =, {na}z", where o is irrational, has the
property that lim,_ ;o (I — r)F(re*"®) = (2miq)~!, where 6 = p + qa,
pP.qeEZ,q#0.

7. DISTRIBUTION FUNCTIONS

Various Types of Distribution Functions

Let (z,), n=1,2,..., be a sequence of real numbers, and let A([a, b); N)
have the same meaning as in Section 1.

DeFINITION 7.1, The sequence (x,) is said to have the asymptotic distribution
Sfunction mod 1 (abbreviated a.d.f. (mod 1)) g() if
A([O, 2); N
im AN _ oy fero<a <t 71.1)
N> N
Evidently, the function g on [0, 1] is nondecreasing with g(0) = 0 and

g(1) = 1. It will be shown later on (see Chapter 2, Theorem 4.3) that for
any function g satisfying these conditions there exists a sequence (z,) having
g as its a.d.f. (mod 1). An arbitrary sequence (2,) need not have an a.d.f.
(mod 1). But in any case we can consider the limits

. A([0,2); N

i 22 M _ oy progec,
N-r o N

__A([0,2); N

1im—([—§)—)=®(.@-) for0 <z < 1.
N-ow

The functions ¢ and @ are nondecreasing with ¢(0) = ®(0) =0 and
p(1) = (1) = 1, while 0 < ¢(x) < P(2) < 1for 0 < @ < 1. The functions
@ and @ may be called the lower resp. the upper d. f. (mod I) of (x,). If ¢ = @,
then the sequence (z,) under consideration has the a.d.f. (mod 1) ¢. If
p(x) = O(x) = 2 for 0 < x < 1, the sequence (z,) is u.d. mod 1.

DEFINITION 7.2. Let (z,) be a sequence of real numbers. If there exists an

increasing sequence of natural numbers N;, N, . .. such that
A([0, 2); N;
lim A0 2 N _ 2x) for0< 2<1, (1.2)
i2 o Ni

then z(x) is called a distribution function mod I (abbreviated d.f. (mod 1)) of
(#,). If (7.2) holds with z(x) = x, then the sequence (,) is called alinost u.d.
mod 1.
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THEOREM 7.1. A sequence (v,) of real numbers has at least one d.f.
(mod 1).

PROOF. The functions Fy, defined by Fy(x) = A([0, 2); N)/N for 0 <
x <1, Fy(2) =0 for x < 0, and Fy(x) =1 for 2 > 1, are distribution
functions in the sense of probability theory; that is, they are nondecreasing
and left continuous on R with lim,_,_,, Fy(2) = 0 and lim,_, , Fy(x) = 1.
By the Helly selection principle (Logve [1, p. 179]), there exists a distribution
function z on R and a subsequence (N;) of the natural numbers such that
lim,_,,, Fy,(x) = 2(2) for all continuity points « of z. By passing to a suitable
subsequence of (), one can also guarantee the existence of the limit at the
countably many points of discontinuity of z (compare with Exercise 7.7). [l

Criteria

THEOREM 7.2. A sequence (z,) has the continuous a.d.f. (mod 1) g()
if and only if for every real-valued continuous function f on [0, 1],
‘\Y

lim 3 f({e) = f:f(m) dg(2). (1.3)

PROOF. The necessity of (7.3) can be shown by using the definition of the
Riemann-Stieltjes integral. The line of proof is the same as that of the first
part of the proof of Theorem 1.1. In an alternative method, one uses the
functions Fy from the proof of Theorem 7.1, notes that (l/N)z;Llf (=) =
[6f () dFy(2), and applies the Helly-Bray lemma (Loéve [1, p. 180]). The
sufficiency of (7.3) follows as in the second part of the proof of Theorem

|

THEOREM 7.3, A sequence (2,) has the continuous a.d.f. (mod 1) g(z)
if and only if

N 1

lim < > gimihan =f "™ do(x)  forallintegers h £ 0. (7.4)
Now N n=1 0

PROOF. The necessity of (7.4) follows from Theorem 7.2. For the sufficiency,

one notes that (7.4) holds for # = 0 as well, and then one proceeds as in

the proof of Theorem 2.1. |l

Let g, and g, be two nondecreasing functions on [0, 1] with g,(0) =
£:(0) = 0 and g,(1) = g,(1) = 1. The functions g, and g, are considered to
be equivalent, denoted by g, ~ g, if g1(x) = g.(*) for every = where both
g, and g, are continuous. Using the fact that the numbers x of the latter
type are dense in [0, 1], it follows that g;(* + 0) = g.(* + 0)and g,(* — 0)=
go(x — 0) for all # € (0, 1). In particular, we have g,(z) = g,(2) for every
where either g, or g, is continuous. We conclude also that ~ is an equivalence
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relation. The equivalence class containing the function g will be denoted
by £. If g, and g, belong to £ and fis continuous on [0, 1], then

[r@ e = [ 16 as

and so the common value of these integrals may be denoted by f, f () dg ().
Now we have the following result.

THEOREM 7.4. The sequence (z,) has a d.f. (mod 1) belonging to the
equivalence class # if and only if there exists a subsequence (;) of the
natural numbers such that

1N A 1 ~
lim 3 £ = [ £6e) di 7.5)

i n=1

for all real-valued continuous functions f on [0, 1].

PROOF. The necessity of (7.5) follows as in Theorem 7.2 by using the
functions Fy_and applying the Helly-Bray lemma. In order to show the
sufficiency of (7.5) one observes that (7.5) implies in the usual way (see the
second part of the proof of Theorem 1.1) that
. A([0, %); N,)
lim ——— =

Dad -4

8(®)

holds for every # where g is continuous. By selecting a suitable subsequence
of (N,) one can guarantee the existence of the limit at the points of the
countable set where g is discontinuous. The resulting d.f. (mod 1) of (z,,) is
obviously equivalent to g. [}

Miscellaneous Results

THEOREM 7.5: Wiener-Schoenberg Theorem. The sequence (x,) has a
continuous a.d.f. (mod 1) if and only if for every positive integer /4 the limit

N
o, = lim L Y tnihen (7.6)
Noow N a=t
exists and, in addition,
H
lim - 3w, = 0. 7.7)
H—w H h=1

PROOF. The existence of the limits (7.6) is certainly necessary. Next we
show that if for (z,) we have

1 X, Lo
w, = lim = E ezmha:n — e 2nihz dg(m)
N-o N a=1 0
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for all positive integers /1, then g(x) is continuous if and only if (7.7) holds.
For we have

H

lim 13 Y |w,l* = lim 1 > w, @,
N-w H p=1 H-ow n=1
= lim ;1; lﬁf e dg() dg(y)
1,1 .y
=£ L (}ilflw ° ’Ee i H’) dg(x) dg(y)

= H dg(x) dg(y),
(el z—veZ)

and the last integral is zero if and only if g is continuous. In particular, if
(x,) has a continuous a.d.f. (mod 1), then (7.7) follows. Finally, suppose
that the limits (7.6) exist and that (7.7) holds. By the usual approximation
method, it follows that the limit

.1 X
L(f) =lim = % f({,})
Noow N a=1

exists for every continuous function f on [0, 1] with f(0) = f(1). If the
space of these functions is equipped with the supremum norm, then L is a
bounded linear functional on it with L(f) > 0 whenever > 0. Thus, by
the Riesz representation theorem,

L(f) = f f(2) dg()

with a nondecreasing function g on [0, 1]. Without loss of generality, we
may assume g(0) = 0. Then, choosing f= 1, we conclude g(1) = 1. By
what we have already shown, g(z) is continuous. The rest follows from
Theorem 7.3. |l

THEOREM 7.6. Suppose the sequence (x,) with z,, ¢ Z has the continuous
a.d.f. (mod 1) g(»). Then the sequence (1/{z,}) has the a.d.f. (mod 1) given by

g*(x) =§1(g(;1;> - g(n Jlr x)) for0 < o < 1.

PROOF. Let (u,) be a sequence of real numbers. For N > 1 and £ € R,
let N*(&) be the number of u,, 1 < »n < N, such that 4, < & If limpy_,
N*(&)|N = f (&) exists for all ¢ and if in addition lim,_, f (&) =1 and
lim,,_,, f(§) = 0, then fis called the asymptotic d.f. of (u,). Suppose (u,) has
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the continuous asymptotic d.f. f (§). Then, by the Helly-Bray theorem
(Lotgve [1, p. 182)]),

N

o0 *
lim l zlerzhun = lim e2nih§d(N (5))

Noow N a=1 N-oow N
_ f Tt gr8)  for he . (7.8)
On the other hand, we have e
o0 =] n+1
f e2m’h§ df(f) — z e2nih§ df(f)
i Zrn‘ha: df(n + ’U)
; e d(f(n + &) — f(m))
1
= [ (e d( S ua+n-son), a9

where the interchange of summation and integration can be justified by
integration by parts, using the fact that the series >, _o, (f (1 + 2) — f ()
is uniformly convergent in 0 < @ < 1 since it has the convergent majorant

o (f(n + 1) = f(n) = 1. Combining (7.8) and (7.9) with Theorem 7.3,
we have shown that whenever (u,) has the continuous asymptotic d.f. f (5),
then (u,) has a continuous a.d.f. (mod 1) given by >, (f(n + 2) — f(n)
for0<e< 1.

Now consider the given sequence (x,). Then by elementary reasoning one
shows that (1/{z,}) has the continuous asymptotic d.f. f(£) given by
S =1—g(E)for &> 1and f(&) = 0for & < 1 (use Exercise 7.5). By
what we have already shown, it follows that (1/{z,}) has the a.d.f. (mod 1)
given by

g = > (f(n + =) — f(n)

N=—00

=E(g(l)—g( L )) foro0<z<1 I
n=1 1] n+z

An Elementary Method

Remarkable results can already be obtained by applying elementary methods.

In the following a property of the sequence (logn), n = 1,2, ..., is shown.
Let @ be a number with 0 < @ < 1. Then, as in Example 2.5, we have
N1

A(D, ®); 1) = 3 (6% — ) + eVt — e 4 O(N),
k=0
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where N = [logn} and 4, = min (z, {log n}). It follows from Example 2.5
that ({logn}), n=1,2,..., is dense in 1. We choose a subsequence (n,),
i=1,2,...,of the natural numbers such that {log n;} — & asi — oo, where
¢ is a (fixed) number with 0 < £ < 1. Then, if » runs through this subse-
quence, we have

A([0, 2); n A([0, 2); n et —1 _ _
([ ) ) = e(AEY—Hlo:n) )_> e — 1 € : + (el - l)e E’

n
where A = min (z, £).

Let us denote the resulting d.f. (mod 1) by 2(z, ). We note that 2(z, 0) =
z(z, 1) = (¢* — 1)/(e — 1). By Theorem 7.4 we have for every continuous
function fon [0, 1],

’*11 élf({log k}) — J@dx(= 0 (7.10)

if # runs through a sequence for which {log n} — &, By differentiating the
function z(z, £) with respect to @, one obtains an alternate form for (7.10):

n 1
! 3 fog k) — [ k(e & d (.11
where -
K(z, &) = for 0 < = < &,
. —
x—§
K(z, &) = £ fort <a<l.
. —

For fixed f, consider the right-hand side of (7.11) and denote it by /4(&).
Now /(&) is continuous in 0 < & <1 with A(0) = A(1), while A(§) is in
general not a constant. Hence, the limit points of the set of values

(1) 3. £ Qg k),

n=1,2,..., may fill an entire interval.

The above elementary method can be applied to functions not necessarily
differentiable. We mention the following result without proof.
THEOREM 7.7. Let f(), t > 1, be a continuous increasing function with
lim, ., f(t) = oo. Let F(u) denote the inverse function of f(¢). Assume that
AF(n) = F(n + 1) — F(n) — o as n runs through the positive integers.
Moreover, it is assumed that for every z, 0 < @ < 1, the limit

F(n + x) — F(n)

li = y(x
exists. Then, if
lim F(n) = y(x) for0 <2<,

n—w F(n + x)
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the functions @(x) = () and O(x) = 1 — (@)1 — p(2)), 0 <2 < 1, are
respectively the lower and upper d.f. (mod 1) of the sequence (f (m)), n =
1,2,....

Application of Theorem 7.7 to the function®log ¢, b > 1, gives immediately
the result that @(z) = (b* — 1)/(b — 1) and O(x) = (1 — b=)/(1 — b~Y) are
respectively the lower and upper d.f. (mod 1) of the sequence (®log n),
n=12,....

Metric Theorems

THEOREM 7.8. Let (x,) be a sequence of real numbers, and let 4 be the
set of all real numbers a such that (az,), n = 1,2, ..., converges mod 1 to
0 (i.e., 0and 1 are the only limit points of ({a%,})). Furthermore, suppose that
(x,) does not converge to 0 as n — oo, Then the set 4 has Lebesgue measure 0.

PROOF. If lim, 2, =0, then (ax,) converges mod 1 to O for every
a € R. Hence, this case is excluded. Assume the sequence (x,) has a finite
limit point ¢ 3 0. Then there is a subsequence (z,) converging to ¢ as
i— oo, If ae A4, then (ax,,i), i=1,2,...,converges mod 1 to 0, but also
lim,_, az, = ac, and so ac e Z. Then 4 < {0, +1/c¢, +2/c, .. .}, so that
the Lebesgue measure A(4) of 4 is 0. It remains to consider the case
lim,_, [*,] = co. We note that
lime® " =1  ifageA. (7.12)
n—+co
Let A, = A N [—z,2] for 2> 0. Then (7.12) implies by the dominated
convergence theorem
lim f emm i dg = A(A,). (7.13)
700 z
On the other hand, we conclude from lim,_,, |2,| = o and the Riemann-
Lebesgue lemma that the limit on the left-hand side of (7.13) is equal to 0,
or (4,) = 0, and finally 1(4) = 0. W

THEOREM 7.9. Let (x,) be a sequence of real numbers satisfying
lim,_, |2,| = . Let B be the set of positive numbers b such that the
sequence (bz,), n = 1,2, ..., has an a.d.f. (mod 1). If A(B) > 0, then for
almost all b € B the sequence (bz,) is u.d. mod 1.

PROOF. For be B, let g,(x), 0 < @ < 1, be the a.d.f. (mod 1) of (bz,).
By the necessary part of Theorem 7.3, which holds also for discontinuous
g(x) (see the proof of Theorem 7.2), we have

n 1
w,(b) =lim 1 Y ety =f e dg ()  for heX.

n—+ow N =1 0



60 UNIFORM DISTRIBUTION MOD 1

For z > 0, set B, = B N [0, 2]. Then, because of lim,_,, [2,] = oo and the
Riemann-Lebesgue lemma, we have for /1 # 0,

11m e2rn'hlram db — 0
n= oo JBz

Then by Cauchy’s theorem
llm l z ezrrihb.'tndb — 0’

n—+w k=1 JB;

and from the dominated convergence theorem

f w,(b) db = 0.
Bz

Since this holds for all z > 0, we have w,(b) = O for all b € B with the
exception of a set S, with A(S,) = 0. But A(U, .0 S,) = 0, and so, for almost
all b € B, we have w,(b) = 0 for all /# # 0. This property characterizes u.d.
mod | of the sequence (bz,). I

Summation Methods

In general, a summation method S is some notion of convergence for
sequences of complex numbers. We call a sequence (z,,) summable by S to the
value z if (z,) “‘converges” to z under this notion of convergence S. The
most common types of summation methods are introduced via an infinite
real matrix A =(a,), n=1,2,..., k=1,2,.... Such summation
methods are called matrix methods, and by an abuse of language we speak
of the matrix method A. We think of a given sequence (z,) of complex
numbers being transformed by means of the matrix A into the sequence
(21,) of so-called A-transforms, where 2z, = >, a,,2.. Then (z,) is said to
be summable by A to the value z if lim,_,, z, = z. Here we shall only be
interested in a special class of matrix methods, namely, positive Toeplitz
matrices (for a more general class, see Chapter 3, Section 4). The matrix
A=(,),n=1,2,...,k=1,2,...,is called a positive Toeplitz matrix
if a,;, > O for all n and k and if lim,_,, D52, G, = 1.

DerNITION 7.3, Let A = (a,,) be a positive Toeplitz matrix, and let (z,),
n=1,2,..., be asequence of real numbers. For 0 < a < 1, let ¢, be the
characteristic function of the interval [0, z). The function g(z), 0 < = < 1,
is the A-asymptotic distribution function mod 1 (abbreviated A-a.d.f. (mod 1))
of (,) if the sequence (c,({x,})), n =1,2,..., is summable by A to the
value g(z) for 0 < = < 1; that is, if

lim iankcm({xk}) =gx) for0<La<1.

n— o k=l
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The function g(z) is nondecreasing on [0, 1] with g(0) = 0 and g(1) = I.
In the case g(z) = 2 for 0 < x < 1, the sequence (z,,) is called A-u.d. mod 1.
If we choose for A the matrix method of arithmetic means, defined by
a,, = 1/nfor 1 <k < nanda,, = 0fork > n, then we see that Definition
7.3 contains Definition 7.1 as a special case. Theorems 7.2 and 7.3 can be
generalized as follows.

THEOREM 7.10. Let A = (a,,) be a positive Toeplitz matrix. A sequence
(z,) has the continuous A-a.d.f. (mod 1) g(z)if and only if for every real-valued
continuous function f on [0, 1],

0 1
im 3 auf () = [ 1(0) deta).
PROOF. One proceeds as in Theorem 1.1, but replaces arithmetic means
by A-transforms and Riemann integrals by Riemann-Stieltjes integrals with
respect to the function g(z). [l

THEOREM 7.11. Let A = (a,,) be a positive Toeplitz matrix. A sequence
() has the continuous A-a.d.f. (mod 1) g(z) if and only if

2] 1

lim Y a,,e " =J. " dg(x)  for all integers h # 0.  (7.14)
n— oo k=1 0 :

PROOF. See the proof of Theorem 7.3. Compare also with the proof of

Theorem 4.1 of Chapter 3. [

If g(x) = =, (7.14) becomes

lim Ya,,e ™ =0  for all integers h # 0. (7.15)

n— oo k=1

Since the theory of summation methods does not lie in the mainstream of
our investigation, we shall refer more frequently to the literature. We make
use of the following concepts and results.

DErINITION 7.4. A summation method S, includes a summation method S,
if every sequence that is summable by S, (to the value 2, say) is summable
by S, to the same value z. S; and S, are called equivalent if S, includes S,
and S, includes S;.

DEFINITION 7.5. A summation method S is called regular if every conver-
gent sequence (converging to z, say) is summable by S to the same value z.
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THEOREM 7.12: Silverman-Toeplitz Theorem. An arbitrary matrix
method A = (a,;) is regular if and only if the following conditions hold:

)
i Supzlankl < Y

n k=1
a0
ii. lim Ya,, =1
n-oom k=1

iii. lima,, =20 fork=1,2,....
N—»0

In particular, a positive Toeplitz matrix is regular if and only if condition
(iii) holds.

EXAMPLE 7.1. For a real number r > 0, define the matrix of the Cesdro
means (C,r) by a,, = Ai,’__.”/Aﬁ,’_)l for 1 <k <nand a,,=0 for k > n,
where

G+DG+2) -G+ i)

il

A9 =

for i > 1 and A’ = 1. We note that (C, 1) is just the matrix method of
arithmetic means. It can be shown that (C, r) is a positive regular Toeplitz
matrix (Cooke [1, pp. 68-69]), and that the Cesaro means (C, r) withr > 1
include (C, 1) (Zeller and Beekmann [1, p. 104], Peyerimhoff [, p. 15]).
For positive integers r, the Cesaro means (C, r) are equivalent to the so-called
Holder means (H, r) defined recursively as follows. The Holder means (H,1)
is the same as (C, 1); if (H, r) is already defined and (2{”), n =1,2, ...,
is the sequence of (H, r)-transforms of a given sequence (z,), then the
sequence of (H,r + D)-transforms of (z,) is defined as the sequence of
(C, 1)-transforms of (2\"). Hence, Holder means are jterated (C, 1) means.
For a proof of the equivalence of (C, r)and (H, ), see Hardy [2, p. 103]. |}

It is clear from the definitions that the concepts of an a.d.f. (mod 1) and a
(C, 1)-a.d.f. (mod 1) are identical. For (C, ) withr > 1, we have the following
less trivial result.

THEOREM 7.13. Let r > 1. Then a sequence (z,) has the (C, r)-a.d.f.
(mod 1) g(z) if and only if it has the a.d.f. (mod 1) g().

PROOF. The sufficiency is clear since (C, r) includes (C, 1) (see Example
7.1). For the converse, we use the following well-known Tauberian theorem
(Hardy [2, Theorem 92], Peyerimhoff [1, Theorem II1.2]): If (z,) is bounded
and summable by (C, r) to the value 2, then (z,) is summable by (C, 1) to
the value z. Now, by hypothesis, for 0 < 2 < 1, the bounded sequence
(ex({=,})), n=1,2,..., is summable by (C, r) to the value g(x), and an
application of the Tauberian theorem yields the desired conclusion. i}
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EXAMPLE 7.2. For a real number s > 0, the Euler method (E,s) is

defined by a,, = (7) s"*(s+ 1) for 1 <k <n and a,, =0 for k > n.
4

It is easily seen that (E, s) is a positive regular Toeplitz matrix. The method
(E, 5) includes (E, s") whenever s > 5" (Hardy [2, Theorem 118]). However,
the method (E, s) does not include any of the Cesaro means (C, r) with
r > 0 (Hardy [2, p. 213])). H

THEOREM 7.14. If a sequence (x,) has the (E, 5)-a.d.f. (mod 1) g(x), then
it has the a.d.f. (mod 1) g(2).

PROOF. We use the following Tauberian theorem (Hardy [2, Theorems
128 and 147)): If (2,) is summable by (E, s) to the value z and if z,,; — 2, =
o(n”) for some p > —14, then (2,) is summable by (C, 2p + 1) to the value z.
Now, by hypothesis, for 0 < « < 1 the sequence (c,({z,})), n =1,2,...,
is summable by (E, s) to the value g(z), and the sequence satisfies also the
additional condition in the Tauberian theorem with p = 1. Hence, the
sequence is summable by (C, 3) to the value g(z), and so (x,) has the (C, 3)-
a.d.f. (mod 1) g(2). An application of Theorem 7.13 completes the proof. [}

EXAMPLE 7.3. Let (p,), n=1,2,..., be a given sequence of non-
negative real numbers with p; > 0. For n 2 1, put P, =p; + -+ * + p,.
Then the siniple Riesz (or weighted arithmetic) means (R, p,) is given by
An = pi/Py for 1 < k < nanda,, = 0fork > n It is obvious that (R, p,)
is a positive Toeplitz matrix and that (R, p,) is regular if and only if
lim,_,,, P, = . The Cesaro means (C, 1) is identical with the simple Riesz
means (R, 1). [}

In the following, we give some sufficient conditions for a simple Riesz
means to include another simple Riesz means.

LEMMA 7.1. Ifp,>0andg, > Oforn > 1, iflim,_,,, P, =lim,_,, 0, =
o0, and if either

e R N (7.16)
4 ~ Pa
or

P
Insr o Puit g IR H&' for some H and n > 1, (7.17)

qn p'n pn q"
then (R, g,) includes (R, p,).

PROOF. We show that the (R, g,)-transform of a sequence (z,) can be
expressed by means of the (R, p,)-transform and that the corresponding
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“transition matrix” is regular. Set v, = (p12; + *** + p,2,)/P, and w, =
(qlzl + U + qnzn)/Qn' Then P1z1 = Plvl and pnzn = P’nvn - Pn—lvn—l fOI'
n > 2, and therefore,

1 q ‘
v, = (fh P, + 2 (P, — Pw) + - + 12 (P, — P"_lun_l))
n 151 § 23 Da
= zcﬂkvka
k=1
where p
Cor = (g_k - gﬁﬂ)—‘ for1 <k <n,
Pr Prit/ @y
2 Pa
Con = 7 " Core = 0 for k > n.
n Q?l

It remains to show that the matrix (c,;) satisfies the three conditions of
Theorem 7.12. Property (iii) follows immediately from lim,,_,, Q, = co. If
we choose 2, = 1 for all n, then v, = w, = 1 for all n, and so X2, ¢, = 1
for all n, which yields (ii). If (7.16) holds, then ¢, > 0, and (i) follows. If
(7.17) holds, then c,,, < 0 for 1 < k < #n; hence,

—1

[/ 4:Py

ZIanl = - zcnk + = zcnk + 2
ann p'nQn

for all n, and (i) follows again. |}

<-1+2H

THEOREM 7.15. If ¢ > —1, then a sequence (v,) has the (R, n")-a.d.f.
(mod 1) g(z) if and only if it has the a.d.f. (mod 1) g(2).

PROOF. It suffices to show that the summation methods (R, n”) and (R, 1)
are equivalent. Let 0 > 0; then 1 < (n + 1)°/n°, so that according to (7.16)
(R, 1) includes (R, #%). Furthermore, we observe that

P 14274 ’

—=n<H + +” LA H 21

p’ll n q’}l
with a suitable H, implies according to (7.17) that (R, »n°) includes (R, 1).
If —1 < o <0, the proof runs in a similar way. [l

forn> 1,

THEOREM 7.16. Let f(2), * > 1, be an increasing function having a
continuous second derivative, let llmwﬂw f @) = oo, and let [’ (x) tend
monotonically to 0 as # — oo, Then the sequence (f (n)) n=1,2, , is
(R, f’(n))-u.d. mod 1.
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PROOF. For a nonzero integer /1, we get by the Euler summation formula
(see Example 2.4),

Zfl(k)ezwhf(k) =f fl(:v)e%rﬂlf(w) dux
k=1 1
+ le(f/(l)emrihﬂl) +fl(n)e211ihf(n))

+] ) = DUr@en ey s

fin)

=f leriha: d’b + 0(1)
£(1)

+0([rwids) + o [y aa)

= 0(1) + O(1) + O(1) + o(f(n)) = o(f(n)).

On the other hand, an application of the Euler summation formula yields
also f (n) = O, f"(k)), and therefore,

S frik)er T = O(Zf’(k)) for all integers I # 0.
k=1 k=1

This property characterizes the (R, f'(n))-u.d. mod 1 of ( £ (1)) by (7.15).

COROLLARY 7.1. If f () satisfies the conditions of Theorem 7.16, then
the sequence (f (1)), n=1,2,..., either has no a.d.f. (mod 1) or is u.d.
mod 1.

PROOF. Suppose (f(n)) has the a.d.f.(mod 1) g(z). Now f'(n + 1)/f'(n)
<1 for all n > 1, so, according to (7.16), (R, f'(n)) includes (C, 1).
It follows that g(x) is also the (R, f”(n))-a.d.f. (mod 1) of (f (#)). On the other
hand, (f(n) is (R, f'(n))-u.d. mod 1 by Theorem 7.16, and so, g(&) = =;
that is, (f (n)) is u.d. mod 1. |j

EXAMPLE 7.4. Animportant example of a summation method that is not
a matrix method is the Abel method. Let (z,) be a sequence such that the
radius of convergence of the power series a(z) = (1 — 2)2 2 z,2" is at
least 1. Then the sequence (z,,) is summable by the Abel method to the value
z if lim,_,;_4 a(¥) = 2. By the theorem of Frobenius quoted in the proof of
Theorem 2.4, the Abel methods includes (C, 1) and is therefore regular. In
fact, the Abel method includes all Cesaro means (C, r) with » > 0 (Hardy
[2, Theorem 55]). Theorem 7.13 holds with (C,#) replaced by the Abel
method, since the Tauberian theorem used in the proof is true for the Abel
method as well (Hardy [2, Theorem 92]). |}
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Notes

The study of asymptotic distribution functions mod 1 was initiated by Schoenberg [1],
who proved Theorems 7.2 and 7.3. Other proofs or generalizations of these results are
contained in Kuipers [10], Kuipers and Stam [1], and Brown and Duncan [1, 3]. Definition
7.2 and Theorem 7.1 are from van der Corput [7]. In this paper, one finds also many other
results on distribution functions mod 1, such as a characterization of the set of distribution
functions mod 1 of a sequence of distinct elements in I and the result of Exercise 7.10.
Some further results are presented in Chapter 2, Section 4. The term ‘““almost u.d. mod 1"’
was coined by Pjateckil-Sapiro [2]. See also Ammann [1] and Chauvineau [6]. Lower
and upper distribution functions mod 1 were introduced by Koksma [2; 4, Kap. 8], where
Theorem 7.7 may also be found. For further results and related notions, see Chauvineau
[6]. Theorem 7.5 is due to Schoenberg [1] and, in a slightly different form, to Wiener [1].
For a strengthening of the result, see Keogh and Petersen [1]. Theorem 7.6 is again from
Schoenberg [1]. Kuipers [5] proves the theorem using methods of Haviland [1] and proves
also some related results. For a quantitative version and a multidimensional generalization,
see Hlawka [10, 16]. The results concerning (log n) and related sequences can already be
found in Pélya and Szegd [1, II. Abschn., Aufg. 179-182]. See also Thorp and Whitley
[1] arnd the notes in Section 2. Theorems 7.8 and 7.9 are from Schoenberg [2]. For other
types of metric results, we refer to Cigler and Volkmann [1].

For the construction of sequences having a prescribed a.d.f. (mod 1), see von Mises [1]
and Chapter 2, Section 4. Various other results are shown in Chauvineau [1, 2, 6], Lacaze
[1], Niederreiter [3], and Scoville [1]. The generalization of the theory to an abstract
setting is to be found in Hlawka [3] and Chapter 3. As to the investigation of special se-
quences, the classical case to be studied was (¢(m)/n), n = 1,2, ..., where ¢ denotes
the Euler phi function. Schoenberg [1] established that this sequence has a continuous
a.d.f. (mod 1) (see also M. Kac [4, Chapter 4]), and Erdos [1] showed that this a.d.f.
(mod 1) is singular. A quantitative refinement is due to Falnlelb [2], who improved earlier
quantitative results of Tyan [1], Fainleib [1], and Ilyasov [1]. A related problem was
studied by Diamond [1]. For other sequences arising from number theory, see Roos [1],
Elliott [3], and van de Lune [1]. Zame [1] characterizes the a.d.f. (mod 1) of certain
lacunary and exponentially increasing sequences, and Pjateckil-Sapiro [1] does the same
for the sequences (a™v), n = 1,2, ..., where a > 1 is an integer (for the latter case, see
also the notes in Section 8). Many papers have been devoted to the study of the distri-
bution of additive number-theoretic functions. Such functions possessing an asymptotic
d.f. are characterized by the celebrated theorem of Erdds and Wintner [1]. Later develop-
ments of this aspect are surveyed in M. Kac [3], Kubilius [1], and Galambos [1]. Various
sufficient conditions for u.d. mod 1 of such functions can be found in Corrddi and Kétai
[1], Delange [3, 5, 6, 11], Erdos [3], Kubilius [1, Chapter 4], and Levin and Falnlelb
[1-3]. Additive functions u.d. mod 1 were characterized by Delange [9, 10], and those
having an a.d.f. (mod 1) were characterized by Elliott [1].

A detailed treatment of the general theory of summation methods is given in the books
of Hardy [2], Cooke [1], Knopp [1], G. M. Petersen [2], Zeller and Beekmann [1] (with
extensive bibliography), and Peyerimhoft [1]. For a proof of Theorem 7.12, see Hardy
[2, Sections 3.2-3.3]. Some isolated results on u.d. mod 1 with respect to summation
methods can already be found in Weyl [4] and Pé6lya and Szegd [1, II. Abschn., Aufg. 173].
The first systematic study is due to Tsuji [2], who considered weighted means (R, p,).
Some of his results were improved by Kano [1] and Kemperman [4]. Further results on
weighted means are shown in Cigler [1, 10], Gerl [2], and Schnabl [1]. Our discussion of
asymptotic distribution mod 1 with respect to positive Toeplitz matrices follows Cigler [1,
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10]. A more general approach is presented in Chapter 3, Section 4. Blum and Mizel [1]
extend the Weyl criterion for summation methods to two-sided sequences. Chauvineau [6]
discusses (H, 2)-u.d. mod 1 under the name ‘‘équirépartition en moyenne (mod 1),”
apparently without realizing that this is equivalent to u.d. mod 1 by Theorem 7.13 and
Example 7.1. An interesting unresolved problem is the characterization of the matrix
methods A for which all sequences (#8), 8 irrational, are A-u.d. mod 1 (see Cigler [10] and
Dowidar [1] for partial results). Kemperman [4] studies the A-a.d.f. (mod 1) of slowly
growing sequences.

Exercises

7.1. A sequence (x,) has the continuous a.d.f. (mod 1) g(#) if and only if
(7.3) holds for every Riemann-integrable function f on [0, 1].

7.2. Explain why Theorem 7.2 breaks down for discontinuous g(x).

7.3. If (z,) has a continuous a.d.f. (mod 1) and m is a nonzero integer, then
(mz,) has a continuous a.d.f. (mod 1).

7.4. The sequence (x,) is constructed as follows. For n > 1, let k(n) > —1
be the unique integer with 2¥" < n < 2¥™+1, Then define x, = 1/n
if k(n) is even, z, = 0 if k(n) is odd. Prove that (z,) has an a.d.f.
(mod 1) but that (—=,) does not have one.

7.5. If (z,) has the continuous a.df. (mod 1) g(x), then limy_,,
A([0,2]; N)IN =g(@)for 0 < 2 < 1.

7.6. Construct an example to show that limy._,, 4([0, «]; N)/N need not
exist if (v,) has a discontinuous a.d.f. (mod 1).

7.7. Let F, F,,... be a sequence of uniformly bounded functions on
[0, 1]. Prove that there exists a subsequence F, , F,,, ... such that
lim,_,, F, (¥) exists for every « from a given countable subset C of
[0, 1]. Hint: Let C = {xy, @,, . . .}; then (F,(z,)) contains a convergent
subsequence, say (F,;(;)); furthermore, (F,, (%,)) containsa convergent
subsequence, and so on; show that a certain “‘diagonal” sequence
satisfies the desired property.

7.8. If Ny, Ny, ... is an increasing sequence of positive integers with
lim,,_,., A([0, t,); N)/N, = « for some t, € [0, 1], then (z,) has a d.f.
(mod 1) z(z) with 2(¢t;) = o.. Hint: Use the method of Theorem 7.1.

7.9. The sequence (z,) has the a.d.f. (mod 1) g(2) if and only if g(z) is the
only d.f. (mod 1) of (z,). Hint: Use Exercise 7.8 for the sufficiency part.

7.10. If 2,(%), 2,(%), . . . are d.f.’s (mod 1) of (z,) with lim,_,, 2,(®) = 2(z)
for 0 < 2 < 1, then z(z) is a d.f. (mod 1) of (z,,).

7.11. Let (z,) be the sequence constructed as follows. We first have a block
of 1! terms §, then a block of length 2! consisting of alternating terms
1 and 2, then a block of 3! terms %, and so on. Thus, the first terms of
thesequenceare 3, 1,4, 3, 4,4, 4,4, &, 1, §, . . . . Prove that the lower
d.f. (mod 1) and the upper d.f. (mod 1) of (,) are not d.f.’s (mod 1) of

(.’L'").
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7.12.

7.13.
7.14.
7.15.
7.16.

7.17.

7.18.

7.19.

7.20.
7.21.

7.22.
7.23.

7.24,
7.25.
7.26.

7.27.

UNIFORM DISTRIBUTION MOD 1

Prove that the functions z(x, &) appearing in (7.10) represent all d.f.’s
(mod 1) of the sequence (log n).

For a fixed a € R, the sequence (a log n) is not almost u.d. mod 1.
Construct a sequence that is almost u.d. mod 1 but not u.d. mod 1.
Prove that (sin n),n = 1, 2, ... ,hasan a.d.f. (mod 1) and determine it.
Let f (1), t > 1, have a positive derivative such that f () - c and
tf'(t) — 0 as t — co. Then the sequence (f (n)), n = 1,2, ..., has the
lower d.f. (mod 1) p(2) given by p(x) = 0for0 < v < l and p(1) =1,
and the upper d.f. (mod 1) ®(x) given by ®(0) = 0 and ®(x) = 1 for
O<a< ]

Show that (7.7) is equivalent to

1 H
lim = > |w,] =0.
H-o h=1
Hint: Use the Cauchy-Schwarz inequality.
Let (x,) be a sequence in I having the a.d.f. (mod 1) g(x), and let (?)
be a continuous increasing function on [0, 1] with (0) = 0 and
y(1) = 1. Then the sequence (y(x,)) has the a.d.f. (mod 1) g(n(v)),
where 7(z) is the inverse function of w(f).
If g(x) is the continuous a.d.f. (mod 1) of the sequence (z,) in Z, then
the sequence (g(z,)) is u.d. mod 1. Does this also hold for discontinuous
g@)?
If the sequence (z,,) in (0, 1) is u.d. mod 1, then (1/x,) is not u.d. mod 1.
If the sequence (v,) has the continuous asymptotic d.f. f(&), then
the sequence (|v,|) has the asymptotic d.f. g(&) given by g(£) = 0 for
£ <0and g(&) =f(& — f(—& for £ > 0.
Prove Theorems 7.10 and 7.11 in detail. _
Let (z,) be a sequence for which A([0, z); N) = N + o(\/N) for
0 <z < 1. Then (z,) is (E, s)-ud. mod ! for all s > 0. Hint: Use
Hardy [2, Theorem 149].
Prove that (R, 1/nlog(n + 1)) includes (R, 1/n).
Prove that (R, 1/n) includes (C, 1) but not conversely.
Let g(x), * > 0, be a positive, increasing, twice continuously differenti-
able function with g(z) — oo as @ — oo and g’(x) nonincreasing. Let
f (@), « > 0, be an increasing continuously differentiable function with
f'(x) — 0 as x — co. Then the sequence (f(g(n)), n =1,2,..., has
the continuous (R, g'(n))-a.d.f. (mod 1) /i(z) if and only if (f (1)) has the
a.d.f. (mod 1) h(x). Hint: Use Theorem 7.11 and the Euler summation
formula.
If f(x) satisfies the conditions in Exercise 7.26 and if the sequence
(f(n), n=1,2,..., is ud. mod 1, then the sequence (f (1)),
n=12,...,with0 <o <1isud modl.
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7.28. Lety, =% — 2, for n > 1, where (z,) is the sequence from Exercise
7.4. Prove that for some equivalence class § we have

1 1
lim = 3100 = 1@ dgo

for all real-valued continuous functions f'on [0, 1], but that (y,) has no
a.d.f. (mod 1).

8. NORMAL NUMBERS

Definition and Relation to Uniform Distribution Mod 1

Let « be a real number, and let & > 2 be an integer. Then o has a unique
b-adic expansion, that is, an expansion of the form

a=la] +3 2= g a, CEY
n==1 b"

where the “digits” a, are integers with 0 < a, < b for n > 1, and also
a, < b — 1 for infinitely many ». If a is a digit with respect to the base b
(i.e., an integer with 0 < a < b) and if N is a positive integer, we let
A,(a; N; o) denote the number of a,,, | < n < N, in (8.1) for which a,, = a.
If o is fixed, we write 4,(a; N) instead of 4,(a; N; «). More generally, let
B, =bb, - by, k > 1, be a given block of digits of length k. Denote by
A,(By; N) = A,(B,; N; «) the number of occurrences of the block B, in the
block of digits a,a, - - - ay. In other words, 4,(B,; N) is the number of n,
1 <n<N—k+ l,suchthata,, ; =bforl <j<k

DEeFINITION 8.1.  The number « is called simply normal to the base b if

A@N) 1
im AN L 01, b1 (8.2)
N- o N b

The number o is called normal to the base b if
. Ay(By; N)
lim——— =

N-roo

1
~b—k for all k > 1 and all B,. (8.3)

Obviously, a number normal to the base b is also simply normal to the
same base. The converse is not true in general. For instance, the number
given by the 2-adic expansion 0.010101 - -+ is certainly simply normal to

the base 2 but not normal to the base 2 since the block of digits 11 of length
2 does not occur in the expansion.
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THEOREM 8.1. The number « is normal to the base b if and only if the
sequence (b"x), n =0,1,...,is u.d. mod 1.

PROOF. Let (8.1) be the b-adic expansion of o, and let w be the sequence
(b"w), n=0,1,.... Consider a block B, = b,b, - - - b, of k digits. Then,
for m > 1, the block a,,a,,,,* * - a,,,+, is identical with B, if and only if

b
o=l + 7.21 bn b™ po T s b’"’q”_l +1I—§+h b"
or
bb* 14 - 4 b, S a
bm—l _ 1 k n4-m—1 ,
{ 0(} b’"' +n=§+l b"
or
bbby bbb+ 1
{b™a} € [ 1 +b’~' 2 , = * b* ot ) = JB).

It follows that A,(By; N) = A(J(B;); N — k + 1; w). Now suppose that o
is u.d. mod 1. Then

_ ABuN) . AUB):N—k+1li0) N—k+1 1

lim ——— = lim . =—,
N-ow® N N—-ow N—k + 1 N bk

and so « is normal to the base b. Conversely, if « is normal to the base b,
then

. AUJBY;N;w) . ABuN+k—1 N+k—1 1
lim =k 2 iy ~ =,

N—- o N N- o N + k—1 N bk

This holds for all B,. Therefore, limy_.,, A(J; N; w)/N = A(J), the length
of J, for all half-open subintervals J of I satisfying the following property:
the end points of J are rationals whose denominators are powers of b.
Now let E be an arbitrary half-open subinterval of 7, and let ¢ > 0 be given.
Choose intervals J; and J, of the above type with J, € E < J, and A(E) —
e < MJ) < MJy) < ME) + & Then, for sufficiently large N,

A(E; N; w) ZA(Jl;N;w)

N N > MJ) — e > ME) — 2e,

and similarly A(E; N; w)/N < A(E) + 2¢. Hence, limy_,, A(E; N; w)/N =
AE). il

COROLLARY 8.1. Almost all real numbers « (in the sense of Lebesgue
measure) are normal to the base b,

PROOF. This follows immediately from Theorems 4.1 and 8.1. [}
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DErFINITION 8.2. The number « is called absolutely normal if it is normal
to all bases b > 2.

COROLLARY 8.2. Almost all real numbers « (in the sense of Lebesgue
measure) are absolutely normal.

PROOF. This follows from Corollary 8.1, since the countable union of
null sets is still a null set. [l

Further Results

LEMMA 8.1. Let « be a real number and b > 2. Suppose that there
exists a constant C such that for any nonnegative continuous function f on
[0, 1],

N-1

11m — z f{p"e}) < Cf f(z) du. (8.4)
Then o is normal to the base b.

PROOF. By Theorem 7.1 there exists a d.f. (mod 1) 2(x) of the sequence
(b*«), n=0,1,.... Thus, for some increasing sequence N;, N, ... of
positive integers, we have

lim Eiﬁ:f({b"a}) - f f(@) de(@) (8.5)

for all continuous functions f on [0, 1]. It follows from (8.4) that

J:f(x) dz(z) < CJ:f(x) dz (8.6)

for any nonnegative continuous function f on [0, 1], and so z(z) must be
continuous on [0, 1]. In particular, (8.5) will even hold for all f on [0, 1]
that are continuous except for finitely many jumps (see the proof of Theorem
7.4). If fis such a function on [0, 1], then g(z) = f({b2}), 0 < 2 < 1, is of
the same type. Applying (8.5) to g(z), we find

V(—- 1
lim 3 () = [ S dato). ®.7)

On the other hand, we have

Ni—1

v LS -+ 2 f({ba })} <M

where M = supy<q.<1 | f(®)|, and so the two limits in (8.5) and (8.7) are
identical. Consequently, we get

[rcbap astw) = 1) s
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By induction, we arrive at

Lf({b"x}) dz(2) =J:f(rv) d=(v) for all integers n > 0, (8.8)

For a continuousfon [0, 1], we have, according to Corollary 8.1,

N-1 1
hm = E F{p"thH —ff(rv) de  forallte[0,1)\E, (8.9)
n=>0
with a Lebesgue null set £ < [0, 1]. Then, by (8.6),
f do(x) =0, (8.10)
E
where the integral is a Lebesgue-Stieltjes integral. Since
1 N—-1
N S fEb" | <M for0<a<,
n=0

where M has the same meaning as above, we may use the dominated con-
vergence theorem, together with (8.8), (8.9), and (8.10), to obtain

[ @ s = tim ['(< Eﬂwwﬁmw

f@m-@kWW%W)

1_'®N71—

- L ' ( L ) drc) do(t) = fo lf(x) dx.

Since f was an arbitrary continuous function on [0, 1], it follows that
z(z) = a for 0 < @ < 1. Therefore, 2(x) = « is the only d.f. (mod 1) of the
sequence (b"a), n = 0, 1, ..., and so this sequence is u.d. mod 1 by Exercise
7.9. An application of Theorem 8.1 completes the argument. [

The condition (8.4) is of course also necessary. Lemma 8.1 will be instru-
mental in the proof of the subsequent theorem, which leads to a new charac-
terization of normal numbers (Theorem 8.3).

THEOREM 8.2. Let k > 2 be an integer. A real number « is normal to
the base b if and only if o is normal to the base b*.

PROOF. Let o be normal to the base b. For every nonnegative continuous
function f on [0, 1] we have the inequality

EN—

N-1
SIS <k T((ba). (8.11)



8. NORMAL NUMBERS 73

Since the right-hand side of (8.11) converges to k {5 f (x) d= by assumption,

we obtain
N—-1

lim — z f{p*"e}) < kf f(z) dx,

N—’oo
and so « is normal to the base b* by Lemma 8.1. Conversely, if « is normal
to the base b*, then (b*"a), n =0,1,...,is u.d. mod 1 and so (b*"+n),
n=20,1,...,isud mod 1 for each j =0, 1,...,k — 1. Thus, (b"x),
n=20,1,...,isu.d. mod I as the superposition of k sequences that are u.d.
mod 1 (see Exercise 2.12). Hence, o is normal to the base 5. [}

THEOREM 8.3. The real number o« is normal to the base b if and only if
e is simply normal to all of the bases b, 4%, &3, . . ..

PROOF. One implication is obvious: if « is normal to the base b, then «
is normal to all of the bases b, b2, b3, ... by Theorem 8.2, and so a fortiori
simply normal to all of these bases. Now suppose that « is simply normal
to all of the bases b, b2, %, ..., and let (8.1) be the b-adic expansion of o.
Then, forr > 1,

© (r) r) r—1 )
: T
+ z brn WIth an =J§oa'm'—jbj
is the b"-adic expansion of «. By the simple normality of « to the base &',
every integer ¢ with 0 < ¢ < b" occurs among the 4! with asymptotic
frequency b—". Now t=»bb"1+ -+ b_,b+ b, with certain digits
by, ..., b, (with respect to the base b), and s0t = a(” precisely if a(,_y)r1 =
by, ..., a, = b, Therefore, the hypothesis may also be expressed as follows:

Every block b,b, - - + b, occurs among the blocks a,a,,.y " a,,, 1, n =1
(mod r), with asymptotic frequency b=". *)
Let now B, = b,b, * « - b, be an arbitrary block of digits with respect to the
base b. To estimate 4,(B,; N), we choose an integer r > k and write N =
ur + v with 0 < v < r. Forj > 0, we denote by A(B,;jr + 1, (j + 1)r) the
number of n, r+1 < n < (j+ 1)r — k + 1, such that B, = a,a,,, "
A If we replace 4,(By; (u + 1)r) by Do ABy;jr + 1, (j+ Dr), we
have neglected the blocks a,a,,," " a,,;_; that contain both a; and
a;.,, forsome j, I <j < u. Foreveryj, 1 <j < u, these are exactly £k — 1
blocks. Thus,

Ay(By; N) < Ay(Bys (u + 1))

<2 ABy;jr + 1L, 4+ D) + u(k — 1). (8.12)
j=0

We also have
u—1

Ay(By; N) > Ay(By; ur) > EOA(Bk;j" + LG+ D). (8.13)
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We consider Y _o A(By;jr + 1, (j + 1)) for an integer s > 0. Let C denote
an extension of By, to a block of digits of length r, say
C=cy  rcbyc 2 bydyrdo

Two such C are considered to be distinct if they are either distinct as blocks
of length r or if b, has a different place. Denote by A*(C; s) the number of j,
0 £j £ s, such that C = @, 165,42 * * * 4(;41),- Since B, occurs in

Ajr2dirt2 * " " AG+nr

exactly as often as there are distinct C such that C = a;,.1a;,15 " * * A1)y
we have

3 A Jr + 1,3 + D) = 3 4%(C39).

[ad

Therefore, from (8.12) and (8.13),
u A¥(Ci;u — 1) < Ay(B,; N) < u+1 _A¥C;u) u(k—1)
ur+v'g u N ur+vg u+1 ur+ v

By (*) each C has the asymptotic frequency b=". Letting N tend to infinity
(or equivalently u — o), we obtain

b(Bk’ N)

b(Bk> N)

1
-3 b < lim < fim

¥ o N-w N-ow

< - Zb_’+

Since there are r — k + 1 possibilities to choose the place of b1 and, the
place of b, being fixed, there are 5" possibilities to assign values to the r — k
new digits, we have altogether (r — k + 1)b™* possibilities for C. Therefore,

r—k+1<li Ay(By; N) —Ab(BL,N) r—k+1+k—1.

¥ T yse N N-» « N T b r

Letting r — oo, we arrive at (8.3). i

Notes

Normal and absolutely normal numbers were introduced by Borel [1; 2, pp. 194-201],
who showed the metric results in Corollaries 8.1 and 8.2. Borel’s original characterization
of normality is that of Exercise 8.4. The equivalence of this characterization and our
Definition 8.1 was first shown by Niven and Zuckerman [1] (see also Cassels [7], Knuth
[2, Chapter 3], and Niven [1, Chapter 8]). Theorem 8.1 is from Wall [1] (see also Niven
{1, Chapter 8] and Postnikov [8, Chapter 3]). The characterization of normality enunciated
in Theorem 8.3 is that of Pillai [2]. For other proofs, see Maxfield [1] and Niven [1, Chapter
8]. Long [1] shows that « is normal to the base b if and only if there exist positive integers
my < mgy < - - - such that « is simply normal to all of the bases b™, i > 1; no finite set of
m, suffices. Jager [1] characterizes normality in terms of certain digit shift transformations.
The characterization in Exercise 8.6 is due to Mendés France [1, 3, 4]. For another criterion,
see Chapter 3, Exercise 3.10.
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Sierpiriski [3] and Lebesgue [1] gave partially explicit constructions of normal numbers.
In fact, they even constructed absolutely normal numbers. A simple example is due to
Champernowne [1], who showed that the number 6 in Example 2.2 is normal to the base
10. Proofs of this result can also be found in Niven [1, Chapter 8], Pillai [1, 2], and
Postnikov [S]. If (p,) is an increasing sequence of positive integers that is sufficiently
dense, such as the sequence of primes, then the decimal 0.pp, ' - - is normal to the base 10
(Copeland and Erdds [1]). If f'is a polynomial all of whose values for n = 1,2, ... are
positive integers, then the decimal 0.f(1) f(2) - - - is normal to the base 10 (Davenport
and Erdos [1]). Further constructions of normal numbers can be found in Postnikov [8,
Chapter 3], W. M. Schmidt [3] (absolutely normal numbers), Spears and Maxfield [1],
Stoneham [4, 5, 6], and Ville [1, Chapter 1]. Another constructive approach is via so-called
“normal periodic systems of digits’> (Good [1], Rees [1], Korobov [4, 5, 6, 9]). There are
also intimate relations between the construction of sequences completely u.d. mod 1 (see
Chapter 3, Section 3) and the construction of normal numbers (Knuth [2, Chapter 3],
Korobov [1, 2, 5, 10]). Some constructive results may also be found in the papers on the
sequences (b"e) mentioned in the notes in Section 3 of Chapter 2. All the known normal
numbers have been constructed ad hoc. It is not known whether irrationals of number-

theoretic interest, such as e, , \/2, log2,..., are normal. However, statistical studies
of the digits of such numbers have been carried out. We refer to Beyer, Metropolis, and
Neergaard [1] (good bibliography), [2], Dutka [1], and Stoneham [2]. Numbers having
other prescribed digit (or block) frequencies have also been constructed. See Copeland
(11, Postnikov [5; 8, Chapter 3], Postnikov and PjateckiI-§apiro [1, 2], Postnikova [3],
Sahov [3, 4], Ville [1, Chapter 1], and von Mises [1].

Lemma 8.1 is essentially due to PjateckiI-§apiro [1]. It was improved by Postnikov [1],
and a best-possible version was established by Pjateckil-Sapiro [4]. See also Pjateckil-
§apiro [3], Postnikov [S], and Kemperman [2]. For some generalizations, see Postnikov
and Pjatecki1-§apiro [1] and Moskvin [1]. In essence, Lemma 8.1 is a result from ergodic
theory. The connection between normal numbers and ergodic theory was first pointed
out by Riesz [1]. Since the transformation « — {ba}, @ €I, is ergodic with respect to
Lebesgue measure, the individual ergodic theorem implies that for every Lebesgue-inte-
grable function fon [0, 1] we have limN_.w(I/N)z;yzlf({b"oc}) = j'(l,f(:v) dx for almost all
a € 1. Without using ergodic theory, this was proved earlier by Raikov [1] and Fortet [1].
The relation between ergodic theory and normal numbers is exploited further in Cigler
[2, 9] (see also Blum and Hanson [1]), Franklin [1], Furstenberg [3], Hartman, Marczewski,
and Ryll-Nardzewski [1], and Postnikov [7; 8, Chapter 3]. For various other proofs of
Borel’s metric theorem (Corollary 8.1) not using ergodic theory, see Hardy and Littlewood
[1], Sierpinski [3], M. Kac [4, Chapter 2], Ducray [1], and the literature in Koksma [4,
pp. 116-118], where also quantitative refinements are mentioned (see also the notes in
Chapter 2, Section 3). Further metric results concerning normal numbers (or certain
generalizations thereof) were shown by Franklin [1, 2], Postnikov and PjateckiI-§apiro
[1], Sanders [1], and Schweiger [1]. Maxfield [2] notes that the set of simply normal
numbers to the base b is of the first category (see also Salat [1] and Schweiger [3]). There
is a vast literature concerning the Hausdorff dimension of sets of nonnormal numbers, or,
more generally, of sets defined by digit properties. We mention Besicovitch [1], Best [1],
Beyer [1], Cigler [5], Cigler and Volkmann [1], Colebrook [1], Eggleston [1, 2], Erdos
and Taylor [1], Helson and Kahane [1], Knfchal [1, 2], Mendés France [2, 3], Nagasaka
[1], and Volkmann [1, 2, 4, 6, 7].

An interesting problem is that of the relation between normality with respect to different
bases. A rather easy result is that in Exercise 8.5. W. M. Schmidt [3] proves the following
general theorem: Partition the possible bases 2, 3, . . . into two classes such that numbers
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that are rational powers of each other lie in the same class; then the set of numbers that
are normal to the bases in the first class and not normal to the bases in the second class
has the power of the continuum. For earlier results, see W. M. Schmidt [2] and Cassels
[10]. From more general standpoints, the problem has been discussed by W. M. Schmidt
[4], Colebrook and Kemperman [1], and Schweiger [2].

Some variants of the definition of normality occur in the literature. Normality of order
k (see Exercise 8.7) is discussed in Ville [1, Chapter 1], Good [1], Rees [1], Knuth [2,
Chapter 3], and Long [2]. See also Mahler [6]. Besicovitch [2] introduced *“(j, ¢)-normality,”
which was further studied by Davenport and Erdos [1], Hanson [1], and Stoneham [1, 3,
5, 6]. The papers of Korobov [23, 24] treat a related question. PjateckiI-Sapiro [1] charac-
terizes the a.d.f. (mod 1) of a sequence (b"a). See also Postnikov [8, Chapter 3]. Further
results concerning these sequences and a.d.f.’s (mod 1) can be found in Cigler [2, 9], Cole-
brook [1], Colebrook and Kemperman [1], Helson and Kahane [1], and Kemperman [2].
The u.d. mod 1 of these sequences with respect to summation methods is briefly discussed in
Schnabl [1]. Closely related sequences have been studied by Korobov [7], Franklin (1, 2],
and Mendés France [5]. If ¢(#) denotes the b-adic sum of digits of the positive integer »,
then (q(m)8), n =1,2,..., is ud. mod 1 for every irrational 6 (Mendés France [4]).
This is still true if # runs through the prime numbers (Olivier [1]). See also Mendés France
[9]. The function g{») is also connected with the theory of P.V. numbers (see Example 4.2).
For this and related matters, see Mendés France [5, 7], Senge and Straus [1], and Bésineau
[t, 2]. Some investigations have also been carried out for nonintegral bases # > 1, mostly
from the metric point of view (Rényi [1], Gel’fond [1], Parry [1], Cigler [4], Roos [1],
Galambos [2, 3, 4]). For the sequences (f"), see Helson and Kahane [1], Kulikova [1],
and Mendés France [4].

Maxfield [2] calls («y, . . ., o) a normal k-tuple to the base b if the sequence
(( "aly L) b"ak)))
n=1,2,...,isud. mod { in [R¥. The analogue of Corollary 8.1 for this case was already

shown by Hardy and Littlewood [1]. Maxfield [2] proves a result for normal k-tuples
that implies, in particular, that every nonzero rational multiple of a normal number is
normal. The k-tuple (%, ..., @) is called jointly normal to the bases by, . .., by if the
sequence ((by%0y, ..., byle)), n=1,2,..., is ud. mod 1 in [R¥. For results on the
above two concepts (e.g., construction of such k-tuples), see Korobov [8, 13, 14], Post-
nikova [1], Startenko [1], and Volkmann [4]. More generally, one may consider the u.d.
mod 1 in R® of a sequence (A™), n = 1,2, ..., where A is a given k X k matrix with
integer entries and x € [R*, The transformation x — {Ax}, x € I*, is ergodic with respect to
Lebesgue measure if and only if A is nonsingular and none of its eigenvalues is a root of unity
(Rohlin [1], Auslander [1]). In this case, the generalization of Borel’s metric theorem follows
from the individual ergodic theorem, and an analogue of Lemma 8.1 can also be shown
(Postnikov [3; 8, Chapter 3], Polosuev [3, 5], Star¢enko [1], Cigler [2, 9], Muhutdinov [1]).
Further work on (A™x) was done by Cigler [2, 9], Franklin [3], Polosuev [3, 5], Postnikov
[8, Chapter 3], W. M. Schmidt [4], Schweiger [2], and Uchiyama [2]. For an abstract
approach to normality, we refer to Cigler [3] (see also the notes in Chapter 4, Section 1).
A set M of real numbers is called a normal set (‘“‘ensemble normal’’) if there exists a
sequence (4,) in IR such that (1,2) is u.d. mod 1 if and only if € M. The set of numbers
normal to the base b is a normal set by Theorem 8.1. Other nontrivial normal sets are
@\{0} (Rauzy [2], Zame [5]), the complement in R of a real algebraic number field, and
the set of transcendental numbers (Meyer [1-4], Mendés France [6], Zame [5]). A count-
able intersection of normal sets is a normal set (Dress [2], Rauzy [1]). A countable union
of normal sets need not be a normal set (Mendés France [7], Rauzy [1]). A characterization
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of normal sets was given by Rauzy [1]. For further results, see Colombeau [1] (to a large
part superseded by Dress [2]), Dress and Mendés France [1], Lesca and Mendés France
(1], Méla [1], Mendés France [5, 7], and Zame [5]. For the related question of so-called
“anormal’’ numbers with respect to a sequence (4,), see Kahane and Salem [1], Kahane
(1], and Amice [2]. Mendés France [9] studies sequences with “empty spectrum,’’ that is,
sequences (x,) for which (x, 4+ no), n=1,2,...,is ud. mod 1 for all real .

An interesting application of normal numbers occurs in the foundation of probability
theory, namely, in von Mises’s theory of collectives, which is an attempt to develop
probability theory from the notion of relative frequency rather than from measure theory.
We refer to Copeland [1], von Mises [1; 2, Chapter 1], Ville [1], and Postnikova [2], and
the literature given there. Other applications of normal numbers can be found in Couot
(3], Knuth [2, Section 3.5], Mendes France [4], Postnikov [5], and Veech [3].

Exercises

8.1. Prove that the expansion (8.1) is unique.

8.2. There are rational numbers that are simply normal to the base b, but
a normal number to the base b is necessarily irrational.

8.3. Give an example of an irrational number that is not normal (to the
base 2, say).

8.4. The number « is normal to the base b if and only if each of the numbers
«, ba, b%w, . . . is simply normal to all of the bases b, b2, b3, . . . .

8.5. If b, and b, are integers >2 such that one is a rational power of the
other, then « is normal to the base b, if and only if « is normal to the
base b,.

8.6. Let ¢,(x), n =10,1,..., be the Rademacher functions as defined in
Exercise 2.1 in Chapter 2. Suppose that « is not a dyadic rational.
Then « is normal to the base 2 if and only if

. 1N
lim — E Friaa(®) b)) =0
N—-© N #=0

holds for all s > 1 and all distinct nonnegative integers k;, ..., k.
Hint: Use some of the results of Exercises 2.1-2.4 in Chapter 2.

8.7. For a positive integer k, the number « is called normal of order k to
the base b if (8.3) holds for all blocks B,, of fixed length k. Prove that
the following is an equivalent condition: the sequence (b"«) satisfies
limy_,, A([0, 2); N)JN = a for all rationals z, 0 <& <1, with
denominator b*.

8.8. Prove that « is normal to the base & if there exists a constant C such
that the sequence (b"«) satisfies limy_.., A([8, »); N)/N < C(y — B)
for all [B, y) € I Hint: Compare with the proof of Lemma 8.1.

8.9. Whenever o is normal to the base b, then so is ro for every nonzero
rational r. Hint: Use Lemma 8.1 or Exercise 8.8.
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8.10. Give a proof of Theorem 5.3 based on the theory of normal numbers
(suppose p > 2).

8.11. The set of irrationals is a normal set.

8.12. The set of nonzero reals is a normal set.

9. CONTINUOUS DISTRIBUTION MOD 1

Basic Results

Let £ (t) be a real-valued Lebesgue-measurable function defined for 0 < ¢ <
o0, Let 0 < a < b <1 and let ¢, (%) be the characteristic function of the
interval [a, b). For T > 0, let T(a, b) be the set of 1,0 < ¢t < T, for which
{f (D} € [a, b). Evidently T(a, b) has a Lebesgue measure A(7T(a, b)), and
we have

T
XT(a, b)) = f Cam (SO dr.

DEeFINITION 9.1, If for all [a, b) & I we have

. MT(a, b))
Iim ————>= =

T

then the function f (¢) is said to be continuously uniformly distributed mod 1
(abbreviated c.u.d. mod 1).

b—a,

THEOREM 9.1. The Lebesgue-measurable function f (¢) defined on [0, o)
is c.u.d. mod 1 if and only if for each real-valued continuous function w
on [0, 1],

lim % L w10 dt = fo () da. 9.1)

THEOREM 9.2. The Lebesgue-measurable function f(tf) defined on
[0, o) is c.u.d. mod 1 if and only if

T
lim L f e =0 forall integers h 5 0. (9.2)
70 T Jo
The proofs of these theorems can be given in a way analogous to the
proofs of Theorems 1.1 and 2.1 and are left to the reader.

EXAMPLE 9.1. Obvious examples of c.u.d. mod 1 functions are the linear
functions f (¢) = at + b, t > 0, with a # 0. On the other hand, the function
f({® =log(t+ 1), t>0,is not c.u.d. mod 1. This function does not satisfy
(9.2) as can be derived from the proof given in Example 2.4. [}
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EXAMPLE 9.2. The function et, t > 0, is c.u.d. mod 1. Consider the
expression

T
—;: f e 4t with an integer h 5 0, 9.3)
0
and put ' = x; then (9.3) becomes
1 eT i
= dz. 9.4
g 04

Consider now the real and imaginary parts of (9.4). Then

1 J”T cos 2mhx
1

97
dx = 1 f cos 2mha dx
T T J1

T
for some 7, 0 < 7 < 7, according to the second mean value theorem of
integral calculus, and thus the real part of (9.4) goes to 0 as T'— co. The
same holds with respect to the imaginary part of (9.4). I}

As we have already remarked in Section 4, one does not know whether or
not the sequence ("), n = 1,2, ..., is u.d. mod 1.

The second part of Example 9.1 is a special case of Theorem 9.3, below.
We first establish a simple auxiliary result.

LEMMA 9.1. If F(u), u > 0, is twice differentiable, if #F”"(u) is bounded,
and if F(u)/u — 0 as y — oo, then F'(u) »> 0 as y — co.

PROOF. Foru > 0and 5 > 0, we have
Flu+n) — Fu)=nF'@) + 92 F'(u+0yn) with0<0<1,
or, solving for F'(u),

_ F(u +n) — F(u)

F'(u) — ¥F"(u + 6n). 9.5)

Choose ¢ > 0, let M be an upper bound for |uF”(u)|, and set 6 = ¢/M.
With n = du in (9.5), we get

Fu+06u) 1+ Fu) 1
F'(u) = ( : - -—)
u + ou ) u 0
0
_—— 0 6u)F” 0 6u). (9.6
21+ 09) (v + 0 0uw)F"(u + 0 du). (9.6)

Since the difference in parentheses tends to 0 as u — oo, it is in absolute
value <e¢f2 for u > uy(e). But the remaining term on the right of (9.6) is
in absolute value <¢/2, and this completes the argument. ||
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THEOREM 9.3. Letf(¢),t > 0, be differentiable and let ¢f*(r) be bounded.
Then £ (¢) is not c.u.d. mod 1.

PROOF. Suppose (9.2) would hold for /7= 1. Then, setting F(u) =

o cos 2af () dt, we have F(u)ju — 0 as u-— oo. However, since F'(u) =
cos 2zf (1) and F"(u) = —2nuf'(u)sin 2af (u), it follows that uF”(u) is
bounded, and so, according to Lemma 9.1, we would have cos 2uf (1) — 0
as u — co. In the same way, it would follow that sin 2xf (4) — 0 as u — oo,
and so, e*"/) > 0 as u — o0, an obvious contradiction. [

THEOREM 9.4. Let f(r) be a Lebesgue-measurable function defined on

[0, ). Let Af(t) =f(t + 1) — f(t) be monotone, and furthermore let
Af (1) — 0 and ¢ |Af (f)| — oo as t — oo. Then f (¢) is c.u.d. mod 1.

PROOF. The result can be shown in a manner similar to that in which
Theorem 2.5 was proved. [l

THEOREM 9.5. For t > 0, let f(r) = g(log (+ 4 1)), where g is an in-
creasing convex function on [0, o) such that lim,_,, g(t)/t = co. Then f(¢)
is c.u.d. mod 1.

PROOF. Itsufficesto prove (9.2) for integers /1 > 0. Set u = 2whf (t) = @(t)
and 1 = y(u), the inverse function of ¢(t). Since g is convex, it follows that
te'(t) is an increasing function [¢'(f) may cease to exist on a countable set
of points where we define ¢’'(¢) suitably]. If t¢'(¢) were bounded above, then
@(1) = O(log?), a contradiction. Hence, 1¢’(f) —> oo as t — c0. Now t¢’(t) =
w(u)fy' (1), and so, y'(u)[p(u) is a decreasing function of u that tends to O
as u — 0. For T > 0, consider the integral

T
J = [ sin (1) dt.

Applying the substitution u = @(¢f) and setting @(0) = p, and ¢(T) = p,
we obtain for p, < 7 < p by repeated application of the second mean value
theorem,

sin u du

K ' : ! ' : s 1#‘,(“)
J =J p'(W)sinu du = | '(u)sinu du +f w(u)
) fo H ‘lp(ll)

=L w'(u) sin u du + w_(%)f, w(u) sin u du (T<7p<p)

0

f w'(u) sin u du + Q) w(n)f sin u du (1<m <1y
fw(u)smudu + (())A,
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where |A| < 2y(p) = 2T. Let ¢ > 0 be arbitrary. Take 7 so large that
v'(7)/p(7) < ¢, and then p so large that

f v'(u) sin u du ( < ep(p).
po

Then |J| < 3¢T for sufficiently large 7T, and so, J = o(7). The integral
J¥ cos @(t) dt can be dealt with similarly. [l

Relations Between U.D. Mod 1 and C.U.D. Mod 1
THEOREM 9.6. Let f(t), t > 0, be a real-valued Lebesgue-measurable
function. Then under each of the following conditions f (¢) is c.u.d. mod 1:

(a) The sequence (f(n + ¢)),n=0,1,...,is ud. mod 1 for almost all
tin [0, 1].

(b) The sequence (f (1)), n =1,2,...,is u.d. mod I for almost all ¢
in [0, 1].

PROOF. (a) For an integer /1 5 0, we have for almost all ¢ in [0, 1],

1N,
lim — E lerlhf(n-H) = 0.
N-oow N n=0
But then by the dominated convergence theorem,

1 1 N—1
0 =f (hm = E ez:riltf(11+t)) dt

0 \N-w N n=0

N-ow Jo \N n=0

e Nf 2rinf(n 1)
= lim (— g msin ) dt

N—1 pratl .
= lim — E f e2rrlhf(u)du
#

Now N =0 Jn
1 N .
= lim — e2rrlhf(u)du‘
N-ow N Jo

Hence,
1 (T,
2 ezrrzhf(u) du
T Jo

tends to 0 if T— oo in an arbitrary way.
(b) For an integer /1 # 0, we have for almost all ¢ in [0, 1],

1,
lim — E e‘l:rzhf(nt) = 0.
N-oow N a=1
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Again, by integration and interchange of orders of operations we find

0=lim — z f 21r1h/(nt)dt
0

Noow N a=1

= lim 1 % lf e dy — lim — z 1 i
Now Na=1n Now N a=1H j=1
where

j
2mingCu) ;
cj=f emM gy forj > 1.
J—1

In other words, the sequence (c;), j = 1, 2, ..., is summable by the Holder
means (H, 2) to the value O (see Example 7.1). It follows that (c;) is sum-
mable by the Cesaro means (C, 2) to the value 0 (see Example 7.1). Since
|c;] < 1forj > 1, the Tauberian theorem mentioned in the proof of Theorem
7.13 yields

N

N
lim - zc, = lim lf "MW gy = 0.
0

Now N Jj= N-oao N

THEOREM 9.7. If f (), t > 0, has a continuous derivative of constant
sign, if f () is c.u.d. mod 1, and if f(r)/t — 0 as t — oo, then the sequence
(fm),n=1,2,...,isud. mod 1.

PROOF. We use the Euler summation formula (see Example 2.4). For an
integer 1 # 0, we get

N N
zezﬁh!(n) =f e2m‘h/(t)dt + _%(e%rihf(l)_*_ e21rihl(N))
1

n=1

N
+ 21rihf {1} = DS (e O g,
Denote the third term on the right by A(N). Then
O < T8 Mo < X asann + 150,

and by the assumption regarding f (¢)/t we have that |A(N)|/N —0as N — co.
The proof can now be completed easily. i

THEOREM 9.8. Letf (¢), r > 0, have a continuous derivative and suppose
f'(H) log t — C, a nonzero constant, as f — . Then the sequence (f (1)),
n=1,2,...,1is ud. mod 1.

PROOF. First we show that f(¢) is c.u.d. mod 1. Fort > #t, > 1, f' hasa
constant sign, say f'(¢) > Ofor t > t,. If g is the inverse function of f, we have

for T >t )
0 1 7 1 (7)) _2mihu
AJ~ Q2 gy _f € du,
T Jto T Jro) f'(g(1))
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the right member of which goes to 0 as 7— oo if the expression

1 o
— f ethu lOg g(“) dll (9.7)
T Jrtto)

goes to 0 as T — oo. Consider the real and the imaginary part of (9.7) and
use the second mean value theorem. One obtains

7°(r

1)
L f (cos 27hu) log g(u) du = log T cos 27hu du
T Jrtto) T Jro

for some & with t, < & < T, and a similar expression for the imaginary part
of (9.7). Hence, (9.7) goes to 0 as T— oo, and thus, f(f) is c.u.d. mod 1.
Furthermore, the condition f'(t) log t — C as t — oo implies that £ (£)/t — 0
as t — oo. Now apply Theorem 9.7, and the proof is complete. [l

Multidimensional Case

The notion of c.u.d. mod 1 can be extended to systems of measurable
functions. We use the same notation as in Section 6.

DErINITION 9.2, Let (1) = (fi(?), . . ., f,(1)) be a system of s measurable
functions defined on [0, c©). For T'> 0 and [a, b) < P, let T(a, b) be the
set of 1, 0 <t < T, for which {f(r)} € [a, b). The system f(¢) is said to be
c.u.d. mod 1in Rsif

lim MT(a, b)) =TI (b; — ay)

T T j=1

holds for all [a, b) < I

THEOREM 9.9. The system f(¢) of measurable functions is c.u.d. mod 1
in R if and only if for each lattice point h € Z*, h % 0,

lim _1_. fTeZWi<h.f(t)> dt =0
0

T -
For the proof we refer to the remarks following Theorem 6.2.

COROLLARY 9.1. The system f(¢) of measurable functions is c.u.d. mod 1
in R#if and only if, for each lattice point h € Z*, h 5 0, the function ¢h, {(¢))
is c.u.d. mod 1.

PROOF. This follows readily from Theorems 9.2 and 9.9. |l

EXAMPLE 9.3. In the euclidean plane, consider a rectilinear uniform
motion defined by  =2(t)=a+ 0it, y=y(@)=>b+ 0,t, 0 <t < 0,
a, b, 0,, and 0, are real, and where 6, and 0, are linearly independent over
the rationals. Consider the time interval 0 < ¢ < 7. The sum of the time
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subintervals during which the moving point is mod [ in the rectangular

interval [0y, o) X [By, B2) & I21s given by the measure of the set E N [0, T1,
where

E={0<t<wio <a + 0;t <oy(mod 1), f; < b+ 0, < fy(mod 1)}

Now the system of functions (a + 0,1, 5 4 6,¢) is c.u.d. mod 1 in R? by
Corollary 9.1 and Example 9.1. Hence, in the limit, the fraction of the time
that the moving point is mod 1 in the considered rectangle is equal to
(25 — 2)(fy — By), the area of the rectangle. i

Notes

Functions c.u.d. mod 1 were already discussed by Weyl [4]. He established the Weyl
criterion and showed that any nonconstant polynomial is c.u.d. mod 1. For other early
work on c.u.d. mod 1, see Steinhaus [1] and Tsuji [1]. Theorem 9.2 is contained as a
special case in the general Weyl criterion of Kuipers and Stam [1]. Theorem 9.3 is from
Kuipers and Meulenbeld [3] and Kuiper [1], and Theorem 9.5 is a result of Tsuji [1].
Related theorems can be found in Kuipers [1], Kuipers and Meulenbeld [1, 2], and Kuiper
[1]. Werefer also to Exercises 9.8, 9.9, and 9.13. Theorem 9.6 was shown by Ryll-Nardzewski
[11, and Theorems 9.7 and 9.8 are from Kuipers [3], who also showed other results con-
cerning the relation between c.u.d. mod 1 and u.d. mod 1 of sequences. The multidimen-
sional case was already considered by Weyl [4], who proved the result in Example 9.3
(see also Weyl [3] and Pélya and Szego [1, II. Abschn., Aufg. 185, 186]). This result has
important applications in areas such as statistical mechanics, kinetic gas theory, and
stellar dynamics. A closely related fact is enunciated in Exercise 9.29 and is again due to
Weyl [3, 4]. It may also be found in P6lya and Szego [1, II. Abschn., Aufg. 187]. That
the trajectory must be dense in the unit square (resp. cube) was shown earlier by Konig
and Sziics [1] (see also Sudan [1]).

Kuipers [2, 7] proves that f(¢) = af 4 fsin¢, f # 0, is c.u.d. mod I iff 7 is irrational,
and other results concerning functions with periodic derivatives. Difference theorems
for c.u.d. mod 1 were established by Kuipers [1] and Hlawka [9]. C.u.d. mod 1 in sequences
of intervals was studied by Kuipers and Meulenbeld [4] and Kuipers [4]. Interesting
connections between c.u.d. mod 1 and the notion of independence for functions were
pointed out by Steinhaus [1] and Kuipers [7] (for a discrete analogue, see Chapter 5,
Section 1). The quantitative study of functions c.u.d. mod I was initiated by Hlawka [9].
Many of the results in Chapter 2 on discrepancy of sequences have continuous analogues.
See also Holewijn [11, Miick [1], Stackelberg [1], and Fleischer [3]. Hlawka [24] shows
that ‘“‘almost all’’ continuous functions (in the sense of Wiener measure) defined on [0, o)
are c.u.d. mod 1. Refinements are due to Fleischer [3] and Stackelberg [1], the stronger
result being that of the latter author (compare with the notes in Chapter 2, Section 1).
Fleischer [2] generalizes Hlawka’s theorem to the multidimensional case. Kuipers and
van der Steen [1] prove continuous analogues of Theorems 4.2 and 4.3 and improve some
metric results of Holewijn [1]. See also Miick [1].

Various extensions and refinements of the notion of c.u.d. mod 1 have been considered.
Kuipers [6] discusses well distributed functions mod 1. Hlawka [9] and Holewijn [I]
study c.u.d. mod 1 with respect to summation methods and weight functions. Loynes [1]
discusses c.u.d. mod 1 of stochastic processes. Kuipers [1] introduces distribution functions
(mod 1) of measurable functions and proves an analogue of Theorem 7.6 (see also Haviland
[1]). If (9.1) is required to hold for the characteristic functions of all Lebesgue-measurable



9, CONTINUOUS DISTRIBUTION MOD 1 85

subsets of I (or, equivalently, for all Lebesgue-integrable functions w on [0, 1]), one
arrives at the notion of ¢!'-u.d. mod 1 (Kuipers [1]). This was studied further by Kuiper
(11, Kuipers [2], and Kuipers and Meulenbeld [1, 2]. A notion of ¢!T-u.d. mod 1 was
defined by Kuipers [1] but was then shown to be equivalent to ¢!'I-u.d. mod 1 (Kuipers
and Meulenbeld [1]).

A further extension is of course to the multidimensional case, and Definition 9.2 may
in fact be generalized to systems of functions of several variables. See Tsuji [1], Kuipers
[1, 4], Meulenbeld [1], Kuipers and Meulenbeld [3, 5], and Couot [4]. As to c.u.d. on
surfaces, there is an isolated result of I. S. Kac [1] and a more systematic study by Gerl [3].
A theory of c.u.d. in p-adic number fields was developed by Chauvineau [5, 6]. For functions
on groups, see the notes in Chapter 4, Section 1. Other general viewpoints are discussed in
Helmberg [6] and Kemperman [3]. Another notion of c.u.d. is presented in Chapter S,
Section 1.

Exercises

9.1. Prove Theorem 9.1,

9.2, Prove Theorem 9.2.

9.3. Prove Theorem 9.1 with ‘“‘continuous” replaced by ‘“Riemann-inte-
grable.”

9.4. Let f(+)be c.u.d. mod 1, and let g(r), 1 > 0, be a Lebesgue-measurable
function such that lim, ., (f(t) — g(r)) exists. Prove that g(¢)is c.u.d.
mod 1.

9.5. Let (f,,(1)), n=1,2,..., be a sequence of functions c.u.d. mod 1
that converges uniformly on [0, o) to the limit function f(r). Then
f(t)is cud. mod 1.

9.6. If f () is c.u.d. mod 1, then mf (r) is c.u.d. mod 1 for all nonzero
integers m.

9.7. If f (1) is c.u.d. mod 1, then f (ct), where c is a positive constant, has
the same property.

9.8. Generalize the preceding exercise as follows: If f(z) is c.u.d. mod 1
and if ¢(r), t > 0, is a nonnegative differentiable function with
¢'(t) — ¢, a positive constant, as t — oo, then f(@(t)) is c.u.d. mod 1.

9.9. A Lebesgue-measurable periodic function f(¢), t > 0, of period p > 0
is c.u.d. mod 1 if and only if

»
f 2T gy forh=1,2,....
0

9.10. Prove that f(t) = sin¢, t > 0, is not c.u.d. mod 1.

9.11. Show that Lemma 9.1 holds as well if in both limit relations zero is
replaced by the same constant c.

9.12. Prove Theorem 9.4 in detail.

9.13. If f(r) has a positive nondecreasing derivative on [0, c0), then f(r)
is c.u.d. mod 1. Hint: Use the method in Example 9.2.

9.14. A nonconstant function on [0, o) of the form f(r) = D7, a,r% with
a;,s;€Rand s, > 5., >+ > 5 > 0iscud mod Il
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9.15.

9.16.

9.17.

9.18.

9.19.

9.20.

9.21.

9.22.

9.23.

9.24,

9.25.

9.26.

UNIFORM DISTRIBUTION MOD 1

Let f(¢), t > 0, be a Lebesgue-measurable function. If for every
positive integer /1 the function f(r 4 /) — £ (¢) is c.u.d. mod 1, then
f()is cud. mod I.

Let f (1) be a Lebesgue-measurable function defined for ¢ > 0, and
let k be a positive integer. Define A*f (1) recursively by Alf (t) = Af (1)
and A’f (r) = A(A*7Y (1)) for j > 2. Suppose A¥f (1) is monotone in ¢
with A*f (1) — 0 and 1 |A*f ()] — o as t— oco. Then f(r) is c.u.d.
mod 1.

For a positive integer k, let f(¢) be k times differentiable on [0, c0)
with f%)(r) > ¢, a nonzero constant, as t-— co. Prove that f(z) is
c.u.d. mod 1.

For each ¢ > 0 the function f (¢) = #°sin 2=¢ is c.u.d. mod 1. Hint:
Use Theorem 9.6.

The function f (t) = V't + sin 27(r + 1/(t + 1)),t > 0,isc.u.d. mod 1.
Hint: Use Theorem 9.6.

Let g(f) be a periodic Lebesgue-measurable function on [0, co) with
period p > 0, and suppose the Lebesgue-measurable function f (1),
t > 0,issuchthat (f(np + w)),n=10,1,...,isu.d. mod 1 for almost
all u in [0, p). Then f (1) + g(¢) is c.u.d. mod 1.

The function f (¢) = \a/log t+ 1D+ \/log (t + 1), t > 0, isnot c.u.d.
mod 1. '

Let (z,), n=20,1,..., be a sequence of real numbers. Prove that
(z,)is u.d. mod 1 if and only if the function f (1) = 2, t > 0, is c.u.d.
mod 1.

Let (x,) be u.d. mod 1. Prove that the function f (¢) from Exercise 9.22
is c.u.d. mod 1 but not c™-u.d. mod 1.

Use Theorem 9.3 to prove: If f(¢) satisfies the conditions of this
theorem, then (f(n)),n = 1,2, ..., is not u.d. mod I (compare with
Theorem 2.6).

The sequence (log # + sin (logn)), n = 1,2, ..., is not u.d. mod 1.
More generally, if @), w >0, is a differentiable function with
bounded derivative and if f (¢), t > 0, is a nonnegative differentiable
function with #f’(f) bounded, then the sequence (¢(f(m)), n =
1,2,...,is not u.d. mod I.

Let the system of functions f(r) = (fi(1), . .., fi(#)) be c.u.d. mod 1
in Rs, Then for any real-valued continuous function w(u, . . ., ¥,) on
P we have

iim 1 WA - (D di
-0 T Jo ! Pt s

1 1
=f . f w(iy, ..., ug) duy - - dug.
0 0

The converse is also true.
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9.27. If the real numbers 0y, 6, ..., 0, are linearly independent over the
rationals, then the system of functions (0.¢, 0,t, ..., 0,¢) is cou.d.
mod 1 in Rs,

9.28. If 0y, 0,, . . . , 0, are nonzero real numbers, then the system of functions
0,1, 6,1, ..., 0)is c.u.d. mod 1 in Re.

9.29. A point moves inside a square of unit area and its motion is rectilinear
and with constant speed. At the sides of the square it is reflected
symmetrically. The tangent of the angle between a side of the square
and the initial direction of the motion is an irrational number. Con-
sider a subinterval S of the square and let S(T) be the time that the

point is in S after T time units. Then limg_,,, S(T)/T is equal to the
area of S.



DISCREPANCY

In the previous chapter, we studied uniform distribution modulo 1 from a
purely qualitative point of view. We were mainly interested in deciding whether
a given sequence is uniformly distributed at all. But looking at various
uniformly distributed sequences, one will realize that there exist sequences
with a very good distribution behavior, whereas other sequences might just
barely be uniformly distributed. It is the aim of this chapter to introduce a
quantity (the so-called discrepancy of the sequence) that measures the
deviation of the sequence from an ideal distribution. This will enable us to
distinguish between sequences with ‘“‘good” uniform distribution and
sequences with “bad’ uniform distribution. We investigate the quantitative
aspects of several important theorems from the first chapter, and thereby
obtain results that complement or go beyond those statements. Interesting
applications of the concept of discrepancy to problems in numerical analysis
can be found in Section 5. We remark that throughout this chapter the
counting functions A(E; N) introduced in Sections 1 and 6 of the previous
chapter are understood to be defined also for finite sequences containing at
least V terms.

1. DEFINITION AND BASIC PROPERTIES

One-Dimensional Case

DeriniTION 1.1, Let @y, ..., 2y be a finite sequence of real numbers. The
number '
A([x, B); N)
Dy =Dy, ..., ay) = sup | =22 g _oy| (L)
0<a<p<1 N

88
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is called the discrepancy of the given sequence. For an infinite sequence w
of real numbers (or for a finite sequence containing at least N terms), the
discrepancy Dy(w) is meant to be the discrepancy of the initial segment
formed by the first N terms of .

It is clear from the above definition that when proving an assertion about
the discrepancy of a given sequence, no loss of generality will result if we
assume the sequence to be contained in 1.

The pertinence of the concept of discrepancy in the theory of u.d. mod 1
is revealed by the following criterion.

THEOREM 1.1. The sequence w is u.d. mod 1 if and only if lim
Dl\r(w) = 0

N—+ro

PROOF. The sufficiency of the condition is obvious. To show the necessity,
we choose an integer m > 2. For 0 < k < m — 1, let I, denote the interval
I, = [kfm, (k + 1)/m). Since w is u.d. mod 1, there exists a positive integer

Ny = Ny(m) such that for N > N, and for every k = 0,1,...,m — 1 we
have
1 1 A(l;; N 1 1
—(1——) S-(J—)g—(1+~). (1.2)
m m N m m

Now consider an arbitrary subinterval J = [«, 8) of I. There clearly exist
intervals J; and J,, finite unions of intervals I, such that J, € J < J,,

AMJ) — A(J) < 2/m, and A(J) — A(J) < 2/m. From (1.2) we get for all
N > Ng:

1 A(J;; N)  A(J; N)  A(Jy; N)
AU ——
(J)( m) < N < N s

Consequently, we obtain

(o= (1=3) A5 < (4 ) (1+7)

< 1(12)(1 + ;’1—1)

m
and, using A(J) <1,

3 2 A(J; N 3 2
S22 AEN 30 fraiN e N (13)
N m  m?

Since the bounds in (1.3) are independent of J, we arrive at Dy(w) <
(3/m) + (2/m?) for all N > N,. But (3/m) + (2/m?) can be made arbitrarily
small, and so the proof is complete. ||

In particular, the above theorem enunciates the following interesting
fact: Whenever w is u.d. mod 1, then limy_,, A(J; N)/N = A(J) uniformly in
all subintervals J = [«, ) of I.
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A meaningful concept of discrepancy (i.e., one for which a criterion
similar to Theorem 1.1 holds) may also be defined with respect to a con-
tinuous distribution function. More explicitly, let f be a nondecreasing
function on [0, 1] with f(0) = 0 and f(1) = 1, and let w be a sequence of
real numbers. Then the expression

Dywif) = sup |HEDEED gy gl 1
0<a<p=1 N
may be called the discrepancy of w with respect fo f. By using the same ideas
as in the proof of Theorem 1.1, it can be shown that if fis continuous, then
the sequence w has f as its a.d.f. (mod 1) precisely if limy_,, Dy(w;f) =0
(see Exercise 1.3). An analogous criterion fails to hold for discontinuous f
(see the counterexample in Exercise 1.4).
For the time being, we will be satisfied with a simple estimate for Dy
that already shows that D cannot converge too rapidly to zero. Refinements
will be shown in Section 2,

THEOREM 1.2. For any sequence of N numbers, we have
S<Dy<1 (15)

PROOF. The right-hand side inequality is evident from the definition.
Now choose ¢ > 0, and let €I be one of the elements of the sequence.
Consider the interval J = [&, ¥ + &) N I. Since x € J, we have A(J; N)/N —
AJ) > (1/N) — A(J) = (1/N) — &. This implies Dy > (1/N) — ¢, and the
desired inequality is established. [l

EXAMPLE 1.1. We may have Dy = 1/N, for instance when the elements
of the sequence are the numbers 0, 1/N, 2/N, ..., (N — 1)/N in some order.
Consider an arbitrary half-open subinterval J of I. There is a unique integer
k with 0 <k < N—1 and k[N < A(J) < (k + 1)/N. Then J contains at
least k and at most k¥ + 1 elements from the above sequence. Consequently,
we obtain |[4A(J; N)/N — A(J)| < 1/NforallJ. |}

It is sometimes useful to slightly restrict the family of intervals over which
the supremum is formed in the definition of discrepancy. The most important
type of restriction is to consider only the intervals [0, o) with 0 < « < 1.

DerNiTION 1.2, For a finite sequence 2y, . . . , € of real numbers, we define
A([0,a); N
D} = D=y, ..., xy) = sup —([—L)—oz . (1.6)
0<a<1 N

The definition of Dy is extended in the same way as in Definition 1.1.
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THEOREM 1.3. The discrepancies Dy and D} are related by the in-
equality

Dy < Dy <2D}. 1.7)
PROOF. The first inequality follows immediately from the definitions.

To obtain the second one, we note that A([«, 8); N) = A([0, B); N) —
A([0, ®); N), where 0 < « < 8 < 1, and therefore,

A=, B); N) ‘ A0, B); N)
N (-0 < N

Taking suprema yields the desired result. [}

COROLLARY 1.1. The sequence w is u.d. mod 1 if and only if

lim D(w) = 0.
N—eo

PROOF. This is an immediate consequence of Theorems 1.1 and 1.3. |

B

‘mem_a
N

There is a simple alternative representation for the discrepancy DY as a
maximum of finitely many numbers. We note that the discrepancy Dy
(and Dy, for that matter) of the numbers @y, @,, ..., 2y in I does not
depend on the order of those elements. Therefore, we may assume without
loss of generality that the x; are ordered according to their magnitude.

THEOREM 1.4. Letx; <2, < -+ < 2y be N numbers in 1. Then their
discrepancy DY is given by

D} = max max(:c,.——l—, xi—’—ll‘)
i=1,....N N N
1 2i — 1
=—+4 max |x ——|. 1.8
2N  i=1...N 2N (1.8)

PROOF. For notational convenience, we set 2, = 0 and zy,; = 1. The
distinct values of the numbers x;,, 0 < i < N + 1, define a subdivision of
[0, 1]. Therefore,

Df = max  sup

AON_ |

i=0,...,N ai<a<ai+1 N
@ < i+l
i
= max sup — —al.
i=0,....N zi<a<amiy1| N
@i < @il

Whenever z; < 2,4, the function g,(a) = |(i/N) — «| attains its maximum
in [x;, x,,,] at one of the end points of the interval. Consequently, we have

1% — 7 ) (1.9)

N

Df = max max %,
i=0,....N

@i <git+l
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‘We show now that we may drop the restriction x; < %, in the first maximum.
So suppose we have &, < ¥ = ¥, = ' =, <, With some
r > 2. The indices not admitted in the first maximum in (1.9) are the integers
i+ jwithl <j<r— 1. Weshall prove that the numbers
i+

— .
i+4+1
N

and

Tits

\l'j_f _
N
with 1 < j < r — 1, which are excluded in (1.9), are in fact dominated by

numbers already occurring in (1.9). For 1 <j < r — 1, we get by the same
reasoning as above (consider the function /,.,1(y) = ly — @, 4|):

i+ i+ ( i+r )
—L = - 2 < max |[|— — w; —_— —
i+ i+1 +1 | i+1
N N
( i . i+
=max || — — T s 7 — Tipr|)s
N

and both numbers in the last maximum occur in (1.9). Exactly the same
argument holds for |(i + j)/N — 2,;4], | <j < r — 1. Thus, we arrive at

i
D} = max max(——mi,——xi+1)
i=0,....N N
i—1
= max max | |[— — a;|, — ).
i=1....N N

The last step is valid because the only terms we dropped are |(0/N) — |
and {(N/N) — %y,4|, both of which are zero. The second identity in (1.8)
is clear. |

COROLLARY 1.2. For any sequence of N numbers in 7 we have D} >
1/2N, with equality only for the sequence 1/2N, 3/2N,..., (2N — 1)/2N
or its rearrangements.

We arrive at the following interpretation for D}%: The discrepancy Df
of a sequence of ¥ terms in / in natural order is obtained by adding to the
smallest possible value 1/2N of DY the maximal deviation of the given
sequence from the increasing sequence of N terms with least discrepancy.
The finite sequence 1/2N, 3/2N, ..., (2N — 1)/2N shows also that the
constant 2 in Theorem 1.3 is best possible.

Multidimensional Discrepancy

The definitions of Dy and D} may be extended in a rather obvious fashion
to sequences in R* (for results on u.d. mod 1 in R¥, see Chapter 1, Section 6).
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DEFINITION 1.3, LetX;,, ..., xybe afinite sequence in R¥, The discrepancies
Dy and D} are defined by
A .
Dy = Dy(xsy . ., xy) = sup | 25Ny | (1.10)
J N
A(J*; N
DY = D¥x,,...,xy) = sup AU N) _ MM, (1.11)
J N
where J runs through all subintervals of I* of the form J = {(y, .. ., 2) € I*:

w; <a; < P, for 1 <7<k}, and J* runs through all subintervals of I* of
the form J* = {(xy, ... ,2,)€I*: 0 < a; < B, for 1 < i < k}. Moreover, 4
denotes the k-dimensional Lebesgue measure. For infinite sequences, the
same convention as in Definition 1.1 applies.

EXAMPLE 1.2. The relation between Dy and D} in several dimensions
is very much similar to what was shown for k = 1 in Theorem 1.3. The
idea is to start from an arbitrary subinterval J of I* and represent it in terms
of intervals of type J*. Let us describe the details for k = 2, the higher-
dimensional cases being completely similar. Let J = {(x;, x;) € [*: a; <
xy < Pyoand o, <y < By} = [oy, fy) X [0, f;) with 0 <o, <f; <1,
i=1,2, be a subinterval of I% Then J = {([0, £;) x [0, BIN\([0, ;) X
[0, BNNIO, B) X [0, an)\([0, ) X [0, 4)} = (JHID\WE\I). Further-
more, A(J) = A(J}) — AJF) — AJ3) + AUD) and A(J; N) = A(JT; N) —
A(J3; N) — A(J5; N) + A(J{; N). By the same reasoning as in the proof
of Theorem 1.3, we arrive at D} < Dy < 4D%. In the general k-dimensional
case, we will have DYy < Dy < 2°D%.

It can be shown as in Theorem 1.1 that a sequence ® is u.d. mod 1 in R*
if and only if limy_., Dy(w) =0, or, equivalently, limy_,, D¥(w) = 0.
Moreover, the proof of Theorem 1.2 carries over to yield Dy > 1/N for the
multidimensional case as well (see Section 2 for a stronger result).

Isotropic Discrepancy

We are led to another interesting notion of discrepancy in R¥ if we extend
the supremum in Definition 1.3 over a much larger class of subsets of I?,
namely, over all convex subsets. We note that every bounded convex set C
in R* has a finite Lebesgue measure A(C) and is even measurable in the
sense of Jordan.

DerFINITION 1.4, Let xy,..., X, be a finite sequence in R*. The isotropic
discrepancy Jy = Jy(X1, . . ., Xy) is defined to be
A(C; N
Jy = sup AGN) _ 20|, (1.12)

Ce®
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where ¥ is the family of all convex subsets of I*. The definition of Jy is
extended as in Definition 1.3.

Actually, we will show that one need not take all convex subsets of I*
to define J. It suffices to consider a special class of convex sets, namely,
closed or open convex polytopes. We recall that a closed convex polytope
is defined to be the convex hull of a finite number of points in R*, that is,
the smallest convex set containing these points. By an open convex polytope,
we mean the interior (in the usual topology of R*) of a closed convex poly-
tope. We shall use the following elementary theorem on convex sets. For
every convex set C in R* and every point x € R* that does not lie in the
interior of C, there exists a hyperplane H through x such that C is entirely
contained in one of the two closed half-spaces defined by H. The hyper-
plane H is called a supporting hyperplane of C.

THEOREM 1.5. The isotropic discrepancy Jy is also given by

JIV = Sup A__M _ X(P) N (113)
Pe? N

where & denotes the family of all closed convex polytopes and of all open
convex polytopes contained in I*.

PROOF. We shall show that Jy = supg.s |4(Q; N)/N — A(Q)|, where 2
denotes the family of all closed convex polytopes and of all open convex
polytopes contained in /*. Then we are done, because, first of all, every
open convex polytope contained in J* is also contained in I*. Moreover,
since w.l.o.g. the given finite sequence is contained in I*, there will exist,
for every ¢ > 0 and for every closed convex polytope Q contained in I*, a
closed convex polytope P = P(¢) contained in I* with A(Q; N) = A(P; N)
and A(Q) > A(P) > A(Q) — e. Thus, the supremum extended over 2 is the
same as the supremum extended over Z.

The symbols int M and M shall denote the interior and the closure of a
set M, respectively. For C € €, we have A(int C; N) < A(C; N) < A(C; N),
and also A(int C) = A(C) = A(C), since C is Jordan-measurable. Therefore

A(C; N) Aint C; N) A(C N)
N —X(C)\Smax( N )

and so, it suffices to consider closed or open convex sets in Ik. The same
argument yields that we need only prove

A(R; N)

— A(C)

— A tC)l

JN = Sup - X(R) l
Re®

where & is the class of all sets R of the form R = R, N I* for some closed
or open convex polytope R, in R* (note that both int R and R are in 2).
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It suffices to show that for each closed or open convex set C in I*, there
exist P and Q from # with A(P; N) = A(Q; N) = A(C; N) and A(P) <
A(C) £ A(Q). For then we get

AC; N) AP N)
N KOl = ax(’ N

AQ; N)

B ),
and we are done.

Let x,, ..., Xy be the given finite sequence in I*. Let a closed or open
convex set C < I* be given, and suppose that C contains exactly the elements
X;,, - - - » X; of the given sequence. Let P be the convex hull of those points
(or the empty set if C contains no elements of the sequence). Then P € #
and P © C; moreover, A(P; N) = A(C; N) and A(P) < A(C).

Now to the construction of Q. Let x,, ..., X, be the elements of the
given sequence that are not contained in C. If s = 0, then we simply put
Q = I*. Thus, s > 0 in the sequel. If C is not open (hence, compact), then
it is clear that we can enlarge C to a convex set C’ (not necessarily contained
in I*) that still does not contain x;, ..., x;, but has x;, ..., X, as interior
points. If C is open, we set C’ = C. Through each point x; withl <m <5
there is a supporting hyperplane H,, of C’ such that C’ lies entirely in a
closed half-space T,, defined by H,. We note that the set Q; = ey T
contains C'. Let T,,° be the open half-space corresponding to 7,,. We claim
that the set @ = T,° N+ N T2 N I* satisfies all our requirements. We
clearly have Q € 2. Since x; ¢ T,° for all 1 <m <5, the set Q contains
none of the points x; , . . x . On the other hand, the pomts Xips o o o5 Xy,
are interior points of C’, and so, they are all contained in Q. Therefore,
A(Q; N) = A(C; N). Furthermore MQ) = M@y N TH) > MC' N T*) > AC),
and the proof is complete. i}

THEOREM 1.6. For every sequence of N points in R* we have

Dy £ Jy £ (4kJk + 1)DRE, (1.14)
PROOF. The first inequality is evident, since every interval is a convex set.
The basic idea in the proof of the second inequality is the following one.
We start out from a convex subset of ¥, and we may assume for simplicity
that it is a polytope P € Z (by using the previous theorem). Then we enclose
P between two sets P, and P,, both of them finite unions of intervals, such
that P, € P € P,. The exact form of P, and P, will be given later on. We
note that

— AP)

AP N) _ AP; N)
( - a<p1)) + (P — AP) <=

A(P s N) _ _
< (—N A(Pz)) + (i(Py) — A(P)),
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and so,
A(P; N) _ A(P)l < max A(P;; N)

1=1,2

— APy | + max |A(P) — AP)|. (1.15)

The sets Py and P, are constructed as follows. Let r be an arbitrary positive
integer. For every lattice point (hy, hy, ..., h) with 0 < /h; <r for all
1 <j <k, define an interval J,E:,lz‘..,,k = {(%, %, ..., )R Ifr <2, <
(h; + D/r for 1 < j < k}. The collection Z'*" of all those intervals forms a
partition of 7*. We define P, = P{” to be the union of all those intervals from
Z that are entirely contained in P. Moreover, let P, = P{” be the union
of all those intervals from Z") that have a nonvoid intersection with P.
Then we clearly have P, € P < P,. If we fix k — 1 integers Iy, ..., N4
satisfying the above restriction, then the integers h, 0 < h <r, with
J;‘l’l'.’..,,k_l,, € P are consecutive integers (there can be no “gaps” because of
the convexity of P). Therefore, the union of these intervals J,i:.’,,,,k_l,, is again
an interval. It follows that P, can be written as the union of at most r*!
pairwise disjoint intervals. In exactly the same way, it can be shown that P,
can be written as the union of at most r*~! pairwise disjoint intervals. Conse-
quently, we have

A(P;; N)

max — AP)| < *Dy, (1.16)

i=1.2

We shall now estimate A(P,) — A(P). We observe that the diameter of
each J,(,:;,z.‘.,,k (i.e., the supremum of the distances between two points of the
set) is 6 = (l/r)\/k. Therefore, each point of P, has a distance at most &
from some point of P. Hence, P, is contained in the set Q constructed as
follows. For each one of the hyperplanes H forming the boundary of P,
consider a parallel hyperplane H' at orthogonal distance ¢ in the open half-
space determined by H that does not contain P (thus, in both half-spaces
in the degenerate case where P is entirely contained in a hyperplane). Inter-
secting the closed half-spaces that are determined by those H' and that
contain P, and intersecting the resulting set with I*, we obtain the closed
convex polytope Q. We have then A(P;) — A(P) < A(Q\P).

From the construction of @, it should be clear that A(Q\P) is at most 6
times the surface of Q. To give a formal proof, we choose a point y in the
interior of Q not belonging to P. Since the boundary of Q is compact, there
is a point x in the boundary of Q that has the least distance from y among all
points from the boundary of Q. Then the line joining y and x is orthogonal
to the hyperplane (or one of the hyperplanes) defining @ in which x lies.
For otherwise, the line through y orthogonal to a hyperplane in which x
lies will intersect that hyperplane in a point x, ¢ O (because of the minimality
property of x). The line segment from y (in the interior of Q) to x; (outside



1. DEFINITION AND BASIC PROPERTIES 97

of Q) will meet the boundary of Q in a point x,, say. But x, lies then closer
to y than x does, a contradiction. Moreover, since y ¢ P, the distance from
y to x will be at most 6. We have thus shown that every point in Q\P lies
in one of the ““prisms” of height ¢ erected over each (k — 1)-dimensional
face of O and directed toward the interior of Q. Our estimate for A(Q\P) is
then immediate.

We now apply the following classical theorem (see Bonnesen and Fenchel
(1, p. 47], Eggleston [3, Chapter 5]): If K;, K, are two bounded closed
convex sets with K; contained in K,, then the surface of K, cannot exceed
the surface of K,. The closed convex polytope Q is contained in I*, and so
the surface of Q is at most 2k, since the surface of I* consists of 2k “‘unit

squares.” We have therefore shown A(P,) — A(P) < A(Q\P) £ 2/c\/E/r. In

exactly the same way, one proves A(P) — A(Py) < 2/c\//c/r. Combining (1.15),
(1.16), and the last two inequalities, we arrive at

A(P; N - 20k
"(—ﬁ_) —MP)| <Dy + (\/C,
.

and since the upper bound is independent of P, we infer that

2/<\/ k

Iz

‘]N S rk_lDN +

This estimate holds for all positive integers r. We choose r = [D&”""], and
we obtain Jy < (4kvk + DDV, W

COROLLARY 1.3. The sequence ® in R¥ js u.d. mod I in R* if and only
if liva,w Ji\y(w) = 0

Notes

The first instance where the notion of discrepancy is studied in its own right is in a paper
of Bergstrém [2], who used the rather cumbersome term Intensitédtsdispersion. Quantitative
investigations for various u.d. mod 1 sequences had been carried out earlier (see, e.g.,
Section 3). The term *‘discrepancy’’ was probably coined by van der Corput. The first
extensive study of discrepancy was undertaken by van der Corput and Pisot [1], who
showed Theorem 1.2 but also some deeper results. For Theorem 1.1, see Weyl [4].

The discrepancy D¥ may be interpreted as the supremum norm of the function

_ A, N)

g@) 7

on the interval /. We arrive at other notions of discrepancy by taking the L? norm of

that function, that is,
11 4010 2): N p \l/p
0

N
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for 1 < p < o0. The number D{?’ may be called the L? discrepancy of the given sequence.
In this context, the discrepancies Dy and D} are sometimes referred to as the extrente
discrepancies. The L? discrepancy has been studied in some detail by Halton [4], Halton
and Zaremba [1], Niederreiter [13], Sobol’ [7], Warnock [1], and Zaremba [2, 3]. The
L? discrepancies may of course also be defined in the multidimensional case. For various
other notions of discrepancy, see Hlawka [25], Miick and Philipp [1], and Niederreiter
[13, 14].

The term isotropic discrepancy was coined by Zaremba [7]. The study of J goes back
to Hlawka [12]. Theorem 1.5 was shown by Niederreiter [10] and even in a stronger
form. Some open problems on isotropic discrepancy and the proof of Theorem 1.6 can
be found in Niederreiter [S]. See also Miick and Philipp [1]. Earlier results in this direction
are in Hlawka [12, 25]. An example of Zaremba [4] shows that the exponent 1/k in
(1.14) cannot be improved. For further results on isotropic discrepancy, see the last para-
graph of these notes and the notes in Sections 2 and S. We refer to Bonnesen and Fenchel
[1] and Eggleston [3] for an exposition of the theory of convex sets.

Formula (1.8) is from Niederreiter [10], who also gave multidimensional analogues.
A generalization is also contained in Niederreiter [14]. Bateman [1] makes use of the
discrepancy in a geometric problem. A discrete counterpart of discrepancy was studied
by Niederreiter [6, 9], Meijer and Niederreiter [1], Tijdeman (2], and Meijer [5]. For
results on the sequences in Exercise 1.8, see Erdos and Rényi [1] and Hlawka [7].

Statements such as Theorem 1.1 and Corollary 1.3 are special results of the theory of
uniformity classes (see Billingsley and Topsege [1] and the notes in Chapter 3, Section 1).
Theorem 1.1 follows also from the Pdlya-Cantelli theorem on the pointwise convergence
of monotone functions (Fréchet [1, pp. 319-321]).

The notion of discrepancy can be viewed as a special case of a notion arising in the
theory of empirical distribution functions. Let &, &,, . . . be independent random variables
on a probability space (X, &, 1) with a common continuous distribution function F(t).
For « € X and a positive integer N, the empirical distribution function Fy(t, «) is defined as
N-1 times the number of £,(z), 1 < n < N, with &,(x) < t. The so-called two-sided
Kolmogorov test is then given by Gy(x) = super |Fy(t, @) — F()|. If £, &,,. .. are the
coordinate projections of the infinite-dimensional unit cube, then the definition of Gy(x)
just reduces to the definition of the discrepancy D} (see Exercise 1.6). By the Glivenko-
Cantelli theorem, one has limy . Gy(x) =0 p-ae. Many quantitative refinements
are known. We state them for DJ, although they hold in the general case as well. The
Kolmogorov-Smirnov limit theorem (Kolmogorov [2], Smirnov [1]) yields

lim do({wel®: VND(w) <a}) =1—2 3 (—1)/*He2 for « >0,
j=1

Noow

Chung [1] shows a law of the iterated logarithm:

— \/WD"{‘, (w)

Nan:o ‘/W 1 Aw-a.e.

See also Cassels [6]. For further results and references, see Feller [1], Doob [1], Donsker
[1], Dvoretzky, Kiefer, and Wolfowitz [1], Darling [1], von Mises [2, Chapter 9], Billingsley
[2, Chapter 2], and Niederreiter [14, 15]. The theory may be extended to the multidimen-
sional case by starting with a sequence of vector-valued random variables and defining
empirical distribution functions in the corresponding [R* in the obvious manner. For
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this case, results of the Kolmogorov-Smirnov type were established by Kiefer and Wolfowitz
[1] and Kiefer [1]. Again one has a law of the iterated logarithm:
v ZWD:{‘,((»)

im ———— =1(A)0-ae.,
N—ow \/loglogN A)eo-ae

where DJ; and 2; are the discrepancy resp. Lebesgue measure in I* (Kiefer [1]). See also
Philipp [6, 8]and Zaremba [8]. For k = 2, Philipp [9] proves a law of the iterated logarithm
for the isotropic discrepancy Jy. In this context, one may also note that Stackelberg [1]
has shown a law of the iterated logarithm for c.u.d. mod 1.

Exercises

1.1. Prove limy._,,, D¥(w) = O for a u.d. mod 1 sequence w in R by using
an indirect argument.

1.2. Prove the analogue of Theorem 1.1 for sequences in R*, k > 2.

1.3. Let f be a continuous nondecreasing function on I with f (0) = 0 and
f (1) = 1. Using the definition of Dy(w; f) given in (1.4), prove that
w has f as its a.d.f. (mod 1) if and only if limy_,,, Dy(w;f) = 0.

1.4. Let w = (x,) be given by «, = 1/(n + 1) for n > 1. Show that w has
an a.d.f. (mod 1) f but that Dy(w; f) = 1 forall N > 1.

1.5. Prove that

A([e, B]; N)
Dy(2y, ..., 2y) = sup —__g————(ﬁ—a),
0<a<pg<1 N
1.6. Prove that
A([0, 2]; N
Dy(2y, .-+, wy) = sup ~([—]_—_) —
050{51 N

1.7. For a sequence of N elements in I with discrepancy D, show that a
fixed value ¢ € I can be attained by the sequence at most [NDy] times.
1.8. Let w = (x,) be a sequence in R, and let m be a nonzero integer.
Prove that the discrepancy Dy(0) of the sequence o = (mz,) satisfies
Dy(0) < |m| Dy(w).
1.9. Provide a justification for the assertion that the result in Exercise 1.8
does not hold for nonintegral rational m.
1.10. Provide a justification for the assertion that the result in Exercise 1.8
does not hold for irrational m.
1.11. For n > 1, let w, be the finite sequence 0, 1/n?, 4/n?, ..., (n — 1)[n%
Prove that lim,_,,, D}(w,) = 1.
1.12. For positive integers k and n, let o be the finite sequence 0, 1/n*,
2[n*, . .., (n — 1)*/n*. Prove that lim,_, lim,_,, D}(w!®) = 1.
1.13. If a sequence of N elements in I* has discrepancy Dy, then every
subinterval of I* of volume greater than Dy contains at least one
point of the sequence.
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1.14. Let w be a sequence of N elements in R¥* For 1 < i <k, let w' be
the ith coordinate sequence of w. Then Dy(w) > Dy(w'?) forl < i <
k. A similar result holds for D}.

2. ESTIMATION OF DISCREPANCY

Lower Bounds: Roth’s Method

We shall first establish results concerning lower bounds for D} that improve
the trivial estimate in the preceding section. We need a sequence of lemmas,
culminating in an inequality given in Lemma 2.5.

We consider the distribution of N points p,, ..., py in I* with k > 2.
Let p; be given by p, = (%4,..., %) for 1 <i< N. The function o is
defined by y(2) = —1 for 0 < # < § and 9(z) = 1 for § < 2 < 1 and then
extended to R with period 1. We choose an integer n with 2*-1(*=1) > N that
will be specified later on. For each (k — 1)-tuple (r, ..., r;_;) of integers
with 0 < r; <m—1forl <j<k — 1, we define a function Gryory_, ON R*
as follows: If there is an 7, 1 < i < N, such that

(270u)s - - 270 ), REDODTIT T ) = (2], - ], (221)
then we put Gn---r,.._x(ml’ ..., %) = 0. Otherwise, we set

Grl--.rk—x(xl) R | ’l‘k) = W(’vl) e W(”‘L)-

Furthermore, we define

FTy"Tk_l(:vl) o 'l‘k) — Gnmrk_l(znxl’ el 2rk—lxk—l’ 2(k~1)(‘n—l)—vn_..._rk—xxk)
(2.2)
and
n—1
Fy,...,%) = 2 Frw (21, .., %) 2.3)

T1,.0.,7k—1=0

LEMMA 2.1. Forgivenry,...,r,_;fromaboveandjwithl <j <k —1,
let @ and b be two integral multiples of 277/, say @ = h2="f and b = m2~"

with i < m. Then, for any fixed 2,, ..., 2, 5, 2,,,..., %, we have
b
f F"l""‘k—-l(ml’ v 'l‘k) dmi = 0. (2-4)
Similarly, if e = p2nt #m-1=G=DO-D apd = gON+-+ea—k-1n-1) yith
integers p < ¢, then for any fixed 2, . .., 2; 1 we have

1
f Frirei(1, oo, ) da, = 0. 2.5)
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PROOF. Using the substitution 1 = 27z;, we obtain

b
f F7‘1~-~1‘k_1(:v1’ ceey xk) d:vi
a
b
=f G7‘1'--Tk~1(2r1m1’ st 2rk_l:vk—la 2(k~1)(n—l)-—7'1—--'—1‘k—1:vk) da:i
[

m
=27 f Gryom Q7 %0, oyt L, 2 2D gy gy
h

Split up the interval [, m) into subintervals of the form [c, ¢ + 1) with in-
tegers c. [t follows from the definition of G,,...,, | that the integrand will beiden-
tical to zero on certain of these intervals. On the remaining intervals, the inte-
grand will be equal to 9(2Mz,) - - - () - - - P(2Te-1ay_ YRRV o1y ),
But [ 9(¢) dt = 0 for any real number s, and (2.4) follows. The proof
of (2.5) is analogous.

LEMMA 2.2.
1 1
ff Xy F(ry, ..., v dry - - dey,
0 0

> nk—12—2(k—1)('n—l)—2k(2(k—1)(n—l) _ N) (26)
PROOF. Tt suffices to prove that

f f”l G Frn (B, %) dRy  d,

> 2 2D -D-1) _ Ny (2.7)

holds for all ry, ..., r,_; under consideration. Using the substitution ¢; =
20z for 1 <j <k —1and g =200y, | we get

1 1
ff ®y o B Fr (R, ) dy s dae
0 0
1 1

. Gr1 r‘~1(2f1%1 . 27'A —1 2(L —1) (n~1)—T1—"—Tr—1, )d7:1 d%k

Qlk—1)(n—1)r —*'—ry, i1
2—2(L~—1)(n—1)Jv f f

‘ GT1---Tk_1(tl’ ce ey tk) dtl cte dtk.
By the definition of G,...., ,

Rit1 k141
f . 'J; tl ter thT1~-~Tk—1(t1’ ey tk) dtl e dtk = 0
g (5%

we have
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whenever (hy, . . ., ;) is a lattice point with

(hy o v hy) = (7o) s [2”40‘;.1;—1]» [2(k_1)(n_l)_r‘—'”-r“_l“z‘k])
for some i, 1 < i < N. Therefore,

1 1
f . f @0 T Frm (B . @) day e e d
0

) h
2—2(k—1)(1x—1) wH . 1+1t ceet (1 ) e (t ) dt, -+ - dt
o, " 1 pP\ P dly I3

where Z(,,l ,,,,, 1, stands for the sum over all lattice points (hy, .. , h) with
0<h; <2 for 1 <j<k—1 and 0 < hy < 20-D-D=N— —. 1 and
(hy, ..., h) not identical with one of the lattice points ([2"0c,1], Cee
[2rk”l°‘i.k~1]x RE-D-D-n——Nkeig 1), 1 <7 < N. We note that Z;kh, ..... n) I8
a sum over at least 2¢-D(*—1) — N lattice points. For any integer &, we have

h+1 h+(1/2) h+1
f wmm=—f tdt + tdr =1
h h h+(1/2)

Therefore,

"H—l 141
j f ty o bty - p(ty) diy - - - dty,
Iu) hy

2 2—2k(2(k-l)(n—1) —_ N),
and (2.7) is established. Jii

LEMMA 2.3.

1 1
j . f F¥y, ..., x) day - - dey, < nb L (2.8)
PROOF. ¢

1 1
~[---[Fz(ocl,...,:::,».)dxl---d."ck
0

2
j fFrl R l(illl,...,.’tk)d:vl"'dflfk
Txxo 0

+ Z j . .j F,l...n_l(:vl, e ey .'Ul)
(r1,...,7%=1) 0 0

(81,...,5k-1)
(P Te—1) # (S14000050-1)

‘ Fsl"'sk—l(ml’ ey xk) dxl ch d(vk

Since |F,,.. e J < 1forallry, ... 1, the first term in the above expression
is at most »*~1. We prove now that each term in the second sum is zero. So
choose (r1, ..., ") # (S1,. .., Si_y); then there exists j, 1 <j <k —1,
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such that r; % s, Without loss of generality, we may assume r; < s5;. We
will be done once we show that for all fixed x,, ..., 2,5, %, ..., 2 we
have

1
LFn-~-rk-x(-’”v e s B)F s (@, .., 1) day; = 0. (2.9)

The substitution + = 2%x; transforms the integral in (2.9) into

2%
2 f Griwmea@ s -+ 0 27, . NGy i@ - 1. ) dt. (2.10)
0

We split up the interval [0, 2¥) into subintervals [c, ¢ + 1) with integers c.
In an interval of the latter type, the integrand in (2.10) is either identical to
zero or equal to (27)) - - - w(2r%t) - - p(2%12) - - - p(t) - . It suffices
therefore to show that (¢! y(27—%if)y(t) df = 0 for any integer c. But this
is almost trivial, since r; < s; implies that 4(27/=*¢) is constant on [c, ¢ + 1)
and since [¢"' p()dr =0.

LEMMA 24. Forl <7< N, we have

1 1
f . f F(ey, ..., 2)dey -+~ da, = 0. (2.11)
agp %y
PROOQOF. It suffices to prove that
1 1
f . f Frr (g, .o 2 )dey - day, =0 (2.12)
Ay %i1

for all i and all ry,...,r.;. For fixed i and for 1 <j <k — 1, let g, be
the least integral multiple of 2 that is >, and let a, be the least
integral multiple of 2n1+ +mk1=¢=D-1) which is >a,. Then f; - fz, =
o+ fa& 4+ (sum of integrals in which, for at least one variable w,, we

778 -3

in{tkegrate over an interval [a;, 1]). The first integral on the right-hand side is
zero, since for all (z;,..., %;) in the interval [, @) X *** X [oy, ap),
we have ([272],...,[2% %, 4], [2F-DE-D-Ti— g ) = ([27e,],.. .,
[27%1q; py], [2BDO=D=rm—resg, 1) and therefore, Fo.p,  (®1, ..., %) = 0
by definition. In each of the remaining integrals, interchange the order
of integration so that the inner integral is taken over the interval [a,, 1]
with respect to the variable x,, By Lemma 2.1, the inner integral is then
zero, and we are done. I}

LEMMA 2.5, For (%, ...,2;)€l* let A(z,,...,=x,) denote the number
of points p;, 1 < i < N, in the interval [0, 2,) X -+ X [0, ;). Then,

1 1
f - f (A(xys . ..y ap) — Nay - - 2)  day -+ day, > c(log N1 (2.13)
0 0

with an absolute constant ¢, > 0 only depending on k.
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PROOF. For 1 < i< N, let fi(x,,...,,) be the characteristic function
of theinterval (o;;, 11 X « -+ X (o, 1]. Then Ay, . . . , @) = Doy fil®ry .. -5
;). Therefore,

1 1
f---fA(xl,...,xk)F(rcl,...,xk)dxl---drck
0 0

N (1 1
g:lj;--'Lﬁ(xl,...,mk)F(xl,...,:vk) da, - - duy,
N

1 1
fo F(zy, ...,z dey - da, =0
i=1 JXix @iy

by Lemma 2.4. Hence, using Lemma 2.2 we obtain
1 1
L'"L(le---xk—A(xl,...,rck))F(xl,...,rck)d:vl---drck

1 1
=Nf---fxl---xkF(ml,...,mk)dxl---dxk
0 0

™ 2 Nnk—12—2(k—l)(n—l)—?k(z(k—l)(n—l) _ N)
en

NZnZk—22—4(k—l)('n—l)-4k(2(k—l)(n—-l) _ N)Z
1 1 2
< (f f (le'"xk—A(“’v---’xk))F(xv---’“’k)d:m"'dxk)
0 0

1 1
g(f---f(Nwl--'xk—A(xl,...,xk))zdxl---dxk)
0 0

1 1
(ff Fz(ml,...,xk)dxl'--dxk)
0 0

by the Cauchy-Schwarz inequality. It follows from Lemma 2.3 that

1 1
f---f(lew-xk—A(rcl,...,xk))zdxl---dxk
0 0

> Nan—lz——-l(k—l)(11—1)-4k(2(k—1)(71—1) _ N)Z'
Let n be the unique integer for which 2N < 2¢-0(-1} < 2*N. Then the
integralin (2.13)is > NipF-12-3¢-D(n-1)9—dk % 5-8kpk—1 But (k — )(n — 1) >
(log N)/(log 2) + 1, and so,
n> log N k .
(k—Dlog2 k—1
Therefore, (2.13) holds with ¢, = 278 ((k — 1) log 2)**. |
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THEOREM 2.1. For any sequence of N points in R* with k > 2 we have
ND¥ > C(log N1z (2.14)

with an absolute constant C; > 0 only depending on k.

PROOF. This follows immediately from Lemma 2.5. i

If f and g are two functions with g > 0, then we write f = (g) in case
f# o(g). In order to verify f(N) = Q(g(N)), it suffices to show that there
is a constant & > 0 such that | f(N)| > bg(N) holds for infinitely many
positive integers N.

THEOREM 2.2. For any infinite sequence w in R* with k > 1, we have
ND¥(w) > Ci(log NY*'* (2.15)

for infinitely many positive integers N, where C;, > 0 is an absolute constant
only depending on k. In particular, we get ND¥(w) = Q((log N)Y*'2),

PROOF. Let w = (x,) be a given sequence in I*, and suppose that x, =

(¢p1y - - - » %p) for n > 1. For fixed N > 1, consider the finite sequence of
points py, . .., pyin ¥ given by p, = (20, ..., oy, (f — 1)/N)for1 < i <
N. It follows from Theorem 2.1 that there exist 2, . . ., 2, with0 < z; < 1
for 1 £j <k + 1 such that
|42y s @) — Ny o s ] > Crya(log NYH2

Now let m be the positive integer with im — 1)/N < @, < m/N. We note
that A(xy, . .., %y,) is the number of 7, 1 < i < N, for which 0 < a,; < z;
forall 1 <j<kand 0 < (i — 1)/N < @,,. But since the last condition is
equivalent to 1 < i < m, we arrive at A(x,, ..., %) = A([0, %) X -+ - X

[0, x,); m; w). It follows that

[A([0, 2y) X «++ X [0, 2,); m; w) — ma, - 2
> ARy, s Bpgg) — Ny | — N2y ey — iy @y
> Cypa(log NY® — 2y - 2y [Nay,, — m|
> Cpa(log NY¥? — 1 > Ci(log N)** ‘

for sufficiently large N. Thus, we have shown that for every sufficiently
large N there exists m with 1 < m < N such that mDj,(w) > Ci(log N)¥/2 >
Ci(log m)*¥2. The desired result follows then immediately. i

COROLLARY 2.1: Van Aardenne-Ehrenfest Theorem. For any infinite
sequence w in R¥* with & > 1, we have Timy_,, ND}(w) = co.

EXAMPLE 2.1. For k =1, we cannot replace “infinitely many positive
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integers N’ by “almost all positive integers N in the statement of Theorem
2.2. Consider the infinite sequence

1131357 13 21
’2)4’4’8’8’8’8""’2” 2”""’ 2” LR
In an initial segment of length N = 2*, we find exactly all rationals k/2* with
0 < k < 2. For such an N, we therefore get Dy = 1/N by Theorem 1.4.
It follows that, for this sequence, we have DY = 1/N for infinitely many N.
Many other examples of this type can be constructed. [}

>

EXAMPLE 2.2. We have seen in the proof of Theorem 2.2 that as soon
as NDY > f(N) for any N points in I*+1, then a result of the following type
is implied: For any N points in I* there exists m with 1 < m < N such that
mD}, > f(N) — 1. We shall show that essentially the converse is also valid.

So suppose it is true that for any N points in I*, k > 1, there exists m
with I < m < N such that mD}, > f(N). We claim that then NDy > }f(N)
holds for any N points in [**1, Let py, ..., py be arbitrary N points in ¥+
with discrepancy DY and p, = (%, ..., %, ;) for 1 < i< N. Without
loss of generality, we may assume that they are ordered in such a way that
Ui < Yoppr < 000 K Uy pqre Define g = (o, ..o, oy, (F — D/N) for
1 < i< N, and let D¥ be the discrepancy of the points qy, . . . , qy in I*+1.
By Theorem 1.4 and Exercise 1.14, we have |a, ;,; — (i — 1)/N| < D} for
1 <i<N.

We need the following auxiliary result: If y;,...,yy and z;,...,2Zy
are points in I#+1 with discrepancies D" and DX, ify; = (B, . - ., Bixs 72)
forl <i<Nandz,= (Bi1,...,Buw 0)for1 <i< N,andif|y, — 6, < ¢
for 1 <i< N, then |[DFY — *‘2’| < &. We denote by AWy, ..., %)
the number of y, in [0, %) X <+ X [0, %), and A®(xy, ..., %) is
defined similarly with respect to the z,. Since AV (2, ..., 2, :vk+1 -8 <L
APy, . .. ) K ANy, L, 7y, Ty + £), it follows that

Am(-"’n Ces Tpg)

N — Xy Ry < D*(l) +oex; < D*(l)
incase 0<%, <1 for 1 <i<k+1, and so DI? < D}V + & Inter-
changing the roles of the y, and z,;, we obtain DX < DX® + ¢, and the
assertion follows.

The above auxiliary result implies that | DY — D¥| < DY; hence, DY <

2D}%. Let = be the finite sequence of points q, . . . , gy in I* defined by q; =
(%15 - - . » %) for 1 <7 < N. By hypothesis, there exists m with 1 < m < N
and %, ..., 2, with0 < 2, < 1for 1 <7< k such that |[A([0, ;) X - -+ X

[0, z); m; 7) — mxy - - - 2| > f(N). By the same reasoning as in the proof
of Theorem 2.2, it follows that A([0, %)) X « - - X [0, a,); m; 7) = A%y, .

‘)
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%y, m[N) = the number of q; in [0, %) x -+ X [0, 2,) X [0, m/N). There-
fore, |A(zy, ..., &, m[N) — N((m[N)x, -+ 2)| > f(N), and so, ND} >
[ (N). Consequently, we get NDYy > INDY > 1f(N). W

Lower Bounds: Schmidt’s Method

For k = 1, an improvement of Theorem 2.2 can be shown by using a different
method. We need two auxiliary results and some notation.

Let (x,) be a given infinite sequence in 7. For N> 1 and 0 <2 < I,
we set Ry(x) = A([0, ®); N) — Nz. Since Ry(0) = Ry(1), we may extend
Ry(2) with period 1 to R. Moreover, we write Ry(x, ¥) = Ry(y) — Ry(®).
By K, L, and L’ we shall denote intervals of integers of the type (4, b] where
a, b are integers with 0 < @ < b. For intervals K and arbitrary z, y, we put
gH(K, %, y) = max,.x R,,(:l:‘, y) and g~(K, %, y) = min,.x R,(%,¥). For a
pair of intervals L, L' put

h(L) LI) z, y) = max (gh(L) z, y) - g+(LI) Zz, y)) g_(LI) z, y) - g+(L) , y))'

Furthermore, we set g™(K, y) = g*(K,0,9), g~ (K,y) = g~ (K, 0,y), and
WK, y) = g"(K,y) — g (K, y).

LEMMA 2.6. Suppose L, L’ are subintervals of some interval K. Then,
for any x and y, we have

h(K, ) + (K, y) > WL, L', %, y) + $(h(L, =) + I(L, y) + h(L', )
+ (L', y). (2.16)

PROOF. Without loss of generality, we may assume A(L, L', x,y) =
g (L,x,y) — gH(L', x, y), for otherwise we just interchange the roles of L

and L’. For every n € L and every n’ € L', we have R,(z, ) — R, (z,y) >
h(L, L', %,y), and so,

Rn(y) - R"(’U) - Rn'(y) + Rn’(m) 2 h(L, LI’ x, ?/) (217)

There are integers m(x), n(x), m(y), n(y) in L with R, () = gt(L, ),
R‘n(a:)(x) = g_(L’ :l:), Rm(y)(?/) = g+(L’ ?/)’ and Rn(u)(y) = g_(L’ ?/)- Then’

Rm(a:)(x) - Rn(a:)("v) = h(L’ :l:), (218)

Rm(y)(?/) - Rn(y)(y) = h(L, y). (2.19)
Similarly, there are integers m’(x), n'(z), m’'(y), '(y) in L' with

Rm'(a:)(.m) - Rn’(m)(x) = h(LI’ (IJ), (220)

Rm'(v)(y) - Rn’(u)(?/) = h(LI’ ?/)' (221)

Now add the four equations (2.18), (2.19), (2.20), and (2.21) and the two
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inequalities resulting from (2.17) by applying it first with n = m(x), 0’ =
m’(y), and then with n = n(y), n’ = n’(x), and we obtain

ottt >22h(L, L2, y)+ WL, 2)+ h(L,y) + (L, %)
+ Ly,
where 6 = Rm’(:c)(x) - Rn(a:)("v)s C = Rm’(y)("v) - Rn(y)(x)» C3 = R'm(y)(y) -

Rn’(y)(y)» €y = Rm(:c)(y) - Rn’(:c)(y)' Since II(Ks 7’) 2 C1> /I(K, 7’) 2 Co,
h(K, y) > c5, (K, y) > ¢4, the lemma follows. ||

LEMMA 2.7, Let ¢ be a positive integer. Then, for any interval K of
length at least 4* and any y, we have

4t
43K,y + 4 > 270 (2.22)
j=1
PROOF. We shall proceed by induction on ¢. First, we note that

Rn+1(y + %) - R'n(y + %) - (R71+1(y) - Rn(y))

is an integer minus (n + Dy + $) — n(y + $) — (n + 1)y + ny and hence
is an integer minus }. Let K be an interval containing at least the integers
nand n+ 1. Then h(K, y + §) + h(K, 9) > [Ruay + 3) — Ro(y + H)| +
|Rn+1(y) - Rn(y)l Z |R71+1(y + %) - Rn(y + %) - (Rn+1(y) - Rn(y))l 2 %s
and so (2.22) holds for t = 1.

Now let K = (a, b] be an interval of length at least 41, We set L =
(a,a+4') and L' = (a + 2-4% a + 3-4']. Because of the periodicity of
h(K,y), we may assume 0 <y <471 For 0 <j< 4", put z; =y +
JA=t1 For 1 <j <4t — 1, let d; be the number of integers m € (a + 4¢,
a + 2 - 4] with x,, € [2,4, 2)); for j = 41, |et d; be the number of integers
me(a+4ta+2-4 with z, €[z,;, 1) U [0,%). Now choose integers
ne Landn’ € L'. Then R,(2;_y, %)) — R,(2,_1,2;) = ¢, — (0" — n)(z; — 2;_y)
for 1 < j < 41, where e, is the number of integers m € (n, n’] with x,, €
(2,1, 2;) (resp. @, € [2,_1, 1) U [0, z,) for j = 4*+1)_ Tt follows that

Ro(2;_1,2) — R(2,_1,2)) > d; —3- 44" =qd, — 3,
This yields h(L, L', 2;_;, 2;) > d; — %, and if d; is positive, then
h(L, L' 2;_y,2;) > }d,.
Together with Lemma 2.6 we obtain
h(K,z;,_1) + (K, z))

> 4d; + 3(h(L, 2, + (L, 2;) + h(L, 2,_,) + h(L, 2,)). (2.23)
Since h(K,z;) 2 h(L,2;) and h(K,z;) > h(L',2;) for 0 <j < 41, (2.23)
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also holds in the case d; = 0. We divide the sum

t+1
4

Z h(L, z;) (2.24)

into four parts, according to the residue class of j modulo 4. Each of these
four parts is a sum like the one on the left-hand side of (2.22). By induction
hypothesis, each of these sums has the lower bound 4'275%¢, and so the sum
(2.24) is at least 4 - 4'2-5¢ = 2-34!t, The same lower bound holds if A(L, 2;)
in (2.24) is replaced by h(L, z;_), h(L', z;_y), or (L', z;). We now take the
sum of (2.23) over j = 1,2,...,4", and using h(K, zy) = h(K, 24111), we

obtain
4l+1 4l+1

2> h(K,z) > 12 d; +2027%%) =471 +1).
=1 j=1
Dividing by 2 - 41, we obtain (2.22) with ¢ replaced by 7 + 1. [}
THEOREM 2.3. For any infinite sequence w in R we have

ND¥w) > clog N (2.25)

for infinitely many positive integers N, where ¢ > 0 is an absolute constant.
In particular, we get ND}(w) = Q(log N).

PROOF. We shall show that for every N there exists m with 1 <m < N
and
mD%(w) > clog N. (2.26)

Suppose first that N > 4% There is an integer ¢ > 32 with 4 < N < 4+,
Apply Lemma 2.7 with K = (0, 4‘] and any particular , and it follows that
h(K, x) > 275t for some @ € I. Thus, there are integers p, g € K with R (¥) —
R,(®) > 275. Since either R,(x) or R,(x) must be >27% in absolute value, it
follows that there is an integer m with 1 < m < 4t < N and |R,,(2)| > 278
and, hence, with mD}(w) > 2751 Since t > 32, we havet > 22(t + 1),
whence

log N

DX 27832t 4 1) > —2—
mD(w) 2 t+ D 66 log

In the case 1 < N < 432 we use Corollary 1.2 to obtain Df(w) > § >
(log N)/66 log 4. Thus, in any case, we get (2.26) with ¢ = (66 log 4)*. I}

COROLLARY 2.2. For any sequence of N points in R? we have ND} >
¢’ log N with an absolute constant ¢’ > 0.

PROOF. This follows from (2.26) and Example 2.2. An admissible value
for the constant is ¢’ = (132log4)*. W
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Upper Bounds

One important technique to get upper bounds is to estimate the discrepancy
in terms of the exponential sums occurring in Weyl’s criterion and then to
use well-established methods from analytic number theory to estimate
these exponential sums. In fact, we shall present two results of this type
that are known as LeVeque’s inequality and the theorem of Erdds-Turan,
respectively. We consider only the one-dimensional case.

Suppose that 2;,...,ay are N points in I. For 0 <z <1, we again
set Ry(x) = A([0, 2); N) —

LEMMA 2.8.

1 ) N 2 1 (5] 1
fRN(x>dm= (z(x,,, —%) e
0 n=1 2 h=1

PROOF. We observe that Ry(x) is a piecewise linear function in [0, 1]
with only finitely many discontinuities at £ = ,, @,, ..., ¥y; in addition,
we have Ry(0) = Ry(1). The function Ry(2) can therefore be expanded into
a Fourier series Y., a,e>""* which will represent Ry(x) apart from finitely
many points. The Fourier coefficients are given by

1
a, =J; Ry(z)e®™* dy,

For 1 <n <N, let c,(x) be the characteristic function of the interval
(x,,, 1]. Then A([0, 2); N) = X2, ¢,(2), and so,

=J1RN(rc) dx
z c () de — Nf xde

2

Z 2nthan

(2.27)

= — Zl(fvn - b (2.28)
For h # 0, we obtain

"(x)e—mnhm d’L Nf -211:71::: d'L

=1 J0
1\ 1 N
— e—zwha: d'L + _
nz=:1 .L,. 2mih
_ 1 %(e—Zﬂihwn _ 1) + _N_
2mih n=1 2mih
| L
N z e—zwhmn. (229)
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By Parseval’s identity, we have
1 @©
f RArz(:v) de = a02 + Zzlahlz,
0 h=1

and the desired result follows immediately. i}
THEOREM 2.4: LeVeque’s Inequality. The discrepancy Dy of the

finite sequence @y, . . . , &y in [ satisfies
D S (6 i N 2 . 2\1/3
; - TihaEn . 2.30
A m i B2 | N nzl ) ( )

PROOF. We put Sy =3V (@, — ), and Ty(@) = (I/N)(Ry(®) + Sy)
for 0 < @ < 1. The function Ty is piecewise linear (the linear pieces having a
slope of —1) and left continuous and has only finitely many discontinuities,
each of which is a jump by a positive number. Since Tn(0) = Tr(1), we
can extend T to R with a period of 1.

Let « and f be numbers from [0, 1] with Ty(e) > 0 and Ty(f) < 0.
Such numbers exist because of [§ Ty(x) dx = 0, which follows in turn from
(2.28). In the interval [«, « + Ty(«)], the graph of Ty will not lie below the
line segment joining the points (x, Ty(«)) and (x + Ty(«), 0) in the co-
ordinate plane. By the periodicity of Ty, there exists §; € [«, « + 1] with

Tx(B1) = Tn(B). In the interval [B; + Ty(B,), B1], the graph of T will not
lie above the line segment joining (f;, + Ty(fy), 0) and (B;, Tn(p1)); there-
fore, the graph of [Tyl will not lie below the line segment joining (8, +
Tx(B),0) and (B;, —Tn(B1)). Moreover, the intervals [«, « + Tn(x)] and
[B: + Tn(B), B1] can have at most one point in common, because of the
properties that the graph of Ty satisfies there. It follows that

f Ty (@) da _Ja Te) de

a+TN(a)
ZJ Ty (x) dx + Ty (%) dx

B1+T x(f1)
2 3Ty (@) + (= Ty(B))’ = 3Tn' (@) + 3(—Tw(h))".
For nonnegative real numbers r and s, put ¢ = }(r + ) and u = 3(r — ).
Then 2+ 5% = (t +u)® + (¢ — u)® = 213+ 602 > 2t3 = }(r + s5)®. We
apply this inequality with r = Ty(«) and s = —Ty(f) and obtain

TN — TP < f Tyi(z) da. (2.31)

It is then evident that (2.31) even holds for all « and § in [0, 1]. Using the
definition of T, it follows that

12( n(®) — . RN(ﬂ)) Sf . ¥(@) da
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holds for all «, f € [0, 1], and so
1
_I_Dl\ra Sf TAIZ(-'U) du. (232)

12 0

Lemma 2.8 and (2.28) enable us to compute the integral on the right-hand
side of (2.32):

1 1 1
[ i = 5 [ Rt o+ [ R o 55
0

| 1 2
=F2 ORN(x)dx—ﬁSN

1 211 2

N .
_ - = | = e2v1h:cn

27 h=1 h?| N 2=
We combine this result with (2.32), and the proof is complete. [JIj

We remark that LeVeque’s inequality holds for any finite real sequence
@, ..., ay not necessarily contained in I, since both sides of the inequality
only depend on the fractional parts of the numbers involved.

EXAMPLE 2.3. The constant 6/ in LeVeque’s inequality is best possible.

Choose &) = 23 =+ -+ = a5 = 0. Then Dy = 1, and the right-hand side is
equal to
6 =2 1)1/3
— > =) =1L
('Ir2 hgl h* u

It can also be shown that the exponent } in LeVeque’s inequality is best
possible (see notes). We turn our attention to the second important theorem
dealing with the relation between discrepancies and exponential sums.

THEOREM 2.5: Theorem of Erdos-Turan. For any finite sequence v, .. . »
xy of real numbers and any positive integer m, we have

6 4 {1 1
Dy < — 4+ (— ) ghmihen | 2.33
N n + 1 Whgl h m+1 anl (2.33)
PROOF., We set AN(:c) = (I/N)Ry(») for 0 <2 <1 and extend this
function with period 1 to R. We consider first a sequence 2, ..., 2y in J
for which
1
0

We set S, = (1/N)z,, L ¥ for h € Z, Then from (2.29),

J‘Al\(q)e”""” dv  for h #0. (2.35)
—27r1h
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Choose a positive integer m, and let a be a real number to be determined
later. From (2.34) and (2.35), it follows that

m S
I 1 —|h —2riha __ Mk
h——z—m( vt I l) —27ih
1
=f AN(Q‘)( Z (m+1— Ih‘)ehih(a:—a)) de
[} h=—m
1 m

=] Ay(r + a)( > (m+1— lhl)ez”""‘”) dz, (2.36)

—a h=—m
where the asterisk indicates that h = 0 is deleted from the range of sum-
mation. Because of the periodicity of the integrand, the last integral may
also be taken over [—#%, ]. We note that

m

z (m+1—~ |h|)e2""'m = S‘“_(’M (2.37)

h=—m SlIl T

where the right-hand side is interpreted as (m + 1)? in case x is an integer.
We infer then from (2.36) that

f An(x + w g—g (m + 1 — [ 12!

T 27 h="m [h]
m | |
== Z(m +1-— h) . (2.38)
T p=1
We either have Ay(h) = —DJ or Ay(b + 0) = D} for some b € I. We treat

only the second alternative, the first one being completely similar. For
b<t<b+ Df,wehave Ay(t) = D + Ay(t) — Ay(b +0) > D + b —
t. Now choose @ = b + §D¥. Then Ay(x + a) > 4D} — =z for |2| < $D}.
Consequently, we get

f Ao + sm (m + Dma e

sin® 7x
(1/2)D% (—1/2)D% 1/2 2
: sin®(m + Dwa
=(f +f + )AN(.’c-{— a)——————dv
(—1/2) Dy —1/2 (1/2) D, sin® 7o

Dy —)— , —dv
~1/2)D¥ sin® 7w

qu/zm:v N sin® (m + )7z
¢

—_1/2 sin? 7x

—1/2D% sin® (m + D V2 sin®(m + D7
—D*f -———‘———‘drc—D":f '—f‘z-—d-’b
(yeypy  sIn® 7w
* N
. W2D¥ gin? (m + )ma « (M2 sin®(m + l)wm
= D} BT TR g — 2Dy T T e,
sin” 7 (1/2)D Sln my

(2.39)
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using the evenness of (sin? in + 1)72)/sin? mx. The integral of this function
over [0, 4] is (n + 1)/2 by (2.37). Therefore, from (2.39),

1/2 1
f /AN(x ta )sm 2(m + )772,
—1/2

sin? 7z
1/2 . 1/2
sin“(m + Drz 1
zDg‘:f ¥dm_w;f sin’ 0 + D ,
0 sin® 7 wayp;,  sin® 7w
> mtl m + 1 D — 3D‘§",f1/2 de _m+1 DX __§
w/2)p} 42° 2 2

where we used sinme > 22 for 0 < » < 4. Combining this with (2.38),

we arrive at
2 m 1
D} < + = (“ )
N n+1 777:2::1 h m+1 ISal-

If D denotes the discrepancy extended over all half-open intervals mod 1,
then

Dy S n+ 1 ™ hzl (h m + 1) 154l (2.40)
In particular, this proves (2.33) in case (2.34) is satisfied.

We shall show that for any finite sequence z,,. .. ,zyin ], thereexistsc €/
such that the shifted sequence {z; + ¢}, ..., {xy + c} satisfies (2.34). This
will prove the theorem, since both the left-hand and the right-hand side of
(2.40) are invariant under the transition from =z, ..., 2y to the shifted

sequence. By (2.28), we have to prove the existence of a ¢ €7 for which
(l/N) SN {z, + ¢} = }. For any c € I, we have

N

S3(mtd—m =y 3 et 3 (=D =0y1—0. 41

Therefore, it remains to show that

Ayl — o) = l L gjm =5

N N =1 " ’
say, for some ¢ € /. We consider only the case s > 0, the case s < 0 being
completely analogous. Since [5 Ay(f)dt = s, we have Ay(x) > s for some
2 € (0, 1). But since Ay(1) = 0 and since A is piecewise linear with positive
jumps only, the function Ay must attain the value s in the interval [z, 1). [l

When applying this theorem, we shall usually work with the following
version thereof: There exists an absolute constant C such that
2 2rihan

v 1 2.42)
an ) (

N
Dy < C( +> -
for any real numbers %, . . . , xy and any positive integer m.

m  a=1h
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It will sometimes happen that the sequence for which we have to estimate
the discrepancy can be decomposed into a number of subsequences with
small discrepancies. We prove a simple theorem pertaining to this situation.

THEOREM 2.6. For 1 < i<k, let w; be a sequence of N; elements from
R with discrepancy Dy (). Let w be a superposition of wy, . . ., w;, thatis,
a sequence obtained by listing in some order the terms of the w,. We set
N = N{ + ' -+ + N, which will be the number of elements of . Then,

k Ni
Dy(w) < Y N Dy (®;). (2.43)
i=1
We have also
D:,((u) < ZF’ Dg;'_(w,-). (2.44)
i=1

PROOF. Let J = [«, f) be a subinterval of I. Then, by the construction
of w, we have A(J; N; ) = 3% ; A(J; N,; ;). Therefore,

A(J; N; o) ’”N A(J; N;; w,)
N ﬂN( N _W)) Z Dl

and taking the supremum on the left-hand side completes the proof of the
first inequality. The second inequality follows similarly. [l

— ‘

i

Notes

The important property of the discrepancy enunciated in Corollary 2.1 was already touched
upon by van der Corput [7] when he stated that he did not know of any infinite sequence w
in I having ND} () uniformly bounded. Thisconjecture was first confirmed by van Aardenne-
Ehrenfest (1, 2] Theorems 2.1 and 2.2 are from Roth [1], who also shows a weaker form
of the result given in Example 2.2. Theorem 2.3 and Corollary 2.2 are results of W. M.,
Schmidt [14). We have improved the constants. It will follow from Section 3 that these
two lower bounds are best possible, apart from the values of the constants. We note also
that the lower bound in Lemma 2.5 was found to be best possible (at least for k = 2)
by Davenport [1] and Halton and Zaremba [1]. In connection with Lemma 2.5, the follow-
ing result of Sobol’ [5] is of interest: For any N points in I¥, k > 2, we have

1 1
f...flA(xl,...,a;k)—M’cl--~xk|aiv1~-~dwk>£—ek(N),
0

where 0 < &,(N) <4 and &(N) = O(N-llog*-2 N). This is best possible in the sense
that one can always find sequences for which the integral is less than }. For k = 1, the
integral is at least {, and this value is attained for the sequences occurring in Corollary 1.2
(Sobol’ [3]). For small N, points in I% with minimal discrepancy were tabulated by White
[1].

A collection of interesting problems on irregularities of distribution can be found in
Erdds [6, 7). Some of these problems have been settled by W. M, Schmidt [6, 13, 15].
For instance, he shows that for any infinite sequence in IR there are at most countably
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many « € I for which R, (¢) can remain bounded as a function of #. A weaker result in
this direction was shown by Lesca [3]. An interesting variant of irregularities of distribution
was studied by Berlekamp and Graham [1] (see also Steinhaus [2, Problems 6 and 7]).
Their result shows, in particular, that for any c satisfying (2.26) we must have ¢ < (log 17)~1.
For related investigations, see de Bruijn and Erdos [1].

A nontrivial lower bound is known for the isotropic discrepancy J in [R¥. Namely,
we have always Jy > d,N~-(:+11/2k with an absolute constant d;, > 0 depending only on
k, a result of Zaremba [7], W. M. Schmidt has announced an improvement. We also refer
to an important sequence of papers by W. M. Schmidt [7, 8, 9, 11] in which irregularities
of distribution occurring in special classes of convex sets, such as rectangles, balls, and
spherical caps, are studied. See also Niederreiter [17].

Lemma 2.8 is due to Koksma (unpublished). Our proof follows Kuipers [9]. Theorem
2.4 with D} instead of Dy was shown by LeVeque [9]. In the same paper, the exponent
% is verified to be best possible. A more general inequality is due to Elliott [4]. A multi-
dimensional version of Theorem 2.4 is not known.

Theorem 2.5, with unspecified constants, can be found in a paper of Erdds and Turdn
[3]. For another proof, see Yudin [1]. Our proof follows Niederreiter and Philipp [2]
where one can also find somewhat improved values for the constants, See Elliott [4],
Fainleib [2], and Niederreiter and Philipp [1, 2] for generalizations. A weaker version of
this theorem was already known to van der Corput and Koksma (see Koksma [4, p. 101]).
Van der Corput and Pisot [1] proved that

Dy <26+ >, min (1/h, 1/6h%) |(1/N) JN_; e2mihen|

for every 6 > 0. See also Jagerman [3]. A generalization of Theorem 2.5 to several
dimensions can also be given, and we shall refer to it as the theorem of Erdés-Turdn-
Koksma. For a lattice point h = (&, ..., k) in Z?, define ||h|| = max,<;<, |#;] and

r(h) = TT max (&, 1).
=1

For x,y€ R, let (x,y) denote the standard inner product. Now let x;,...,x,y be a
finite sequence of points in RS, Then, for any positive integer 71, we have

z 2nz<h.x,, )

where the constant C; only depends on the dimension s. This result was proved at about
the same time, but independently, by Koksma [11] and Sziisz [1]. An explicit value for
C,is C, = 2s23*+1, For a generalization of the inequality, see Niederreiter and Philipp [, 2].
The inequality in Theorem 2.6 was used in disguised form by many authors. It was first
stated explicitly as a lemma in Bergstrom [2]. See also Cassels [4] and Niederreiter [2].
Starting from Theorem 1.4, the problem of finding upper bounds for D} can be linked
with convex programming techniques (Niederreiter [10]). This approach was also used in
Niederreiter [2]. A survey of methods for estimating discrepancy is given in Niederreiter [S].

1
Dy < Cs(; +

o< bl <m r(h)

Exercises

2.1. The auxiliary functions 9(2"2) used in the lemmas preceding Theorem
2.1 are variants of the so-called Rademacher functions ¢,(x), n =0, 1,
2, .... Let ¢,(x) be the function of period 1 that is given by ¢o(z) = 1
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2.2,

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.
2.9.

2.10.

2.11.

2.12.

2.13.

for 0 <@ <4, do(e) = —1 for § <@ <1, ¢o(0) = Po(2) = 0. For
n > 1, define ¢,(x) = ¢y(2"x). Prove that these functions may also be
given by ¢, (x) = sign sin 2"+ for n > 0,

Suppose @ is not a dyadic rational, and let
x = dy(x) + z ;(:)

be its dyadic expansion. Prove that d,(®) = (1 — ¢,_,()) forn > 1.
Prove that the Rademacher functions ¢, ¢;, . . . form an orthonormal
system over [0, 1]. (Note: The Rademacher functlons are even inde-
pendent.)

The so-called Walsh functions are defined as follows: Let N = 2" +
2" 4 oo 2" withnyg > 1, > ¢ - - > 1, > 0 be the dyadic expansion
of the positive integer N; then set yy(») = ¢, (%) - * * ¢, (%). Define
also y4(x) = 1. Prove that the functions xg, %1, ... form an ortho-
normal system over {0, 1]. (Note: The system of Walsh functions is
even complete.)

Show that for every sequence of N points in /2 with discrepancy
D} there exists a sequence of the form (0, so/N), (1/N, 8/N), ...,
((N — 1)/N, sy_1/N), where the integers s, ..., Sy_, are a permuta-
tion of 0, ..., N — 1, and with discrepancy D} satisfying Dy < 4Dy
Hint: Compare with Example 2.2.

Prove that LeVeque’s inequality implies the sufficiency part of the
Weyl criterion.

Prove that the theorem of Erdds-Turdn implies the sufficiency part of
the Weyl criterion.

Give a detailed proof of (2.37).

If D y denotes the discrepancy extended over all half-open intervals mod
1, prove in detail that Dy < 2D%.

Prove in detail that the discrepancy D, in Exercise 2.9 is invariant
under shifts of the sequence mod 1.

Suppose C, and C, are positive constants such that the inequality
1 ) 2ﬂ1hm
€ (h m+1/ N §
bolds for any real numbers @y, ..., %y and any positive integer m.

Prove that necessarily C; + C, > 2.

Prove that the constant C, in Exercise 2.11 must satisfy C; > 1.
Suppose #;,...,xy is a finite sequence such that, for some real
number 4 > 0, we have |XN,; ¥ <h* for all integers 4 with
1<h gN”“*”. Prove that Dy < CN~V“+1) with a constant C
only depending on 2.
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2.14. Consider the infinite sequence w given by
113 13 2k-—1
274747 2k 2k 2k

Using Theorem 2.6, prove that D y(w) = O(l/\/I—V—). Show also D y(w) =
QNN

g ot e

3. SPECIAL SEQUENCES

Almost-Arithmetic Progressions

We shall first discuss a general class of sequences that is of great theoretical
interest (see notes). For a reason that will be apparent from the subsequent
definition, these sequences are called almost-arithmetic progressions.

DeriNITION 3.1, For0 < 0 < 1and ¢ > 0, afinite sequencer; < 2, < '+ + <
%y in I is called an almost-arithmetic progression- (9, ¢) if there exists an 7, 0 <
1 < &, such that the following conditions are satisfied: (i)0 < &, < n + d7;
(yn—0n<Le,y—2, <np+onforl<n<N—-1;(Gii)l —n—dy <
vy < 1.

If 6 = 0, then we have a true arithmetic progression with difference #.
It is clear that an almost-arithmetic progression-(d, &) is also an almost-
arithmetic progression-(d’, ¢") whenever 6 < ¢’ and ¢ < &',

THEOREM 3.1. Let @, <2, <'** <zy be an almost-arithmetic pro-
gression-(d, ¢) and let # be the positive real number corresponding to the
sequence according to Definition 3.1. Then

)

Pl —2—  fore>0 (3.1)
N 14+J1-¢
D < min (7;, i) for 6 = 0. 3.2)

PROOF. Let us first consider the simple case 6 = 0. Here we have z; =
%, + (i — 1)y for 1 £ i < N. We estimate DY by using Theorem 1.4. We
note that z, — (i — 1)/N =2, + (i — 1)(n — (1/N)). We distinguish two
cases, depending on whether 9 > 1/N or < 1/N. If > 1/N, then

N—-1 _1
N SN’

and subtracting 1/N, we get —1/N < ; — (i/N) < 0. If < 1/N, then

OSxi_L_ﬁ_Sml'*'(N_l)(?]_N):xN—
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and again subtracting 1/N, we get  — (1/N) > =, — (i/N) > —75. In any

case, we have
i—1 . 1)
X, — —— min |5, —
N ) < (77 N

max

for all i with 1 <7 < N, and so,

T, — —

F >

. 1
D} < min (77, E)

Now we take the case 6 > 0. It follows immediately from Definition 3.1
that
(=D =90n<e;<i(p+dy) forl <i<N. (3.3)

Similarly, the inequality
Il-WN=-i+ D+ <2, <1 —=(N—-Dn—0dn) (34

holds for 1 < i < N. We shall again use the representation for Dy given in
Theorem 1.4. Let us first estimate x, — (i/N) from above. We use the one
of (3.3) and (3.4) that gives the better upper bound for a given /, and there-
fore, we distinguish two cases.

Case 1: i(n+ 0n) <1 — (N —1i)(n — ). We note that this is equiva-
lent to
1 — Ny(l —
i< nd —9)
26m
It clearly suffices to consider N9 < 1/(1 — 0), for otherwise, the present
case could not occur at all. We have

i 1
£, — i 6 _
wmysirea =)

from (3.3). Let us assume for the moment that n + dn — (1/N) > 0. Then
1/(1 + &) < Ny < 1/(1 — 9). Furthermore,

1—Nn(1—6)( 1)
el A S 5 Jp——
281 n+ on

C<i(nron—) <
v, ——<i n—_
TN n 1 N N

_2Np—1-— NP1 — 6%
B 2 6N7 '
Set
2t — 1 — (1 — &%)
2 6t '

Nnp=t and h() =
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Since A(t) has an absolute maximum in the interval [1/(1 + 8), 1/(1 — 8)]
at 1y = 1/\/1 — 0%, we get

6
1+V1—06
If 5 + 6y — (1/N) <0, then (3.5) is trivially true since x; — i/N is then
negative.

Case 2: i(n+0n)>1— (N —1i(n—dn). This is equivalent to i >
(1 — Ny(1 — 6))/267. The present case can only occur if

(1 — Nn(1 — 8))[26n < N, or Ny > 1/(1 + 6).

m—ﬁsmm= (3.5)

We have
@—§s1—m—0m—m—§=m—oﬁ+mpw)

As above, it suffices to consider (1/N) + dn — 5 > 0, or N < 1/(1 — 6).
Then

%—§SOW4K§+M—n)

R

2 oy
2Ny — 1 — N*%*(1 — &° )
_2Nny n( ) ‘ 3.6)
2 6N 1441 -6
Working in the same way with the lower bounds in (3.3) and (3.4), we obtain
i— 1 )
= . for1 <i <N. (3.7

X

N 1++1 -8

Combining (3.5), (3.6), and (3.7) results in the following inequalities for
1<i<N:

16 ., Ls_é_
N 14+J1=6" " N 14J1-06
P i—1 1 P
—— ==K - S
141 -8 N N 14J1-¢
Therefore,
i i—l) 1 8
max T, — |, | % — S—"'f‘—__.
( N’ N N 14J1-6

for 1 < i < N, and an application of Theorem 1.4 completes the proof. [l
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Diophantine Approximation

A most important class of u.d. mod 1 sequences is given by the sequences
(ne), n = 1,2,..., with « irrational. The discrepancy of (ne) will depend
on the finer arithmetical properties of o.. Therefore, we shall start with some
brief remarks on diophantine approximation and the classification of
irrational numbers.

DEerFINITION 3.2. For a real number ¢, let {t) denote the distance from ¢
to the nearest integer, namely,

(ty = min |t — n| = min ({t}, 1 — {1}). (3.8)
nel
DermNiTION 3.3, Let o be a nondecreasing positive function that is defined
at least for all positive integers. The irrational number o is said to be of type
<y if g{ga) > 1/p(g) holds for all positive integers ¢. If p is a constant
function, then an irrational o of type < is also called of constant type.

DEerNITION 3.4. Let % be a positive real number or infinity. The irrational
number « is said to be of type % if # is the supremum of all y for which
lim,_, ¢"(qe) = 0, where ¢ runs through the positive integers.

By Dirichlet’s theorem (see also (3.9)), we have lim,_, ¢"(ga) = O for
any y < 1 and for any irrational «. Therefore the type » of an irrational

number will always satisfy % > 1. There is, of course, a close connection
between the above definitions.

LEMMA 3.1. The irrational number o is of type # if and only if # is the
infimum of all real numbers = for which there exists a positive constant
¢ = ¢(r, &) such that « is of type <y, where p(q) = cqg" .

PROOF. Let # be finite. Then for any ¢ > 0 we have lim,_,,, ¢" " (ga) = 0
and lim__, , ¢""*(qo) > 0 whenever « is of type 7. From the first statement,
it follows that for any positive ¢ there is a positive integer g with g(qa) <
1/cq"~% Therefore, « is not of type <y for any p of the form p(g) = cg" ™.
But from the second statement above, we conclude that for any ¢ >0
there is a positive constant d(e, «) such that ¢"**(ga) > d(e, «) holds for all
q. Therefore, g{ga) > d(g, )/qg"*** for all ¢, and o is of type <y with
w(g) = (1/d(e, «))g""**. These arguments are easily seen to be reversible.
If % is infinity, then the same ideas can be carried out with obvious modifi-
cations (the statement of the lemma is, of course, interpreted to mean that
no such numbers = with the indicated property exist). i}
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We review very briefly some facts about continued fractions. Let o =
{ay, @y, a5, .. .] be the continued fraction expansion of an irrational e,
where a, is an integer and a,, a,, ... are positive integers, the so-called
partial quotients. For n 2> 0, the nth convergent to o is defined as

r. = lag, a1, ..., a,l

The rationals , may be obtained by the following algorithm, Define p_, = 0,
pa=1,p;=ap,.y+p.ofori>0;defineq ,=1,9,=0,q9, =aq,_,+
gi_s for i > 0. An easy induction argument shows that r, = p,/q, for n > 0.
Moreover, the fractions p,/q,, n > 0, are in reduced form. For later reference,
wenotethat ] = ¢, < gy < g, < ++* <q;<*+-.Foralln > 0, we have

1

Brf o L oL (3.9)

qn ann-f-l q712

In particular, we get lim,_,, r, = o, which explains the term convergent.
The irrational o is of constant type (see Definition 3.3) if and only if there
exists a constant K such that a, < K for all i > 1. In the latter case, o is
said to have bounded partial quotients. An interesting class of such o is
formed by the quadratic irrationals.

o —

Discrepancy of (na)

The following rule of thumb holds: The smaller the type of «, the smaller
the discrepancy of (n«). In other words, the irrationals « that are badly
approximable by rationals are those for which (na) shows a good distribution
behavior. Let us turn to the details. The initial step in the estimation process
is to apply the theorem of Erdds-Turan. In the sequel, o will always denote a
fixed irrational number.

LEMMA 3.2. The discrepancy Dy(w) of w = (ne) satisfies

—1— 1 m 1
D) < C(m + N h§=:1 h(hoc)) (3.10)

for any positive integer m, where C is an absolute constant.

PROOF. By (2.42) we have

1 1t 21| &,
Dlv w S C(__ + = = 2nihna )
V(@) m  Nip=1hia=1
for any positive integer m. Now
Ny o, 2 1
e2mhna S - —_ .
n§=:1 |e®™he — 1] |sin whe|
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We note that [sin wha| = sin 7(ha), since (ha) is either of the form ha — p
or p — ho for some integer p. Then sin 7z > 2 for 0 < o < 4 implies
1/Isin whe| < 1/(2¢ha)) for all h > 1. The desired inequality follows im-
mediately. [l

LEMMA 3.3. Let « be of type <y. Then,

” ™ w(2h) log h
3 = O(y;(2m) log m + Zm) 3.11)
n=1 h{ho) r=1 h
PROOF. By Abel’s summation formula, we have
m 1 m
=3 o (3.12)
=t h(he) #=1 h(h + 1) m-+1
where 5, = >} 1/(jo). For 0 < p < ¢ < h, we obtain
1 1
(qe & po) = ((q £ p)x) 2 > -
(g = py(q £ p) — 2hyp(2h)
It follows that
for 0 <h 3.13
Kqa) — (pa >I22, (2,) or0<p<g< (3.13)

But (3.13) implies that in each of the intervals

[0 1 )[ 1 2 ) [ h h+1)
“2hyp(2h))” L2hp(2h) " 2hp(2h))” " L 2hp(2h)” 2hp(2h)
there is at most one number of the form (juy, 1 < j < h, with no such

number lying in the first interval. Therefore,

u » 2hy(2h
=3 Z¥Zh) _ o2y log h).
=1 Joc> J
Using this with (3.12), we arrive at (3.11). i}
THEOREM 3.2. Let « be of finite type #. Then, for every ¢ > 0, the
discrepancy Dy(w) of w = (na) satisfies
Dy(w) = O(N1+e), (3.14)
PROOF. Let ¢ > 0 be fixed. By Lemma 3.1, there exists ¢ > 0 such that
o is of type <y with p(g) = cg"*+/. Then Lemma 3.3 implies
m 1
r=1 h{ho)

= O(m"+%) + 0( Z‘hn—2+e) = O(m"1+*),

h=1
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Combining this with Lemma 3.2, we get

Dy(w) < Cl(l + JITI m"‘”‘) for all m > 1.

m
Now choose m = [N'/"], and the desired result follows. i}

EXAMPLE 3.1. Inparticular, if aisof type # = 1, then NDy(w) = O(N®)
for every ¢ > 0. There is an important class of irrationals that have type
n = 1, namely, the algebraic irrationals. This follows from the famous
theorem of Thue-Siegel-Roth: For every irrational algebraic number « and
for every &€ > 0, there exists a positive constant ¢ = ¢(a, &) such that

pl c
o—=|2
q q2+s

holds for all integers ¢ > 0 and p. For the proof we refer to the literature. i
EXAMPLE 3.2. Let « be of constant type. Then Lemma 3.3 implies

m 1

—— = O(log® m).
2y = Ollog™m)
Therefore,

Dy(w)< Cz(i + 1 log? m)
m N

for all m > 1. Choosing m = N, we obtain NDy(w) = O(log? N) in this
case. We will improve this result in the sequel. [l

Theorem 3.2 is best possible in the following sense.

THEOREM 3.3. Let « be of finite type #. Then, for every ¢ > 0, the
discrepancy D y{w) of w = (nex) satisfies

Dy(w) = Q(NY0—e), (3.15)

PROOF. For given &> 0, there exists 0 < 0 < n with 1/(n — d) =
(1/7) + e. By Definition 3.4, we have lim,_,, ¢""**(q0) = 0. In particular,
we get (qa) < ¢~"*%* for infinitely many positive integers ¢. Hence, there
are infinitely many positive integers g and corresponding integers p such that
le — (p/g)] < g ¥7"+*%/®. Take one such ¢, and set N = [¢"%]. We have
o = (plg) + 0" with 6] < 1. For 1 <n < N, we get then no =
nplg + 0, with [0,] = [n8g~+®| < g7 Now let us look at the
fractional parts {«}, {2u}, ..., {Na}. It follows from the above that none
of these numbers lies in the interval J = [g7'~%/® g=1 — 471=/2) Therefore,

Dy 2| 30y | = 20)
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For sufficiently large ¢, we have 1(J) > 1/2¢. On the other hand, the definition
of N implies ¢"~* < 2N. Combining these inequalities, we arrive at D y(w) >
eN7V0=9 = ¢N*m=¢_ with a constant ¢ > 0 just depending on 7 and e.
But since we have infinitely many ¢q to choose from, this lower bound for
D y(w) holds for infinitely many values of N. ||

There is one case where an improvement of Theorem 3.2 seems to be
worthwhile, namely, when « is of constant type (see also Example 3.2).
For such «, the sequence (na) has a very small discrepancy. In fact, the
discrepancy has the least order of magnitude possible in the light of Theorem

2.3.

THEOREM 3.4. Suppose the irrational o = [a,, a4, g,, . . .] has bounded
partial quotients, say a, < K for i/ > 1. Then the discrepancy Dy(w) of
w = (no) satisfies NDy(w) == O(log N). More exactly, we have

1 K
logé log(K + 1)

NDy(w) <3+ ( ) log N, (3.16)

where & = (1 + +/5)/2.

PROOF. Let 1 =¢4<¢q, <gy, < ‘- be the denominators of the con-
vergents to «.. For given N > 1, there exists r > 0 such that g. < N < ¢q,,4.
By the division algorithm, we have N = b.g, + N,_; with 0 < N, ; <g¢,.
We note that (a,,; + 1)¢, 2 ¢.4+1 > N, and so, b, < a,,;. If r > 0, we may
write N,_; = b, 1q,; + N,_, withO < N, , < g,,. Again we find b,_; < a,.
Continuing in this manner, we arrive at a representation for N of the form
N=7iobg with0<b,<a, for0<i<r and b, > 1.

We decompose the given sequence {«}, {2a}, ..., {Na} into b, sequences
({na}) where »n runs through g, consecutive integers, into b, ; sequences
({no}) where » runs through ¢,_, consecutive integers, and so on. We estimate
first the discrepancy of such a finite sequence ({#n«}) where n runs through
g; consecutive integers, say n = n, + j with 1 <j < ¢,. By (3.9) we have

W with 6] < 1.
q: 494941
Therefore,
ip; 0
{na} = {noov. 1P ]—}
q; 9:i9:+1

Since (p;, ¢;) = 1, the numbers nyo + jp;/gq,, 1 < j < ¢;, considered mod 1,
form a sequence of ¢, equidistant points with distance 1/g,. Since | j0/g,q;.,| <
/g4, for 1 <j < g, the sequence ({na}), ny + 1 < n < ng + ¢, is obtained
by shifting mod 1 the elements {nox + (jp./9.)}, 1 <j < g;, either all to the
right or all to the left by a distance less than 1/g,,, (the direction of the shift
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will depend on the sign of 0). It is then easily seen that the discrepancy D,
of the finite sequence ({na}), ny + 1 < n < ny + g, satisfies

D, < 1,1 (3.17)
4; Gy
By Theorem 2.6 and the way in which we decomposed the original sequence
{a}, 2a}, .. ., {Na}, we infer from (3.17) that
NDy(w) < zm(ﬁ + 1) <r+1+3b, (3.18)
i=0 qi i=0
We claim that “
4 K
by <1+ ————logN. 3.19
,Z:o + log (K + 1) & (3.19)

We prove (3.19) by induction on r. For N > 1, we put o(N) = i, b,.
If go < g5, then the smallest possible r is » = 0, and a corresponding N
satisfies 1 < o(N) =N < ¢, < K. If ¢, = ¢, = 1, then the smallest possible
ris r =1, and a corresponding N satisfies ] < o(N) =N <¢g, < K+ 1.
For the first step in the induction, it therefore suffices to show

K
14 —K  10gN  forl <N<K+ 1.
St ek + 1) %8 orlsN<K+

This follows by considering the function f (v) = » — (K/log (K + 1)) log
on the interval 1 < # < K + 1 and noting that f(1) = f(K + 1) =1 and
that f'is concave upward on the entire interval.

Now take an arbitrary N with 1 < ¢, < N <¢q,,,, and write N = b,q, +
N,_; with 0 < N, ; < ¢, Suppose for the moment that N, ; > 0. Then
o(N) = b, + o(N,,), and the induction hypothesis yields o(N) < 1 + b, +
(K/log (K + 1)) log N,_;. Now N > b,N, ; + N,_; = (b, + 1)N,_;, and so,

K N
log .
log(K+1) b +1

oN)L1+b,+

But this inequality holds for N, ; = 0 as well, since then o(¥) = b, and
N/(b, + 1) = b,q,/(b, + 1) > 1. To complete the argument, we have to prove
b, < (K/log (K + 1)) log (b, + 1). But this follows immediately from
1 <b,<a,, <K and the fact that g(z) = a/log (x + 1) is increasing
for a2 > 0.

To estimate r, one first proves by induction that ¢, > &~ for i > 0.
Therefore, N > g, > &1, or r < (log N)[log & + 1. Then (3.16) follows
from (3.18) and (3.19). [ |
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The Van der Corput Sequence

We shall now exhibit a sequence that has an extremely small discrepancy.
In fact, no infinite sequence has yet been found that has a uniformly smaller
discrepancy than the one that we are going to construct. For optimal estimates
of the discrepancy of this sequence, see the notes.

We define the so-called van der Corput sequence (,) as follows: For
n>1,letn — 1 = >j_,a,2/ be the dyadic expansion of n — 1. Then we set
%, = 25 oa;2~"1. The sequence (x,) is then clearly contained in the unit
interval.

THEOREM 3.5. The discrepancy Dy(w) of the van der Corput sequence
o = (z,) satisfies

log(N + 1
NDy(o) < ﬁgl—(og%) .

PROOF. We represent a given N > 1 by its dyadic expansion N = 2 +
2k 4 < oo 4 2% with Ay > hy >+ > h, > 0. Partition the interval [1, N]
of integers into subintervals M;, M,, ..., M, as follows: For 1 <j < s, we
put M; = [2" + 2" -+ 0 4 M 4 1, 27 4 2%2 4 o+ - 4 2M]; fOr j =1,
the expression 2" 4 + -+ 4 2%-1 is an empty sum, and thus meant to be 0.
An integer n € M, can be written in the formn =1 + 2 4 2% 4 -+ - 4
M1 4+ >t a,2¢ with a; = 0 or 1. In fact, we get all 2% integers in M, if
we let the a; run through all possible combinations of 0 and 1. It follows that

(3.20)

hi—1 hi—1

x, = 2—711—1 + .. + 2—)‘11—1—1 + z aiz—i—l =y, + z aiz—i—l,
1=0 =0

where y; only depends on j, and not on n. If # runs through M;, then
>irst a;2=1 runs through all fractions 0, 2%, ..., (2% — 1)27 in some
order. Moreover, we note that 0 < y; < 27%, We conclude that if the elements
x, with n € M, are ordered according to their magnitude, then we obtain a
sequence w; of 2% elements that is an almost-arithmetic progression with
parameters 6 = 0 and 5 = 2%, It is then easily seen that the discrepancy
of each w;, multiplied by the number of elements in w,, is at most 1. Com-
bining this with (2.43) and the fact that @,, ..., zy is decomposed into s
sequences w,, we obtain NDy(w) < s.

It remains to estimate s in terms of N. But N > 251 4 252 4 .+ 4 20 =
2°—1,and so, s < (log (N + 1))/log2.

Notes
Almost-arithmetic progressions were introduced by O’Neil [1]. Their theoretical im-

portance stems from the following criterion. The sequence (x,) in I is u.d. mod 1 if and
only if the following condition holds: for any three positive numbers d, ¢, and &', there
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exists N = N(, ¢, ¢') such that for all N > N, the initial segment @, ..., »y can be
decomposed into almost-arithmetic progressions-(d, &) with at most N, elements left over,
where N, < &'N. The upper bound for the discrepancy of almost-arithmetic progressions
was established by Niederreiter [2]. As an application, it is shown that the sequences
w = (f(n) appearing in Chapter 1, Exercise 2.22, satisfy Dy(w) = O(f(N)/N +
1/Nf'(N)). See also Drewes [1].

The classical treatises on continued fractions are Perron [1] and Khintchine [7]. A very
interesting geometric approach is carried out in the book of Stark [1]. Concerning the
theory of diophantine approximations, we mention above all the extensive report of
Koksma [4] and the monograph of Cassels [9]. Very readable accounts of the subject are
given in the books of Niven [1, 3], as well as in LeVeque [5], Rademacher [1], Hardy
and Wright [1], and Lang [1]. Because of the intimate connection, most of the books on
diophantine approximation will also cover continued fractions to some extent.

Results of the type of Lemma 3.3 were already known to Hardy and Littlewood [4, 5].
They also gave lower bounds for sums of the form X% ; (hoe)=" with # > 1. Detailed proofs
for these lower bounds can be found in Haber and Osgood [2]. Using continued fractions
in the same way as in the proof of Theorem 3.4, the estimate for s, and with it Lemma 3.3
can be slightly improved (see Lang [1] and Exercises 3.11 and 3.12), but this does not
yield any improvement on Theorem 3.2. A survey of the literature on this subject prior
to 1936 is given in Koksma [4, Kap. 9]. See also Hardy and Littlewood [6], Muromskil
[1], and Kruse [1].

Theorem 3.2 was first shown by Hecke [1] and Ostrowski [1]. Related investigations
were carried out almost simultaneously by Hardy and Littlewood [3, 4] and by Behnke
[1]. A very detailed analysis was undertaken by Behnke [2], who also showed the Q-result
in Theorem 3.3.

Theorem 3.4 is from Niederreiter [13] and improves earlier results of Ostrowski [1],
Behnke [2], and Zaremba [1]. In the last paper, the case K = 1 is investigated in more
detail, and the inequality NDy(w) < % log (6N) s established in this special case. Sés (un-
published) has shown for the case K = 1 that NDy(w) < cylog N for N > 2, where
limy_, o ¢y == 1. See also Gillet [1, 2]. In this context, we note that Behnke [2] already
showed NDy(w) = Q(log N)for any sequence w = (na), thus establishing a special case of
Theorem 2.3. Improving theorems of Hecke [1] and Ostrowski [2], Kesten [4] shows the
following remarkableresult: Let R () be the remainder function with respect to thesequence
(n«), o irrational; then Ry(b) — Ry(a) with0 < a £ b < 1and b — a < 1is bounded in
N if and only if b — a = {jo} for some integer j. For simpler proofs, see Furstenberg,
Keynes, and Shapiro [1], K. Petersen [1], Petersen and Shapiro [1], and L. Shapiro [1].
See also Lesca [5]). A similar problem in two dimensions was investigated by Sziisz 2, 3].
For probabilistic quantitative results on (n), see Kesten [1, 2, 3]. 1t follows from (3.18)
and metric theorems of Khintchine [2] that for every positive nondecreasing function g
such that Z2_; (g(n))‘1 converges, the discrepancy Dy(w) of w = (na) satisfies

NDy(w) = O((log N)g(log log N))
for almost all «.

In Example 3.1 we mentioned the celebrated theorem of Thue-Siegel-Roth. The result
was a long-standing conjecture of Siegel and was verified in the fundamental paper of
Roth [2]. In a slightly simplified form, Roth’s proof has since appeared in several books,
for example, Cassels [9], LeVeque [5], and in the revised edition of Landau [1]. A multi-
dimensional analogue was recently established by W. M. Schmidt [12].

Various subsequences of (nx) have received great attention, notably lacunary sequences.
Most of the papers on sequences with gap conditions in which a quantitative viewpoint
is pursued are of a probabilistic nature. See Khintchine [3, 5], M. Kac [1, 2] (and Leonov
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[1, 2] for a generalization), Fortet [1], Erdés and Koksma [1], Cassels [1], Erdds and
G4l [1], Mineev [1], Ciesielski and Kesten [1], I.S. and L. G4l [1], Katai [1], Postnikov
[8, Section 15], Ibragimov [1, 2], Muhutdinov [2, 3], Philipp [4, 5, 6, 7; 8, Chapter 4;
10], and R. C. Baker [3]. A general theorem of Gal and Koksma [1, 2] is often used in
these investigations. Surveys and further literature are given in Koksma [4, Kap. 9],
M. Kac [3], and Gaposhkin [1]. A metric theorem on a wider class of subsequences of
(ne) was shown by R. C. Baker [4], thereby improving a result of Salem [2]. For slowly
growing sequences, see R. C. Baker [6]. Deterministic results on the sequences (¢"«)
with an integer ¢ > 1 were given by Koksma [8], Korobov [7, 11, 13, 21], Korobov and
Postnikov [1], Kulikova [2], Postnikov [5, 6; 8, Section 14], Postnikova [5], and Usol’cev
[1, 3]. For a related result, see Postnikov [2]. Korobov [13] and Polosuev [1, 6] studied
analogous problems in several dimensions. Quantitative results on the sequence (n?0)
and related sequences can be found in Behnke [2], Bergstrdm [2], and Jagerman [1, 2].
For (p,%), where (p,) is the sequence of primes, see Vinogradov [4, 5] and Hua [1].
Concerning “irregularities of distribution” of subsequences of (ne), see Cohen [1], Daven-
port [2], and Hewitt and Zuckerman [1].

The distribution of small fractional parts of ne was studied by LeVeque [6, 7, 8],
Erdos [5], and Ennola [1]. See also W. M. Schmidt [1, 5], Sziisz [4], Philipp [4, 7],
Gallagher [1, 2], and Ennola [2]. The related notion of suites eutaxiques has been studied
by Lesca [2] and de Mathan [3, 4, 5].

For ((ney, . . . , ney)) and related multidimensional sequences, see Hartman [1], Hlawka
[16, 28], Karimov [2], Verbickil [1], and Zinterhof [1). Niederreiter [S] has shown that
if «,..., o are real algebraic numbers with 1, «;, ..., «; linearly independent over
the rationals, then the discrepancy of w = ((ney, . .. , ney)) satisfies Dy(w) = O(N-1+8)
for every € > 0. See also Exercise 3.17 and Niederreiter [13].

Many authors considered sequences {f(#)) with a polynomial f and estimated the
discrepancy or exponential sums in terms of these sequences. A survey of the early literature
on this subject is given in Koksma [4, Kap. 9]. Van der Corput and Pisot [1] used the
Vinogradov-van der Corput method. Their results were superseded by the refined method
of Vinogradov, an exposition of which may be found in the monographs of Vinogradov
[5], Hua [1, 2], and Walfisz [1]. For low-degree polynomials, further improvements were
obtained by Rodosskil [1]. See also Vinogradov [2, 4, 6, 7, 8] for related results, Karacuba
[1] treats the case where f grows somewhat faster than a polynomial. Kovalevskaja [1]
considers multidimensional polynomial sequences.

The sequence in Theorem 3.5 was introduced by van der Corput [7]. Haber [1]
improved (3.20) to ND}(w) < (log N)/(3 log 2) + O(1), and showed that the constant
1/(3 log 2) is best possible. The strongest result is that of Tijdeman (unpublished), who
proved NDK,(w) < (log N)/(3log2) + 1 and limy_., (NDj{y(w) — (log N)[3log2) > 4 +
(log 3)/3 log 2. For an application of the van der Corput sequence, see Knuth [2, Section 3.5].
A two-dimensional version of the van der Corput sequence was constructed by Roth [1].
Improving results of Gabai [1, 2], the discrepancy of Roth’s sequence was computed by
Halton and Zaremba [1], who also proposed a modified version of Roth’s sequence with a
smaller discrepancy. See also White [2]. There are generalizations to arbitrary dimensions.
For integers m > 2 and n > 0, let ¢,,(n) be the m-adic fraction obtained by “‘reflecting’’
the m-adic representation of n in the ‘‘decimal point’’ (¢,,, is called a radical-inverse function).
Then the van der Corput-Halton sequence in I*, k > 1, is defined by ((¢n, (1), dm, (1), . ..

¢,,,k(n))), n=0,1,..., where my,...,m, are pairwise relatively prime (Halton [1]).
For k = 1 and m; = 2, we just get the van der Corput sequence. The Hammersley sequence
of order N in I*, k > 2,is defined by ((#/N, ¢, (), ..., bp N, n=0,1,... , N — 1,

where py, . .., pp—, are the first ¥ — 1 primes (Hammersley [1], Halton [1]). The following
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discrepancy estimates hold (Halton [1]): NDKy(w) < G log’”’ N for all N > 2 for the van
der Corput-Halton sequence, and ND¥ < Cy, logh~! N for the Hammersley sequence of
order N > 2, where C;, and Cy, are certain numerical constants independent of N (see also
Meijer [3]). It is a widely held belief that no infinite (resp. finite) sequence can have a
discrepancy of smaller order of magnitude than the van der Corput-Halton (resp. Ham-
mersley) sequence. Compare also with Section 2. A survey of these sequences may also be
found in Halton [3]. A van der Corput-Halton type sequence in the infinite-dimensional
unit cube was studied by Sobol’ [4, 7]. A very detailed study of sequences in I* based on
dyadic rationals was carried out by Sobol’ [6, 7], and Sobol’ [1, 2, 3, 7] also investigated
the van der Corput-Halton and Hammersley sequences with respect to numerical integration
(see also Section 5). For sequences that are of great importance for numerical analysis,
namely, so-called pseudorandom numbers generated by congruential methods, discrepancy
estimates were established by Jagerman [3] and Niederreiter [4, 18].

For further quantitative results on special classes of sequences, we refer to Cassels
[2, 3, 4], Drewes [1], Erd6s [2], Erdos and Koksma [2], Erdds and Turén [1, 2, 3, 4],
Korobov [14, 18], LeVeque [1, 2, 3], Mineev [2], Sanders [1], and Usol’cev [2].

Exercises

3.1. Prove that the discrepancy of the sequence w = (an°),a > 0,0 <o < 1,
satisfies Dy(w) = O(N™) with 7 = max (¢, 1 — 0).

3.2. Give an example of a sequence w = (an'/?), a > 0, for which D y(w) =
Q(N-VE),

3.3. Prove that the discrepancy of the sequence w = (alog’n),a > 0,0 > 1,
satisfies Dy(w) = O(log' ™ N).

3.4, Let v be a positive function such that >¢2, y(q) converges. Then for
almost all numbers « (in the sense of Lebesgue measure) there are only
finitely many integers ¢ > 0 and p such that [ge — p| < v(g). Hint:
It suffices to consider « € J; choose ¢ > 0 and Q with > o y(q) < ¢;
estimate the measure of the set M = {« € I: there are ¢ > Q and p
with |o — (p/g)| < y(9)lg}-

3.5. Let & > 0 be given. Prove that almost all o are of type <c(a) log'*®2q,
where c(«) is a positive constant that may depend on «.

3.6. Find the continued fraction expansion of \/2, \/3, and (1 + \/2)/3.

3.7. Prove that p,q._; — puaqn = (—1)" for n 2> —1 and p,g,_» —
Pn—29n = (=D"a, forn 2 0.

3.8. Let o be of type <u, and let g,,, > 1 be the denominator of a con-
vergent to o. Prove that (he) > 1/g,9(q,) for 1 < h < g,44.

3.9. Let « be of type <y, and let g, < ¢,., be the denominators of two
consecutive convergents to . Using ideas from the proof of Theorem
3.4 and the result of Exercise 3.8, prove that

an 1
—— < ¢q,(v(q,) + log q,),
2 (et S v
hoti<agni1

where ¢, — 1 < hy < g,,, @and ¢ > 0 is an absolute constant.
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3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.1e.

Deduce from Exercise 3.9 that for o of type <y we have

an+1—1 1
E TN S an+1('/’(qn) + IOg q'n) forall n 2 0.
h=an (h“)

Let « be of type <y. Use Exercise 3.10 to show that

> 1 O(m log m + my(m)).
h=1 (hoc)

Show the following improvement of Lemma 3.3: If « is of type <,
then

m

721 h¢ho)

= o(log2 m + y(m) + Ef—@).

r=1 h
Hint: Use Abel’s summation formula and Exercise 3.11.
Prove that for given & > 0, the discrepancy Dy(w) of w = (na) satisfies
NDy(w) = O(log*** N) for almost all «. Hint: Use Exercise 3.5.
Suppose that for all irrationals « of type <y, we have D, 1/{ho} =
O(f (m)). Then prove that also D4, 1/¢(ha) = O(f (m)) for all such «.
(Note: The converse is trivial.)
For a fixed positive integer m, define g(n) = 1/n(n + Dforl < n < m
and g(m) = 1/m. For a lattice point (n, .. ., ;) € Z* with 1 < n; < m
for 1 <i <k, define f(ny,...,n) =%, g(n). Suppose s is an
arbitrary function defined at least for the lattice points h € Z* with 0 <
[h|| < m. Then the identity

mn

> sty = 3 f(n,...,m)  3* s(h)
o<|/h<m Alseres nxk=1 b=(h1,.... k&)
|n;i<n,

holds, where the asterisk signalizes deletion of the origin from the
range of summation. For the definition of ||h|| and r(h), see the notes
in Section 2.

Let «y,..., o, be irrationals such that 1, «,,..., o, are linearly
independent over the rationals. Suppose there exists # > 1 and ¢ > 0
such that r'((hy, ..., ")) ey + -+ - + by > ¢ for all lattice
points (hy, ..., h) # (0, ..., 0). Verify that

(hoy + * -+ + o)™ = O@"(n) log #(m)),
b=(h1,....hx)
lh,|_<_n,

where n = (n,, ..., n,) is a lattice point with n; > 1 for 1 < i< k.
Hint: Compare with the proof of Lemma 3.3,
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3.17. Let a4, . .., a; satisfy the same conditions as in Exercise 3.16. Show
that the discrepancy Dy(w) of the sequence w = ((ne,, . .., noy)),
n=1,2,..., satisfies Dy(w)= O(Nlogtt! N) for =1 and

Dy(w) = O(N"YW=2%1 166 NY for 5 > 1. Hint: Use the theorem of
Erdos-Turan-Koksma and the results of Exercises 3.15 and 3.16.

3.18. Let (,) be the van der Corput sequence. For an integer s > 1, put
N=>432% and o« = Y25 2°%1 For 1 <j < h, define y, and the
finite sequence w,; as in the proof of Theorem 3.5. Now show that
A([0, 0); 230D ) = (o0 — y )22 + L for 1 <j < h. Hint: Use
that w; is equidistant with difference 2-2*~,

3.19. Deduce from Exercise 3.18 that for the discrepancy D¥(w) of the van
der Corput sequence o we have NDy(w) > (log N)/6 log 2 for infinitely
many N.

3.20. Prove that the discrepancy D y(w) of the sequence w = (1 log n) satisfies
Dy(w) = O(N-Y/5 log?/® N). Hint: Use Theorem 2.7 in Chapter 1.

3.21. Prove that the discrepancy D y(w) of the sequence w = (n log log en)
satisfies Dy(w) = O(N-1/5(log!/5 N)(log log N)*/5). Hint: Use Theorem
2.7 in Chapter 1.

4. REARRANGEMENT OF SEQUENCES

Dense Sequences and Uniform Distribution

In this section, we shed some new light on the property of u.d. mod 1 by
showing that it depends more on the order in which the terms of the sequence
are given than on the specific nature of the terms themselves. The central
result will be that an everywhere dense sequence in the unit interval can
fit any prescribed distribution behavior if one just rearranges the terms in a
suitable manner. In particular, any everywhere dense sequence in the unit
interval can be rearranged so as to yield a u.d. sequence mod 1.

Before we set out to prove these results, we study the relationship between
the discrepancies of sequences for which corresponding terms are close.

THEOREM 4.1. Let a,,%,,...,xy and ¥, ¥, ...,¥x be two finite
sequences in 1. Suppose &, &, . . ., &y are nonnegative numbers such that
|z, — ya| < &, for I < n < N. Then, for any ¢ > 0, we have

e
IDy(®s -+ ) — Dy(@ss - - > yw)| < 26 + —I-f,—) 4.1)

where N(¢) denotes the number of n, 1 < n < N, such that ¢, > &,
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PROOF. Let w and 7 stand for the sequences @y, ..., 2y and 95, . .., ¥n
respectively. Let J = [o, 8) be a subinterval of I. Consider first the interval
Jy=le—¢ B+ 8 NI Whenever y, €J, then either z, €J, or ¢, > e.
Therefore, A(J; N; ) < A(J;; N; w) + N(¢). Furthermore, we have
with |6, < 1. It follows that
A(J; N; ) — NA(J) < N(A(Jp) — A(J)) 4 8,NDy(w) + N(¢)
< 2¢eN + NDy(w) + N(g). (4.2)

On the other hand, consider the interval J, = [« + ¢, § — ¢€). This interval
might be empty, in which case the subsequent estimates will hold trivially.
Whenever =z, €J,, then either y,e€J or ¢, >¢. Thus, A(Jy; N; w) <
A(J; N; 1) + N(e). We have A(J,; N; w) = NA(J,) + 6.ND y(w) with |8, <
1. It follows that
A3 Ny 1) — NAJ) 2 N(A(Jp) — A() + 8,NDy(w) — N(e)
> —2eN — NDy(w) — N(e). 4.3)
Combining (4.2) and (4.3), we conclude that
AU N3 7) NG
N N’

This upper bound is independent of the chosen interval J, and so,

—A) | £ Dy(w) + 26 +

Ne)
N

Interchanging the roles of @ and =, we arrive at

DN(T) S DN(w) + 2e +

Dy(®) < Dy(r) + 2¢ + %_)

and the proof is complete. i}

COROLLARY 4.1. Leta,,...,zyandy, ..., yybetwo finite sequences
in 7, and suppose there is an ¢ > 0 with |2, — y,| < efor 1 < n < N. Then,
|DN(x1’ R ] xl\') - DAV(yli ey y;\’)l S 2e. (4'4)

PROOF. Choose ¢, = ¢ for | < n < N in Theorem 4.1. |}

THEOREM 4.2. Let w = (z,) be an infinite sequence in /. Furthermore,
we are given a sequence (y,) that is everywhere dense in 1. Let h(x) be an
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increasing nonnegative function defined for > 1, and satisfying

lim A(zx) = oo.

T

Then one can rearrange the sequence (y,) so as to yield a sequence o satisfying

h(N)

| Dy(@) — Dy(o)l £ —— (4.5)

for all sufficiently large N.

PROOF. Without loss of generality, we may assume A(1) = 0, for other-
wise, we replace h(x) by A(x) — h(1). Let g(¢) be the inverse function of
1h(z). We note that g(0) = 1, and so, g(n) > 0 for every positive integer n.
Since the sequence (y,) is everywhere dense, we can find for every %, an
element ¢ such that |z, — Y, | < 1/g(n), and also k, # k,, whenever
n# m. Let £ be a number with 0 < £ £ 1 that will be specified later on.
By Theorem 4.1, the sequence 7 = (¥, ) satisfies

| Dy(®) — Dy < 26 + -—@

where N(e) is the number of elements 1/g(n),1 < n g N, such that 1/g(n) >e.
Now 1/g(n) > ¢ is equivalent to g(n) < 1/e, or n < }h(1/e), and thus
N(e) € [3h(1/e)]. We take ¢ = 1/N, and obtain

2 h(N)
|Dy(w) — Dy(7)| < N + AN (4.6)

We now define a rearrangement ¢ = (u,) of (y,) in the following way.
We putu,, = y,_ifnis not of the form {g(m)] + 1 for some positive integer m.
The remaining elements of (y,,) are those of the form y;, withn = [g(m)] + 1
and those that are no y;, at all. We enumerate those elements in an arbitrary
fashion, say fy, f,,.... We still have to define u, for the n of the form
[g(m)] 4 1. We order the distinct n of this form according to their magnitude:
n <nyg<nyg<-:-. We define then u, =1, The sequence ¢ = (u,) is
then a rearrangement of (y,).

We will estimate {Dy(7) — Dy(0)]. Let c¢; denote the characteristic
function of a subinterval J of I. We have

(AL ) - (F52 - a0) ’

=‘ z(c.,(u,l) cs(ye)) 1.

n=1
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But ¢;(u,) — ¢;(y,) = 0 whenever n is not of the form [g(m)] + 1. There-
fore, ‘

N

1
’g 3 (e (t) = (%)

n=1

<= S 1<+ 1<t s
- N n=1 S N % - N 1zn
a=[g(m)1+1 [e(m)]+1SN g{m) <N

1 1 h(N)
m<

This implies araman
A(J; N; o) h(N)
—_— — MJ —_—,

N |+ N
and so, Dy(0) < Dy(7) + h(N)/4N. Similarly, one shows Dy(7) < Dy(0) +
h(N)/4N, and consequently,

—A(J)‘S‘A(J;N;T)
N

h
| Du(r) — Dy(o)| < % . @7

Thus, we get from (4.6) and (4.7) that

|DN(w) - DN((’)I S IDN(w) - DN(T)l + |DN(T) - DN(a)l
2 hW)
- N + 2N

and this for all positive integers N. But for sufficiently large N we have
h(N) > 4, and therefore,

b

HN) | h(N) _ h(N)
[Dy(w) — Dy(0)| < N + N - N |

COROLLARY 4.2. Any sequence that is everywhere dense in I can be
rearranged to a u.d. sequence mod 1.

PROOF. For the sequence w = (x,), we choose a u.d. sequence mod 1;
and for h(z) we choose a function that tends sufficiently slowly to infinity,
say Ni(z) = logx. By the previous theorem, there is a rearrangement o of
the given everywhere dense sequence (y,) with Dy(0) < Dy(w) + (log N)/N
for sufficiently large N. It follows that limy.,,, Dy(0) = 0, and so, ¢ isu.d.
mod 1. |

Farey Points

For the subsequent example, and also for later use, the following lemma
will be helpful.
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LEMMA 4.1. Let (c,) be a bounded sequence of complex numbers.
Divide the sequence into nonempty blocks, the first block consisting of the
first A, elements of (c,), the second block consisting of the next 4, elements,

and so on. Label the 4, elements in the kth block d®, . . ., ﬂ';_). Suppose that

limy, o Arys/(41 + - + A) = 0 and limy_,, (1/4)3 e d¥ = c. Then,
A\Y

1.
m E C," = C.
N-w N n=1

PROOF. Fork > 1, put B, = A; + -+ + A, Then,

1 1 18 1 &
._._zcn=B—(A1.__zdv +.+Ak_zd(vk))’
Akv=1

Bk n=1 x A1 v=1

and so, by Cauchy’s theorem, we have

1 B
lim— 3¢, =c. (4.8)

k2o Dy n=1
Now let N > A; be given. Then N can be written in the form N = B, + r
with 0 < r < A,;,,. We get

1 ¥ B,,.( 1 B ) 1 X

—Dc,=—|— ¢ |+ = Cp
N ngl " N Bk ‘n‘gl " N n=§k+1

The first term on the right tends to ¢ because of 1 < N/B;, < 1 + (4,;,,/B;)

and (4.8). The second term is dominated in absolute value by (4,,,/B.)M,

where M is an upper bound for |¢,|, and so tends to zero. [l

EXAMPLE 4.1. Here is an arrangement of the rationals in 7 into a u.d.
sequence mod 1. We choose the lexicographic ordering ¢, 3,%,%, 1, 4, ...,
where we write down, for successive values of n = 1,2, ..., all rationals
rfn with 0 < r < n and (r,n) = 1. For technical reasons, we consider a
sequence that is identical mod 1 with the above sequence, namely 1, 4, §, §,
1, 2, .. .. This sequence consists of blocks S,,n =1,2,..., of all rationals
rfnwith1l <r <nand (r,n) =1 For0 < a <1, let 4,(n) be the number
of terms from S, in [0, «]. The number of fractions (reduced or not) of the
form rfn, 1 < r < n, in [0, a] is exactly {n«]. Now we look at this number
from a different angle. If we reduce those fractions r/n, group them according
to the new denominators (which have to be positive divisors d of #), and
count them anew, then we arrive at the basic identity 3 5, 4,(d) = [ne]. By
the Moebius inversion formula, we obtain A4,(n) = zdl" p(nfd)[de]. There-
fore’ Aa(n) = o(‘azdl'n /“(’1/d)d - Zdln /“(n/d){da} = d¢(71) — Zd[n ;u(n/d){da}:

and so

A,(n) ’ 1 '
—_— — | L — d)|. 4.9
d(n) = d)(n),;%zl“( ) (4.9)
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We claim that lim,,_,,, f (1) = 0, where f (n) = (1/¢(1))2an |(d)]. We note
that f (n) is a multiplicative number-theoretic function, and for such functions
lim,_,, f (n) = 0 is equivalent to f(n) tending to O as n runs through the
prime powers.

Thus, we need only consider f(n) for prime powers n = p°. But then
f(p» = 2/(p>*(p — 1)), which clearly tends to 0 if p* — co. From (4.9) we
infer that lim,,_,, 4,(#)/¢(n) = «, and we now invoke Lemma 4.1. It remains
then to show that lim,_,, ¢(n + 1)/®(n) = 0, where ®(n) = ¢(1) + - -+ +
é(n) forn 2> 1.

We work with an elementary estimate for ®(#). Much sharper results are
known in analytic number theory. We observe that ®(n) can be interpreted
as the number of lattice points (x,y) with 1 <a <y <n and x and ¥y
relatively prime. Then B(n) = 20(n) — 1 is the total number of lattice
points (¥, y) with 1 <2 <n, 1 <y < n, and 2, y relatively prime. But

n 7/ 1\2 © 1 a’
= 2 _ 2 __ - 2 .,2 - = 2 . —
B(n) 4 dgz lﬁa,z'snl 2 " dgz(d) 2 " " agz d2 4 (2 6 ).
1<y<n
(z,¥)=a

Consequently, ®(n) > cn? for some positive constant ¢, and so ¢(n + 1)/®(n)
< (n + 1)/cn? settles the proof. i

Rearrangements and Distribution Functions

We shall now prove analogues of Corollary 4.2 with respect to a.d.f.’s (mod 1)
in the sense of Definition 7.1 in Chapter 1. We will use results of the present
chapter to show that for every nondecreasing function fon / with f(0) = Oand
S (1) =1 there really exists a sequence having this function f as its a.d.f.
(mod 1), a problem that was left open in Chapter 1, Section 7. We start
with establishing an even stronger result for continuous f.

LEMMA 4.2. Let f be a continuous, nondecreasing function on I with
f(0) = 0and f(1) = 1. Then there exists a sequence w in / such that

log(N 4+ 1)

4.10
log 2 (4.10)

|A([0, «); N; w) — Nf(®)| <

holds forall N> 1land 0 < a < 1.

PROOF. Let 7= (y,) be the van der Corput sequence constructed in
Section 3. By the continuity and monotonicity of f, the set I, = {f € I: f (£)<
¥} is a closed subinterval of I (or a singleton) for each n > 1. Let «,, be the
largest element of 7,,. We claim that w = (w,,) satisfies (4.10).

Let us first show that for any n > 1 and 0 < « < 1, the inequalities
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%, > o« and y, > f(«) imply each other. If x, > o, then x, €I, implies
¥, > f(,) = f(); conversely, if y, > f(«), then « € 1,, and so, 0. < «,,.
It follows that x, < o precisely if y, < f(«), and therefore,

A([0, a); N; w) = A([0, f(0)); N; 7)

for all N >1 and 0 < o < 1. An application of Theorem 3.5 completes
the proof. I

To achieve the transition from the continuous case to the general case,
we need a lemma from real analysis.

LEMMA 4.3. Let f be a nondecreasing function on the compact interval
(a, b]. Then there exists a sequence g, g, . .., g, - . . of continuous non-
decreasing functions on [a, b], satisfying g.(a) = f(a) and g,(b) = f (b) for
k > 1, which converges pointwise to f, that is, lim,.,,, g.(8) = f (8) for all
g € [a, b].

PROOF. For each k > 1, we choose a finite sequence a = o’ < o’ <
co <o) = b, with of}) — ai < 1/k for 0 < i < my, that contains all
points « € (@, b) with f(« + 0) — f (¢« — 0) > 1/k (note that there can be
only finitely many such o). Let g, be the function with g,(¢%) = f («{*) for
0 < i < my that is linear on the intervals [« a{¥\], 0 < i < m;. Then g,
is clearly continuous and nondecreasing on [a, b], and g.(a) = f(a) and
gx(b) = f (b). It remains to verify that the g, converge pointwise to f (this is,
of course, trivial for the end points a and b).

Consider first the case where § € (a, b) is a point of discontinuity of f.
Then f(f +0) — f(f — 0) > 0, and so, from some k on, we will have
= f’;’ for some i, 0 < i, < m,. Thus, g,(B) = f(B) for sufficiently large
k, and everything is clear.

Now let f be continuous at § € (a, b) and let £ > 0 be given. Then for all
sufficiently large k (say k > ko) we will have f(f) — e < f(y) <f(B) + ¢
for y € (B — (1/k), B + (1/k)). But for each k we have a{®’ < 8 < o) for
some i = i(k), 0 < i < my. Since o, — a* < 1]k, both «¥* and o) lie in
(8 — (1/k), B + (1/k)). Hence, for k > k, we obtain f(a) > f(f) — ¢
and £ () < f () + & thus, (@) > £ (B) — & and g () < [ (B) + e.
Now g(«{*) < &B) < gx(«{), and so, f(8) — ¢ < gx(B) <f(@ + ¢ for
all k > k.

THEOREM 4.3. Let f be a nondecreasing function on I with f(0) =0
and f (1) = 1. Then there exists a sequence in I having f as its a.d.f. (mod 1)
We can even find such a sequence with all elements distinct.

PROOF. By Lemma 4.3 there exists a sequence gy, 85, ...,84 ... Of
nondecreasing continuous functions on I, with g,(0) = 0 and g;(1) = 1 for
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k > 1, that converges pointwise to f. For each g;, we can find a sequence 7,
of points =¥, &, ..., &, .. in I satisfying (4.10). We note that g, is
uniformly continuous; therefore, there exists g, > 0 such that g,(«) —
gi{e — 6) < 1/k holds for all 0 < 0 < ¢, and all « € [, 1]. Let w, denote a

sequence in I of the form y{¥, yf¥, ...,y . . such that 2F < ¢ <

al® 4 g, for all n > 1. Now let w be the sequence y{¥), y{* y{#, ¥ 4

g, P, 9, ... Thus, o is constructed by listing successively
the first term of w;, the first two terms of w,, . .., the first k terms of wy,

and so on. If we choose elements ', 1 < n < k, that are distinct from the

preceding elements in w (this is possible since the y'® come from an interval
of positive length), then w even consists of distinct elements. We shall show
that limy ,  A([0, ); N; w)/N = f(«) for0 < « < 1.

By Lemma 4.1, it suffices to prove lim,_, , A([0, «); k; w,)/k = f («) for
0< o< 1. We have

A([O, 2); ks wy)

— S ’ < 11410, o3 k3 w03) — A0, ); k3 7

k k
A([0, 0); k; 4,
+’_____(l BT o w) + lae) — f@). @11)

k

On the right-hand side of (4.11), the second term is at most

(log (k + 1))/k log 2, and so, it tends to 0, as does the third term.

To estimate the first term, we note that ¥ < « implies 2% < «, and so,

A([0, @); k; wy) < A([0, &); k5 71). Now A([0, &); k; i) — A([0, o); k5 cwy)
is equal to the number of subscripts n, 1 < n <k, for which a® < o, but
y® > o. But for such # it follows that & — ¢, < 2* < a. Put [a — &, a) N
[0, @) = [¢ — &, &), where 0 < 6, < ;. Then,
|A([0, 0); k5 wy) — A([O, &); k5 7))
< A(fe — 6y, ); k5 71)
= (A([0, &); k; ;) — kgi(e)) — (A([0, @ — &p); k5 71) — kgao — &)
+ k(gu(e) — gile — 63)
2log(k + 1
< og(k + 1) n
log2

1.

1t follows that the first term on the right-hand side of (4.11) also tends to
Dask— 0. i

We are now in the position to prove a generalization of Corollary 4.2 on
the rearrangement of everywhere dense sequences in the unit interval.
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THEOREM 4.4. Let f be a nondecreasing function on 7 with f(0) = 0
and f (1) = 1. Then any everywhere dense sequence in / can be rearranged

so as to yield a sequence having f as its a.d.f. (mod I).

PROOF. Let w = (»,) be a sequence of distinct elements in I having f

as its a.d.f. (mod 1) (such an w exists by Theorem 4.3), and let (y,) be a

given everywhere dense sequence in /. We decompose w into blocks, the

kth block consisting of the z, with (k — 1)k/2 < n < k(k + 1)/2. For each

k, take the k elements of the kth block and order them according to their

magnitude, say af¥ < of <0 < oc”" Now choose k numbers &, . ..
(k) with a(k) < ﬂ(k) < a(k) < ﬂ(” - < ot(” < ﬂ’lck‘)l < oc“" < ﬂm

and such that each S isa y,,. Let £ = (z,,) be the sequence f{, ¥, B, . ..,

W, B8, . ... Clearly, 2, = y,, for some k,. Moreover, the construction
of & shows that we can suppose k, # k, whenever n # m.

We claim that & has the a.d.f. (mod 1) f. It suffices to show
2 k(k + Iy ) _
o D ([ STy 8 =S

for 0 < <1, since this implies th_,‘,O A([0, «); N; &)/N = f (o).
Comparing the 1th block of w and &, we see that in [0, o) there are at least
as many o\, | < r < i, as there are 8, 1 < s < i. On the other hand, the
excess of the number of «” in [0, &) over the number of %" in [0, ) can
be at most 1. Therefore, 0 < A([0, &); k(k + 1)/2; w) — A([0, a);
k(k + 1/2; &) < k, and so,

(mor

lim
k= k(k + 1)

. k(e 4+ 1) _
m k4 D) A([O’ Wy w) /(@)

Finally, we take the sequence ¢ and fill in the remaining y,, at large gaps
so that we do not disturb the distribution behavior of & (compare with the
proof of Theorem 4.2). We enumerate those y, that are not contained in £,
together with those z, for which n is a perfect square, insome order: uy, us, . . ..
Then we define a sequence = = (f,) by t, = 2, if n is not a perfect square,
and t,, = u,, if n = m* Evidently, this sequence = is a rearrangement of (y,).
Furthermore, if we compare the first N terms of = with the first N terms of £,

then we observe that they differ in at most [\/N] terms. Hence,
|4([0, @); N; 7) — A([0, 0); N; &)} < VN
for 0 < « < 1, and so,
A([0,@); N . A([0, 0); N
fim AN —([L;—@ =) W

N—-w N-w
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Notes

The fact that an everywhere dense sequence can be rearranged to a sequence with smalil
discrepancy was already known to van der Corput [7]. Theorem 4.2 is essentially from
the same source. Our proof is taken from Hlawka [22], where Theorem 4.1 can be found
as well; see also Niederreiter [5]. An analogous result in a general setting is given in
Niederreiter [1]. Corollary 4.1 was first shown by van der Corput and Pisot [1].

The results enunciated in Corollary 4.2 and Theorem 4.4 were first shown by von
Neumann [!] and van der Corput [7], respectively. It was van der Corput [7] who estab-
lished the following strong result along the same lines: Let & and G be two nondecreasing
functions in I with g(&) < G(x) for 0 <& <1, g(0) = G(0) =0, and g(1) = G(1) = 1.
Then any everywhere dense sequence in / can be rearranged to a sequence such that the
set of d.f.’s (mod I) of the new sequence consists exactly of all nondecreasing functions f
in T satisfying g(¢) < f () £ G(x) for 0 <& < 1. In a more general context, we shall
return to this subject in Section 2 of Chapter 3.

A detailed study of the relation between order properties of a sequence and its distri-
bution behavior was carried out by Niederreiter [3].

The result given in Example 4.1 may also be verified by using the Wey! criterion. For
the blocks S, this is done in Polya and Szegd [!, II. Abschn., nos. 188-189], whereas
the infinite sequence is treated in Erdds, Kac, van Kampen, and Wintner [1] and Kac,
van Kampen, and Wintner [1]. Further results on the distribution of this sequence can
be found in Franel [4], Neville [1], Bateman [1], Delange [7], Huxley [1], and Niederreiter
[16]. Another application of the method in Example 4.1 is given in Niederreiter [4].

Exercises

4.1. Prove an analogue of Corollary 4.1 for D}.

4.2. Prove an analogue of Theorem 4.1 for DX.

43. Let ay,...,%y and y;,...,yy be two finite sequences in / with
|2, — y,l <& for 1 <n <N, Suppose a; < a; < - L ay is the
sequence of x, ordered according to their magnitude and that 5, <
b, < -+ < by is the sequence of y, ordered according to their magni-
tude. Prove that |a, — b,| < efor1 <n <N,

4.4, Deduce from the result of the preceding exercise an alternative proof
for the analogue of Corollary 4.1 for D%,

4.5, Let (z,) be an arbitrary sequence in /, and let f be a positive non-
increasing function defined at least for all positive integers and for
which limy_,, Nf (N) = co. Prove that there is a rearrangement ¢ of
(=,) for which Dy(0) > 1 — f(N) holds for all N > 1.

4.6, Consider the set of all rationals of the form k/2” with 1 < &k < 2" — 1,
k odd, and m > 1. What is a u.d. mod 1 arrangement of these numbers
without repetitions ?

4.7, Consider the set of rationals in the preceding exercise in lexicographic
order, that is, 4,4, 2, %, %, & &, .... Show that this sequence is not
u. d. mod 1.
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4.8. Prove that the sequence in Exercise 4.7 has more than one continuous
d.f. (mod 1).

4.9. Strengthen the assertion in Exercise 4.7 by showing that for this
sequence o there are infinitely many N such that Dy(w) > & + 1/4N.

4.10. Consider the sequence w givenby $,$,4, 4,4, 4,4, 4, %, 4,.... Prove
that there is a positive constant ¢ such that NDy(w) > v/ N holds for
all N.

4.11. Complementary to Exercise 4.10, prove that for the sequence w con-
sidered there, we have ND y(w) < C/ N for some constant C and all N.

4.12. Prove that ®(n) = (3/7Hn* + O(nlogn), where O(n) = 37, $()).

4.13. Analogous to Exercise 4.10 but with the sequence from Example 4.1.
Hint: Use the result of Exercise 4.12.

4.14. Show that some rearrangement of the sequence (log n) is u.d. mod 1.

4.15. Same as Exercise 4.14 but with ($(n)/n).

4.16. Same as Exercise 4.14 but with (\/log n).

4.17. Same as Exercise 4.14 but with (loglogn), n =2,3,....

4.18. Let f be a continuous increasing function on I with f£(0) = 0 and
f (1) =1, and let g be its inverse function. For a sequence w = (z,)
in I, let 7 = (y,) be defined by y, = g(,). Prove that Dy(w) =
Dy(7; f) for all N; see (1.4) for the definition of the latter discrepancy.

4.19. Show that Theorem 4.2 need not be true if &(z) is a bounded function.

5. NUMERICAL INTEGRATION

Koksma’s Inequality

We have seen in Section 1 of Chapter 1 that whenever (z,) is a u.d. sequence
mod 1 in 7and fis Riemann-integrable in 7, thenlimy_ , (1/M)3Y_, f (z,) =
§3f () dz. In other words, a Riemann integral over [0, 1] may be approxi-
mated to any degree of accuracy by arithmetic means of values of the inte-
grand at points in 7 forming a u.d. sequence mod 1. It is this very fact on
which efficient numerical methods of computing integrals can be based. A
very remarkable application of number theory indeed! Of course, any
numerical method claiming practicality has to be accompanied by some
a priori estimate of the error that we commit. And this is exactly the point
where the notion of discrepancy comes in. The quality of the approximation
of the integral by arithmetic means of the said type is linked directly to the
discrepancy of the sequence (x,) of “nodes.” The better the sequence (x,) is
distributed, the faster an approximation we can expect. It is one of the aims
of this section to provide a justification for this intuitive statement.
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LEMMA 5.1. Let 2, <2, < ' <y be N given points in I, and let f
be a function on I of bounded variation. Then, with z, = 0 and 2y, = 1,
we have the identity

N 1 N Tn+1
L3 se-[10a=3 (1 - 2) arco (5.1

N 221 n=0Jan

PROOF. Using integration by parts and Abel’s summation formula, we
obtain

S [M(= B aro=[ 140 -3 2 G - @)

n=0 Jan 0 n=0
N—1

= (T — f T dt+ L3 S = SO

.____1_ N _ 1
- LS se)-[10a m

THEOREM 5.1: Koksma’s Inequality. Let fbe a function on I of bounded
variation V(f), and suppose we are given N points #;, ..., 2y in I with
discrepancy D}. Then,

LS i) - [ ‘“l < V(D3 (52)
N n=1 " 0 N '

PROOF. Without loss of generality, we may assume #; < x, <+« < .
Thus, we can apply Lemma 5.1, For fixed n with 0 < n < N, we have
n
&, — _

-3
N N N
by Theorem 1.4, and the desired inequality follows immediately. [Iij

n
Tpta

I

)SDI’{‘, forx, <t < @,

gmax(

It is clear that Theorem 5.1 remains valid for any N real numbers z,, . . .,
@y if we only suppose in addition that f be periodic with period 1. Before
passing on, we note an application of Koksma’s inequality to the estimation
of exponential sums that is, in a sense, a simple counterpart to Theorem 2.4.

COROLLARY 5.1. Let a,...,%y be N real numbers with discrepancy
Df;. Then,

1 &,
— zemna:n
N n=1

PROOF. Let L denote the left-hand side of (5.3). Then

< 4D}, (5.3)

1 ¥y . .
_ Zeann — LeZmO
N n=1
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for some 0 e I. Since L is real, we obtain

L= 1 %e"”'““’"_o’ =1 %cos 2m(z, — 0)

N n=1 N »=1 " ’
Using the remark following Theorem 5.1, we apply Koksma’s inequality
to the points @;,...,ay and to the function f(t) = cos 27 (t — 6). Since
V(f) = 4 on I, we arrive at the desired inequality. JJjj

EXAMPLE 5.1. If the function f has a continuous derivative in /, then
the Riemann-Stieitjes integrals in the above proofs may be replaced by
Riemann integrals. We arrive then at the inequality [(I/N)D_,f (=,) —
f3f @) dt] < DY f5 | f'(1)| dt, where f may also be complex-valued. For real-
valued f, we have [ | f'(1)| dt = V(f) (see Exercise 5.10). |

Some Remarkable Identities

In case the function fin Theorem 5.1 is of a simple type (for instance linear),
then sharper results can be shown. For f(t) = t, we obtain the following
identity.

THEOREM 5.2. For any points a;, ..., %y in I we have

( gx - %) 3l Ry(1) dt — | ( ﬁ{ sy -Na, o

where Ry is the function introduced in Section 2.

PROOF. By (2.28) we have [} Ry(t)dt = —Sy, where Sy =33 2, —

(N/2). Putting Sy(t) = 2Ny {z, + 1} — (N/2) for 0 < ¢t < 1, we get from
(2.41) that
SN(’) - SN = RN(I - t)' (55)

A simple change of variable shows that [{ Ry(l1 —#)dt = [} Ry(t)dt =
— Sy, and so, from (5.5),

1 1
f SN(t) dt = SN +f RN(l —_ t) dt = 0 (56)
0 0

Combining (5.5) and (5.6) we find

1

1 1 1
fRNZ(t) dt =f Ry 1 —ndt =f Syt dt — 2SNf Sy(f) dt + Sy*
0 0 0 0 .

1
- f SO dt + 5y°. I
0
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In particular, we have then

2 1 1 N 1 2
< D‘y - — .’L‘" ty — —) dt
v L(N ngl{ + } 2

an improvement on Koksma’s inequality. Let us prove a not so well-known
identity that is in the same vein as Theorem 5.2.

N
Lsp, -2

N a=1 - 2

THEOREM 5.3. For any points @y, ..., &y in I, we have

1 N N
f Ry (Ndt=3N*4+ NY =z, + Z‘ X, — 22 Z‘ max (,, ¢,,). (5.7)
0 n=1 =1 m=1
PROOF. We have Ry(t) = D, ¢,(x,) — Nt, where ¢, denotes the charac-
teristic function of [0, t). Therefore,

1 N 1 N N 1
f R(1) dt = f #dt —2N Y tc,("c,,) at+> > c,(.’v,,)c,-(.’v,,,) dt
0

n=1 n=1 m=1
N 1 N N 1

=iN*—2ND | tdt+3 3 dt

n=1 Jan n=1 m=1 Jmax(an,am)

AY

_%Nz—Nz(l _’02)‘*‘2 z(l —max(’L,,,.m))

n=1 m=1
= %Nz + Nz l‘n + zl% 221 zlmax (.’L‘”, m"’)' .
n= n=1 m=

EXAMPLE 5.2. If zl, ..., %y are ordered according to their magnitude,
that is, #; <%y, <+ <y, then from (5.7) we obtain [} Ry*(t)dt =
IN? 4+ NDN w2+ Z‘,, 1% — 22N nx,,. It follows that

fovz(f) dt = E('v -H+ NE(%" (n[N))* — %, (5.8)

using 3N n? = IN(N + 1)(2N + 1). We note that the second sum in (5.8)
is closely connected with D} because of Theorem 1.4. i

An Error Estimate for Continuous Functions

We shall need the following auxiliary notion. Let f be a continuous function
on I. Then its modulus of continuity M is given by

M(h) = sup If(®) —fpl for0<h <1

@.vel
|a—y| Sh

Since f'is uniformly continuous on I, we have lim,_,o M(h) = 0.
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THEOREM 5.4, Suppose the continuous function f on I has the modulus
of continuity M. Let @, ,, ..., ¥y be any N points in [ with discrepancy
Dltr. Then

L3 gy - [0 a

PROOF. Without loss of generality, we may assume that 2; < 2, < -+ <
vy. We note that [ f(r)dt = SN JuN N f(@t)dt. By the mean value
theorem for integrals, we have f(,l_vl,/Nf(t) dt = (1/N) f(&,) for some &,
with (n — 1)/N < &, < n/N. Therefore,

< M(D3). (5.9)

N

~ 3 1) - f f( di =L g(f(m,,) — &,

We will be done if we show that |z, — £, < D} for 1 <n < N. Now,
whenever z, > &,, then |o, — &, < |z, — (n — 1)/N| < D} by Theorem
1.4. Likewise, if z, < &,, then |z, — &,| < |z, — (n/N)| < D} by the
same theorem. JJj

A weaker version of this theorem that more closely resembles Koksma’s
inequality may be given.

COROLLARY 5.2. Under the hypotheses of Theorem 5.4, we have

_l, N 1
( ~ 3 ) - f £(t) di

n=1

< (ND} + 1)M(§) < 3ND§‘,M(£). (5.10)

PROOF. To prove the first inequality, it suffices to show that M(D}) <
(ND}% + 1)M(1/N). Choose =, y € I withy < @ < y + D}. We insert points
between y and @ in the following manner:

1 2 -1
y,y+N,y+N,..- ) T,

where

k—1 k

——<r—y< <.

N s 4 N
We note that k = [N(x — y)] + 1 < ND} + 1. Now
If(x) — f(¥I

5 |1(v+3) ~1(v+ ) [ + 1@ —1(r+ 5 1)‘
< kM(N) < (NDf + 1)M($),

and forming the requisite supremum on the left-hand side completes the
argument. To prove the second inequality, we simply observe that 2ND¥ > 1
by Corollary 1.2.
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The Koksma-Hlawka Inequality

We want to generalize Koksma’s inequality to several dimensions. To this
end, we first have to describe under what circumstances a function of several
variables is said to be of bounded variation. Suppose we are given a function
S =f@D,. .., a%)on I* with k > 2. By a partition P of I*, we meana
set of k finite sequences 7, 7, 77,,,: (=1, , k) with 0 = 5§’ <
<< 77(” =1forj=1,...,k In connectlon w1th such a partition,

we define, for each] =1,..., k an operator A, by
3t G=D () (41 :
A,-f(x ), ol ), 77:“ I+ ), L a:“”))
— (1) (=1 )+ (K
= f(aM, ..., 20D gl TR

—f(x‘”, e, 2= 1)’ 7]1(1) (;‘+1), e x(k)) (5_11)

for0 <7 < mj. Operators with different subscripts obviously commute, and
Ay, will stand for A; «--A,; . Such an operator commutes with sum-
mation over variables on Wthh 1t does not act.

DerINITION 5.1. For a function f on I*, we set

mi1—1 mrp—1

ve(f) = sup S DAL RSO T, (5.12)

i1=0 ix=0
where the supremum is extended over all partitions P of I*. If V®(f) is
finite, then f'is said to be of bounded variation on I* in the sense of Vitali.

It follows immediately from the definition of the A-operators that whenever
the function f on /* actually depends on less than k variables, then V¥ (f) =
0. This is not a very healthy state of affairs, since such a function f might
still be extremely irregular. Thus, to arrive at a more suitable notion of
variation, we also have to take into account the behavior of f on the various
faces of I*. This leads to the following definition.

DErFINITION 5.2. Let f be a function of bounded variation on I* in the
sense of Vitali. Suppose the restriction of f to each face F of I* of dimen-
sion1,2,...,k — 1 is of bounded variation on F in the sense of Vitali.
Then f is said to be of bounded variation on I* in the sense of Hardy and
Krause.

The functions of bounded variation in the sense of Hardy and Krause
are the ones for which a multidimensional version of Koksma’s inequality
can be proved. To have an idea of how to proceed, let us first analyze the
proof of the one-dimensional case. The essential step in the pivotal Lemma
5.1 was integration by parts of a Riemann-Stieltjes integral. But it is well
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known that the applicability of integration by parts to such integrals is a
consequence of the Abel summation formula. It will therefore be an important
task to generalize this formula to several dimensions.

First, we introduce another operator; namely, we define for 1 <j < k:

A;‘f(x(l), e, x(k)) =f(-'lf(1), e .’l:“_l), 1, _,v(7'+1), Ce .’l:(k))
— ™, o, 20, 2D ) (5.13)
The remarks about the A-operators also hold for this class of operators. In
particular, we again let Af, ; stand for Af - - A
Given any expression F(r,...,r +p — 1 r+p,...,s) depending only
on the partition of variables i, ..., i 1nto the sets {i,,..., 7, ,,} and
{i1p> -+ . » Is}, the summation symbol

S¥F(ry...,vr+p—1;r+p,...,5
Ten 8P

will denote the sum of all the expressions derived from F(r,...,r +p — 1;
r + p,...,s) by replacing the given partition of {7, ..., i} successively by
all other partitions of this set into a set of p and a set of s —r —p + 1
variables, each partition being taken exactly once. If either p = 0 or p =
s — r + 1, one of the sets becomes empty; in order to avoid troublesome
exceptions, the sum will be interpreted, in such cases, as being reduced to
one term.

LEMMA 5.2. Let P be a partition of I*, consisting of the k sequences

28" n .. omm (j=1,...,k), and let Q be a second partition of I¥
consisting of the k sequences 5“’ Do ﬁ,’,zﬂ (=1, , k). Further-

more, let f (x) and g(x) be two given functions on I*. Then

m;—1 mp—1

E E f(é:i(lﬁl’ A u {—I)A ..... kg(ng)’ L) "I(f:)

=0 q—

= Eo(—l)f’1 Et Adi,.. LE E g(")i}), L, n::), FT )
= ekl

#1=0
i (5‘“ co, ER Ry (5.14)

On the right-hand side, when p = 0, the summation symbols referring to
i1, ... ,1y as well as A; ., are understood to disappear, and similarly,
when p = k, then A}, ) should be disregarded, the variables x(?+1),

x® disappearing altogether.

PROOF. We proceed by induction on the dimension k. When k = 1,
then (5.14) reduces to

my—1

> FEND Mgy = AXg(a™) f(=™)) — zg(n:”)Alf(sf.:’), (5.15)

1,=0 #1=0
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which, in a simplified notation, reads

m—1

g‘;f(fiﬂ)(g(ﬁiﬂ) — g(n)
= 8(DS(1) — 8O)© — 3 gtr)(f E) — .

But this is just the Abel summation formula (note that %, = & = 0 and
N = Epga = 1).

Assume that the proposition holds for variables with superscripts 2, . . . , k.
In the corresponding version of (5.14) we substitute A,g for g, and summing
with respect to 7; from 0 to m; — 1, we find

m;—1 mp—1

(1) ) )
S, S e O agtll )

;=0 =0

my—1 mg Mp iy

k—1
=S 3 Mg 3 S

71=07,=0 1p41=0

(1) (p+1) (p+2) (k)
A1g(7h1»---»7];£+1»“y yee s & )
(1) (2) (p+1) (D+2) (k)
..... i f i &y L L e, 2. (5.16)

We have to show that the right-hand sides of (5.16) and (5.14) are identical.
We consider (5.15)and replace fby Ay |, f(xW, &2, ..., EPHD a0
2y and g by g™, 2, ..., 7;,:’:‘1“, altet?) o a®) - both expressions

being considered as functions of ¥, Then we obtain

my—1

) (p+1)  (o+2) (®)
S Aglr, . gET, R Y
;=0
(1) (2) (p+1) tagd (%)
S (Eias E2 o ERTE PR
H( (1) (2) (1) {p+2) (*x)
=A1(g(.m s Tig s e s iy s &7y, )
1) g2 (p41) (p+2) w
e SR ED L ERTD o) gy
LSS (p+1) (o) &)
» (k
—1Zog(77 O A L)
z
w (p+1)  (p+2) )
A, ot f& S ED TR L ).

This identity holds for p =0, ...,k — 1 if we understand it in the same
way as (5.14). We apply to both sides of it the operator

k=1 Ny Mpiy

217 27 A, Z

2=0 {pp1= 0
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In the new identity, the left-hand side coincides with the right-hand side of
(5.16), while the right-hand side becomes

me Mp41

k—1
(1) (2) ( ) L (13
z( l)p z* A1p+2 lz z g('z, 771’2 ""’nzﬁjf’n’p+2)’°-"xk))

p=0 =0 ip41=0

1 g , .
et ED, L ERID )
1 1 o e g (41 (p+2) *x)
* 1 P+2 3
+z( )D+ z A}H—Z lz z g(7711""’771ﬁ1 ’xp+ ’---’xk)
p=0 2, ip41=0
(1) £l . (k
ot fED, L ERID PR g, (5.17)

It remains to show that th1s expression is equal to the right-hand side of
(5.14). Indeed, the terms corresponding to p = 0 on the right-hand side of
(5.14) and in the first part of (5.17) are the same. Similarly, the term corre-
sponding to p = k on the right-hand side of (5.14) is equal to the term corre-
sponding to p = k — 1 in the second part of (5.17). Finally, if 0 < p < k,
the corresponding group of terms in (5.14) can be split into two parts ac-
cording to the effect of the operator X *, namely, the sum of all the terms
in which 1 appears as a subscript of A* and the sum of all the other terms;
now the first part is identical with the term corresponding to the same
value of p in the first part of (5.17), whereas the second part is identical with
the term corresponding to p — 1 in the second part of (5.17).

EXAMPLE 5.3. To elucidate the complex formula (5.14), let us write
down the case k = 2 in detail. We get

m—1 n—1

2 2SR R0 it — g — g0, 0l + g n"))
= g(1, Df(1, 1) — g(1,0)(1,0) — g(0, (0, 1) + (0, 0)£(0,0)

~ gg(nﬁ-”, D EGL D~ fEP, D)

+ Egm‘“ O)(AEL, 0) — f(&, 0)

= Eg(l S, E2D) — £(1, E9)

+ zg(o 7O, €7D — f(O, £7))

+ z zg< B YV ER & — FER, £

i=0 ;=0

—FER E2) +ED ET). A
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THEOREM 5.5: Koksma-Hlawka Inequality. Let f(x) be of bounded
variation on /* in the sense of Hardy and Krause. Let w be the finite sequence
of points x;,...,Xy in /¥, and let w; ;, denote the projection of the
sequence w on the (k — p)- d1mens1ona1 ‘face of I* defined by 2Vt

2U?) = 1. Then we have

<2 2* D (wz:+1.....k)V(m(f(' L ] 1’ LR ] 1)),

[ S Zf(x,,) fi () dx

p=11,,
(5.18)
where V“”(f (...,1,...,1)) denotes the p-dimensional variation of
FACE N LN , 1) on I? in the sense of Vitali and where the term

of the sum correspondmg to p = k is understood to be Dj (w)V“”(f)
The discrepancy D¥(w,,,,. . ) is computed in the face of I*in which w,,
is contained.

PROOF. For a subset M of I¥, we abbreviate the counting function
A(M; N; ») by A(M). We define a function g on I* by

g(x) = g(x™, ..., %) = iA([O’ ZY x e [0, @ M) — M ),

(5.19)
We note that

D}(w) = sup [g()l,

XGI
and
D¥w,py. = sup [g=", ..., 2" 1. ., ]I
'V 2el”
For 1 <n < N, let us put x, = (=, ..., 2.

By an admissible double partition of T’" we shall mean a pair (P, Q) of
partitions P and Q of I* satisfying the following conditions. First of all,

P consists of the k sequences %g’, 77"’, ces 775,’,) (]— 1, , k), and Q
consists of the k sequences gD ED, if,iﬂ (] =1, k), and these
are related by

0= f(()“ —_ 77(()7‘) < 5](.” < 77](.” < é:éi) < 775(!” < - %’) §(J)+ =1

forj=1,...,k (520)

Moreover, for each j=1,...,k, the sequence &N L, 5%: should at
least contain the numbers xi’ oo,
With such an admissible double partition, we can apply Lemma 5.2 with

the given function f and the function g from (5.19). First, studying the
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left-hand side of (5.14), we obtain

my—1 my—1

E E f(‘fflllh . u+1) A 1.‘8(77(1‘11) ’ e 77(:}))

=0

1 my—1

=N ‘iiof (&0 S Ay _aA®0 78 5 - x 10, 7if")
1= fo=

my_1 np—1

- Zo Eof(ffflp cen 1(x"+)1) A m:i) : '77(1’;). (5.21)
i i

Now
kA([O 775‘1) o % [0, 175")))
..s—1(A([O, 77(1 )X - X [0,?7:(':11)) — A([O, 775.1’) X - % [0, 77()];))))

= Al,...,k_lA([O ) X o x [0, 95D x [ i)

= =AW i) x % Wi, 9 ).

Thus, the first term on the right-hand side of (5.21) reduces to

m1_1 myp—1

= E X SER L ERDAY, wh) X x i), (5.22)

=0

Hence, only those k-tuples (iy, ..., i) have to be taken into account for
which there is an x,, 1 <n < N in the interval [17(1’, 17,‘31) X e X
[%?, n{,). But whenever this happens, the condition (5.20) and the ad-
ditional condition on @ imply that x, = (E,fll:q,... f"il) Therefore,
(5.22) is nothing else but (1/N)>a_, f (x,). Consequently, the left-hand side

of (5.14) reads

my—1 Mmp—1

~Zf(%)—Z C X fERN L ERD A Y . (5.23)

N n=1 t1=0 15=0

Now let us take a look at the right-hand side of (5.14). The important
fact we need is that g(x) = 0 whenever at least one coordinate of x vanishes,
and moreover, g(1,...,1) = 0. The term corresponding to p = 0 on the
right-hand side of (5.14), namely, A ,g(@®, ..., a®) f (@D, .., a%)),is
therefore zero. Furthermore, for 1 < p < k, only those terms are left where
all the variables a0, .. a® are replaced by 1. It follows that the right-
hand side of (5.14) reduces to

7"

Z( " E* E Zg(nff’,-- 21,0,

k;pi1=0 ip=0

Ay WfED, L ED LD (5.24)
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We have thus established the identity between the expressions in {5.23) and
in (5.24). Now we estimate the absolute value of (5.24). An upper bound is
certainly given by

x my Mmp

DD 1Elg(77‘” O T )

p=11,...k;» 1=0

By, G fED L ED LD

The absolute value involving g can be bounded umformly by DN(pr _____ o)
the remaining sum over i;, . . ., i, is dominated by V' (f(.. , ).
This entails

N my—1 mp—1

Ef(x,,) S S I DA

N n=1 11=0 k=0

< E E* D@y, VP L D) (5.25)

p=11,,

We remark that A, .nf - nff’ (iths — 77,1’) <o (¥l — 7)), and
therefore, (5.20) implies that the sum over 7, ..., 7. on the left of (5.25)
is nothing else but a Riemann sum for [z f(x) a’x. The other terms in (5.25)
are independent of the chosen admissible double partition (P, Q). The proof
is therefore completed by letting (P, Q) run through a sequence of admissible
double partitions with

max max (¢ — ") —0. W (5.26)

1S5Sk 0<i<my

Along the same lines, a multidimensional companion to Example 5.1
can be shown to exist.

THEOREM 5.6. Letf (x) be a function on 7*for which the partial derivative
O]9V - - - 9a*® is continuous on I*. For a finite sequence w of points
X1, ..., Xp in I, we have then

N

~ 3 fx) = [ 100 ax

N =

PROOF. Let g(x) be defined by (5.19). We have shown that the expressions
in (5.23) and (5.24) are identical for a given admissible double partition.
We observed also that the second term in (5.23) is a Riemann sum for the

< E E* :;(w::+1....,x~)

p=11,,

asz(m(l)) ) m(ﬂ)’ 1) crvy 1)
a,v(l) C e a,v(m)

daV - drc(’”, (5_27)

..........
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integral 3 f (x) dx. Now the sum

my my
2, 20 L DA GfED L ED D)

occurring in (5.24) is a Riemann-Stieltjes sum for the Riemann-Stieltjes
integral [7» g(e™, ..., 2@ 1, .., Ddf (@, ..., 2@ 1,...,1), the latter
being equal to the Riemann integral

oL A1) .(p)
(1) (p) d f("l’ s s ¥, L... > 1) (1) (p)
fl_pg(m A 2" TS § PITTRRPO dx da”,

Therefore, if we choose a sequence of admissible double partitions satisfying
(5.26), then we arrive at the identity

E ng f(x") ka(X) dx =p§1(_1)2)1.2..:‘ f g(’b(l) Tt ;v(”), la ey 1)

f (2™, ..., 2% 1, ..,
a_,v(l) e am(p)

da™ - - - da'®. (5.28)

Taking absolute values and estimating [g(z™,...,2® 1,... 1) by
DX(wpy1....1), We obtain the desired inequality. [l

Good Lattice Points

We indicate how a certain kind of low-discrepancy sequences used in numer-
ical integration can be found.

THEOREM 5.7. Let p be a prime number and & > 2. Then there exists a

lattice point g = (g1,...,8), with 1 <g; <p~1 for 1 <j<k, such

that the discrepancy D, of the sequence ((n/p)g), n =1,2,... , P, satisfies
k

lo
D, < ¢ i”, (5.29)

where ¢, is an effectively computable constant only depending on k.

PROOF. We use the theorem of Erdds-Turan-Koksma (see notes in
Section 2) with the same notation introduced there. Let g = (g, ..., g
be a lattice point with 1 < g, <p — 1 for 1 <j<k. Applying the said
theorem with m = p — 1, we obtain

1 1 |11 & eritroiney
D S C( + L 1L e 7i{n/p)<h.g
p—1 0<||h§]:| <o r(h) ! p n2=:1
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Now the exponential sum occurring here is either 0 or p, depending on
whether ¢h,g) # 0 (mod p) or ¢h,g) = 0 (mod p). Therefore,

D, < c(——— + > r_l(h)).
p—1 0<|[kjl <»
<h,g>=0(mod p)

To prove our result, it thus suffices to show that there exists g for which

_l(h) <c log P

0<|hjl <»
<h,g>=0(mod p)

This is accomplished by an averaging procedure. We consider the sum

S=—1 3 Y ), (5.30)

(p—DF%  o<iii<s
<h.g>=0{mod p)
where D% denotes the sum over all (p — 1)* lattice points g running in the
competition. We count how often a fixed lattice point h = (hy, . . . , k) with
0 < ||h]l < p occurs in the inner sum in (5.30). This will happen as often as
there are lattice points g = (g, ..., g) of the type under consideration
for which

hg + - + g, = 0 (mod p). (5.31)

We note that /; # 0 (mod p) for some coordinate h; of h. To satisfy the
congruence (5.31), we may therefore pick arbitrary gy, ..., g 1, 8410 -+ -
g, the remaining number g; being uniquely determined in the least residue
system mod p. Of course, g, may turn out to be zero, thus producing no
acceptable lattice point g; but, at any rate, the number of g satisfying (5.31)
can be at most (p — 1)*-%. Consequently, we get

1
S<—— 3 rn < . 1 (h).
p—1 0<||hn<p < <»
Now
p—1 p—1 1
r_l(h) = NN
0<[hf < m=—p+1  m—p+imax (1, |hy]) - - - max (1, |h])

p—1 1 )k n—1 1)
- (h»—zm max (1, |h]) ( T2
For p > 3, we have 3 + 23273 1/h < 3 + 2log p < 5 log p. It is verified by

inspection that this upper bound also holds for p = 2. Altogether, we have
shown

S< 2(5 log p)*.
p
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1t follows from the definition of S that there is a lattice point g for which

2
r(h) < ,Clgp)’. W (5.32)

o< |lhi <
<h,gd= ”0(‘11110()1, »)

EXAMPLE 5.4. Lattice points g that satisfy condition (5.32) might be
called good lattice points (modulo p). Let us exhibit how these lattice points
may be used in numerical integration. Suppose f is a function on R* repre-
sented by the multiple Fourier series f (x) = Y, c,e®" ™ where the sum is
over all lattice points h in Z*. Assume that the Fourier coeﬁicwnts ¢, with
h 7 0 satisfy |c,] < Mr~2(h) for some constants M > 0 and ¢ > 1. The
Fourier series is then absolutely and uniformly convergent. Choose a prime
p and a good lattice point g mod p. We note that the Fourier coefficient ¢,
corresponding to h = 0 is just [y f(x) dx. Therefore,

p n=1
= \ Ch _<_ M z )’_a(h).
jlh] >0 [hfl>0
<h,gd=0(mod p) <hLgd=0(mod p)

We split up this last sum into two parts. We first consider the sum over those
h for which all coordinates are multiples of p; that is, h = pa with a lattice
point a 7% 0. We observe that for those h, the condition (h, g) = 0 (mod p)
holds automatically. We have

za r—q(h) < p—q z ,.—q(a)

h=p
llal{>0
=p? Z cee g— (max (1, |a,]))™ - - - (max (1, |a,|))™
] & o0 k
= p‘"( Z: (max (1, [al))‘") = p“’(l + 22}41“’)
= p™(1 + 24, (5.33)

where ¢ denotes the Riemann zeta-function.

Let the sum over the remaining lattice points h be denoted by >. These
lattice points are uniquely represented in the form h = h* + pa with a
lattice point a and a lattice point h* = (¥, ... ) satisfying

(h*, g) = 0(mod p), |h*| >0, and — % < h* giz’for 1<j<k (534)

Therefore,
2 =230 (" + pa), (5.35)

*
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where > stands for the sum over all h* satisfying (5.34). We claim that

r(h* 4 pa) > r(h*)r(a). (5.36)
It suffices to show that

max (1, [h} + pa,|) > max (1, [Ih}]) max (1, |a,]) (5.37)

holds for 1 <j < k, where a = (ay, ..., a;). But (5.37) is trivial whenever
I = 0 or a; = 0. If both /] and a; are nonzero, then

IhF + pa) 2 pla] = 01 2 plaf = £ =22 la) = 1) 2 4] e,
and so (5.37) is shown in all cases. From (5.35) and (5.36) we infer
S <33 = (Trw)(3rrw)
The first sum was already evaluated explicitly in (5.33), namely,

g r(a) = (1 + 2Ug)"

Recalling that g is a good lattice point, we obtain for the second sum

q
E* l'_"(h*) S E .—a(h) S ( E '_l(h))
e , ol < o< |l <p
h,g)= O(mod))) <h,g>==0(mod p)

< (;) (5 log p)*.

Thus, we finally arrive at the inequality

‘p";f(" ) f f(x) dx

and so at an error term of the order (log p)*¢/p?. I}

plt 2/(5 log p)**

pq

< M1+ 2Ug)

-

Notes

Theorem 5.1 is from Koksma [6]. For a special case, see Pélya and Szeg6 [1, II. Abschn.,
Aufg. 9]. Earlier 1nvest|gatlons in this direction mostly concentrated on sums of the type
(I/N)ZX_, f({na}) where o is irrational and f is a Bernoulli polynomial (note that in this
case jof (1) dt = 0). The first result seems to be due to Lerch [1], who showed

1\7
S (na} — ) = O(log N)
n=1

for o with bounded partial quotients, thereby answering problems posed by Franel [1, 2].
The subject was taken up again by Hecke [1], Ostrowski [1], Hardy and Littlewood
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[3, 4], and Behnke [1, 2]. A detailed account of these results can be found in Koksma
[4, Kap. 9]. More recent references are Hartman [2], Sés [1], Mikolas [1], and Lesca [5].
For results on (1/N)Z_; ({g"«} — 1/2) with irrational o: and an integer ¢ > 1, see Korobov
[3, 4, 6].

An interesting unsolved problem occurs in connection with Corollary 5.1 (see Exercises
5.7, 5.8, and 5.9). Van der Corput and Pisot [1] proved the weaker inequality

1 N
__ eZﬂ iz,
N2

n=1

< 27Dy,

The first result of this type is in Behnke [2]. Postnikova [4] estimates these exponential
sums, given the distribution of the x, in intervals of small length (see Judin [1] for a
multidimensional version). A number of integral identities such as Theorems 5.2 and
5.3 were given by Koksma [7]. See also Koksma [9, 13] and Exercises 5.12, 5.13, 5.32,
and 5.33 for further results along these lines.

Theorem 5.4 was found by Niederreiter [5]. The upper bound 3NDXM(1/N)in Corollary
5.2 is an unpublished result of Koksma mentioned in Koksma [16]. In an arbitrary number
k of dimensions, an upper bound for the integration error of the form

(@1 + DM([DF11%),

where M is the modulus of continuity of the continuous integrand f, was established by
Hlawka [26], who also has error estimates for arbitrary Riemann-integrable functions in
I* See also Niederreiter [5, 13). Error estimates for special sequences can be found in
Pélya and Szegd [1, I1. Abschn., Aufg. 10-12] and Chui [1]. Some extensions of Koksma’s
inequality in the one-dimensional case were shown by Helmberg [7] and Hlawka and
Miick [1].

The generalization of Koksma’s inequality to several dimensions was first achieved by
Hlawka [12]. The notion of bounded variation employed here was introduced by Hardy
[1] and Krause [1] in their work on double Fourier series. A treatment of this concept
of variation may also be found in Hobson [1, Sections 253 and 254] and H. Hahn [1, p.
539 f.]. Our proofs of Lemma 5.2 and Theorem 5.5 follow Zaremba [3]. In a different
context—namely, when estimating the error between a multiple sum and its approxi-
mation by a simple sum—Korobov [22] arrives by analogous methods at an inequality
that has a striking similarity to the Koksma-Hlawka inequality.

Theorem 5.6 was again first proved by Hlawka [11, 12]. Our proof uses the method of
Zaremba [3]. A similar inequality was given by Sobol’ [3, 7]. Zaremba [3] shows an
estimate for the integration error in terms of the L2 discrepancy. An account of Zaremba’s
method is also given in Halton [4]. For a special case, see Sobol’ [3]. Based on Theorem
5.6, one obtains generalizations of Corollary 5.1 to several dimensions (see Hlawka [11]
and Exercise 5.25). For other applications, see Hlawka and Miick [2].

Koksma’s inequality may be generalized to more abstract settings. Niederreiter [1]
established such an inequality for compact abelian groups with countable base. The
special case of the group of p-adic integers was treated earlier by Beer [1]. Using a com-
pletely different notion of discrepancy, K. Schmidt [3] has shown analogues of Koksma’s
inequality for locally compact abelian groups with countable base. Niederreiter [1] also
has an estimate for the integration error in terms of the Fourier coefficients of the integrand.

Numerical integration methods based on the sequences of van der Corput-Halton and
Hammersley and variants thereof were studied by Sobol’ [1, 2, 3, 6, 7). See Sobol’ [4, 7]
and K. Schmidt and Zinterhof [1] for numerical integration in the infinite-dimensional
unit cube.
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Our exposition of Theorem 5.7 and Example 5.4 is based on results of Hlawka [14, 17].
The first investigations along these lines were carried out by Korobov [15, 16]. He restricts
his attention to lattice points of the formg = (1, a,4?, . . ., a*~1) (“optimal coefficients’’),
A detailed exposition can be found in Korobov [20]. The order of magnitude of the inte-
gration error that he obtains is the same as Hlawka’s. There are many Russian papers
on optimal coefficients, among them Bahvalov [1, 2], Bahvalov, Korobov, and Cencov
[11, Korobov [17, 22], Sahov [2], Saltykov [1], sarygin [1, 2], Solodov [1, 2, 4], and
Stoyantsev [1]. An exposition of the subject is also given in Sobol’ [7]. Concerning the
explicit construction of good lattice points, see Zaremba [1, 6] and Hua and Wang [2, 3].
Numerical data are compiled in Haber [4] and Maisonneuve [1]. Further theoretical
results on good lattice points can be found in Zaremba [4, 9, 10, 11]. Related problems
are discussed in Hsu [1], Hua and Wang [1], and Haber and Osgood [1, 2]. A heuristic
approach to the subject is presented in Conroy [1].

The basic result for still another number-theoretical integration method is described in
Exercise 5.22. The method goes back to Richtmyer [1, 2] and Peck [1], who considered
the multidimensional case with an integrand satisfying restrictions as in Example 5.4,
Similar ideas were used by Bass and Guillod [1]. For the one-dimensional case, see Bass
[2], J.-P. Bertrandias [1], and Couot [1]. For the multidimensional case, see Haselgrove
[1], Couot [2], Zinterhof [1] (based on A, Baker [1]), and Niederreiter [11]. The method was
improved decisively by Haselgrove [1] and Niederreiter [13]. Numerical data can be found
in Davis and Rabinowitz [1] and Roos and Arnold [1]. For further remarks, see Jagerman
[3] and Richtmyer, Devaney, and Metropolis [1]. As to the restrictions on the integrand
mentioned in Example 5.4, see Haselgrove [1], Hlawka [14], Korobov [20], Niederreiter
[11], sarygin [1], and Zaremba [5] for transforming a nonperiodic integrand into a periodic
one, and Zaremba [3] for more tractable sufficient conditions. See also Exercise 5.26.

Hlawka [15, 17], Niederreiter [13], and Zaremba [7] showed that number-theoretical
integration methodscan be adapted to work for more general classes of integration domains.
Sobol’ [8] handles certain improper integrals by these methods. The paper of Hlawka
and Kuich [1]is a continuation of Hlawka [15]. For a certain general class of integration
domains, Solodov [3] shows that the method of optimal coefficients produces satisfactory
results,

The above number-theoretical methods have been successfully applied to other areas.
A rather immediate application is to integral equations. Russian authors such as Sarygin
[1], Sahov [1], and Korobov [19, 20] use optimal coefficients, whereas Hlawka [13, 17]
and Hlawka and Kreiter [1] work with low-discrepancy sequences (some of which are
constructed by means of good lattice points). Other interesting applications are to inter-
polation problems: Hlawka [18, 20, 22], Korobov [19], Rjaben’kil [1], sarygin [2],
Smoljak [1], Zinterhof [1]. Korobov [22] uses his method of optimal coefficients to approxi-
mately compute multiple sums. Rjaben’kil [2] applies it to the Cauchy problem. In a
series of papers, Hlawka [19, 21, 23] studies applications to kinetic gas theory.

Expository accounts of number-theoretical and other integration methods are given in
Beresin and Shidkow [1], Davis and Rabinowitz [2], Haber [3], Halton [3], Hammersley
and Handscomb [1, Chapter 3], Hlawka [17], Korobov [20], Shreider [1], and Zaremba

[2].

Exercises

5.1. Indicate briefly why every function of bounded variation on [0, 1} is
Riemann-integrable on [0, 1].
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5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.
5.9.

5.10.

5.11.

DISCREPANCY

Carry out the following alternative proof of Koksma’s inequality,
which avoids the use of Riemann-Stieltjes integrals: Let 0 = 7, <
t; <+ <ty = 1 be a subdivision of [0, 1] and define I; = [¢;, ¢;,4)
for 0 <j < k. Let g be a step function corresponding to that sub-
division, that is,

x
gr) =2acr(v) for0<a<1, g)=ag
j=0

where 4, . . . , 4z, are arbitrary real numbers. Prove the identity
N 1
= z,) — | gla)dx
N rglg( f 8
N k
= N ,121 g )( Clo, f]+1)(1’7|) C[O,f,)(xn) - tj+1 + ti)
for any N given points &y, ..., 2y in L.

Using Abel’s summation formula in the identity of Exercise 5.2, prove
that Koksma’s inequality holds for the step function g.
Let f be a function of bounded variation V(f) on [0, 1], and consider
a subdivision of [0, 1] as in Exercise 5.2. Let f;(z) be the lower Darboux
step function corresponding to f and the subdivision, that is, f;(x) =
im0 ajcr (2) for 0 < & < 1, and fi(1) = f (1), where a; = infye7, f ()
for 0 £ j < k. Prove that V(1) < V(f).
Prove the same assertion as in the preceding exercise for the upper
Darboux step function f,.
Based on the results of Exercises 5.3, 5.4, and 5.5, prove Koksma’s
inequality for f.
For N > 1, define cy = sup, (I/ND¥(w)) |Sn_, €"®|, where the
supremum is extended over all finite sequences w of N real numbers
@, ...,%y Provethat 2 < cy < 4 forall N > 1.
In the notation of the preceding exercise, show that ¢, = 2.
In the notation of Exercise 5.7, show that

¢y = max FSRTE _ oy,

0<z<1/2] + 22

Prove that if fhas a continuous derivative on [0, 1], then f'is of bounded
variation on [0, 1] and V(f) = [ |f'(t)| dt. Give a detailed argument
not using Riemann-Stieltjes integrals.
Prove that for any constant ¢ < 1 there exists a finite sequence 2, . . . ,

xy in I, where N may depend on c, such that |(1/N)3N_, =, — 1/2] >
¢D¥. Hint: Consider sequences of the form
0,...,0,L 1 2 “’N—m

_ 22NN N
with1 < m < N. m
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5.12. For given points @; < 2, <+ < 2y in I, let Ry(?) be defined as in
Section 2. Verify the identity

1 N 2 —1y¥ 1
R (Hdt=N (x,,— ) —.
L v () nzl w )T

5.13. Let a5, ..., xy be as in the preceding exercise, let f be a continuous
function on [0, 1], and put F(t) = jf,f(u) dufor 0 < t < 1. Then

[ v s = an[F e + N 3,2
N N
N3 F@) ~ 230/ + 3 @),

n=1 n==

5.14. Prove that the identity in Exercise 5.13 includes the identity in Example
5.2 as a special case.

5.15. Prove in detail that for a continuous function f on [0 1] its modulus
of continuity M satisfies lim,_,q,, M(h) = 0.

5.16. Verify the following property of the modulus of continuity M of a
function f: If M(h) = o(f)ash — 0 + 0, then f is a constant function,

5.17. Exhibit a class of nonconstant functions for which M(h) = O(h) as
h—0+4 0.

5.18. Let f be an arbitrary continuous function on [0, 1] with modulus of
continuity M, and let g be a continuous function from [0, 1] onto
[0, 1] with modulus of continuity M, Show that the modulus of
continuity M of the composite function fo g satisfies M < M, o M,.
Give an example which shows that in general M # M, o M,.

5.19. Construct an example that shows that the bound 3NDYM(1/N)
established in Corollary 5.2 may tend to infinity as N — oo, even
though the sequence (z,) is u.d. mod 1.

5.20. Let f be a continuous function on [0, 1] with Fourier coefficients
a, = [of (@)e* ™ dx, h €, such that the infinite series Dy, /1 |,
is convergent. Prove that f(2) = > _, a,e*™"".

5.21. For a function f such as in the preceding exercise and for a finite
sequence @y, . . . , ¥y in / with discrepancy Dy, show that the following
inequality holdS'

N

1 o0
LS re) - f @) d| < 8D% Shial.
N n=1 h=1

5.22. Let « be an irrational number of finite type n = s. Let f be a periodic
function with period 1, and suppose that f is represented by the
Fourier series f(t) = >n_,, ¢,¢®™™ for which there exist positive
constants M and A such that |c,| < M |h|~*=* for all h 3 0. Prove that

%:E::If(noc) —ﬁlf(t)dt = o(%).
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5.23.

5.24.

5.25.

5.26.

5.27.

5.28.

5.29.

5.30.

DISCREPANCY

Prove in detail that a function f on I*, k > 2, that depends on less
than k variables satisfies V¥ (f) = 0.

Let g = (g0, ..., g") be a lattice point distinct from the origin.
Then we have

Jool

Suppose g = (g'¥, ..., g¥) is a lattice point distinct from the origin
and that x,, .. ., X,y are N points in I* with discrepancy D¥. Using the
result of the preceding exercise, prove that

da®V . da® = g

T

coS . .
) 27T(g(l)-'v(l) + R + g(lx):v(lx))
sin

1 S pricexn
= 2t Xn
N ngl

Let f be an arbitrary Riemann-integrable function on I*. Prove that
the function g on I* defined by

glay, ..., = 2_’: 2 Sen+ (=D, e+ (1))

£;=0.1

)
< 2(H(l + 20 g ~ 1)1):,.
\j=1

has period 1 in each variable, thatis, g(zy, . .. , %3, 0, %54, . .., %) =
gy, oy, ey, .o, ) forall g, o, 2, 25,,. .., %, and
allj=1,...,k. Show also that 7 f(x) dx = [3: g(x) dx.

Let P9(g) be the sum occurring in Example 5.4, namely,

PYg = 3 ()
I[bi[>0
<h,gd=0(mod p)
Let F be the function on [* defined by

k 2
F(x) = F(xy, ..., ) =]1 (1 + '7;— — 278 + 2772xj2).
j=1
Show first that F can be continued to R* so as to have period 1 in
each variable. Prove that P‘¥(g) is just the error committed when
integrating F(x) over I* by means of the sequence generated by g, that
is,

PP (g) = ’iép(i g) _ L F(x) dx

Find an interpretation for P*)(g) similar to the one given for P‘*(g)
in the preceding exercise.

Show that 3%, ({x + (n/N)} — ) = {Na} — } holds for any real
number x and for any positive integer N.

Let g and b be two positive integers which are relatively prime. Prove
that f§ ({ax} — H)({bx} — %) dx = 1/12ab.
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5.31. Letay, ..., ay be positive integers, and set Sy(x) = IV, ({a,2} — ).
Evaluate [§ Sy(z) dv.

5.32. With ay, ..., ay and Sy(x) as in the preceding exercise, prove the
identity

N
1 : (ams an)

L ISNZ(.’L') de=— 3

12mai(a,, a,]
5.33. For an integer a > 2, put Sy(x) = Y4, ({a*x} — }). Prove that

1
f Sy@)de = 2 FL N _ —L—<1 - i).
0 12(a — 1) 6(a — 1) a”
5.34. Prove that for any constant ¢ < 4 there exists a finite sequence 5, . . . ,

2y in I, where N may depend on c, such that |(1/N)YY_; e*"**s| > cD}.
Hint: Consider sequences of the form

1 2 1k 1+k
L e L L Y Y Y YRR}
ONN 2" N3N
N-2 N-1
—_— Y —, 1 —¢ ..., 1 — ¢
N N

K

with N > 4 even, | < k < N/2, and ¢ > 0 sufficiently small.

6. QUANTITATIVE DIFFERENCE THEOREMS

Discrepancy of Difference Sequences

Let w be a finite sequence consisting of the N real numbers 2y, ..., 2y.
Let = be the finite sequence consisting of the N? differences 2, — 2,
1 <k,j< N, in some order. We are interested in the relation between
the discrepancies of the two sequences.

THEOREM 6.1. If D = Dy(w) denotes the discrepancy of w, and F =
D :(7) denotes the discrepancy of =, then

D < eJF(1 + [log FY) (6.1)
holds with an absolute constant c.
PROOF. For a positive integer r, we put S,(w) = D, exp (rz;) and

S,(r) = YN SV exp (r(x, — ,)), where exp (¢) = *"* for t € R. We have

_ N N
1S,(@)IF = S{@)S@) = ( Sexp (rap) ) Jexp (—ra)) = 5,00
j=1 j=1
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Let m be a positive integer that will be specified later on. By (2.42), we obtain

3215 (w)

D <L c1( + Ng
with an absolute constant ¢;. Now apply the Cauchy-Schwarz inequality to
the sum D%, (1/#) |S (@) = D, (1/)Y2((1/r) |S,(w)[?)!/2. Then

L ol EEIO

r=1 F, r=1
But 3%, (1/r) £ 1 + log m and
m moq N N
rgl-; |S1-(C())|2 z Sr(T) gljz(z —exp ('(’l’k _ @j))) < VNZF

by Example 5.1, where V = [3| f'(x)| de with f(2) = Y-, (1/r) exp (r2).
Therefore,

1/2 1/2

D <2 4 o(1 + log m)"*(VF) (6.2)
m

We estimate now V = 2x (3 [ DL, exp (r2)| do for m > 2. We write
m

1/m
de = f
0 =1

m

> exp (1)

~1
JO r=1

2 exp (rz) | da

1-1/m
+f
1/m
1
+ f
1-1/m

For the first and the last integral, we use the trivial estimate | D12, exp (r2)| <
m, and so, these integrals are each at most 1. We note that |>;2,; exp (rz)| <
1/sin 72 for 0 < 2 < 1. But sin 72 > 22 for 0 < # < 4, and sin 7 > 2 —
2zfor} <z <1, and therefore,

m

> exp (ra) | da

r=1

> exp (re) | de

r=1

m

1-1/m 1/2 " 1-1/m .
f Zexp(m) d@g d—o“+~f —@——logf}-}-logm
1/m /m X 2 Jiz 1—
Altogether, we have shown V' < 27(2 + log § + logm), and so,

V < 4n(l + log m). (6.3)

The inequality (6.3) holds for m = 1 as well. Going back to (6.2), we derive
the inequality

D< ’% + ¢y(1 + log mVF.

Now we put m = [F~'/2], and we arrive at (6.1). |l
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Using some ideas from the above proof, we can now establish a quan-
titative version of van der Corput’s theorem (see Chapter 1, Theorem 3.1).
Let w be a finite sequence of N real numbers2,, ... ,ay. Forl <j< N —1,
let w; be the sequence of N — j differences %, — @y, 2,5, — %y, ..., ¥y —
xy_;. We estimate the discrepancy of w in terms of the discrepancies of the
sequences w;.

THEOREM 6.2. Let D = Dy(w) be the discrepancy of w, and let DY) =
Dy_;(w;) be the discrepancy of w;. Then, for every integer H with 1 < H <
N, we have

D < ¢B(1 + |log Bl), (6.4)

where B = H-/2(1 + (1/N) 37! (N — j)D¥)/2and cis anabsolute constant.
PROOF. We have shown in the proof of the preceding theorem that

m

‘1, 4 1/2 1 2 /2
D <2481+ log (3 215 (@) (6.5)
m N =1r
for any positive integer m. To estimate [S,(w)|?, we use the fundamental
inequality (see Chapter 1, Lemma 3.1) with u, = exp (rz,). We obtain for
every H with 1 < H < N:

H*|S(w)* < (H + N — DHN
-1 N—h

+2H+ N =132 (H—h32 Reexp (12,4, — %,))

h=1 n=1
<2HN*4+2H+ N-—1) 2 (H — h)Re S(w,),
r=1

where S,(w,) = SN exp (r(2,44 — %,)). It follows that

H-1

IS(@)|* < 2N*H™ + 2(H + N — DH® S (H — )Re S,(w,).
h=1
Using Dty (1) £ 1 4 log m, we arrive at

E [S{w)|* < 2N*H7Y(1 + log m)

r=1}
m

4 2H + N — DH z (=3 Re’ S, (66)
By Example 5.1, we have

N—h m

E Re - r(wh) = Re E E - exp (’('vn+h 'n))

n=1lr=
N—h
E f(a’n+h - ) S (N - h)VD(h)’ (67)

n=1
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where f and ¥V have the same meaning as in the proof of Theorem 6.1.
Combining (6.3), (6.6), and (6.7), we obtain

m

S = |S{w)|* < 2N*H7(1 + log m)
r=1F
-1

+ 167NH™(1 + logm) 3 (N — h)D™

h=1

< 167N*¥(1 + log m)B%.

Returning to (6.5), we arrive at
D <L & + ¢;B(1 + log m).
m

If B < 1, we put m = [1/B], and the result follows. If B > 1, then we put
m = [B], and the proof is complete. i

An Integral Identity

In connection with Theorem 6.1, the following integral identity may also
be of interest. Let 2, ...,y be N real numbers. For two real numbers o
and B with o < B < o + 1, let A(«, f) be the number of »,, 1 <n <N,
which lie mod 1 in [o, ). Define the error term Ry(e, f) by Ry(e, f) =
A(a, f) — N(B — ). Likewise, let Ry:(x, f) be the error term relative to
the N2real numbersz, — z,with 1 < k,j < N, thatis, R}:(a, ) = A*(a, f) —
N*(f — «) with 4*(e, f) having the obvious meaning.

THEOREM 6.3. With the above notations, the identity

2t

1
f Ry*(o — t, o0 + t) do. =f Ris(—a, o) da (6.8)
0 0
holds for all r with 0 < ¢t < £.

PROOF. For o« and f with « < < o 4+ 1, let c(a, f§, u) be the charac-
teristic function of [, ) mod 1; thatis, c(, 8, #) = lifa < u < f (mod 1),
and = 0 otherwise. Then for any #, 0 < ¢ < %, and for any v we have

1
f clo — to + t,u) do = 2t, (6.9)
and also ’

1
fc(o'.—t,oc+t,u)c(oc—t,o'.+t,v)doc

0

. _ {2t —(u—vy if (u—0o)y<2t (6.10)

0 otherwise,
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Furthermore, if 0 < = < , we have evidently

. oy if <
f (=0, o, ) doe = {T ) bWy < - (6.11)
0

0 otherwise,

If 0 < t < 4, then we obtain from (6.10) and (6.11) the identity

2t

1
f clo — to+ t,u)c(e —t,o + t,0) do =f c(—o, o, t — v)do. (6.12)
0

0

Now Ry(e — t, o0 + 1) = SN c(e — t, o + t,x,) — 2tN; hence,

1 N 1
f R (e —tio + Nda=3 | cla—tyo + 1, a)c(o — 1, + 1, 2;) do
0 ki=1J0

1

N
—~ 4N | c(e — 1,00 + 1, x,) do + 4£°N?
n=1 J0

N 2t
=3 | c(—a,o 1 — ;) de — 4°N?,

k,j=1v 0

according to (6.9) and (6.12). So

A1 2t N
J Ry* (o — t, o + 1) do =f ( > c(—o, o 2 — ;) — Zoch) do.

0 0 \k,j=1

2t
=f Ri(—a,0)do. I}
0
Notes

Theorems 6.1 and 6.2, which are the strongest of their kind presently known, are from
Cassels [8]. In fact, Cassels shows that Theorem 6.1 is best possible in the following sense:
Let (F) be any function of F tending arbitrarily slowly to zero as F tends to zero. Then

there exists a finite sequence w such that D < @(F)V F(1 + |log F|) does not hold true.
The author also derives a result on the distribution of quadratic residues modulo a prime
from Theorem 6.1.

Earlier results in the direction of Theorem 6.1 are due to (in chronological order)
Vinogradov [1], van der Corput and Pisot [1], Koksma [5],and Cassels [5]. For Vinogradov’s
result, see also Gel'fond and Linnik [1, Chapter 7]. A predecessor of Theorem 6.2 is also
contained in the paper of van der Corput and Pisot [1].

Our proofs follow the line of thought of Hlawka [11], who generalized both theorems
to several dimensions. These generalizations are obtained by exactly the same method,
namely, using the theorem of Erdos-Turdn-Koksma (see notes in Section 2) and the
analogue of Example 5.1 in several dimensions (see Theorem 5.6). This method also yields
a generalization of a result of Coles [1], who compared the discrepancy of a two-dimensional
sequence ((z,, ¥,)) With the discrepancies of the one-dimensional sequences (hz, + ky,),
where h and k are integers not both zero. For details, see Hlawka [11]. An expository
account of these results was also given by Hlawka in [16]. A simplified and improved
version of Coles’s result can be found in Ungar [1]. Moreover, the above mentioned
multidimensional estimates of Hlawka were improved by Helmberg [9].
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The integral identity in Theorem 6.3 is from van der Corput and Pisot [1]. Our proof
follows Koksma [5].

Exercises

6.1. Let 2,, ..., 2y be N real numbers. For two real numbers o and § with
« < B <o+ 1, define Ry(e, ) as in Theorem 6.3. Furthermore, let
f be a continuous function on [0, 1]. Evaluate the following integrals:

1
JRN(O'. —t, 0+ t)do

0

1
JRNZ(OC— t,o+t)do

0

L "R, o + 1) df (1)
[ Ry + 0 aro
[Rute =y as)
[ryte = 1oy aro

JMRN(a — t,o 4 1) df(t)

0

1/2

f Ry o — ty o + 1) df ().

0

6.2. Prove in detail the identity (6.9) in the proof of Theorem 6.3.

6.3. Prove in detail the identity (6.10) in the proof of Theorem 6.3.

6.4. Let z, <2, < '+ <2y be in I, and define Ry(e, ) as in Theorem
6.3. Let AbetheareaA = {(¢, $) e R%: 0 < < 1,0 < 1,2 < B}

Prove that
N n 2 N
[Rye.ydads = N 5 (= 2F = Ba( S0 = b),
A n=1 N n=1
where By(t) = t* — t + (1/6) is the second Bernoulli polynomial,
6.5. Let 2;,...,%y be in I, and let u,,..., Yy be the sequence of all

differences @, — #; mod 1 arranged in some order. For 0 <t <1,
set Ry(t) = Ry(0,1) and RFa(t) = RX2(0, 1) (see Theorem 6.3), and
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extend these functions with period 1 to R. Prove that the identity

(a

1 >

holds for all real numbers «, by showing that both sides are equal to

N

—(@)’N® + glmax ©, (@) — ¥

6.6. Prove that Theorem 6.2 implies van der Corput’s difference theorem.,



UNIFORM DISTRIBU-
TION IN COMPACT
SPACES

In the first two chapters we studied distribution properties of sequences of
real numbers with the proviso that two numbers differing by an integer
were considered “‘equivalent.” This notion of “‘equivalence” is indeed an
equivalence relation in the rigorous sense; call the set of the resulting
equivalence classes the reals mod 1 (or R mod 1). There is a simple model for
R mod 1, obtained as follows.

Let U be the unit circle in the complex z-plane, U = {z € C: |2| = 1}.
The mapping h: R - U, defined by h(x) = €*** for « € R, is constant on
the equivalence classes comprising R mod 1 and can thus be considered as a
mapping from R mod 1 onto U. If we give R mod 1 the natural topology
(open sets in R mod 1 are open sets in R after identification mod 1) and
furnish U with the relative topology in the plane, then /1 is a homeomorphism
from R mod 1 onto U. Thus, we could as well consider uniform distribution
of sequences in U. For our purposes, it is pertinent that U is a compact
Hausdorff space with countable base.

It will turn out that a satisfactory theory of uniform distribution can be
developed in the more abstract setting of an arbitrary compact Hausdorff
space with countable base. Some important facts will even hold true without
requiring the second axiom of countability.

170
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1. DEFINITION AND IMPORTANT PROPERTIES

Definition

Let X be a compact Hausdorff space. The elements of the o-algebra generated
by the open sets in X are called the Borel sets in X. Let u be a nonnegative
regular normed Borel measure in X, that is, a nonnegative measure u defined
on the class of Borel sets with u(X)=1 and u(E) = sup {u(C): C < E,
C closed} = inf {#(D): E < D, D open} for all Borel sets E in X.

Suppose we are given a sequence (z,), n = 1,2, ..., of elements @, € X.
Among the various characterizations that we had for u.d. mod 1, the one
most easily adaptable to a more general situation seems to be Theorem 1.1
of Chapter 1. It is convenient to have the following notions available: By
Z(X) we mean the set of all bounded real-valued Borel-measurable functions
on X. Under the norm || f| = sup,.y | f (®)| for fe #(X), the set #(X)
forms a Banach space, and even a Banach algebra if algebraic operations
for functions are defined in the usual way. The subset #(X) of #(X) con-
sisting of all real-valued continuous functions on X is then a Banach sub-
algebra of % (X).

DeriNiTION 1.1, The sequence (%,), n=1,2,..., of elements in X is
called y-u.d. in X if
N
lim + S f(z,) = f fdu  forall fe A(X). 1.1)
N-oow N n=1 X

If X = U, u = normed Lebesgue measure on U, then the notions of u.d.
in U (or, equivalently, u.d. mod 1) and g-u.d. in U coincide. The first and
most natural question to ask is of course whether u.d. sequences exist at
all for an arbitrary X. One can easily show that for each X there is a u with
corresponding u-u.d. sequences (see Exercise 1.1). As to the tougher problem
of the existence of a u-u.d. sequence for any given X and u, we refer to the
notes.

In this chapter, we will sometimes take recourse to stronger topological
conditions on X. We shall see in Section 2 that, under the additional as-
sumption of a countable base for the topology in X, there is really an abun-
dance of u.d. sequences. Fortunately enough, it will also turn out that
requiring a countability condition of some type does not lead to an actual
loss of generality (see Exercise 2.1).

It is sometimes convenient to consider also complex-valued functions f
on X. Such a function can be written in the form f = f; + if, where f; and
f; are uniquely determined real-valued functions called the real part and
imaginary part of f, respectively. If both f; and f; are in #(X), then f is
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again called a bounded (complex-valued) Borel-measurable function. In
this case, we define [x fdu = [x fidu + ifx fo du. We shall denote by
%(X) the set of all continuous complex-valued functions on X. Clearly, a
function is in € (X) if and only if its real and imaginary parts both belong
to Z(X). The set €(X) forms a (complex) Banach algebra under the supremum
norm and with the usual algebraic operations. It is an easy exercise to show
that a sequence (z,) is g-u.d. in X if and only if (1.1) holds for all fe € (X).

Convergence-Determining Classes

In the classical theory we noticed that we need not consider all f from Z(X)
in (1.1) to guarantee uniform distribution. This suggests the following

definition.

DerNITION 1.2, A class 77 of functions from Z(X) is called convergence-
determining (with respect to u) if for any sequence (v,) in X, the validity of
the equation
N
lim 1 > (=) =f fdu for all fe ¥ (1.2)
x

Noow N a=1

already implies the p-u.d. of (z,).

EXAMPLE 1.1. In X = U, the class of all characteristic functions of
half-open (open, closed) intervals is convergence-determining with respect
to the normed Lebesgue measure. [l

For a class ¥~ of functions from Z(X), let sp (¥") denote the linear sub-
space of % (X) generated by 7", In other words, sp (¥") consists of all finite
linear combinations of elements from ¥~ with real coefficients. The con-
struction of many important convergence-determining ciasses is based on

the following theorem.

THEOREM 1.1. If ¥ is a class of functions from #(X) such that sp (¥")
is dense in Z(X), that is, sp (¥") 2 Z(X), then ¥” is convergence-determin-
ing with respect to any u in X,

PROOF. Let us first show that (1.1) holds for all g€ sp (¥") provided

that (1.1) holds for all f€¥". For, in this case, g = o, f; + * * * + o f;, for
some f; €7 and o, € R, 1 < i< k. Then,

S
lim = > g(%,) =f g du
N—'ooN‘n:l X

follows from the linearity of both the right-hand side and the left-hand
side in (1.1). Turning to an arbitrary f€ Z(X), we choose ¢ > 0, and by
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hypothesis, we can find / € sp (¥") with || f — | < &. Then, we have

N 1 N

E f(x,) — fd/t‘ < ‘ E(f - h)(z,) —f (f = h) du

N n=1
N
} zh(”c ) —f h d‘u‘
1 N

© 310 = W] + Llf— hl du

+ | = 2 h(x, —f hd ’
v 2= [ ha

N
S2|f—=h)+ ‘1 > h(=,) —f hdy’ < 3¢
Nn=1 X

for sufficiently large N. [}

Using a well-known and fundamental theorem that we quote below for
easy reference, we obtain then a useful corollary,

LEMMA 1.1: Stone-Weierstrass Theorem. Let X be a compact Hausdorff
space, and let & be a subalgebra of Z(X) that contains the constant functions
and that separates points; that is, for any two distinct points z;, %, € X
there exists e & with f(2;) # f (). Then & is dense in Z(X). If # is a
subalgebra of € (X) that, in addition to the above properties, is closed under
complex conjugation (i.e., f€ % implies f€ %), then & is dense in F(X).

COROLLARY 1.1. If sp(¥#") is a subalgebra of Z(X) that separates
points and contains the constant functions, then ¥” is a convergence-deter-
mining class with respect to any p in X.

PROOF. This follows from Theorem 1.1 and Lemma 1.1. |l

The notion of convergence-determining class may of course also be
defined for classes of bounded complex-valued Borel-measurable functions.
A result analogous to Theorem 1.1 can be shown for this case as well, since
all the arguments in the proof go through without any change. In fact,
sp (¥7) may now even be taken as the subspace of the complex vector space
% (X) generated by 7. Using the complex version of the Stone-Weierstrass
theorem, we arrive then at the following result.

COROLLARY 1.2, Let ¥ be a set of functions from € (X) such that the
subspace of #(X) generated by ¥ is a subalgebra of ¥(X) that separates
points, contains the constant functions, and is closed under complex con-
jugation. Then ¥~ is a convergence-determining class with respect to any
win X.
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Continuity Sets

For a subset M of X, let int M stand for the interior of M, and let oM =
M\int M be the boundary of M. Furthermore, we shall use M’ for the
complement of M in X,

DerINITION 1.3. A Borel set M & Xiscalled a u-continuity set if p(0M) =0.

Note that 0M is closed and is therefore again a Borel set. Based on this
concept of u-continuity set, we can then exhibit an important convergence-
determining class, namely, the class of all characteristic functions of u-
continuity sets. Before we endeavor to do this, we first give another example
of a nontrivial convergence-determining class consisting entirely of con-
tinuous functions. This example will also show some of the common tech-
niques.

EXAMPLE 1.2. Since X is normal, there will exist, for any two disjoint
closed subsets 4 and B of X, a so-called Urysohn function, that is, a function
feAX) with 0 < f(x) <1 for all xe X, f(x) =0 for all x€ 4, and
f (@) =1 for all e B. Now, for fixed ¢ > 0, consider all ordered pairs
(C, D) of closed p-continuity sets C and open sets D with D = C and
#(D\C) < &. For each ordered pair (C, D), choose one Urysohn function f
with f () = 1 for € C and f (x) = O for € D’. Let %, be the collection of
the functions f obtained in this way. Furthermore, let &, denote the set of
all finite products of functions from %,. We claim that &, is convergence-
determining with respect to any u in X.

We can quickly convince ourselves that sp (£,) is a subalgebra of Z(X).
Therefore, the use of Corollary 1.1 is suggested. Now sp (£,) contains the
constant functions, since %, contains the function f (x) = 1 (take C = D =
X). The proof is completed by showing that %, separates points. Take
%y, Yo € X, ¥y # Yo, and choose an open neighborhood D of 2, that does
not contain y,. Since y is regular, there exists a closed B = D with u(D\B) <
e. We may assume 2, € B, for otherwise we look at B U {z.}. Of course, B
need not be a y-continuity set. But, as we shall see, there is such an abundance
of closed p-continuity sets that we can easily find one between B and D.
Consider a Urysohn function g corresponding to the disjoint closed sets D’
and B, that is, 0 < g(x) <1 for all z € X, g(x) =0 for v e D', g(x) = 1
forze B.For0 < a<1,putG, = {r € X: g(») = a}. Since X = Jp<,<1 G,
has finite u-measure, there are at most countably many G, with 4(G,) > 0 (see
Exercise 1.21). Thus, there exists an o, 0 < a < 1, with x(G,) = 0. Now let C
be the closed set C = {x€ X: g(¥) > a}. Since {x€ X: g(¥) > o} is open, we
have 0C = G,, and C is a y-continuity set. From B € C < D we can infer



1. DEFINITION AND IMPORTANT PROPERTIES 175

u(D\C) < &. To the pair (C, D), there corresponds a Urysohn function
f €U, that satisfies f (v)) = 1 and f (y,) = 0. By using a direct approximation
technique, one can even show that %, is already convergence-determining
(see Exercise 1.16). [

EXAMPLE 1.3. If X is a compact metric space, then a crucial step in
the above argument can be carried out using the metric 4 of X. In particular,
we show the following: Let B(z, 6,) = {y € X: d(x, y) < 6,} and B(z, 6,) =
{y e X: d(z, y) < 8,} be open balls with center # and 0 < 8, < §,; then
there are “many” open balls between B(z, d,) and B(w, §,) that are u-
continuity sets. To see this, put S(z, §) = {y € X: d(, y) = 6} and B(z, 0) =
{yeX: dz,y) < 6} for 6 >0. Then 0B(z,d) < S(z, ). But B(z, 6y)\
B(x, ;) = Us, <5 <5, S(&, 0) has finite u-measure; therefore, at most countably
many of the S(x, 6) can have positive u-measure. Thus, apart from at most
countably many exceptions, the open balls B(z, 6) with 6, < 6 < 6, are
u-continuity sets. [l

For a given sequence (z,) in X, a subset M of X, and a natural number N,
we define the counting function A(M; N) by A(M; N) = DV, cpr(x,) =
number of x,, | < n < N, with x, € M, where ¢, denotes the characteristic
function of M. We shall now prove the result we announced earlier, and
even more,

THEOREM 1.2. The sequence (x,) is x-u.d. in X if and only if
. A(M; N)
lim ——

N-

= (M) (1.3)

holds for all u-continuity sets M < X. In particular, the class & = {c;;: M
is a u-continuity set in X} is convergence-determining with respect to u.

PROOF. Suppose first that (¥,) is u-u.d. and let M be a u-continuity set.
It suffices to construct for every ¢ > 0 two functions f, and g, from Z(X)
with f,(%) < ¢ (%) < g,(®) for all x € X, and [x (g, — f;) du < &. Then the
proof of Theorem 1.1 in Chapter 1 can be reproduced verbatim to yield the
desired result. By the regularity of u, there exists a closed C < int M with
u((int M)\C) < €2, and an open D 2 M with u(D\M) < ¢/2. Let f,€ Z(X)
be a Urysohn function with f,(z) = 1 forx e C, f,(z) = Ofor x € (int M)’, and
let g,€ Z(X) be a Urysohn function with g,(x) = 1 for x€ M, g,(x) = 0 for
we D'. Then f,(*) < cp(x) < g.(x) for all xe X. Furthermore, f, and g,
coincide on C and on D', and 0 < g,(#) — f,(z) < 1 for all € X, therefore,

f@-m@=f(&—m@smma
X D\C

= w(D\M) + u(@M) + p((int M)\C) <e. (1.4
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Conversely, suppose that the condition of the theorem is satisfied. By
Theorem 1.1, it suffices to show that sp (f) 2 Z(X). Choose fe Z(X),
and since sp (#) is a linear subspace of Z(X) containing the constant
functions, we may assume without loss of generality that 0 < f(x) < 1 for
all z € X, by possibly transforming f into af + b, a,be R, a % 0. As in
Example 1.2, we see that apart from at most countably many exceptions,
the sets E, = {x € X: f(¥) > a} are u-continuity sets. Consequently, for a
given ¢ > 0 there will exist a sequence of numbers 0 = oy < oy <+ <
«, = 1 such that for all 0 < i < n — 1 the following holds: «, ., — o, < ¢,
and F, = {v € X: f(x) > o} is a y-continuity set. We assert that

n—1

go(“m —a)eg, — f l

For each x € X, there exists aninteger k, 0 < k <»n — 1, with o, < f () <
o41- Then

<Le. (1.5)

2:0(‘7-:“ — o) — f(2)
= o — f(2)] L e, - (L6)

"go(am — e (@) — f(2)

and (1.5) follows. |}

We remark that since the F, in the foregoing argument are closed u-
continuity sets, the validity of (1.3) for all closed u-continuity sets M will
already guarantee p-u.d. in X.

There are certain pathological cases where (1.3) might even hold for all
Borel sets in X (consider the example given in Exercise 1.1). However,
under very 1nild conditions on the measure y, one can, for each given p-u.d.
sequence, easily construct closed (open) sets for which (1.3) fails drastically
(see Exercise 1.7).

Support

DerINITION 1.4, The support K of the measure u in X is defined to be the
set K = {x e X: u(D) > 0 for all open neighborhoods D of «}.

LEMMA 1.2. The support K of u has the following important properties:
i. K is closed
ii. puK) =1
ili. If u(C) =1 for a closed set C < X, then C 2 K.

PROOF. i. We show that K’ is open. Take x € K’; then there exists an

open neighborhood D of & with u(D) = 0. But none of the points of D
can belong to K, and thus, D = X',
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ii. Choose ¢ > 0. Since w is regular, there exists a closed B € K’ with
u(K’\B) < ¢. For every x € B, there exists an open neighborhood D, of «
with u(D,) = 0. B is compact; therefore, finitely many D, suffice to cover B.
It follows that u(B) = 0; hence, w(K") < e. Since ¢ was arbitrary, we obtain
u(KY =0, 0or u(K) = 1.

iii. Let C be a closed set with u(C) = 1. If C = X, then there is nothing
to show. If C # X, then for every 2 € C’ there exists an open neighborhood
D of « with p(D) = 0, namely, D = C’. Thus, C'< K',orC2 K.

The following theorem will show the usefulness of the notion of support.
Let 4 be a nonnegative regular normed Borel measure in X with support K.
Let u* be the restriction of u to K; that is, the measure u* in K defined by
u*(4) = u(A) for all u-measurable sets 4 € K. Then u* is a nonnegative
regular normed Borel measure in K in the relative topology, since the Borel
sets in the space K are exactly those of the form B N K with B a Borel set in
X (see Halmos [1, p. 25]). We shall also need the following classical result.

LEMMA 1.3: Tietze’s Extension Theorem. If Cis a closed subset of a
normal space X, then every real-valued continuous function on C can be
extended to a real-valued continuous function on the entire space X.

THEOREM 1.3. The sequence (z,) in K is p-u.d. in X if and only if
(%,) is p*-u.d. in K.

PROOF. By Tietze’s extension theorem, the space Z(K) just consists of
the restrictions of all functions g € Z(X) to K. Let g | K denote the restriction
of g to K. Then (z,) is #*-u.d. in K if and only if limy_,, (I/N) 3~ (g | K)
() =[x (g| K)du*forall g € Z(X).But (g | K)(x,) = g(z,) foralln > 1,

and [ (g| K)dpu* = [ gdu = Jc g du + [ g du = [ x g du. Therefore,
(x,) is w*-u.d. in K if and only if limy_, , (1/N) >a_; g,) = [y g du holds
for all g € Z(X), and the proof is complete. il

Notes

For proofs of the Stone-Weierstrass theorem and Tietze’s extension theorem, see Gaal
[1] and Hewitt and Stromberg [1].

Some even more general concepts of u.d. than the one presented here have been con-
sidered in the literature. In particular, we mention a notion of u.d. introduced by Helmberg
[3], which is also briefly discussed in Cigler and Helmberg [1] and Helmberg [S]. A variant
of Helmberg’s concept was considered by Kemperman [3]. Auslander and Brezin [1]
employ a special case of Kemperman’s definition, with X being a certain compact quotient
of a connected, simply connected, solvable Lie group. Their Weyl criterion (loc. cit.,
Theorem 3.2 (a), (b)) holds in fact for any compact Hausdorff space X.
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The p-u.d. of a sequence in X can be viewed as a special case of weak convergence of
measiires. A sequence (ut,,) of nonnegative regular normed Borel measures on X is said to
converge weakly to g, written limp—e ft, = g, if limp—roo p2,(M) = p(M) for all pe-con-
tinuity sets M in X. The sequence (x,) in Xis p-u.d.if and only if limn,eo (1/m)(peg, + -+ - +
Ma,) = 1, where g, is the point measure at & (compare with Exercise 1.1). For an exposition
of the theory of weak convergence, see Billingsley [2], Parthasarathy [1, Section 2.6], and
Topsee [2]. The following general existence theorem was shown by Niederreiter [9].
The measure ¢ on X admits a p#-u.d. sequence if and only if x lies in the weak sequential
closure of the convex hull of point measures on X. A class .# of Borel sets in X is called
a p-uniformity class if limpo f1,(M) = p(M)uniformly in M € .# whenever limy_.¢;, f, =
#¢. This notion is of interest in relation to the theory of discrepancy. For significant work
on uniformity classes, see Billingsley and Topsge [1], Ranga Rao [1], and Topsee [1, 2].
Based on ideas of Cigler [6], K. Schmidt [1] introduced and studied a notion of u.d. for
sequences of measures on a compact Hausdorff space.

The study of u.d. sequences in compact spaces was initiated by Hlawka (3, 6]. In this
approach, Hlawka also replaced arithmetic means by a larger class of summation methods
(see Section 4). The second axiom of countability is presupposed in both papers. Remarks
on Theorem 1.2 were made by Paganoni [1].

U.d. in locally compact spaces can be defined in a natural way. If X is a locally compact
Hausdorff space with countable base and u is a nonnegative regular normed Borel measure
in X, then the sequence (x,) in X is called s~u.d. in X provided that

N

. 1 .
A\lVl—I?ao N nglf ("’n) J‘de/‘
holds for all real-valued continuous functions f on X with compact support
(Stapleton [1]). In case X is compact, this coincides with Definition 1.1. The same author
shows that (@) is u#-u.d. if and only if limy_,, A(M; N)IN = u(M) holds for all relatively
compact u-continuity sets M and constructs z-u.d. sequences. The subject was taken up
again by Helmberg {7], who dropped the second axiom of countability. The relation
between the noncompact case and the compact case is quite close. For noncompact X,
et X=X u {0} be the one-point compactification of X, and extend p to a measure /i
on X by @(E) = f(E U {0}) = u(E) for all E in the o-algebra generated by the compact
sets in X. Then the sequence (2,) in X is x-u.d. if and only if (x,) is fi-u.d. in X (Helmberg
[7]). See also Lesca [4]. Interesting new aspects arise if one considers unbounded continuous
functions on a noncompact X. Post [1] has shown the following for such X with countable
base: For any p-u.d. sequence (z,) in X without repetitions and any three numbers «, B,
p, With 0 < & < B < y < oo, there exists a nonnegative continuous function f on X such
that ‘fod,u = o, imy_.o (1/N) zf,\;lf(xn) = B, and limy_, » (1/N) z;}'zlf(x,,) =y
Dupain and Lesca [1] study u.d. subsequences of sequences in locally compact spaces.
An interesting notion of u.d. in locally compact spaces was introduced by Gerl [7, 8]:
Let X be a locally compact Hausdorff space with countable base, and let u be a positive
Radon measure in X (it need not be finite). A sequence (z,) in X is called p-relatively
equidistributed (u-relativ gleichverteilt) if limy_. A(C; N)|A(D; N) = u(C)/u(D) holds
for all relatively compact u-continuity sets C and D in X with (D) > 0. Under the stated
hypotheses on X and g, the author can show the existence of u-relatively equidistributed
sequences. If x is normed, then a x-u.d. sequence in X (in the sense of Stapleton) is also
u-relatively equidistributed. On the other hand, if X is noncompact and # is normed with
compact support, then there are u-relatively equidistributed sequences in X that are not
#-u.d. For u.d. in locally compact groups, see Section 5 of Chapter 4.
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Exercises

In all the subsequent problems, X denotes an arbitrary compact Hausdorff
space and y a nonnegative regular normed Borel measure in X unless stated
otherwise.

I1.1.

1.2

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.
1.9.

1.10.

1.12.

Let « € X be fixed. Prove that the measure u, defined for all subsets
Eof X by u(E)=1if x€E, u,(E) =0 if x ¢ E, is a nonnegative
regular normed Borel measure (called the point measure at x). The
sequence (¥,), ¢, =« foralln > 1, is y,~u.d. in X.
In X = [0, 1] with the usual topology and Lebesgue measure, the
functions f(*) = 1, f,,(¥) = a* for k = 1,2, ..., form a convergence-
determining class. Does this hold for other measures in X as well?
Show that the family of u-continuity sets in X forms a field, that is,
that it is closed under finite unions, finite intersections, and comple-
mentation.
Give an example of a space X and a measure u for which the u-con-
tinuity sets do not form a ¢-algebra.
Prove that every nonvoid open set in X contains a nonvoid open
p-continuity set.
The following criterion holds: (z,) is g-u.d. in X if and only if

tim A2V 5y

1\.'::0 N
for all open D < X. Consequently, limy_, , 4(C; N)/N < u(C) for all
closed C = Xis also a necessary and sufficient condition for y-u.d. in X.
If u is not concentrated on a countable set (i.e., if u(E) < 1 for all
countable E € X) and if (»,) is g-u.d. in X, then there exists a closed
C & X with limy., ,, 4(C; N)|N < u(C).
Prove that a p-u.d. sequence is dense in the support of u.
Suppose X contains p-u.d. sequences. The statement “All p-u.d.
sequences are everywhere dense in X’ holds true if and only if the
support of u is X.
Let X and Y be compact Hausdorff spaces, let 7: X + Y be continuous,
and let (z,) be y-u.d. in X. Then (T®,)is T g-u.d. in Y.

. Let p satisfy the same condition as in Exercise 1.7. Show that for every

u-u.d. sequence (z,) in X, there exists a compact Hausdorff space ¥
and a measurable function T: X + Y such that (Tx,) is not T-1u-u.d.
in Y,

If (z,)is p-u.d. in X, thenlimy_, (1/N) 32, f (z,) = {x fdu holds
for functions fe Z(X) whose discontinuities are contained in a
w-null set. Hint: For each ¢ > 0, construct step functions f; and f,

as in (1.5) with f; < f< frand [y (fo —f1) du < &
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1.13.

1.14.

1.15.

1.16.

1.17.

1.18.

1.19.

1.20.

1.21.

UNIFORM DISTRIBUTION IN COMPACT SPACES

Let M be a closed p-continuity set in X with u(M) = o > 0. If 0 =
(%,) is g-u.d. in X, then the subsequence of w consisting of all elements
lying in M is (1/e)u*-u.d. in M with the relative topology, where u* is
the restriction of u to M. Hint: Use Tietze’s extension theorem and
Exercise 1.12.

Prove the inclusion-exclusion formula: If A4,,..., A, are Borel sets
in X, then

n n
y( U A,.) =Y (=1 > WA, OVA, NN A,
i=1 k=1 1<51<f2< < jxSn
Use Exercises 1.6 and 1.14 to show that if .# is a class of Borel sets in
X closed under finite intersections and such that each open set in X
can be approximated from below in u-measure by finite unions of
elements of .#, then the collection of characteristic functions of ele-
ments of .# forms a convergence-determining class with respect to
u. (Note: This generalizes Example 1.1.)
Using the approximation technique employed in the second part of the
proof of Theorem 1.2, show that the class %, in Example 1.2 is a
convergence-determining class with respect to any u in X,
Let (z,) be p-u.d. in X, and let k(1), k(2), ..., k(N), ... be an in-
creasing sequence of positive integers with limy.,, N/k(N) = 0.
Construct a new sequence (y,) by inserting between any two terms
Zy N and 2y, an arbitrary element of X. Show that (y,) is again
p-u.d. in X.
Let (%), i=1,2,...,s, be finitely many g-u.d. sequences in X.
Furthermore, let Py, P,, ..., P, be a partition of the set of positive
integers into s infinite subsets P, whose elements are arranged in
natural order. For given n > 1, the integer # lies in a unique P;. Define
y, =« if n is the kth element of P,. Show that (y,) is w-u.d.
in X.
Let the support of the measure u be a u-continuity set. Then there
exist y-u.d. sequences in X if and only if there exist u*-u.d. sequences
in the support of x4, where u* has the same meaning as in Theorem
1.3.
Let K be the support of u. For every u-continuity set M in X, the set
M N K is a y*-continuity set in K, where u* is the restriction of u
to K.
Let (Y, %, ») be a o-finite measure space (i.e., Y is the countable
union of measurable sets of finite »-measure). Then in any family of
pairwise disjoint measurable sets at most countably many sets can have
positive »-measure.
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2. SPACES WITH COUNTABLE BASE

Weyl Criterion

Let now X be a compact Hausdorff space satisfying the second axiom of
countability. This additional condition leads to several simplifications relative
to the considerations in the preceding section. First of all, we need not
require explicitly that 4 be regular. Every nonnegative normed Borel measure
in X is automatically regular (Halmos {1, Sections 50-52]). Furthermore,
by invoking the Urysohn metrization theorem, we obtain that X is metrizable
(and, conversely, every compact metric space has a countable base). There
is still another topological property of X that is in fact the most pertinent
one for the theory of uniform distribution. Let us first note that we have the
following corollary to the classical Weyl criterion (see Chapter 1, Theorem
2.1): For the unit circle U with normed Lebesgue measure, there exists a
countable convergence-determining class. This statement holds true for all
spaces X under consideration, by virtue of the following general result:
For a compact Hausdorff space X, Z(X) is separable if and only if X is
metrizable (Kelley {1, p. 245]). We shall prefer to construct explicitly a
countable convergence-determining class for any X and u, and we thereby
give a more self-contained proof of the general Weyl criterion.

THEOREM 2.1: Weyl Criterion. In a compact Hausdorff space X with
countable base, there exists a countable convergence-determining class of
real-valued continuous functions with respect to any nonnegative normed
Borel measure in X.

PROOF. Since X is separable, there will exist an everywhere dense sequence
(%,) in X. Let d be a metric in X. For each «; and every integer n > 1, choose a
Urysohn function f,,, with f; ,(@) = 1 for d(z;,2) < 27" and f; ,(x) = 0
for d(z,, ®) > 27". Let % be the class of all functions f;, ,,, and let & be the
class consisting of the function f= 1 and all finite products of functions
from %. We shall show that the countable class & is convergence-determining,.
We proceed by Corollary 1.1. It is easily seen that sp () is a subalgebra
of Z(X). By the construction of £, sp (#) contains the constant functions.
We conclude the proof by showing that the functions from % already separate
points. Let a, b € X with a % b. Choose an integer n > 0 with 27 < d(a, b).
For an @, with d(z;, a) < 27"%, we look at the function f ., € %. We
certainly have f; ,.y(@)=1. On the other hand, d(x;,b) > d(a,b) —
d(x,,a) > 27" — 27"% > 2771 and therefore, f; ,,1(0) = 0. [l
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Metric Theorems

The above theorem has many important consequences. For instance, we
can show that in a certain technical sense, almost all sequences in X are
u-u.d. We note that a sequence (z,) in X can be viewed as a point in the
Cartesian product X* of denumerably many copies of X; that is, X* =
TT2: X;, with X; = X for all i. Of course, the sequence (2, is identified with
the point & = (¥, %,,...,%,,...)€X°. Furnished with the product
topology, X* is again a compact Hausdorff space with countable base. The
given measure 4 on X induces the product measure yu,, in X*, which we may
assume to be complete. We first prove an auxiliary result that is a special
case of the so-called law of large numbers in probability theory (Feller
2, p. 233], Loéve [1, p. 239], Rényi [2, p. 332]).

For given fe€ #(X), we have

tim £ 3 /(2,) = — [ rau @1
N—+ o N a1
for p,-almost all points (¥, %5, ..., 2,,...) € X™.

PROOF. Tt suffices to prove the assertion for functions fe #Z(X) with
fx fdu = 0. For N > 1, let Fy be the function on X* defined by

1 N
FN(xl)x%"')xn""):— Zf(wn)
N a1
for (xy, %3, ...,%,,...) € X®, Then,

[ or =53 [ s du

n—l

+2 f )@y duw = & f frdu. 2)

N2 1<1<7<N

Therefore,
5[ =([ ra) s L<w 2.3)
m=1 X m=1 "1

It follows from Levi’s theorem that lim,,., ., F,: = 0 u,-a.e. For arbitrary
N > 1, there exists m > 1 with m* < N < (m + 1)2 Then

IFNl = S |F7n2| + ”f” (2‘4)

B P+ ﬁ(ﬂxmm) + oot )

Since the right-hand side of (2.4) tends to zero u,-a.e. as N— oo (or,
equivalently, as m — o), we are done. [l
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THEOREM 2.2. Let S be the set of all u-u.d. sequences in X, viewed as
a subset of X”. Then p,(S) = 1.

PROOF. Let fi,fs, ..., /s, ... be a countable convergence-determining
class of functions from Z(X). For k = 1,2, ..., let B; be the exceptional
t-null set corresponding to f; according to Lemma 2.1. Then, for all
(%, ¥y oo ., ¥y, .. .) EX® lying in the complement of the w-null set
B = Ui, B, we have

N

lim + S fi(s,) =f fodu forallk=1,2,.... 2.5)
X

Noow N a=1

In other words, all sequences (x,) corresponding to points in X* outside
of Bare p-ud. i

We indicate now how Lemma 2.1 may also be deduced from a very
important general principle, namely, the individual ergodic theorem. We
need some definitions that will be useful in other contexts as well.

DermNiTION 2.1, Let (Y, %, %) be a measure space with » being a non-
negative normed measure. A measurable transformation 7: Y- Y is
called measure-preserving (with respect to ») if »(T71F) = »(F) holds for
all Fe#. A measure-preserving transformation T of Y is called ergodic
(with respect to ) if for all sets F € # with T-1F = F, we have »(F) = Oor .

The mapping T: X* — X, defined by T(,, 2,5, 5, ...) = (@5, ¥, .. .)
for (zy, %y, %3, ...) € X™, is called the one-sided shift in X*. T is ergodic
with respect to u,, (see Exercise 2.20).

LEMMA 2.2: Individual Ergodic Theorem. Let (Y, %, ») be a measure
space with » being a nonnegative normed measure, and let 7 be an ergodic
transformation of Y with respect to ». Then, for any »-integrable function f
on Y, we have

N—1
lim L > f(Ty) =J fdy  for y-almost all y € Y. (2.6)
¥

Noo N alo
For the alternative proof of Lemma 2.1, we consider the projection map
P X — X, defined by
Py, gy o, Ty ) =X for (zg, Tgy ..., %y, .. ) EX®. (2.7)

With fe Z(X) being given, the composite function fo p; will be bounded
and measurable and, hence, integrable on X®. Applying the individual
ergodic theorem to the function fop, and the one-sided shift 77 in X,
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we get that for p-almost all £ € X%,

N ng :
iim 3 (e p(T0) = 070 p) it 28)
N-o N nZo X
Let us observe that, with & = (¥, %,,...,%,,...), we have (fo p)(T"¢§) =

f (x,,1) for all n > 0. Therefore, (2.8) is equivalent to

N
lim 1 > f(=,) =wa(fo 1) dptg =f\’fd,u Hop-B.E. (2.9

Noow N p=1

But (2.9) is identical with the assertion of Lemma 2.1,

From the viewpoint of measure theory, the u-u.d. sequences constitute a
large subset of X. Therefore, it may come as a surprise that, topologically
speaking, the u-u.d. sequences form a rather small set. There is one trivial
exception, namely, if X contains only one element. Then, of course, the set
of u.d. sequences (there is only one possible y) is identical with X,

THEOREM 2.3. If X contains more than one element, then the set S
from Theorem 2.2 is a set of the first category in X,

PROOF. Let ¥ = {fi,fs,.. . fxs.-.} be a countable convergence-

determining class of real-valued continuous functions on X with sp (¥") =
Z(X) (such a class was constructed in the proof of Theorem 2.1). For given
positive integers k, m, and ¢, let S, be the set of all points (21, 2, ...,
%, ...) € X® for which [(1/N) DN, fux,) — [x fi du| < 1/m holds for all
N > t. Since, for each fixed N, the function F, y on X defined by

N
Fk,N(wls Zoy oo v s Ty o ) = ]TJ Efk(w'n)
n=1

is continuous, Sy, isclosed. Furthermore, we have S = M2 Nm—i U1 Seme-
The hypothesis that X contains at least two points implies that there exist
nonconstant continuous functions on X (e.g., take a Urysohn function

corresponding to two distinct points). Consequently, there exists a non-

constant function f, in ¥” (otherwise sp (¥") would consist entirely of
constant functions). In particular, there is a yo € X with f; (o) # fx fi, du.
Put ¢ = | f5,(%0) — [ xS, dul-

We claim that for m > 2/c and all ¢, Sy ,,, is nowhere dense in X*. Assume,
on the contrary, that we can find a nonvoid open set D in X with D < S ..
The open set D contains a nonvoid cylinder £ = [[, E; with E; = X for i
greater than some r. Consider a point { = (21,2;,...,%,,...) € E with
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z, = Yo for n > r. Then,

AY
‘ z fl\ (zn J:\'fko dlu ’

N n=1

1 X
= l_ glfko(?lo) _J‘\ﬁ.o du + Z(fk 2n) = Ji, (%))

n=1

> |00 = [ ] = 3, Z15e = oo

1

N x

>c—12 I fell > s L for sufficiently large N. (2.10)
N o 2 m

Thus, {¢ Sy, a contradiction. We infer from the preceding that for
sufficiently large m, the set [JiZ; Sy, is of the first category in X, Hence,
S, being contained in this set, is also of the first category in X*. i

The above proof might even suggest that S itself is nowhere dense in X*.
But, quite on the contrary, we have the following result.

THEOREM 2.4. The set S is everywhere dense in X™.

PROOF. We show that an arbitrary point & = (%, %, ..., 2,,...) € X%
can be approximated (in the topology of X*) by points from S. Since
1o (S) =1, there exists a p-u.d. sequence (y,) in X. Consider the points
B = W 2P 2P ) e X™ defined by % =, for | <i < k and
## =y, . fori > k. The points £&®) certainly correspond to u-u.d. sequences
in X; therefore, &% € S for all £ > 1. Moreover, lim,_,, £&* = £, and the

proof is complete. [l

Rearrangement of Sequences

We have seen in Section 4 of Chapter 2 that an everywhere dense sequence
in the unit interval [0, 1) can be rearranged so as to yield a u.d. sequence.
A similar result holds in our present, more general setting. We can give a
necessary and sufficient condition for a sequence to possess a u-u.d. re-
arrangement,

THEOREM 2.5. The sequence (x,) in X has a p-u.d. rearrangement if
and only if all open neighborhoods of points in the support of u contain
infinitely many terms of the sequence (v,).

PROOF. Since u(D) > 0 for every open neighborhood D of a point in
the support of u, the condition is easily seen to be necessary (compare with
Exercises 1.5 and 1.6).
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To prove the converse, we note that Theorems 2.2 and 1.3 imply the
existence of a u-u.d. sequence (y,) that is entirely contained in the support of
1. We choose a countable convergence-determining class of functions
SisSas o sfo ... from Z(X). Foreachk > 1,theset D, = {x € X | f,(y;) —
[@)| < 1/k for 1 < r < k} is an open neighborhood of y,. By the condition
on the sequence (z,), we can choose for each k > 1 an z, € D, in such a
way that n, 7 n, whenever k  m. Now consider a fixed f,. By the con-
struction of the z,, , we have | f,(¥:) — f.(z,,)| < 1/k for all k > r. Therefore,
() — fi(z,)) — 0 as k — co. By Cauchy’s theorem, we get then

N

lim - S0 = f(x) = 0. (2.11)

N-w N

We rearrange the given sequence (%,) in the following way. We first enumerate
those subscripts n, which are either no , or else are n,, with k being a perfect
square, in an arbitrary fashion: my, m,, . ... Then we define a sequence (i)
by u, = =, if k is not a perfect square and by = =, if k = p? Clearly,
(u) is a rearrangement of (x,). Furthermore, for fixed r:

N
E(fr(“k) fr(ﬁcn‘)) \ z (fr(“k) fr(ﬁl’n,\)) < \/N 2 ” f “
and so, k g
lim z<f,<uo ~ ff@,)) = 0. (2.12)

Noao N
Using (2.11) and (2.12), we have for all r,

N

lim — zf,(uk) = lim — z(fr(“r) - f{®,)

Now N N - 00

N

+ lim — Z(f, ) — fr(91))

\’—*oo
N
+lim & 50 = fdus

hence, (1) is p-ud.in X. [

This theorem has some easy consequences concerning the rearrangement
of everywhere dense sequences. For instance, if the support of u does not
contain any isolated points, then any everywhere dense sequence in X can
be rearranged to a u-u.d. sequence (see Exercise 2.11). However, if X has at
least two points and the support of u contains isolated points, then the
foregoing statement need not be true any more (see Exercise 2.12). In
particular, the statement does not hold for finite X having at least two



2. SPACES WITH COUNTABLE BASE 187

points. Again, the space X consisting of only one point plays an exceptional
role: for this space the above statement is true in a very trivial way.

We may further exploit the method in the proof of Theorem 2.5 in order
to arrive at a quantitative result that bears some resemblance to Theorem
4.2 of Chapter 2. The restriction imposed on the sequence (z,) below will
be clear from Theorem 2.5.

THEOREM 2.6. Let () be a given sequence in X, let f1, f5, ..., foy . ..
be a sequence of functions from Z(X) with lim,.,, || f,| = 0, and let a,,
ay, ...,4ay, ... be an increasing sequence of positive real numbers with
limy, , ay = 0. Suppose the sequence (»,) in X satisfies the following
condition: Every open neighborhood of each y, contains infinitely many
terms of the sequence (v,). Then (x,) can be rearranged into a sequence (1)
with
N

! ay
Ng(f,(m flu| < (2.13)

for all sufficiently large N.

PROOF. We can easily find a sequence of positive real numbers ¢, ¢, . . .
such that Z{Yzl & < day for all N > 1; for example, choose & < %a; and
g; < Ya, — a;_y) for i > 2. By the assumption on || f;||, there exists, for
each k > 1, a least nonnegative integer i(k) such that |j || < 1/k for all
r > h(k). Let us note for later use that the i(k) form a nondecreasing sequence.
The set E, = {x e X: |f(5:) — f,(®)] < & for 1 <r < h(k)} is an open
neighborhood of y;. In the same way as in the proof of Theorem 2.5 we
can construct a subsequence (z,) of (z,) such that z, € E; for all k > 1
and n, # n,, for k % m.

For the following discussion, it will be useful to define /#(0) = 0. Consider
a fixed f,. If h(k) < r for all k > 1, then || f;]| < 1/k for all k, or f, = 0.
In this case, the subsequent estimates will be trivial. Otherwise, let k, be
the largest k > 0 such that (k) < r. Then, for all k > k,, we have r < h(k);
hence, | () — fo(x,,)| < & Therefore,

N ko
& 3Gt = e | <| & S = 1w )|

’_ z (fr(./k) fr(xnk))

1
S e lfill + Eek

1 ay
< =2y £ + 2 2.14
N 2o £ AN (2.14)
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If ko > O, then r > h(k,) implies that | £ < 1/k,. Then

N

E(fr(JA fi(=,,))

ay
Syt
This inequality is tr1v1a11y true for k, = 0 as well.

The sequence of || f;] is bounded; therefore, | f,| < M for some positive
constant M. In the same vein as in the proof of Theorem 2.5, we now enumer-
ate those subscripts » that are either no n; or else are n, with £ > 2 and
[a,_./6M] < [a,/6M], in an arbitrary fashion: m,, m,,.... The sequence
(up) is then defined in the following way: u, = «,, if k = 1 or [a,_,/6M] =
[a,/6M]; vy, = 2, if [a;_1/6M] < [a,/6M]and k > 2 is the pth subscript for
which this happens. Again, it is easily seen that (i) is a rearrangement of
(®,). For fixed r, we have

(2.15)

| LA .
N kgl(fr(uk) - fr(xnk))

1 N
=|— > (filuy) — f(%,))
N =2
[ay—1/6d1Y<[ar/631}
1
<=2,
=gy (B
number of k, 2 < k < N, such that |: :I |:_a_,‘:|)
( m Sks< 6M < 6M.

ay l ay _ay
" D =21 . 2.16
Together with (2.15) we get

1y N 2
;kgl(j,(yk)—— fu)) S?vY“LE forallr =1,2,.... (217)

Since this upper bound does not depend on r, we obtain

N 2
— 4+ —. 2.18
< N +y (2.18)

But, for sufficiently large N, we have 2 < 4ay, and we are done. i

N
sup ’i S Ui — £,
N x=1

r=1,2,..,

An interesting special case occurs when the sequence (y,) consists of
nonisolated points. For (x,) one may then take, for instance, any everywhere
dense sequence in X. Theorem 2.6 is, of course, only of interest if a,/N — 0
as N — oo. In this case, sequences (y,) containing isolated points have to be
treated with care (see Exercise 2.13).
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A countable convergence-determining class of continuous functions
S fes o5 S ... satisfying the hypothesis of Theorem 2.6 can be easily
constructed. Just take an arbitrary countable convergence-determining class
of continuous functions gy, g2, - - . , & . - - and replace those g, with ||g,| > 0

by f, = (U/r lg. g,

Quantitative Theory

We can make the resemblance between Theorem 2.6 and Theorem 4.2 of
Chapter 2 even more conspicuous by introducing the following definition.

DerFINITION 2.2, Let fi, /2, ..., f;, ... be a countable convergence-deter-
mining class of functions from #(X) with lim,, . || ;| = 0. For a sequence
(x,) in X and a natural number N, the maximal deviation M, is defined to be
1 X

o Efr(mn) —f fr dlu
N a=1 X

We have the following criterion analogous to Theorem 1.1 of Chapter 2.

My = sup

r=1,2,...

. (2.19)

LEMMA 2.3. Thesequence (v,)isu-u.d.in Xif and onlyif limy., , My = 0.

PROOF. It is obvious that (M) being a null sequence implies that (z,,)
is p-u.d. Conversely, suppose (x,) is p-u.d., and choose ¢ > 0. There is an
R such that || f;| < ¢/2 for all » > R. For those r, we have for all N > |:

1 X

For the finitely many functions f;, ..., fg, there exists N, such that
[(YNIN, fi@,) — [x frdul L & for all N> Ny and all r =1,2,..., R
It follows that My < ¢ for all N > N, and this is what we had to show. [

From Theorem 2.6 and Definition 2.2 we can easily infer the following
consequence.

COROLLARY 2.1. Let (%) be a sequence in X with maximal deviation
My and let a;,a,,...,ay, ... be an increasing sequence of positive real
numbers with limy., , @y = co. Then any sequence (%,) in X satisfying the
condition in Theorem 2.6 can be rearranged into a sequence (u;) whose
maximal deviation MY, based on the same convergence-determining class as
My, satisfies |My — M}| < ay/N for sufficiently large N.

EXAMPLE 2.1. Consider X = [0, 1] with the relative topology of the
reals and Lebesgue measure A on X. It follows from Exercise 1.2 that the
functions fy(®) =1 and f(x) ==27fr, r=1,2,..., form a convergence-
determining class with lim,, o || ;| = 0. Let M, be the maximal deviation
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defined in terms of this system, and let D denote the discrepancy as defined in
Definition 1. 2 of Chapter 2. For r > I and w = (z,) in [0, 1), we have

[YNIN_ fiw) — Sx fidA < V() D¥w) = (1/r)D}(w) by Koksma’s in-
equality (see Chapter 2, Theorem 5.1). Therefore, sup,_y, ... [(I/N)
S fix) — fxf. dA] < D}(w), and this remains valid if we include r = 0.
Thus, My < D¥(w) for all N and all sequences » = (z,). [

Notes

For a general survey of ergodic theory and proofs of the individual ergodic theorem,
we refer to Halmos [2] and Billingsley [1]. For relations between laws of large numbers
and ergodic theorems, see Loéve [1, Chapter 9]. An in-depth study of laws of large numbers
is carried out in Révész [1]. Further applications of the individual ergodic theorem related
to problems discussed in this section were exhibited by Cigler [2, 9].

Theorems 2.1, 2.2, and 2.3 were shown in the fundamental paper of Hlawka [3], and
even in the more general setting of summation methods (compare with Section 4). We
have preferred to use the term convergence-determining class also in the context of this
section, since it is more suggestive than Hlawka’s Hauptsystem (Hlawka [3]).

In recognition of the pioneer work of Borel [1], the statement in Theorem 2.2 is some-
times referred to as the Borel property of u-u.d. (see also Section 4). In conjunction with
Theorem 2.2, the following zero-one law from probability theory is of interest: Let (Y, %, »)
be an arbitrary probability space, and let 4 be a homogeneous set in Y, that is, a v~
measurable subset of Y that is independent of all cylinder sets; then v, (4) = 0 or 1
(Kolmogorov [1, p. 60], Feller [2, p. 122]). Moreover, if 4 is a »,,~-measurable subset of
Y for which (yy, ¥,, - . .) € 4 remains true whenever a finite number of y; is replaced by
arbitrary elements from Y, then A is homogeneous (Kolmogorov [1, p. 60], Visser [1]).
It follows then, in particular, that if X is an arbitrary compact Hausdorff space and if the
set S of u-u.d. sequences in X is peo-measurable, then po(S) can only be 0 or 1. More
general laws of the above type are the zero-one laws of Hewitt and Savage [1] and of
Horn and Schach [1]. For arbltrary compact Hausdorﬂ’ spaces one does not know how

. » O a cou . 12« v 0y, B LA

V P lf,(x,,) = L\ f,d;l + O(\/(loglog N)/N)for allr=1,2,... (uo-a.e.),
and Theorem 2.2 follows. A survey of probability methods in the theory of u. d and some
general results can be found in Kemperman [2].

Theorem 2.5 was enunciated in this form by Descovich [1]. The basic ideas can be
traced back to Hlawka [3]. Both authors prove their results for certain classes of summation
methods. Stapleton [1] has a very similar rearrangement result for locally compact
Hausdorff spaces with countable base. Gerl [7] shows a rearrangement theorem for
u-relatively equidistributed sequences (compare with the notes in Section 1).

A technique of “lifting’’ sequences from the unit interval was used by Hedrlin [1, 2}
to construct u.d. sequences in compact metric spaces. The method was in fact already
employed earlier by Stapleton [1] in order to show the existence of u.d. sequences in
locally compact Hausdorff spaces with countable base. For another application of the
method, see Baayen and Hedrlin [1]. The possibility of defining a discrepancy in a compact
space was investigated by Grassini [1]. An error in this paper was pointed out by Post [2].
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A notion of discrepancy in separable metric spaces based on the Prohorov distance of
probability measures was introduced by Bauer [1]. See also Miick and Philipp [1]. Suites
eutaxigues in compact metric spaces were studied by de Mathan [3]. For quantitative
theory in compact groups, see the notes in Section 1 of Chapter 4. For u.d. in Cartesian
products of compact Hausdorff spaces, see Christol [1].

Exercises

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.1

2.8.

2.9.

Let X be an arbitrary compact Hausdorff space. A Borel set B in X is
called a carrier of the measure p if w(B) = 1. Prove that if there exist
u-u.d, sequences in X, then 4 has a compact separable carrier. (Note:
The support of u is of course also a carrier of p.)

For the same situation as in Exercise 2.1, prove that if there exists a
carrier of u thatis compact with countable base in the relative topology,
then there exist u-u.d. sequences in X. Show that even p-almost all
sequences in X are u-u.d. (Note: Exercises 2.1 and 2.2 together still
do not yield a necessary and sufficient condition for the measure u to
allow a u-u.d. sequence, because there are compact separable Hausdorff
spaces that do not possess a countable base; see Kelley [1, p. 164].
For a complete characterization of those measures u, see the notes to
Section 1. Compare also with Exercise 2.15.)

Let (X, d) be a compact metric space with an everywhere dense sequence
(z,). Show that the open balls B,, = {x € X: d(v,,2) < 1/k}, n =
1,2,...,k=1,2,..., form a countable base.

In a compact metric space with nonnegative normed Borel measure u,
there exists a countable base of open balls that are u-continuity sets.
Hint: Use Exercise 2.3.

Consider the discrete space X = {0, 1} with measure x4 defined by
u({0) = o, u({1}) =1 — a, 0 < « < 1. Construct a g-u.d. sequence
in X.

Let X ={0,1,2,...,k} be a discrete space with measure u defined
by u((i}) =2, 20for0< i<k, + 4 + -+ 4, = 1. Construct
a pu-u.d. sequence in X. Hint: Use recursion on k.

Use the individual ergodic theorem to prove that if T: X + X is an
ergodic transformation (with respect to u) on a compact Hausdorff
space X with countable base, then the sequence (7"z) is p-u.d. in X
for u-almost all z € X.

Prove without using Baire’s category theorem that if the compact
Hausdorff space X has at least two points, then the set S from Theorem
2.2 has a void interior in X,

Give a detailed proof of the following fact: If the Hausdorff space X
has no isolated points and (z,) is-everywhere dense in X, then the
sequence remains everywhere dense after deletion of finitely many
terms. Why is this false if X contains isolated points?
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2.10.

2.10.

2.11.

2.12.

2.13.

2.14,

2.15.

UNIFORM DISTRIBUTION IN COMPACT SPACES

—2.13. In these four exercises, X denotes a compact Hausdorff space with

countable base, and u is a nonnegative normed Borel measure in X.
Prove that if u({x}) = 0 for all isolated points « € X, then there exists
a u-u.d. sequence in X consisting entirely of nonisolated points. Hint:
Since X has a countable base, at most countably many points in X
can be isolated.

Any everywhere dense sequence in X can be rearranged to a p-u.d.
sequence if we require that u({zx}) = 0 for all isolated points x € X.
Prove that if X has at least two points and if there is an isolated point
@ e X with u({z}) > 0, then there are everywhere dense sequences in
X that cannot be rearranged to a u-u.d. sequence.

Prove that Theorem 2.6 is best possible in the following sense: If X
has at least two points some of which are isolated and if ay/N — 0 as
N — oo, then one can construct a sequence (y,) containing isolated
points (even a p-u.d. one), a countable convergence-determining class
Ji:fes - -+ s fys - . . of functions from Z(X) with | f,| -0 as r — oo,
and an everywhere dense sequence (x,) in X such that the assertion of
Theorem 2.6 does not hold. Hint: If y € X is isolated, then the function
f@ =1 for x=y, f(xr) =0 for » # y, is continuous; use this
function in the system f}, f3, . . .; take a sequence (y,) that contains the
point y with a relative frequency larger than ay/N for sufficiently
large N.

For the space X = {0} U {I/n: n = 1,2,...} in the relative topology
of the reals and the point measure u at = 0, show that the functions
Joo r=1,2,..., defined by f.(x) = 1/r for « < I/r and f(z) =0
otherwise, form a convergence-determining class with lim,_, ,, || f,Il = 0.
Let My be the maximal deviation defined in terms of the f,. Show
that for the sequence 1,4, %,... we have NMy < | forall N > 1.
Let X be a compact separable Hausdorff space but not necessarily with
countable base. Let z,, %;, %,, . .. be everywhere dense in X. Define
the measure u by

%)

wM)= > 2771 forallM < X.

Show that p is regular and that its only compact carrier is X (in the
sense of Exercise 2.1). Construct a sequence (%), k¥ > 1, in the following
way: The integer & has a unique dyadic representation k = 2/t +
224 4 20 i1 > >0 > i 2 05 define y, = ;. Prove that
(¥,) is p-u.d. in X. Hint: Show first that each z; occurs with the proper
frequency.

This example shows that even if u has no compact carrier with
countable base there may exist u-u.d. sequences.
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2.16, Let X be a compact metric space with metric d, and let u be a non-
negative normed Borel measure in X with support K. Suppose (2,)
is a p-u.d. sequence in X. For each n, let y, be a point in K that is’
closest to x,; that is, d(x,, y,) = d(x,, K) = min, d(x,, 2). Prove
that (y,) is again g-u.d. in X,

2.17. Let b > 2 be an integer. Prove that the transformation T of [0, 1)
defined by Tx = {ba} (= fractional part of bx) is ergodic with respect
to the Lebesgue measure 4 in [0, 1). Hint: Show first that an invariant
Borel set A satisfies A(4)A(J) = A(4 N J) for every interval J of the
form J = [m/b*, (in + 1)/b*), where k and m are integers with k > 1
and 0 < m < b%,

Deduce from the individual ergodic theorem that almost all real
numbers are normal to the base b.

2.18, Why does Theorem 2.3 imply the existence of non-u-u.d. sequences
in X?

2.19. Prove that for any compact Hausdoiff space X containing at least two
points and for any nonnegative regular normed Borel measure x in X,
there exist sequences in X that are not g-u.d. in X.

2.20. Prove that the one-sided shift T in X™ is ergodic with respect to u,,.
Hint: Show first that p (T'4) = u,(4)andlim, ., , p(4d N T"B) =
o (A (B) for cylinder sets 4, B in X,

3. EQUI-UNIFORM DISTRIBUTION

Basic Results

Let X again be a compact Hausdorff space but not necessarily with countable
base. As usual, u shall denote a nonnegative regular normed Borel measure
in X. Instead of looking at one given sequence in X, we now consider a
whole family of such sequences. We are interested in the extent to which
we can expect a uniform approximation of the u-integral by arithmetic
means in the given family of sequences. To this end, we introduce the notion
of a family of equi-u-u.d. sequences.

DerINITION 3.1, Let & = {(x,,): o0 €J} be a family of sequences in X,
where J denotes an arbitrary index set. & is called a family of equi-p-u.d.
sequences in X if for every fe #(X), we have limy_,, (I/N)DN_, f(,.) =
[x fdu uniformly in o; that is, if for every fe 2(X) and for every ¢ > 0
there exists an integer N(f, &), independent of o, such that

—1_ N
\ N 1;2=:1f(m"'0) —ﬁYf an

for all N > N(f, ¢) and for all o €J.

<e (3.1)
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EXAMPLE 3.1. Whenever & consists of finitely many g-u.d. sequences
in X, then & is a family of equi-u-u.d. sequences in X. [l

EXAMPLE 3.2. Let X be a compact Hausdorff uniform space with uni-
formity %. Actually, the assumption that X is a uniform space is no restric-
tion at all. If A = {(z, 2): @ € X} denotes the diagonal of X X X, where X
is an arbitrary compact Hausdorff space, then the family of all neighborhoods
of A (in the product topology) is a uniformity for X and the corresponding
uniform topology is identical with the original topology in X (Kelley [1, p.
198]). For the simple facts about uniform spaces that we need here, the
reader is referred to Kelley [1, Chapter 6], Gaal [1], and Isbell [1]. We use
the following well-known notions: If U and V are two subsets of X X X,
then Ue V ={(z,2)e X X X: (x,y)e U and (y,2) e V for some y € X};
moreover, U is called symmetric if (z,y) € U implies (y, ) € U. A family
{P,: o eJ} of transformations P,: X — X is said to be equicontinuous at
the point @ € X if for each U € %, there exists a neighborhood R of  such
that (P,x, P,y) e U for all y € R and for all o € J.

Now suppose that {P,: o€/} is a family of measure-preserving trans-
formations on X (with respect to the given nonnegative regular normed
Borel measure u) that is equicontinuous at every point x € X, and let (x,)
be a given u-u.d. sequence in X. Then we claim that {(P,x,): o eJ} is a
family of equi-u-u.d. sequences in X. We have to start from a function
fe Z(X) and an ¢ > 0. Since a continuous function on a compact uniform
space is uniformly continuous, there exists W € % such that | f(u) — f (v)| <
e whenever (i, v) € W. We choose a symmetric ¥ e % so that Vo V= W.
Then, by the equicontinuity of the family {P,: o €J}, for every y € X there
is a neighborhood R(y) of y such that z € R(y) implies (P,y, P,z) € V for all
o €J. By the usual argument—take a Urysohn function corresponding to {y}
and the complement of the interior of R(y)—we can show that every R(y)
contains an open u-continuity set S(y) with y € S(y). Since X is compact,
finitely many S(y), say S; = S(¥1), ..., S = S¥,), will already cover X.
Define B, = S; and B, =S, NS;N--- NS, for 2 < i< m. Without
loss of generality, all B, are nonvoid; otherwise, we just delete those B, that
are void. The B;, 1 < i < m, are pairwise disjoint u-continuity sets that
cover X. Moreover, since B; < S; < R(y,;), we have for all x,y e B;:
(P,y;, Px)e V and (P,y;, P,y)e V¥V for all o €J, which, in turn, implies
(P,x, Py) € W for all o €J. Therefore,

|f(P,x) — f(P,y)| < e (3.2)

for all  and ¥ in the same B, and all o €J. From each B,, | < i < m, we
choose a point z; that will be fixed throughout the remainder of the proof.
Let L > 0 be such that | f'(z)| < L for all x € X. The sequence (%,) is p-u.d.
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and there are only finitely many B,;; therefore, we can find an integer N(f] ¢)

such that

A(B;; N) _
N

We complete the proof by showing that

(B,.)‘ < Li for all N > N(f, ¢) and all B,. (3.3)
m

< 3¢ 3.4

N

for all N > N(f, ¢) and all o €J. The basic idea is that each «, lies in a
unique B,; we therefore approximate f(P ”c,,) by f(P,2;) and estimate the
error. Thus, we write Y'5_, f (P,z,) = 12 f(P ,), which will then be

approximated by >7 >V f(P 2;), or D A(B,, N) f (Pz,). For each @,

1<n<N, we commlt an error of at most & by (3.2); therefore, for the
total error we have

m

N
E f(Pamn) - lglA(B“ N)f(Pazi)

n=1

< Ne. (3.5)

We also note that from the assumption that all P, are measure-preserving
we get [y f(P,e)du(x) = [y fdu for all o €J. By using (3.2), (3.3), and
(3.5), we have now for all N > N(f, ¢) and all 0 € J:

ll S (P o) — ~[ s \ LS ) — ~ [ 12 duto
Nn 1 o X ﬂ Nn—— o 7 ﬂ‘
AY
’;InEJ(PG%n) - _ZA(BHN)f(Pa 1)

m

; ’ 2 A NS () = 3 uBIS(Pur

m

Suores - [ 10, dute)

A(B,, N)

— u(B)) ’ (P2

< B'(f(Pazi) - f(P,x)) dﬂ(m)
<e+4e+ g B'If(P,z,.) — f(P,a)) du(x)

<2+ 3eu(B) =3 M
i=1
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It does not require too much optimism to expect that criteria similar to
those in Section 1 might hold as well in the present situation if we only
make some provisions concerning the uniformity in ¢. In fact, the proofs
of the subsequent theorems are almost identical with the proofs of the
corresponding theorems in Section I, so that we take the liberty of carrying
out the details in one case only.

THEOREM 3.1. Let ¥ be a class of functions from #(X) such that
sp (¥")is dense in Z(X), and let & = {(v,,,): o €J} be a family of sequences
in X. If for every f€#", we have

N
lim E zf(m,, o) —f fdu  uniformlyin o€ J, (3.6)
N n=1 (
then & is a family of equi-y-u.d. sequences in X. If ¥~ < Z(X), then the
converse evidently holds as well.

PROOF. We proceed along the same lines as in the proof of Theorem 1.1,
Takeg €sp (¥"); thatis, g = o,f; + - - - + oy fi, for some f; € ¥ and o, € R,
1 €7 < k. Let M be a positive constant such that ja;| < Mforalll < i<k,
and choose ¢ > 0. Then, for the positive number &/Mk and each f;, there
exists an integer N;, independent of o, such that

N 2 sn - [ fan] <32 (3)
for all N > N, and all o €J. Hence, for N > max,;_y, .+ N¥; and all 6 €J,
we obtain

N
L St = [ sdu| =[Sy 200 - [ sau) |

&
£

< | — . 3.8

_i;IaIMkSB 38

Now, for a given fe Z(X) and ¢ > 0, there exists he€sp (¥") with
| f — hll < &. By what we have already seen, there exists an integer N(h, ¢)
such that [(I/N) ZN h(xpe) — [x hdul < ¢ for all N> N(h, &) and all
o €J. Then, in exactly the same way as in the proof of Theorem .1, we
get forall N > N(h,e) and all o e J:

[N 3 S@0e) f,fdu‘

<207 = b+ | Skt = [ hae| <3 W G9)

n=1
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For X with countable base, we constructed in Theorem 2.1 a countable
class ¥* € Z(X) with sp (¥") = Z(X). This, together with Theorem 3.1,
yields the following criterion.

THEOREM 3.2¢ Weyl Criterion. Let X satisfy the second axiom of
countability, and let ¥~ = {fi,f;, ...} be a countable class of real-valued

continuous functions on X with sp (¥") = Z(X). Then & = {(r,.,): 0 €J}
is a family of equi-u-u.d. sequences in X if and only if for all f; € ¥", we have

N
lim L > fil®.a) =f fidu  uniformlyin o € J. (3.10)
N-w N a=1 X

Returning to arbitrary X, the following analogue of Theorem 1.2 holds,

THEOREM 3.3. & = {(x,,): 0 €J}is a family of equi-u-u.d. sequences
in X if and only if for all (closed) u-continuity sets M < X, we have

lim A(M;N) _

N-w

w(M) uniformly in o € J, (3.11)

where 4,(M; N) denotes the counting function corresponding to the sequence
(%4,0). In detail, for every (closed) p-continuity set M < X and every ¢ > 0
there should exist an integer N(M, ¢), independent of o, such that

A M; N)

N — (M) | <ce forall N > N(M,¢) andalloelJ. (3.12)

The Size of Families of Equi-u.d. Sequences

Let & be a family of equi-u-u.d. sequences in X, viewed as a subset of X*.
The subsequent discussions will be in the same vein as those concerning
the set S in Section 2. We know at any rate that % has to be contained in S.

THEOREM 3.4. Suppose that & = {(z,,,): o€ J} is a family of equi-u-
u.d. sequences in X. Then so is &, the closure taken in X.

PROOF. By hypothesis, for given fe Z(X) and ¢ > 0, there exists an
integer N(f, ¢) such that |[(I/N) Efr\n;l f(@,,) — fxfdul < e for all N>
N(f, ¢) and all o €J. Using an argument similar to that in the proof of
Theorem 2.3, we consider the set Q of all points (¥;, ¥2, . . - s ¥y, . . .) EXT

for which |(1/N) 22;1 f(,) — fx fdul < ¢ holds for all N > N(f, ¢). As
in the proof of Theorem 2.3, it follows that Q is a closed subset of X*,

But & < Q, and therefore, & < Q, which completes the proof. [l

THEOREM 3.5. Suppose that X contains at least two points and that &
is a family of equi-u-u.d. sequences in X. Then % is nowhere dense in X*,
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PROOF. Assume, on the contrary, that & contains a nonvoid open set
D in X*. Then D, in turn, contains a nonvoid open set E = [[2, E; with
E; = X for i greater than some k. For two distinct points a and b in X,
let f be a Urysohn function (see Section 1) with f(a) = 1, f(b) = 0. In &,
there is a sequence (y,) with ¥, = a for n > k, and a sequence (z,) with
z,=b for n>k. Then, for all N> 3k, we have (1/N)3i_; f(¥.) >
(N — k)/N > % and (1/N) XA, f(z,) < k/N < }. But this is not possible,
since by Theorem 3.4, & is a family of equi-u-u.d. sequences in X. i

At this stage, it should already be evident that the restriction on X in the
foregoing theorem is necessary (compare with Section 2). If X has a countable
base, the following alternative proof of Theorem 3.5 can be given: &, as a
subset of S, is of the first category in X™ (see Theorem 2.3); since X™ is
metrizable, Baire’s category theorem applies, and so, & has a void interior;
in other words, & is nowhere dense in X*. In this argument, we used the
following special form of Baire’s category theorem.

LEMMA 3.1: Baire’s Category Theorem. Let M be a closed subset of the
compact metric space Y. If M is of the first category in Y, then M has a
void interior.

The support of u (see Definition 1.4) will be used in the subsequent
theorems, the first of which is a counterpart to Theorem 2.2, But now we
do not need a countable base for X, Let u,, be the product measure in X*
induced by u (if X has a countable base, then u,, is again a Borel measure).
Furthermore, let g, be the outer measure in X® defined by fi,(B) =
inf{u,(4): 4 is u,-measurable and B = A4} for every B € X,

THEOREM 3.6. Suppose that u is not a point measure, and let & be a
family of equi-u-u.d. sequences in X. Then (&) < 1.

PROOF. It suffices to show that (&) < 1. Suppose, on the contrary,
that fi,(%) = 1. Then, for any u,-measurable subset 4 of X*\&%, we
have p,(4) = 0. By Theorems 3.4 and 3.5, X*\& is a nonvoid open set in
X*®. Choose an arbitrary & = (v, @,,...) eX”\.VT, and a neighborhood E
of & that is a cylinder set E = [, E; contained in X*\.%, where E, is open
in X for all / and E; = X for sufficiently large i. Now, ., (E) = 0; hence,
w(E;) = 0 for some j. But then x; € K’, where K is the support of . Thus,
we have shown X*\& < X®\K®, or K* < &. It follows that K* is a family
of equi-u-u.d. sequences in X.

Since u is not a point measure, the support X of u contains at least two
points. But then there exist points in K* that do not correspond to u-u.d.
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sequences in X (see Theorem 1.3 and Exercise 2.19), and we arrive at a
contradiction. |l

If p is a point measure (i.e., u({z,}) = 1 for some @, € X), then the family
& consisting only of the constant sequence (x, %y, . . .) is a family of equi-
u-u.d. sequences in X satisfying u,, (&) = 1. In case the support of u has a
countable base (in the relative topology), we can prove a positive result on
the u.,-measure of & supplementing Theorem 3.6, namely, that u,(&)
may come arbitrarily close to 1. We shall need the following important fact
from measure theory.

LEMMA 3.2: Egoroff’s Theorem. Let (Y, %, »)be a measure space with»
being a nonnegative normed measure. Suppose that f,, n =1,2,..., and
f are & -measurable functions on Y that are finite »-a.e. and for which
lim, ..o, &) = f (y) »-a.e. Then for every ¢ > 0 there exists a set M e F
with »(M) > 1 — & such that lim,, , f,(¥) = f () uniformly on M.

THEOREM 3.7. Suppose the support of u has a countable base, and let
a real number & with 0 < & < 1 be given. Then there exists a closed family
& of equi-u-u.d. sequences in X such that (&) > 1 — 6.

PROOF. Let X be the support of 4 and let u* be the restriction of u to K.
For simplicity, we write % instead of (u*),. Let ¥" = {f1,/,,...} be a
countable class of functions from Z(K) with sp (¥") = Z(K). As we did in
the proof of Theorem 2.3, we look, for fixed k¥ > 1 and N > 1, at the
function Fy y € Z(K®), defined by F, y(21, %3, . . .) = (1/N) Dy fi(®,) for
(%1, %, . . .) € K®. From Lemma 2.1, we get

lim F,, y(y, %, . . ) =J S dp* uX-ae.
K

N>
Therefore, by Egoroff’s theorem, there exists a u%-measurable subset &,
of K* of measure uk (¥,) > 1 — (8/2¥) such thatlimy., , Fp y(@1, @3, . . .) =
{ & fx du* uniformly on &,. Consequently, for &y = N, & the following
holds: For all f;, € ¥ we have

N
lim L > filwy) =J fi.du*  uniformly on &,
Noo N a1 K

By Theorem 3.2, &, is a family of equi-u*-u.d. sequences in K. Applying
Theorem 3.4, we get a closed family & = &, (closure in K*) of equi-u*-u.d.
sequences in K satisfying uh(#) > u%(F) > 1 — 22, (1 — pk (L) >
1 — &; hence, uo(¥) > 1 — 8. Note that K* is closed in X*, and so, &
is closed in X. It is easy to see that & is also a family of equi-u-u.d. sequences
in X, which completes the proof. i
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Well-Distributed Sequences

DeriNiTiON 3.2, The sequence (x,) in X is said to be u-well distributed in
X if for every fe Z(X), we have

N+ »
lim 1 > f(z,) =J fdu  uniformlyin h =0,1,2,.... (3.13)
Noow N =1+ X

Thus, & = (z,) is p-well distributed in X if &, T§, T?£, . .. form a family
of equi-p-u.d. sequences in X, where T is the one-sided shift in X”. As
immediate consequences of Theorems 3.1, 3.2, and 3.3, respectively, we get the
following criteria.

COROLLARY 3.1. Let 7" be a class of functions from Z£(X) with
sp (7)) = Z(X). Then (w,) is u-well distributed in X if and only if for all
fe?", we have limy., (1/N) S0, f(2,) = fx fdu uniformly in /i =
0,1, 2,....If X satisfies the second axiom of countability, then there exists
a countable class 7" satisfying the above conditions.

COROLLARY 3.2. The sequence (z,) is u-well distributed in X if and
only if for all (closed) p-continuity sets M < X, we have

N+h
lim = ¥ cj(z,) =p(M) uniformlyin h =0,1,2,..., (3.14)
N-w N n=1+h

where ¢,; denotes the characteristic function of M.

A simple, but interesting, consequence of the preceding result that sheds
some more light on the property of u-well-distributivity is the following.

LEMMA 3.3. If (z,)is pu-well distributed in X, then for every p-continuity
set M with (M) > 0, there exists a natural number N, = Ny(M) such
that at least one of any N, consecutive elements from () lies in M.

PROOF. Choose ¢ = }u(M). Then, by Corollary 3.2, there exists N,

such that
1 N+h

~ z cﬂl(mn) - /"(M) S %M(M)
N n=1+h
forall N> Nyand all h =0, 1,2, ....In particular,
1 Noth
— > cylr,) > u(M)>0 forallh=0,1,2,...,
No n=14+n

which already proves our assertion. [}
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Not too surprisingly, well-distributed sequences are rather scarce. To
prove a precise version of this statement, the following measure-theoretic
lemma will be useful.

LEMMA 34. If 4 is not a point measure in X, then there exists a u-
continuity set M € X with 0 < u(M) < I.

PROOF. By the assumption on u, there exist at least two distinct points a
and b in the support K of u. Let f be a Urysohn function on X with f (a) = 1
and f(b) = 0. By the usual argument (see Example 1.2), there is a u-con-
tinuity set M of the form M = {x € X: f(x) > ¢} for some e with0 < & < 1.
Since M is an open neighborhood of a € K, we have u(M) > 0. From
M < {zeX: f(x) > ¢ we infer that M’ is an open neighborhood of
b € K; thus, u(M') > 0. This implies u(#M) < 1, and so, u(M) < 1.

THEOREM 3.8. Let W be the set of all u-well distributed sequences in X,
viewed as a subset of X™. If 4 is not a point measure, then u (W) =0,
where ., is the complete product measure in X.

PROOF. Let M be a fixed u-continuity set with 0 < (M) < 1, which
exists by Lemma 3.4. For N > 1, let W, be the set of all u-well distributed
sequences in X for which at least one of any N consecutive elements lies
in M. By Lemma 3.3, we have W = |Uy-, Wy. Thus, it suffices to show
that u,(Wy) = 0 for all N > 1. For given N > 1, let XY be the Cartesian
product of N copies of X, and let u be the product measure on X”. Define
Fy to be the set consisting of all points of X for which at least one coordinate
belongs to M; that is, Fy = X™\[[Y¥; M| with M; = M for all i. Note that
un(Fy) =1 — (1 — o), where « = u(M). For k > 0, put
F8 = {(v, 2. . ) EX™: (Fjnpns-- s Ciyan) EFy  for 0 <j <k}

It follows from the definition of Wy that Wy < (o FN'. Now u.,(F{) =

(1 — (1 — &)+, and s0,0 < 1 — (I — a)™ < 1 implies ., (N0 FY') =
0. Thus, a fortiori, u,(Wx)=0. I

A question that poses itself naturally is whether there exist y-well distri-
buted sequences at all. In case X has a countable base, a more or less explicit
construction of u-well distributed sequences is available (see notes). But
u-well distributed sequences may also exist for measures whose support does
not have a countable base (see Exercise 3.3). For arbitrary compact Hausdorff
spaces, a characterization of the measures u for which u-well distributed
sequences exist is not known. In particular, one does not know whether
there are measures u for which u-u.d. sequences, but no u-well distributed
sequences, exist.

The next result is very useful in that it enables us to find new u-well
distributed sequences from a given one.
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THEOREM 3.9. Let & = (@,) be u-well distributed in X, Then so is every
sequence in the closure (in X*) of the set & = {&, T&, T2&,...}.

PROOF. By the definition of u-well-distributivity, & is a family of equi-
u-u.d. sequences in X. Then so is &, by Theorem 3.4, Now take a sequence
neF. We claim that Ty e #. For if Tn¢ P, then the continuity of T
implies the existence of an open neighborhood D of 9 such that 7¢ ¢
whenever { € D. But 7" ¢ € D for some m > 0, and so, it would follow that
T+ ¢, a contradiction. By induction, we get then 77n€.& for all
r > 0. Thus, {5, Ty, T%y,...} € Zis a family of equi-u-u.d. sequences
in X; in other words, 7 is u-well distributed in X. [l

THEOREM 3.10. Suppose X has a countable base and contains no
isolated points. Then any everywhere dense sequence (x,) in X can be
rearranged so as to yield a u-well distributed sequence in X,

PROOF. We proceed as in the proof of Theorem 2.5. We start out from
a u -well distributed sequence (¥,) in X, and we show that the pertinent sums
., occurring there, if replaced by St 4, can be estimated uniformly in /.
To simplify the computations, we consider slightly altered sets D,, namely,

= {xeX: |f(n) — f,()] <27F for | <r < k}. The sequence (v,,) is
then constructed in exactly the same way, and we have for fixed f,:

Nn 1 N+
Ni %,(f’(h —fE)| <5 .} FACARRACH|
N+h B
SN I+ N . % 2k
r—1 1
< N -2 01 £ +N’

which can be made arbitrarily small independent of A. The rearrangement
(u,) of (z,) is again defined in the same way as in Theorem 2.5. For a fixed

fr» we get

N-+h N+h
;EMM)MW)‘~EMW — f@)

=p?

s¢N+’-’;¢"+ Lo s

_ 2 20
\/N + h + \/E N
2 ”fr” 2 | £

< —_—

< \/N N

3
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which can again be made arbitrarily small independent of /. Thus,

1 N+
S fw) = [ s, du
N x=1in

1 N+n

< )— S (i) — @)

k=1+h

1 N+n

+ l E k:%h(fr(xnk) - fr(yk))

N+n

+ 1 > fr(yk)—f\'frdﬂ‘sa

N p=rta
for N > N(J,, ¢), independent of h. Corollary 3.1 implies the u-well-
distributivity of (). W
We give a sample result to show how the concept of p-well-distributivity
can be used in analysis.

THEOREM 3.11. Let (z,) be a u-well distributed sequence in X. Let f
be a function on X that is bounded away from 0 on an open set of positive
measure; that is, there exists an open set E with u(E) > 0 and a positive
constant ¢ such that | f(z)| > ¢ for all € E. Furthermore, we are given a
sequence (a,) of positive real numbers with o, ,; < oa, foralln =1,2,...
and some fixed o > 0. Then the absolute convergence of 377, «,f(x,)
implies the convergence of 3% a,.

PROOF. The open set E contains a u-continuity set M with u(M) > 0.
To see this, we observe that, by regularity, there is a closed C € F with
1(C) > 0. As we have shown in Section 1, a Urysohn function corresponding
to the disjoint closed sets C and E’ then enables us to construct a y-continuity
set M with C < M < E. By Lemma 3.3, the u-well-distributivity of (z,)
implies the existence of a positive integer N such that at least one of any N
consecutive elements of (x,) lies in M. We shall use that | f (z)| > ¢ for all
x € M. Without loss of generality, we may assume o > 1, since for o0 < 1
the theorem is obvious. For every positive integer s and every k with 1 <
k < N, we have a ., > ooy > ocsMya N We write

gl‘xn If(z,)] = go kgla‘m\’ﬂc |f (qu+k)|

and note that in the inner sum for at least one term | f (,x.2)| > ¢. Therefore,

© @
ZOC” If(xn)l Z CG—NZ“(G+1)N’
n=1 q=0

and D2, “(a+1)N converges. Finally, for L > 2, we get

L-2 N

Zl‘xn = Elan + 2 Z“(q+1)N+k < E“n + NoV Zd(q+1)N
n n=.
<§1¢ + NO' Z“(q+l)1\”

and so > n_; «, converges. .
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Complete Uniform Distribution

A notion complementary in a sense to u-well-distributivity is the so-called
complete y-uniform distribution. Throughout the remainder of this section,
we suppose that X has a countable base.

DermNimion 3.3, The sequence & = (v,) in X is called completely y-u.d.
in X if the sequence (T"¢§),n =0,1,2,...,is p-u.d. in X,

It can be easily seen that a completely p-u.d. sequence is in particular
u-u.d. (see Exercise 3.6). On the other hand, a completely u-u.d. sequence
cannot be u-well distributed, apart from an obvious exception.

THEOREM 3.12. If x4 is not a point measure, then a completely p-u.d.
sequence in X cannot be u-well distributed in X,

PROOF. By Lemma 3.4, we can find a g-continuity set M = X with 0 <
u(M) < 1. Now suppose that £ = (2,) is a sequence that is both completely
u-u.d. and p-well distributed in X. Then, by Lemma 3.3, there exists a
natural number N such that at least one of any N consecutive elements from
(x,) lies in M. On the other hand, consider the following set in X*: F& =
TIZ, F; with F, = M’ for 1 <i< Nand F; = X for i > N. Since M’ is a
p-continuity set with 0 < u(M’) < 1, F$" is a p,-continuity set satisfying
0 < po(F&) < 1. But the sequence (7€) is p,-u.d. in X, so, in particular,
some elements of this sequence will lie in FZ". Thus, T"¢ € F¥ for some
h > 0. In other words, (2,1, ¥y4p, - ..) € F™, or %, € M’ for 1 <i < N.
This is a contradiction to the construction of N. JJj

THEOREM 3.13. u,-almost all sequences are completely x-u.d. in X.

PROOF. The arguments are very similar to those employed in the proof
of Theorem 2.2. Given a function g € #(X®), the individual ergodic theorem
yields limy., o, (1/N) X80 g(T"&) = [xo g du,, for ue-almost all £&e X,
Since X has also a countable base, there exists a countable convergence-
determining class g, g,, ... of functions from #(X*). Hence, for u,-
almost all £ € X*,

N-~1

lim 1 > g{T"¥) =f o8i Al foralli=1,2,....
X

N-w N n=0
This means that (T"€) is p,-u.d. in X* for u.-almost all £ € X*, and the
proof is complete.

For X with countable base, Theorems 3.12 and 3.13 together provide an
alternative proof for Theorem 3.8.
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Notes

Proofs of Baire’s category theorem can be found in Kelley [1} and Hewitt and Stromberg
[1]. For proofs of Egoroff’s theorem we refer to Halmos [1] and Hewitt and Stromberg [1].

Most of the results in this section are from Baayen and Helmberg [1} and Helmberg
and Paalman-de Miranda [1]. Theorem 3.8, in this general form, is from Niederreiter [9].
It was shown earlier for X with countable base by Helmberg and Paalman-de Miranda [1].
For compact groups, several results were already shown earlier by Hlawka [1]. The explicit
construction of u-well distributed sequences that we mentioned was given by Baayen and
Hedrlin [1]}. An interesting measure-theoretic characterization of well-distributed sequences
is in Cigler [12, 15].

A very thorough analysis of the relation between various concepts like uniformly distri-
buted, well-distributed, almost well-distributed, weakly well-distributed, and completely
uniformly distributed sequences with respect to a measure g was carried out by Baayen
and Helmberg [1}. One question left open in this paper was settled by Zame [3]. For a
discussion of complete u.d. in compact spaces, see also Cigler [9] and Kemperman [2].
We remark that a sequence & = (z,) is completely #-u.d. in X if and only if £ is a generic
point (in the sense of Furstenberg [1, 2]) with respect to the triple (X*, T, ), where T
is the one-sided shift in X,

In the mod ! case, the definition of complete u.d. is due to Korobov [1]. A sequence
(x,) of real numbers is completely u.d. mod 1 if and only if for all s > 1 and all lattice
points (hy, ..., k) 5 (0,...,0), the sequence (b, + hyw,y g + 0 + hyioq), 1=
1,2,...,is u.d. mod 1. For results on complete u.d. mod 1, see Cigler [2, 9}, Franklin
[2], Haber [2], Hlawka [4, 8], Knuth [1], Korobov [l, 2, 5, 7, 8, 10, 14, 18], Postnikov
[4], Postnikova [}, and Star¢enko [1, 2}. Completely u.d. mod I sequences are important
random number generators (see Knuth [2, Chapter 3})).

Theorem 3.11 is essentially due to Hlawka [1] and has its origin in a theorem of Fatou
(Zygmund [1, p. 232]). Hlawka (2} showed that the theorem remains true if “‘u-well
distributed”’ is replaced by ‘‘weakly u-well distributed’’ (schwach gleichmdssig gleichverteilt),
a concept defined in Exercise 3.13. This is even more interesting, since almost all sequences
(in the usual sense) are weakly u-well distributed (Hlawka [2], Baayen and Helmberg [1]).
Hlawka proved these results for compact groups with countable base, but they hold true
as well for arbitrary compact Hausdorff spaces (only for the metric result one needs the
second axiom of countability).

Exercises

3.1. Let (x,) be u.d. mod 1. Prove that the family of sequences {(z, + 0):
0 < ¢ < 1} is equi-u.d. mod 1. Hint: Use Example 3.2.

3.2. Generalize Exercise 3.1 to several dimensions.

3.3. Prove that the sequence from Exercise 2.15 is p-well distributed.
Hint: Show first that the approximation of u-measure by relative
frequencies is uniform in / for a singleton {z}.

3.4. Let X be a discrete space with k elements, and let 4 be the measure
defined by u(B) = (1/k) card B for all B < X. Construct explicitly a
u-well distributed sequence in X.
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3.5.

3.6.

3.7.

3.8.

3.9.

3.10,

3.11.

3.12,

3.13.

3.14,

3.15.

3.16.

UNIFORM DISTRIBUTION IN COMPACT SPACES

Let (x,) be a sequence in a compact Hausdorff space X such that for
every u-continuity set M, there exists a positive constant C(M) such
that |A(M; N)IN — u(M)| < C(M)/N holds for all N > 1. Prove
that (x,) is u-well distributed in X.

Here and in the three following exercises, suppose X has a countable
base. Prove that if (z,) is completely g-u.d. in X, then (z,) is g-u.d.
in X.

Let £ = (x,) be a sequence in X. Prove that if (T"§),n =0,1,2,...,
is p-well distributed in X, then (z,) is u-well distributed in X.
Deduce from Exercise 3.7 that if 4 is not a point measure, then no
sequence of the form (T"£) is u,-well distributed in X,

Let (£4,) be a sequence in X, &, = (X1, Tpas v oo s Ty + - o)y H =
1,2,....Provethat (£,)is p,-u.d. in X* if and only if for each k > 1,
the sequence (2, ..., %), n=1,2,... is ud. in X*( =[], X;
with X, = X for all i} with respect to the projection u, of . on X*;
that is, u,(B) = u,(B X X X X X ---) for Borel sets B in X*. Hint:
Show first that the continuous functions on X that depend only on
finitely many coordinates are dense in Z(X™).

Let b > 2 be an integer, and let x = 3 7, =, /b" be the b-adic repre-
sentation of x € [0, 1) (see Chapter 1, (8.1)). Consider the discrete
space X = {0,1,...,b — 1} with measure u defined as in Exercise
3.4. Prove that x is normal to the base b if and only if the sequence
(%,) is completely u-u.d. in X, Hint: Use Exercise 3.9.

Let X have a countable base, and let u* be the restriction of u to its
support K. Prove that a sequence in K is completely g-u.d. in X if
and only if it is completely #*-u.d. in K (in the relative topology).
Similar to Exercise 3.11, but with “completely u.d.” replaced by
“well-distributed.”

A sequence (z,) in X is called weakly y-well distributed in X if

) — 1 H-1 1 hN+N

lim tlim — 3 = 3 f(z,) —J fd,u\ =0 (3.15)

Noow Howo Hn=0 | N a=hN+1 X
holds for every fe Z(X). Prove that every weakly u-well distributed
sequence in X is p-u.d. in X.
Prove that every u-well distributed sequence in X is weakly u-well
distributed in X,
Let ¥~ be a class of continuous functions on X with sp (¥") = Z(X).
Prove that (x,) is weakly u-well distributed in X if and only if (3.15)
holds for all fe 7.
Let X have a countable base. Prove that the support of the Borel
measure 4., in X% is K, where K is the support of u.
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4. SUMMATION METHODS

Matrix Methods

Let X be a compact Hausdorff space, and let 1 be a nonnegative regular
normed Borel measure on X, Furthermore, we take an infinite real matrix
A=), n=12,...,k=1,2,...,satisfying the conditions

. e supz|am| <o

. lim Say=1.

n— o k=1
In the sequel, if we speak of a matrix method, it will be tacitly assumed that
these two conditions are satisfied. For important facts on matrix methods
and some examples, see Section 7 of Chapter 1.

DEFINITION 4.1, The sequence (x,) in X is said to be (A, p)-u.d. in X if

lim Za,,,.f(a,k) —J"fd,u for all f € Z(X). 4.1)

n—+oo k=1
If we choose the matrix method of arithmetic means (i.e., a,, = 1/n for
1 <k < nand a,, = 0for k > n), then we are back safely at Definition 1.1.
As in Section 1, it suffices to require (4.1) only for a rather small class of
continuous functions in order to guarantee (A, u)-u.d.

THEOREM 4.1. Let ¥ be a class of continuous functions on X with
sp (¥) = #(X). Then (z,) is (A, p)-u.d. in X if and only if

lim Za,,,,f(mk) —J:fd,u forall fe ¥ . (4.2)

nroo k=
PROOF. Necessity is clear. By linearity, (4.2) holds for all g esp (¥).
With h e (X)and ¢ > 0 being given, we can find g € sp (¥") with ||h — g||<
e. Then, for sufficiently large »,

kglankh(mk) —J;h d,u‘ < \’Zla,,k(h — o)) _fY(;, — 9 d,u‘

nkg(xk) —f g d;“ l
=1 X
< Al Ik = g + Ih— g
(@) — f ¢ d/t‘
=1 X
< (Al + 2. W 43)
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This proof is of course just an adaptation of the proof of Theorem 1.1
to the present situation. Under the additional condition that a,, > 0 for
all n,k=1,2,..., we can also adapt the proof of Theorem 1.2 to yield
an analogous result for (A, u)-u.d. (see Exercise 4.1).

The Borel Property

We enter one of the most interesting aspects of the theory of (A, p)-u.d.
when we ask whether the metric result enunciated in Theorem 2.2 also
holds for the matrix methods under consideration. Unfortunately, no
conditions on the matrix A are known that are both necessary and sufficient
for the analogue of Theorem 2.2 to be valid. However, we can prove a
useful sufficient condition that is satisfactory in many important special
cases. Example 4.4 will show that the condition is not necessary.

THEOREM 4.2. Let X have a countable base, and let A = (a,,) be a
matrix method. Put @, = Jse; a,,2 for n > 1. If

Setm< oo foralld >0, (4.4)

n=1
then p,-almost all sequences are (A, p)-u.d. in X.

In case a, = 0, the term ¢~%/* is interpreted to be zero; because of con-

dition (ii), this can happen for only finitely many ». For the proof of this
theorem, we need a few auxiliary results. Throughout this discussion,
Exp (v) will stand for the exponential function e” with real v.

LEMMA 4.1. For s € #(X), put o = [y s du. Then for all real numbers
u we have

f Exp (us) du < Exp (ot + 3 ||s]® u®). (4.5)
X

PROOF. As the composition of s with a continuous function on R, Exp (us)
is Borel-measurable on X. For each u, we have

Exp (us) < Exp (lus)) < Exp (Jul lIsi); (4.6)

therefore, Exp (us) is integrable. Let ¢ be the function on R defined by
w(u) = [x Exp (us) du. We shall compute the first and second derivative of
y. By (4.6), we may apply the dominated convergence theorem to

v = fx(go l-;i' Si) .

© llj ;
) =2 — | ¢ du.

=0 jlJx

and obtain
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Differentiation yields

© i1

' J
v (u) =,§1 I f Tdp = 2 ]'f s du = f's Exp (us) du, (4.7)
and similarly,

w(u) = [Ysz Exp(us) dp. (4.8)

With ¢(u) = log w(u), we get

/ v'(0)

0) =0, 0) = =q, 4.9
¢(0) ¢ (0) W) (4.9)

and

(p”(u) _ w"(u)w(ll) _ (w,(u))z < wu(u) < ]|S||2'[YEXP (US) dh
(1) O frExp(us)d,u

) forallu e R. (4.10)

2
= |

Then, by (4.9), (4.10), and Taylor’s theorem,
o) < au -+ % |52 u? forallue R, 4.11)
and the desired result follows. [}

LEMMA 4.2. Let fe #(X) with [y fdu =0 and | f| = 1. For n > 1,
let S, be the bounded measurable function on X defined by S, (%, @, . ..) =
> f (). Then for all > 0,

Ho(E € X2 15,(8) | > n) < 2 Exp(— 2%) @.12)

n
PROOF. We first estimate | yo Exp (uS,) du,, for u € R. Since

N

Lgla S (%)

we can use the dominated convergence theorem:

( lim Exp (Zua,,,‘f(x,‘))) dig,

< |A| forallN > 1,

[ Exowsdu. =

X XP\N-w
N
= tim [ Exp ( Suanf @) du.
N-oow JX® k=1

N

= lim 1T Exp (ua,.f () du.,

Noow JX® k=1

N
=lim [ Exp (ua,.f) du. (4.13)

N-ow k=1 JX
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In the last step, we used Fubini’s theorem. Now, by Lemma 4.1,

f Exp(uapnf)dp < Exp(3ua,?), (4.14)
and so, x
A7

J Exp(uS,)du,, <lim T Exp(3u’a,?)
X(XJ

N-oo k=1

= lim Exp (lu Za"k ) = Exp (3v%a,). (4.15)

N-ow

For u > 0, we have by (4.15),

Exp (3u*a,) ZJ Exp(uS,) dug, > Exp (un)ue({E€ X™: S,(8)> ). (4.16)
X(X)

We note that (4.12) is trivial for a, = 0. So suppose a, > 0. Choose u =
9/a,, and it follows from (4.16) that

z%GEeXw:%@)>nDsfhp(—£—) 4.17)

all
For u < 0, we have by (4.15),

Exp (ba,) > [ Bxp (uS,) du 2 Bxp (—umun({£ € X7 5,9 < =)

(4.18)
Choose u = —9/a,, and it follows from (4.18) that

pol(E € X7 5,6 < —n) <Bxp (=), (4.19)
(4.17) and (4.19) together imply (4.12). | "

PROOF OF THEOREM 4.2. Let fe #(X) and S, be as in Lemma 4.2,
For fixed # > 0, put

L(n) = {£ € X there exists ny(&) such that |S,(5| <
for all n > no(&)}. (4.20)
With B, = {§ e X*: [S,(&)] £ n}, we have L(%) = UFaNm-n B,. Since

>w1 Exp (—#?/2a,) converges by assumption, there exists, for given & > 0,
a positive integer N, with 37 v Exp (—%?/2a,) < &/2. Then, by Lemma 4.2,

potln) 2 o 018) =1 = Um) 21— 5 e

n=No a=Np n=N0

21—2§Em(~i)21—u (4.21)
2a"

a=N0
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hence, po(L(m) = 1. Then, p,(N=, L(/r)) =1, and therefore, for
Uo-almost all sequences (x,), we have

lim S, =lim > a,.f(z) = J. fdu. (4.22)
b

n—w n—- o k=1

Now there is a countable system 7™ = {f}, f5, . . .} in Z(X) withsp (¥") =
Z(X)andf, = 1. By replacing each nonconstant f; by f; — [ x f; du and multi-
plying by a suitable constant, we get a countable system ¥ * = {g,, g5, . . .}
in Z(X) with sp (¥ *) = #Z(X) and where each nonconstant g, satisfies
fx g du=0and |g/ = 1. By what we have already shown, (4.22) holds
for the nonconstant g; in place of f and is trivial for the constant g,. Then,
by Theorem 4.1 and the same argument as in the proof of Theorem 2.2,
we may conclude that u,-almost all sequences are (A, #)-u.d.in X. ]

In the first part of the above proof, we have of course just reproduced
the Borel-Cantelli lemma from probability theory.

A matrix A for which p-almost all sequences are (A, p)-u.d. is said to
have the Borel property with respect to the measure p (see also the notes
in Section 1). The following condition, although more restrictive than the
so-called Hill condition (4.4), often suffices to verify the Borel property.

COROLLARY 4.1. If lim,_, a,logn = 0 with the notation of Theorem
4.2, then A has the Borel property with respect to all nonnegative normed
Borel measures ¢ on the compact Hausdorff space X with countable base.

PROOF. We show that lim,_, a, logn = 0 implies the Hill condition.
Choose ¢ > 0, and then an ¢ with 0 < ¢ < 4. By hypothesis, there exists
an integer N such that a,logn < ¢ for all # > N. Then Exp (—d/a,) <
Exp (—(8/) log n) = n~*"® for all n > N, with /e > 1. Therefore the series
2wy Exp (—6/a,) converges.

EXAMPLE 4.1. Theorem 2.2 is now just a special case of Corollary 4.1.
For the summation method of arithmetic means (a,;, = 1/n for 1 <k <n
anda,;, = Ofork > n)wegeta, =1/nforalln > 1; therefore,

lim a,logn =0. R

n—oo

We could as well ask for necessary conditions on the matrix A that are

implied by the Borel property. We show one such condition that is closely
related to Corollary 4.1. For this theorem, X need not have a countable base.

THEOREM 4.3. If A has the Borel property with respect to a measure u
that is not a point measure, then lim,,, , @, = 0.

PROOF. Let us first note that the assumption on u implies that the support
of u contains at least two points. We now want to construct a function
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f€ Z(X) with [xfdu =0 and [y f?du > 0. Take g€ Z(X) such that g
is not constant on the support of u (e.g., take a Urysohn function with
respect to two distinct points from the support of ). Then f =g — [y g du
will do. We certainly have [y fdu = 0. Furthermore, by the construction
of g, there exists a point b from the support of u such that g(b) = {x g du.
Thus, the continuous function f2 is positive on some open neighborhood of
b, which has positive y-measure, since b is in the support of u. Therefore,
§x/f*du>0.

With this fe #Z(X), put as in Lemma 4.2: S,(&) = S, (%, 25, ...) =
D1 Gy f (). Since A has the Borel property, we have lim,_,, S,(¢) =
{xfdp = 0 for u-almost all & € X*. Consequently, lim,,_,,, S,2(£) = 0 for
Ue-almost all & € X and so, [y« (lim, ., S,2) du, = 0.On the other hand,
the inequality S,.2 < [|Af*{| f1|*> and the dominated convergence theorem

yield
f (1ims,,2) du,, =lim f S, du,
X®\n=w n—+oo JX®

—tim [ (Sause) e

n—+w

=lim fxw( :;a,,ia,,,,f(xi)f(m,.)) du,. (4.23)

N+ 1,
The absolute convergence of D52, a,,f(x,) implies that any arrangement of
the above double series into a simple series converges to (D a,,f (¥,))%

Another application of the dominated convergence theorem yields

0 =f (lim S,,z) du,,
X®\n—+w

=lim ilamam’f\’mf(xi)f(wa') dluoo

n—o i, j=

=lim Zansz f2du. (4.24)
n—+o k=1 X

Thus, (x f2dw)lim,_,, a, = 0, and since [y f>du 5 0, the proof is com-

plete.

COROLLARY 4.2. If A has the Borel property with respect to a measure
w that is not a point measure, then A is regular; that is, lim,,, , a,; = 0 for
every fixed k.

If the matrix method A includes the matrix method B (in the sense of
Definition 7.4 of Chapter 1) and if (z,) is (B, )-u.d. in X, then (z,) is
obviously also (A, w)-u.d. in X. Hence, if B has the Borel property with
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respect to the measure u on X, and if A includes B, then A has the Borel
property with respect to u.

EXAMPLE 4.2. Consider a Cesaro means (C, r) with » > 1 as defined in
Example 7.1 of Chapter 1. Since (C, r) includes (C, 1) (Zeller and Beekmann
[1, p- 104], Peyerimhoff [1, p. 15]), it enjoys the Borel property with respect
to any nonnegative normed Borel measure x on a compact Hausdorff space
X with countable base. [}

EXAMPLE 4.3. A so-called discrete Abel method is defined as follows:
Weare given a sequence (c,) of real numbers with0 < ¢, < 1and lim,,_,mc,,,=
1; the matrix A = (a,;) is defined by a,, = (1 — ¢, )¢5, n, k=1,2,
The matrix A satisfies conditions (i) and (ii), since Zk=1 A = D02y Iankl =
— ) 22, it =1 for all n > 1. Moreover, A is regular. Now let (s;)
be a sequence of real numbers such that the radius of convergence of the
power series a(x) = (1 — &) 32, s5,2*1 is at least 1. Note that D2, a,,8, =
(1 — ¢,) D2y sch ' = a(c,); thus, (s) will certainly be summable to the
value m by the discrete Abel method if lim,_,;_, «(x) = m. According to the
theorem of Frobenius stated in the proof of Theorem 2.4 of Chapter 1,
every discrete Abel method includes (C, 1) and has, therefore, the Borel
property (in the same universal sense as in Example 4.2). |l

EXAMPLE 4.4. We exhibit a matrix method that has the Borel property
but does not satisfy the Hill condition. The matrix method that we construct
will be a discrete Abel method (see preceding example). Let y be a function
with 0 < y(n) < 1 for positive integers n, that tends to O sufficiently slowly
as n— o0; y will be specified later on. The sequence (c,), defined by
¢, = (1 — ym)/(1 + y(n)) for n > 1, will then yield a discrete Abel method.
For the corresponding matrix A, we have then

2 ——1_(1—6‘")2 1—(,'
gnk"'(l—cn)Z(n) _1'—0"2 1+

= y(n).

We can now choose p(n) in such a way that 3, Exp (—6/a,,) diverges for
every 8 > 0. Namely, take y(n) = 1/(log log (n + p)) with p so large that
0 < y(n) < 1is guaranteed (for instance, p = e¢). Then 3 »_, Exp (—d/a,) =
32, (log (n + p))~°, which diverges for every 6 > 0. [l

EXAMPLE 4.5. Let (R, p,) be a simple Riesz (or weighted arithmetical)
means (see Example 7.3 of Chapter 1). By Corollary 4.2, a necessary con-
dition for (R, p,) to satisfy the Borel property with respect to a measure that
is not a point measure is lim, ., P, =1lim, ., (p; + '+ +p,) = . If
the sequence (p,) is nonincreasing and lim,_, ., P, = 0o, then Lemma 7.1
of Chapter 1 implies that (R, p,) includes (C, 1) and thus has the Borel
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property in the universal sense of Example 4.2, Moreover, if (p,) is non-
decreasing but not too rapidly (more precisely, if there is an H > 0 such
that np, < HP, for all n), then by the same lemma (R, p,) includes (C, 1)
and has again the Borel property.

A necessary and sufficient condition for a matrix method A to include
(C, 1) can be given (Zeller and Beekmann [1, p. 100]). This condition is the
following: Every convergent sequence is summable by A and

sup X (k + 1) @, — a, 444) < 0. (4.25)

n k=1

In particular, if A is regular, then the validity of the condition (4.25) guaran-
tees that A includes (C, 1).

A Constructive Result

For the following, let X be a compact Hausdorff uniform space with uni-
formity % (see the remarks in Example 3.2). We shall present a theorem that
will enable us to construct new (A, u)-u.d. sequences from a given (A, u)-u.d.
sequence. To this end, we suppose that we are given, for every n > 1, an
arbitrary transformation 7, on X such that the T, converge uniformly
to a continuous and measure-preserving transformation 7" on X; that is,
for every U e % there should exist a positive integer N(U), independent of
x € X, such that (T,x, Tz) € U for all n > N(U) and every « € X. Having
these provisions in mind, we show the following.

THEOREM 4.4. Under the above assumptions, let A = (a,;) be a regular
matrix method and let (v,) be a given (A, p)-u.d. sequence in X. Then the
sequence (T,x,) is again (A, p)-u.d. in X\

PROOF. Take fe Z(X). Then f is uniformly continuous, so for a given
e > 0 there exists U e % such that | f (¥) — f (2)| < & whenever (y,2) e U.
It follows that for k > N(U) = K, we have | f (Tx) — f(T2)| < ¢ for all
x € X. Since A is regular, we can find a positive integer N, such that

K,
z ‘ank‘ < €
k=1

for all n > N,. We note also that T being measure-preserving implies
§xf (Tx) du(x) = §x fdu. Furthermore, the function g(x) = f(T%) is in
Z(X) and (z,) is (A, w)-u.d.; therefore, there exists a positive integer Ny,
so that

<e for n > Nj.

S 0 () = [ () dute)
k=1 X
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Then, for sufficiently large n—that is, for n > max (N, N;)—we have

élankf(Tkxk) —Lfd,u ‘ < ’ kéa,,kf(ka) —fo(Tm) du(z)

-}-

Sau((Tm) - f(T2)

K,
< &€ + kglank(f(nxk) - f(T’vk))

+ Z ank(f(’l;cxk) - f(T’U;\))
k=K +1
Fq) ©
e+ 2)flidlaul +e X layl
k=1 r=K+1

S+ 2010 + 1A]De.
Hence, lim,_, , 272 auf (Tix,) = [x fdu, and (T,2,) is (A, w)-u.d. W

Almost Convergence

We are now going to discuss a summation method that is pertinent to the
theory of well-distributed sequences but is not a matrix method. Essentially,
this will be the (C, 1) method with an additional uniformity condition.

DeriNiTION 4.2, A sequence (s,,) of real numbers is called almost convergent
to the value s if
1 N+n
lim — > s,=s uniformlyin h=0,1,2,.... (4.26)

N-w N n=14n

The resulting summation method of almost convergence will be denoted
by F (from the German Fastkonvergenz). The relation to u-well distributed
sequences (see Definition 3.2) should be clear.

COROLLARY 4.3. A sequence (z,) in X is u-well distributed in X if and
only if for every fe Z(X), the sequence (f (z,)) is almost convergent to
the value [y fdu.

We want to point out a remarkable connection between the method F
and the theory of Banach limits in functional analysis. First of all, it is
easily seen that every almost-convergent sequence is bounded (see Exercise
4.7). The set Z of all bounded sequences ¢ = (s,) of real numbers is a
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Banach space if the linear operations with sequences are defined termwise—
that is, (s,) + (t,) = (s, + 1,) and a(s,) = (as,) for real a—and if the
norm | o] of a sequence o = (s,,) is defined by ||of| = sup, [s,[. By a Banach
limit L in Z we mean a linear functional L: Z > R that is

1. normed: L((1,1,1,...) =1
2. positive: If s, > 0 for all n, then L(0) 2 0
3. shift-invariant: L(o) = L(To); thatis, L((sy, 8z, . . .)) = L((sg, S35 - . ).

The existence of such functionals was shown by Banach and Mazur. We
state the following interesting characterization of the method F without
proof (for a proof, see Lorentz [1], G. M. Petersen [2, Chapter 3]).

THEOREM 4.5. The sequence o = (s,) is almost convergent to the value
s if and only if L(c¢) = s holds for every Banach limit L in X.

It is natural to ask whether there exists a matrix method A that is equivalent
to F. Let us first note that if (s,) converges to s in the ordinary sense, then
(s,) is almost convergent to the same value s (Lorentz [1], G. M. Petersen
[2, Chapter 3]). Therefore, a matrix method A with the desired property
should at least transform every sequence converging to s into another such
sequence and should thus be regular. Certainly, it is also necessary that A
includes F. A matrix method A that includes F is called strongly regular, and
the following criterion holds: A regular matrix method A = (a,,) is strongly
regular if and only if lim,_,,, Dy |4 — @, 441l = 0 (Lorentz [1], G. M.
Petersen [2, Chapter 3], Zeller and Beekmann [1, Section 6]). On the other
hand, if A is strongly regular, then one can construct bounded sequences
that are summable by A but are not almost-convergent (G. M. Petersen [2,
Chapter 3)). Therefore, no matrix method is equivalent to F. But, at least,
there are many important examples of matrix methods that include F, for
example, the Cesaro means (C, r) with r > 0, some classes of Riesz means
(see Exercises 4.10 and 4.11), and all discrete Abel methods. We note a
trivial consequence of the definition of strong regularity, namely, that a u-well
distributed sequence is (A, w)-u.d. for strongly regular A.

We have already mentioned that the method F can be considered as a
Cesaro means (C, 1) with uniformity condition. This remark leads to an
immediate generalization of almost convergence if we replace (C, 1) by
some other matrix method and impose a uniformity condition of the same
type as in Definition 4.2.

DerRINITION 4.3, Let A = (a,;) be a given matrix method. A sequence (s,,)
of real numbers is called A-almost convergent to the value s if

lim Ya,s,=s  uniformlyin h =0,1,2,.... 4.27)

n-ow k=1
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We denote the resulting summation method by F,. Corollary 4.3 suggests
then the following generalization of the notion of u-well distributivity.

DEFINITION 4.4, A sequence (z,) in X is called (A, w)-well distributed in X
if for every fe Z(X), the sequence (f (z,)) is summable by F, to the value
Ix [

THEOREM 4.6. Every (A, p)-well distributed sequence in X is also u-well
distributed in X.

PROOF. It will suffice to show that every bounded sequence o = (s,) of
real numbers summable by F, to the value s is also summable by F to the
same value. By the definition of A-almost convergence, there will exist, for
given ¢ > 0, a positive integer N such that

o

z ApSpern — S

With 1,;, = 22, @84y, for n > 1 and A > 0, let 7, be the sequence 7, =
(405 15 tras - - -), Which is again in X, since |t,,| < [|A] [lo]f. If 5 denotes
the constant sequence i = (1, 1, 1, ) then, by (4.28),

fr, — sy = sup It,,,, 5| < e forallm > N. (4.29)

h=0,1

<e& foralln > Nandallh =0,1,2,.... (4.28)

So 7, — s as n — oo in the Banach space X. Any Banach limit L on X is
continuous, and therefore,

lim L(r,) = L(sn) = sL(») = s. (4.30)
Let us now look, for fixed n > 1, at the series > 2, a,,(T*10) of elements
in 2. This series converges in norm to some element p, € Z, since

E @ 1T ol < E |aue ol < [IA]l fol.

Let p, = (¥u1, Iy, - - -). Now norm convergence in Z implies coordinatewise
convergence; thus, r,; = >/, a5 =1, for all i> 1. Hence,
Py = Ty, and

L(r,) = L(p,) =éa,,kL(T“—‘a) - iﬁla,,kL(@, (431)

by the shift-invariance of L. Letting n — co in (4.31) and using (4.30),
we obtain L(0) lim,_, >, d,;, = §, or L(¢6) = s for any Banach limit L
in Z. By Theorem 4.5, the proof is then complete. [l

Theorem 4.6 is remarkable in the light of the fact that the corresponding
statement for p-u.d. sequences is not true. One can even construct regular
matrices A such that (A, w)-u.d. does not imply u-u.d. (see Exercises 4.13
and 4.14; see below for a strongly regular matrix with the same property).
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If A is strongly regular, then F and F, are even equivalent (Lorentz [i]).
Thus, for strongly regular matrix methods A, the following result holds:
The sequence (v,) in X'is (A, w)-well distributed in X if and only if (z,) is u-
well distributed in X. Again, the corresponding result for u-u.d. is false. We
know from Chapter 1, Theorem 7.16, and Chapter 1, Example 2.4, that the
sequence (log #) is (R, 1/n)-u.d. mod 1 but not u.d. mod I; furthermore,
(R, 1/n) is strongly regular by Exercise 4.9.

Notes

A detailed treatment of the theory of summability is given in Hardy (2], Cooke [1], Knopp
[1], G. M. Petersen [2], Zeller and Beekmann {1] (with extensive bibliography), and
Peyerimhoff [1].

The consideration of summation methods other than (C, 1) in conjunction with u.d.
goes back to Tsuji [2], who considered (R, p,) in the mod 1 case (compare with the notes
in Section 7 of Chapter 1). The concept of (A, g)-u.d. for compact groups (with a positive
matrix A) was introduced by Hlawka [1] and was extended by the same author ((3, 6])
to compact spaces with countable base. In fact, most of the theory of (A, z)-u.d. was
developed in these two papers.

The Hill condition (4.4) was first given by Hill [1] for the special case of the discrete
space X = {0, 1} and was further studied for special summation methods in Hill [2}. The
counterexample in Example 4.4 is also due to Hill {1]. Our proof of Theorem 4.2 follows
ideas of Kemperman [2] and is less involved than the original proof of Hlawka [3). Another
sufficient condition for the Borel property, the so-called Lorentz condition (Lorentz [2]),
was given by Miiller [1]: If A is regular and lim,, o > g |@ng — @y 341} 10g k = 0, then A
has the Borel property with respect to all measures  on X (again, X is supposed to have
a countable base). An analysis of the relations between the Borel property and properties
akin to it was carried out by Fleischer [1]. In connection with the Borel property, the
following analogue of Theorem 2.3 given by Hlawka [3] is of interest: If X has a countable
base and contains more than one point and if A is regular, then the set of all (A, w)-u.d.
sequences in X is of the first category in X, A theorem of K. Schmidt [1] also touches
upon the Borel property. A brief discussion of (A, z)-u.d. can also be found in Helmberg
[5] and Cigler [10].

An existence theorem for (A, g)-u.d. was shown by Descovich [1] for a restricted class
of positive regular summation matrices A. The concept of a “‘strongly (A, p)-u.d. sequence”’
in a compact Hausdorff space X with countable base was introduced and studied by
Philipp (2). A generalization of the theorem of de Bruijn and Post (see the notes in Chapter
1, Section 1) and a rearrangement theorem for (A, z)-u.d. (compare with Theorem 2.5
and the notes in Section 2) were shown by Binder [1].

The summation method F (almost convergence) was introduced and studied by Lorentz
[11. The usefulness of this method for the theory of well-distributed sequences was pointed
out by G. M. Petersen [1]. A discussion of the method F from the point of view of sum-
mability theory can also be found in G. M. Petersen [2, Chapter 3] and Zeller and Beekmann
{1, Section 6).

Exercises

4.1, Let A = (a,,) be a matrix method with a,;, > Oforalln, k=1,2,...
(a so-called positive matrix method). Prove that the sequence (%,) is
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4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
43.
4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

(A, w-u.d. in X if and only if for every u-continuity set M in X, we
have lim,_ , Dy @,Ca() = u(M), where c;; denotes the charac-
teristic function of M. Hint: Compare with the proof of Theorem 1.2,
Consider the simple Riesz means (R,p,) with p, =n", ¢ > —1.
Show that (R, p,) has the Borel property. Hint: See Example 4.5.
Show that for o > —1, the simple Riesz means (R, p,) with p, = n’
and (C, 1) are even equivalent. Hint: See Example 4.5.

If X has at least two points, then there is no matrix method A such
that every sequence in X is (A, #)-u.d. in X.

Prove that if A is strongly regular, then the sequence (na), « ir-
rational, is A-u.d. mod 1.

Prove that Theorem 4.4 remains true if in both the hypothesis and
the conclusion, “(A, u)-u.d.” is replaced by “(A, u)-well distributed.”
Show that every almost-convergent sequence of real numbers is
bounded.

Verify that the sequence ((—1)") is almost convergent to the value zero.
Show that (R, 1/n) is strongly regular.

Show, more generally, that a regular (R, p,) with nonincreasing p,, is
strongly regular.

Similarly, show that (R, p,) with nondecreasing p, is strongly regular
if and only if lim,_,,, p,/P, = 0.

Consider the discrete space X = {0, 1} with measure u defined by
u({0}) = u({1}) = %. Prove that a sequence (z,) in X is (A, p)-u.d. in
X if and only if (z,) is summable by A to the value .

Show that the following matrix A = (a,,) defines a regular matrix
method: a,, = 1/2nif | <k <3nand k £ 1 (mod 3), and a,;, =0
otherwise, With X and y as in Exercise 4.12, prove that the following
sequence (2,)is (A, )-u.d. but no g-u.d.in X: 2, = lifn = 0 (mod 3),
and z, = 0 otherwise.

With X and u as in Exercise 4.12, the sequence (x,) with «, = 1 for
n=2¢ s>1, and z, = 0 otherwise, is given. This sequence is not
u-u.d. in X (proof!). Construct a regular matrix method A such that
(,) is (A, p)-u.d. in X. Hint: Compare with Exercise 4.13.

Let X be a compact metric space with metric d and with a nonnegative
normed Borel measure p, let A be a regular matrix method, and
suppose that (z,) is (A, )-u.d. in X. Prove that every sequence (y,)
in X satisfying lim,_,,, d(z,,y,) = 0 is also (A, p)-u.d. in X. Hint:
Use Theorem 4.4,

Use the previous exercise, with X, x4, and A having the same meaning
as there, to prove the following result: If X admits (A, x)-u.d. sequences
and H is an arbitrary dense set in X, then there exist (A, u)-u.d.
sequences consisting entirely of elements from H.



UNIFORM DISTRIBU-
TION IN TOPOLOGICAL
GROUPS

Quite a number of results from the classical theory of u.d. mod 1 cannot
conceivably have an analogue in the general theory of u.d. in an arbitrary
compact Hausdorff space. In particular, all the results using, or being stated
in terms of, the algebraic structure of the reals belong to this category.

To generalize this part of the classical theory, we are going to develop a
theory of u.d. in compact topological groups. Evidently, all the results estab-
lished in the preceding chapter will carry over to this case. It will turn out
that in addition to those results, we can reveal a rather far-reaching analogy
to the theory of u.d. mod 1. In the last section of this chapter, we shall also
take a glance at locally compact topological groups and introduce a meaning-
ful notion of u.d. for this case as well.

The reader is supposed to be familiar with the general theory of topological
groups. We present only a brief sketch of the important concepts and facts
that will be used throughout the entire chapter.

1. GENERALITIES

Haar Measure

Let G be a compact (topological) group with identity element e € G. The
topological groups that we consider will always satisfy the Hausdorff separa-
tion axiom. The following notation is standard: For ¢ € G and a subset M of

220
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G, we define aM = {ax: v € M} and Ma = {za: x € M}; furthermore,
M‘1 = {.’L“"lj X EM}

Among the nonnegative regular normed Borel measures on G, there is one
singled out by a remarkable property. Namely, there exists a unique non-
negative regular normed Borel measure u on G that is left translation in-
variant; that is, u(xB) = u(B) for all x € G and all Borel sets B in G. This
measure u is called the (normed) Haar measure on G. Because of the com-
pactness of G, the Haar measure is also right translation invariant; that is,
u(Bx) = u(B) for all » € G and all Borel sets B in G; also, u(B") = u(B) for
all Borel sets B in G. Apart from a brief interlude in Section 3, we shall only
study u.d. with respect to the Haar measure. Therefore, we may adopt a more
convenient way of speaking,

DerINITION 1.1. A sequence (x,) in G is called u.d. in G if (z,) is u.d. with
respect to the Haar measure on G. In a similar way, we define the terms well
distributed in G and A-u.d. in G for a matrix method A,

It follows easily from the translation invariance of the Haar measure u
that the support of u is G (see Exercise 1.1). In other words, every nonvoid
open set in G has positive u-measure. In particular, a u.d. sequence in G will
necessarily be everywhere dense (compare with Exercise 1.8 of Chapter 3).
We recall the following simple fact from Section 1 of Chapter 3.

LEMMA 1.1. The sequence (x,) is u.d. in G if and only if

lim — Zf(z,,) _ff du (1.1)

N-w n=1

holds for all fe €(G).

As we already remarked in Section 1 of Chapter 3, we can show in the
same way as in Theorem 1.1 of Chapter 3 that the validity of (1.1) for certain
restricted classes of functions f€ €(G) guarantees u.d. Let ¥~ be a class of
functions from €(G). For the purposes of the present chapter, sp (¥") shall
denote the linear subspace of €(G) generated by ¥". Thus, sp (¥") consists
now of all finite linear combinations of elements from ¥~ with complex
coefficients.

LEMMA 1.2. Let?” be a class of functions from € (G) with sp (¥") = €(G).
Then (x,) is u.d. in G if and only if (1.1) holds for all fe¥".

Furthermore, by using the version of the Stone-Weierstrass theorem for
%(G), we arrive at the following consequence, which we also enunciated in
Corollary 1.2 of Chapter 3.
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COROLLARY 1.1. Ifsp (¥")is asubalgebra of €(G) that separates points,
contains the constant functions, and is closed under complex conjugation,

then sp (¥") = #(G), and so, ¥~ can serve as a class of functions for the
criterion given in Lemma 1.2,

Representations and Linear Groups

By using representation theory, a very important special case of Lemma 1.2
can be exhibited. A (linear) representation of a (not necessarily compact)
topological group is a continuous homomorphism (i.e., a group homo-
morphism that is continuous) from the given topological group into a multi-
plicative topological group of nonsingular complex k£ X k matrices with some
fixed k; the positive integer k is then called the degree of the representation.
By a topology on a set of complex matrices of fixed order, we agree to mean
the topology of entrywise convergence.

Important examples of topological groups of matrices are the general linear
group GL(k) of all nonsingular complex matrices of order k and the unitary
group U(k) of all unitary matrices of order k. We recall that a matrix U is
called unitary if 07 = U~1, where U7 is the transpose of the conjugate of U.
The topological group GL(k) is locally compact and has a countable base, and
U(k) is compact with countable base. The topology in both GL(k) and U(k)
(and in the set of all matrices of order k) could also be introduced by means of

the following matrix norm. For an arbitrary complex square matrix A = (a;;)
of order k, define

K 2
a1 = ( 3 jaf?) (12)
1,§=

Note that this notion of norm is, of course, completely different from the
norm of a summation matrix defined in Chapter 3, Section 4. In this chapter,

only the norm in (1.2) will be used. We have the usual properties of a norm:

i. |A] = 0 if and only if A is the zero matrix
ii. {#Al] = || [|A] for complex «
iii. A+ B|| < |All + |B].
Furthermore, we have
iv. |AB| < [A]| |IB]

v. If Ue U(k), then J|U|| = vk and |AU|| = |UA] = |A] for all A.
The proofs are straightforward.

EXAMPLE 1.1. As a sample result, we prove that ||[AB{ < |A] ||B] for
complex square matrices of the same order k. Let A = (a;;) and B = (b,)
with 1 </, j < k. Then AB = (c,;) with ¢;; = Yr_; a,,b,;. Therefore, by the
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Cauchy-Schwarz inequality,

k k
IAB|® = Z |ci1|2 =2

i,j=1

SZ(ZI% )(Zieur) = 4 imre

j=1 \r=1

k 2
Z airbri

r=1

Taking square roots completes the proof. [Jij

EXAMPLE 1.2. An application of the Cauchy-Schwarz inequality also
yields an estimate for the norm of the sum of matrices that is often more
useful than the triangle inequality. Let A,,..., Ay be complex square
matrices of the same order k, say A, = (@M forl <r<N,1< Lhj<k.
Then, we show that

N
2.A,

r=1

2 N
< NZIIlArllz- (1.3)
r=
We have

2

N
2A

We apply the Cauchy-Schwarz inequality to |, 1.4!}’|%. Consequently,

Z A,
r=1

The matrix norm that we introduced above can also be defined by means of
an inner product. For a complex square matrix A, let the trace tr (A) be the
sum of the diagonal elements of A. If A and B are complex square matrices of
the same order, we define (A | B) = tr (BTA). It is easy to see that we have
the following rules:

i. (¢A|B) = «(A|B) and (A | «B) = &(A | B) for complex «

ii. (A;+ A,|B)=(A;|B)+ (A;|B) and (A|B,+ B)=(A|B)+
(A|By)

iii. (B|A) (A[B)

iv. If U is unitary, then (UA | UB) = (AU | BU) = (A | B).
Furthermore, the relation to the matrix norm is exhibited by the identity
1A% = (A | A). (1.6)

Many of the properties of the matrix norm can therefore be shown by using
a corresponding property of the inner product.

Two representations D, and D, of G of the same degree k are called equiv-
alent if there exists a nonsingular k X k matrix S such that

Dy(z) = SD,(»)S forall ze€G. (1.7)

Z a(r)

r=1

=5

%, 7=1

. (1.4)

"< zNz|a"’| —Nz zla"’| —NzuA,uz W s

4,7=1 r=1 r=1%{,
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For the compact group G, every representation is equivalent to a unitary
representation, that is, a representation D of G such that D(z) is a unitary
matrix for all z € G. A representation D of G of degree k is called reducible if
there exists a linear subspace ¥ of the k-dimensional vector space €” over the
complex numbers such that 0 < dim ¥ < k and D(z)V < V for all z € G,
where we think of the matrix D(x) as a linear operator on €*. A representation
that is not reducible is called irreducible.

If D is a representation of G, then the character y of D is defined by

2(z) = tr (D(z)) for all € G. The character x is a complex-valued continuous
function on G. Two equivalent representations have the same character. The
character y is invariant on the classes of conjugate elements in G; that is,
2(y~tey) = y(z) for all x, y € G. If the representation D has degree 1, then D
is identical with its own character. In case G is abelian, any irreducible
representation is of degree 1; therefore, we shall usually speak of characters
instead of representations for abelian G. To emphasize this important case,
let us repeat that a character y of a compact abelian group is a continuous
mapping from G into the multiplicative topological group T of complex
numbers of unit modulus, the so-called (one-dimensional) circle group, such
that y(zy) = x(@)x ) for all z, y € G.
EXAMPLE 1.3. Let ¢ be the following mapping from the additive group
R of the reals in the usual topology into the circle group T: ¢(x) = e?"® for
2 € R. The mapping ¢ is a continuous homomorphism onto T with kernel
Z, the additive group of integers. Therefore, T and the quotient group
R/Z are isomorphic as topological groups (see Theorems 1.8 and 1.9), The
reaJs mod 1 (see introduction to Chapter 3) can be identified in a canonical
fashion with R/Z. The measure on the reals mod 1 induced by ordinary
Lebesgue measure becomes then the Haar measure of R/Z. The characters
of the compact abelian group R/Z are exactly the mappings x,, defined
by xm@Z) = " for x € R, where m attains every integral value. [l

EXAMPLE 14. For m > 1, let C,, be a finite cyclic group of order m
generated by a € C,,. In the discrete topology, C,, is a compact abelian group.
The characters of C,, are exactly the mappings x,, h=0,1,...,m— 1,
defined by yx,(@*) =™ "™% —=0,1,...,m—1. |

We shall use the following theorem, which is a special case of the famous
Gel’fond-Raikov theorem for locally compact groups. Let us remark at this
point that we do not provide formal proofs for the basic results from the
general theory of topological groups. The reader is referred to the literature
mentioned in the notes.

THEOREM 1.1: Gel’fond-Raikov Theorem. For any elementz # e of the
compact group G, there exists an irreducible unitary representation D of G
such that D(z) is not the identity matrix.
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Thus, we have what is sometimes described as an “adequate system” of
representations. Let us now look at the family of all irreducible unitary
representations of G. By virtue of the notion of equivalence between
representations that we introduced in (1.7), this family is divided into equiv-
alence classes. From each equivalence class, we choose one representation.
We thereby arrive at a system {DY: 1€ A} of nonequivalent irreducible
unitary representations, where A denotes a suitable index set. Let D'*(x) be
the matrix D™ (@) = (d!?(x)) with « € G. For varying v, the entry d{}’ can be
viewed as a complex-valued continuous function on G. By collecting those
entry functions for all D™, 2 e A, we obtain a class @ of functions from
% (G). We want to verify that sp (2) satisfies all the conditions of Corollary
1.1.

Let us first show that & already separates points. Take two distinct points
@ and y from G. By Theorem 1.1, there exists an irreducible unitary repre-
sentation D of G such that D(zy ) is not the identity matrix. The representa-
tion D is equivalent to some D), 1 € A. Then D®¥(xy~) is not the identity
matrix; hence, D(2) ¢ D) (y). Consequently, for one of the entries d}’ of
DP, we have d{} () % d'P (y).

Suppose we have arranged matters so that the integer 0 is an element of the
index set A. There is one trivial representation among the D that we shall
call D', The representation D has degree 1 and is defined by D (2) = 1
for all € G. In particular, we have the function d'® = | in the class 2, and
so, sp (2) contains the constant functions,

Furthermore, we must verify that with every function in sp (2), we find its
conjugate in sp (2). It will suffice to prove that for every function d{;’ we have
d$}) € sp (2). We use that with every D™ the mapping EM(z) = DV (),
x € G, is also an irreducible unitary representation of G. Therefore, E™® is
equivalent to a representation D for some » € A. By equating corresponding
entries in the matrix equation E®(x) = S~ID™(x)S, we infer that di/’ is a
complex linear combination of functions from 2.

There is one more point that we have to settle, namely, that sp (2) is closed
under multiplication of functions. Evidently, it will be sufficient to show that
a product of the form d{} di)) is again in sp (2). To this end, we form the
Kronecker product F = D™ @ D™ of the two representations D and
D®™; that is, we set F(x) = D¥(z) @ DM () for all « € G, where the Kro-
necker product A @ B of two matrices A = (a,,) of order ¢ and B = (b,,) of
order d is defined as follows. The matrix A @ B is a matrix of order cd that is
built up from d% blocks of ¢ X ¢ submatrices. The ¢ X ¢ submatrix appearing
in the rth row of blocks and sth column of blocks is b, ,A. In other words, we
get the matrix A @ B by taking the matrix B and replacing each entry b,, by
the ¢ X ¢ matrix b,,A. It is easily seen that F = D™ @ D™ is again a unitary
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representation of G but that F need not be irreducible. We apply the important
fact that any representation of a compact group is equivalent to a so-called
completely reducible representation, that is, to a representation E of the form

E() 0 - 0
0 Ex(») -+ 0
E(x) = ' ,
0 0 - E(r)
where the blocks E, (), . . . , E,(z) are irreducible unitary representations and
the zeros denote zero matrices of appropriate order. By choosing, if necessary,
a representation equivalent to E, we may assume that E;, . .., E, belong to

the system {D'*': 2 € A}. Thus, we have F(z) = S—E(x)S with the nonzero
entry functions in E(2) belonging to the class 2. In particular, the entry

function d{}’ d'?), in F will be a complex linear combination of functions from

2.
Combining all the above considerations, we have thus sketched the proof
of an important result, namely, the so-called Peter-Weyl theorem.

THEOREM 1.2: Peter-Weyl Theorem. The subalgebra sp (2) is dense in
%(G).

Weyl Criterion

The Peter-Weyl theorem leads us back to Lemma 1.2. A sequence (%,) in G
will be u.d. in G if and only if limy_.,, (1/N) 32, diP(z,) = [ di} du holds
for all functions d{}’ € 2. If A = 0 (i.e., if we consider the trivial representa-
tion D), then this limit relation is clearly satisfied for any sequence in G.
Thus, we may confine our attention to 4 € A with A 5% 0. By the well-known
orthogonality relations for compact groups, [qd{’ du = 0 holds for all
d{} with A # 0. Since we defined convergence of matrices entrywise, we may
collect the limit relations for all the entry functions of a single representation
DY into a limit relation of the type (1.8) below. We arrive at the following
fundamental criterion.

THEOREM 1.3: Weyl Criterion. Let {D'*); 1€ A} be a system of repre-
sentations of G that is obtained by choosing exactly one representation from
each equivalence class of irreducible unitary representations of G. Let D'® be
the trivial representation. Then the sequence (z,) in G is u.d. in G if and only
if

AY

lim ~ SDW(x,) =0 (1.8)
N-ow N n=1



1. GENERALITIES 227

holds for all 2 € A with 4 5 0, where 0 denotes a zero matrix of appropriate
order. By the properties of the matrix norm, the condition (1.8) is equivalent

to
N

L S pa,)

n=1

lim

N- o

’ =0 forallAe A with 2 % 0. 1.9

Because of Example 1.3, the classical Weyl criterion for u.d. mod 1
(see Chapter 1, Theorem 2.1) is a special case of Theorem 1.3. Because of its
importance, we shall state Theorem 1.3 once again for the special case of an
abelian group G. Then the representations become the characters, the
assumptions of irreducibility and unitarity are redundant, and the equivalence
classes from Theorem 1.3 are singletons. Obviously, the trivial character
shall then be defined by yo(¢) =1 for all x € G.

COROLLARY 1.2. Let G be a compact abelian group. Then the sequence
(x,) in G is u.d. in G if and only if

N
lim + 3 4(e,) = 0 (1.10)

N-w n=1

holds for all nontrivial characters y of G.

Using Corollary 3.1 of Chapter 3 and the Peter-Weyl theorem, we are also
led to the following convenient criterion for well-distributivity in a compact
group G.

COROLLARY 1.3. Let {D'V: A€ A} be as in Theorem 1.3. Then the

sequence (x,) in G is well distributed in G if and only if for all 2 € A with
A # 0, we have

1 N+n
lim — Y D%(,) =0 uniformlyinh=0,1,2,..., (1.11)

Now N n=14n

or, equivalently,

N+R
lim |1 D)) ’ —~0 uniformlyinh=0,1,2,.... (1.12)
Now || N n=1+n

It is certainly of interest to know “how many” conditions we have to check
when applying Theorem 1.3, This question is answered by a well-known
result from representation theory that says that the cardinality of the index
set A is equal to the weight of G. By the weight of a topological space, we
mean the minimal cardinality of a base for the open sets in the space. In
particular, if G satisfies the second axiom of countability, then there is a
countable system of irreducible unitary representations of G that determines
the u.d. of a given sequence in G. In the light of Theorem 2.1 of Chapter 3,
this should not come as a surprise.
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Some Consequences of Earlier Results

The compact group G can be viewed as a uniform space in a natural sense.
For each neighborhood ¥V of e, define V; = {(x,9)e G X G: "y e V}.
The family of all sets ¥, forms a base for the so-called left uniformity of G.
In the same vein, we define Vy = {(v, ¥) € G X G: ay~' € V}, and we let the
right uniformity of G be the uniformity that has the family of all sets V5 as a
base. The topology of both the left and the right uniformity is identical with
the original topology of G. We shall now apply to the present situation two
results from Chapter 3 that we found for compact Hausdorff uniform spaces.
For the first application, we look at a very special case of Theorem 4.4 of
Chapter 3. For the matrix method A occurring there, we choose the Cesaro
means (C, 1), and for the measure u we take, of course, the Haar measure on
G.

THEOREM 1.4. Let (2,) be a u.d. sequence in G, and suppose that (c,) is a
sequence in G such that lim,, , ¢, exists. Then the sequences (c,z,) and
(x,c,) are ud. in G.

PROOF. We confine our attention to the sequence (c,x,). The proof for
the second sequence is analogous. We set ¢ = lim,_,,, ¢,. Forn > 1, let T,
be the transformation on G defined by T, » = ¢,z for all « € G. In addition,
we consider the transformation T' on G given by Tz = cx for all x € G.
The transformation T is both continuous and measure-preserving. By Theo-
rem 4.4 of Chapter 3, it remains to show that the transformations 7T, converge
uniformly to T. For this purpose, it will suffice to look at the sets V' in the
right uniformity of G, where V is again some neighborhood of e. But
(T,z, Tx) € Vi, precisely if (T,2)(Tx)™ = c,x(cx)? = c,c* € V. Therefore,
(T, Tzx) € Vi holds for sufficiently large »n and every « € G because the
sequence (¢,c™) converges to e. |

By using Exercise 4.6 of Chapter 3, one can prove a corresponding state-
ment for well-distributivity. That is, if (x,) is well distributed in G and (c,)
converges, then the sequences (c,z,) and (¥,¢,) are both well distributed in G.
Alternative proofs for the above results can be based on the Weyl criterion
as given in Theorem 1.3 and Corollary 1.3 (see Exercises 1.2 and 1.5).

Employing in a consistent way the convention that originates in Definition
1.1, we call a family of sequences in G a family of equi-u.d. sequences in G if it is
a family of equi-u-u.d. sequences with respect to the Haar measure u. We
consider now a special case of Example 3.2 of Chapter 3. Let us first note the
following immediate consequence of Theorem 1.4:If (x,) is u.d. in G, then the
sequences (cz,) and (v,c) are u.d. in G for fixed c€ G. It turns out that the



1. GENERALITIES 229

sequences of this type are tied together very closely with respect to their
distribution behavior.

THEOREM 1.5. Let(x,) beagivenu.d. sequence in G. Then{(cz,): ¢ € G}
and {(z,c): ¢ € G} are families of equi-u.d. sequences in G.

PROOF. We already mentioned that we shall apply the result from
Example 3.2 of Chapter 3. Evidently, we consider the transformations P_,
¢ € G, defined by Pz = cx for « € G. Certainly, all the transformations P, are
measure-preserving. Thus, we only have to show that the family {P,: ¢ € G}
is equicontinuous at every point x € G. Choose a neighborhood V of e and
consider Vy, = {(x,y) € G X G: a7 'y € ¥} from the left uniformity of G.
Then (P, Py) € Vy, if and only if (Pa)(P,y), or 271y, is an element of V.,
Hence, (P, Py) € Vp, for all y in the neighborhood @V of x and for all ¢ €G.
So {(cx,): ¢ € G} is a family of equi-u.d. sequences in G. A similar argument
holds for the family {(z,c): c€G}. I}

Again, the above theorem could also be proved by means of a Weyl
criterion for equi-u.d. (see Exercise 1.4). There is a simple, but interesting,
consequence of Theorem 1.5,

COROLLARY 1.4. If, for some a € G, the sequence (a") is u.d. in G, then
the sequence (a”) is even well distributed in G.

PROOF. By Theorem 1.5, the family {(a*a"): h=0,1,2,...} is a
family of equi-u.d. sequences in G. In other words, {(a"**): h =0,1,2,...}

is a family of equi-u.d. sequences in G, and so, by definition, (a®) is well
distributed in G. |}

In Section 4, we will study sequences of the form (a") in detail. For the
present time, let us just point out that there are important classes of compact
groups G for which the hypothesis of the above corollary can be satisfied.

Applying Homomorphisms

A very natural thing happens when a surjective continuous homomorphism
is applied to a u.d. sequence; namely, the property of u.d. is preserved.

THEOREM 1.6, Let ¢ be a continuous homomorphism from the compact
group G onto the compact group G;. If (z,) is u.d. in G, then the sequence
(¢(z,) is u.d. in G,.

PROOF. We proceed by Theorem 1.3. Let D, be a nontrivial irreducible
unitary representation of G;. Then the composite mapping D, defined by
D(x) = Dy(@()) for x € G, is a nontrivial irreducible unitary representation



230 UNIFORM DISTRIBUTION IN TOPOLOGICAL GROUPS
of G. Therefore,

N N
lim - 3 Dy(p(x,) = lim ~ 3 D(z,) = 0, (1.13)
N n=1 N-ow N n=1

N-

and the proof is complete. [l

The above argument is characteristic of the simple way in which the group
structure and, in particular, the Weyl criterion may be exploited to arrive at
short proofs. A purely measure-theoretic proof of Theorem 1.6 can also be
given (see Exercise 1.6). We arrive at an important special case if we take for
the second group G, a quotient group of G. Let H be a closed normal sub-
group of the topological group G, that is, a normal subgroup of the group G
that is closed in the topology of G. The quotient group G/H becomes a
topological group under the following topology : As the open sets in G/H take
all sets of the form {bH: b € B}, where B is open in G. The canonical map-
ping ¢5: € G 2H € G[H is then a continuous homomorphism from G
onto G/H, and G/H is compact whenever G is compact. The following result
is now an immediate consequence of Theorem 1.6.

COROLLARY 1.5. Let H be a closed normal subgroup of the compact
group G, and let (z,) be u.d. in G. Then the sequence (x,H) is u.d. in the
quotient group G/H.

EXAMPLE 1.5. We determine all closed subgroups of the circle group 7.
For z € T, let arg z be the value of the argument of z with 0 < argz < 2.
Let H 5 {1} be aclosed subgroup of 7, and put o = inf {argz: z€ H, z ¢ 1},
We distinguish two cases. If & = 0, then we consider an arbitrary open inter-
val (B, y) € [0, 2m). There exists z € H with 0 < argz < y — f; thus, there
is a power 2" of z with arg 2" € (f, y). Since 2" € H, we have shown that H is
dense in 7. But H is closed, and so, H = T. In the remaining case, we have
« > 0. Since H is closed, we have z, = e™ € H. The subgroup H is not dense
in this case, therefore «/2n is rational. Let now z be any element in H. Then
argz = ne + 6 for some nonnegative integer n and 0 < 6 < «. We get
arg (22"™) = 0 withzz,~" € H. By the construction of «, we must have 6 = 0;
thus, z = zo". Therefore, H is cyclic and discrete because «/2n is rational.
Consequently, our final result is as follows: The closed subgroups of T are
precisely the discrete cyclic groups, generated by some root of unity, and T
itself. i}

The preceding example has an important consequence for the characters
of a compact abelian group G: namely, the image x(G) of G under the charac-
ter x is a closed subgroup of T and therefore falls into one of the categories
listed above. This leads to the following distinction: If x(G) is a discrete cyclic
group, then y is said to be a discrete character. If y(G) = T, then y is called
nondiscrete.
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There is another interesting characterization of u.d. that may be partially
inferred from Theorem 1.6. Theoretically, the subsequent theorem enables us
to reduce the study of u.d. in the compact group G to the study of sequences
of matrices.

THEOREM 1.7. If (z,)is u.d. in G, then, for every representation D of G,
the sequence (D(,)) is u.d. in the image of D. Conversely, if {D¥': 2 € A} is
a system of representations of G as in Theorem 1.3 and if for every 4 € A with
2 # 0, the sequence (D¥(x,)) is u.d. in the image of D'V, then (x,) is u.d. in
G.

PROOF. The first part is an immediate consequence of Theorem 1.6. On
the other hand, suppose the condition in the second part is satisfied. For a
fixed A€ A with 4 5 0, let A4 be the image of D). Then the identity
mapping on .#") gives a nontrivial irreducible unitary representation of
AP, Since DM (x,)) is u.d. in AP, the Weyl criterion implies limy ., ,
(1/N) 3¥_,DM(x,) = 0. This holds for all 2 under consideration, and so, (z,)
isud.inG.

Let G, and G, be topological groups; a mapping from G, onto G, that is
both a group isomorphism and a homeomorphism is called a topological
isomorphism. If such a mapping exists, the groups G, and G, are called
topologically isomorphic. To point out the difference, a (not necessarily
continuous) homomorphism resp. isomorphism will sometimes be referred
to as an algebraic homomorphism resp. algebraic isomorphism. In most of the
cases that we consider, a continuous homomorphism will automatically be an
open mapping. Recall that a topological space is called o-compact if it can be
written as the union of at most countably many compact subsets.
THEOREM 1.8. A continuous homomorphism from a locally compact
o-compact group onto a locally compact group is an open mapping.
COROLLARY 1.6. Every character of a compact abelian group is an
open mapping.

It is often important to know that a continuous homomorphism is also
open. For instance, for such homomorphisms the well-known first isomorph-
ism theorem for discrete groups carries over to topological groups as well.
THEOREM 1.9: Isomorphism Theorem. Let¢: G + G be an open con-
tinuous homomorphism from the topological group G onto the topological
group G, with kernel H. Then G, is topologically isomorphic to the quotient
group G/H.

Duality Theory

Let now G be a locally compact abelian group. By a character of G, we mean
again a continuous homomorphism from G into the circle group T. The set of
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all characters of G can be made into a group by taking as the product y, y, of
two characters y; and x, of G the character defined by (x,22)(2) = x1(@) %)
for all € G. The identity of this group is the trivial character of G. With the
so-called compact-open topology, the group of characters becomes a topologi-
cal group, the character group or dual group G of G. As a basis for the neigh-
borhoods of the identity in G, we choose all subsets U(K;; &) of G of the form
UK;e) = {yeG: |x@) — 1| < ¢ for all x €K}, where K is an arbitrary
compact subset of G and ¢ is an arbitrary positive number. Then G is again a
locally compact abelian group. If G is topologically isomorphic to the locally
compact abelian group G, then G is topologically isomorphic to G,.

THEOREM 1.10. If G is compact, then G is discrete. If G is discrete, then
G is compact.

Since G is a locally compact abelian group, we may ask for the character
group of G. Let us first note that the original group G can be (algebraically)
embedded into the dual group of G. For if we take a fixed « € G, then the
mapping £: G +— T, defined by £(y) = x(2) for y € G, is easily seen to be a
character of G. The set of all those characters forms a subgroup of the dual
group of G that is isomorphic to G. The following fundamental theorem tells
us that far more is true.

THEOREM 1.11: Duality Theorem of Pontryagin-van Kampen. If G is a

locally compact abelian group, then the character group Gof Gis topologi-
cally isomorphic to G, and the topological isomorphism is given by the
mapping x - £,

In particular, every character of G is a mapping of the form & for some
x € G. Furthermore, another case of the Gel’fond-Raikov theorem follows:
For every « # e in G, there exists y € G with x(x) % 1. In the sequel, we will

often identify G and G. To discuss the character groups of closed subgroups
and quotient groups of G, we introduce the notion of an annihilator. For
an arbitrary nonvoid subset H of G, let the annihilator A(G, H) of H in G be
defined as the set

A(G, H)={3€G: () =1 forall xeH)}. (1.14)

The annihilator A(G, H) is a closed subgroup of G. The importance of this
concept is revealed in the following theorem.

THEOREM 1.12. Let H be a closed subgroup of the locally compact
abelian group G. Then the character group of G/H is topologically isomorphic
to A(G, H). Furthermore, the character group of H is topologically iso-
morphic to G/4(G, H). We also have H = A(G, A(G, H)).
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When discussing representation theory, we pointed out the intimate relation
between the weight of the compact group G and the cardinality of the set of
equivalence classes of irreducible unitary representations. This situation has a
close analogue in the present setting.

THEOREM 1.13. For a locally compact abelian group G, the weight
w(G) of G is identical with the weight w(G) of G.

Since the weight of a discrete space is identical with the cardinality of the
space, we obtain the following immediate consequence of Theorems 1.10
and 1.13, which may also be inferred from representation theory.

COROLLARY 1.7. For a compact abelian group G, we have w(G) =
card G.

The duality theorem also gives rise to important structure theorems for
locally compact abelian groups. One of them that will turn out to be useful
in Section 4 is given below. Forn > 1, R" denotes the n-dimensional euclidean
space, considered as an additive group in the usual topology. We define
R = {e}.

THEOREM 1.14. Every locally compact abelian group G is topologically
isomorphic to a direct product of the form R" x H, where H is a locally
compact abelian group containing a compact open subgroup. The non-
negative integer # is uniquely determined by G.

Another result on the duality theory of locally compact abelian groups is of
a more specific nature. We first recall the notion of the weak direct product
of a family of groups. Let J be an arbitrary nonvoid index set, and for each
j€J, we are given a discrete group G, with identity e;. Then the weak direct
product T[£; G, is the group consisting of all tuples (2;);cs with &; € G, and
; # e; for at most finitely many j and with multiplication defined coordinate-
wise.

THEOREM 1.15. For each j from the nonvoid index set J, let G; be a
discrete abelian group. If the weak direct product []/sG, is given the
discrete topology, then its dual is topologically isomorphic to the direct
product [;esG;.

Let G be a compact abelian group, and let C be the (connected) component
of e. Then C'is a closed subgroup of G, and the quotient group G/C is totally
disconnected. There is a strong interrelation between the connectivity
character of G and the torsion character of G. Recall that in a (discrete)
abelian group A the elements of finite order form a subgroup of 4, the so-
called torsion subgroup F. If F = {e}, then A is called torsion-free; if F = A,
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then A is called a forsion group. It is evident that a character y € G is of
finite order in G if and only if y is discrete. Thus, the torsion subgroup of
G is simply the collection of all discrete characters of G. It is easy to verify
that a connected G cannot possess a nontrivial discrete character. For if
x € G is nontrivial and discrete, then the inverse image of 1 € T under
(which is then also the inverse image of some small open neighborhood of
1 under x) would be a nontrivial subset of G that is both open and closed.
For a generalization, see Theorem 1.16.

An element 2 in the locally compact abelian group G is called compact if the
closed subgroup generated by z is compact. The set of all compact elements of
G is a closed subgroup of G but not necessarily compact. We collect some
relevant information in the following theorem.

THEOREM 1.16. Let G be a locally compact abelian group, and let C be
its component of the identity. If G is compact, then the annihilator 4(G, C) is
exactly the torsion subgroup of G. In the general case, let B be the closed
subgroup of G consisting of all compact elements of G. Then, B = A(G, C),
and dually, C = 4(G, B).

COROLLARY 1.8. The compact abelian group G is connected if and only
if it admits no nontrivial discrete character. Moreover, G is totally discon-
nected if and only if every character of G is discrete.

Notes

Various parts or all of the structure theory and representation theory for topological
groups presented here can be found in the standard treatises on the subject, for example,
Weil [1], Pontryagin [1], Hewitt and Ross (1], and Rudin [l]. A detailed survey on
duality theory is given in Heyer [1]. Theorem 1.15, which is maybe not so widely known,
is shown in Hewitt and Ross [1, Theorem 23.22].

U.d. in compact groups was first studied by Eckmann [1]. Unfortunately, this paper
contains a serious error in that the condition imy_.o A(M; N)/N = u(M) is required
to hold for all closed sets A/ instead of permitting only (closed) g-continuity sets. The
theory was brought to its present state by Hlawka and other authors, notably Cigler,
Hartman, Helmberg, and Kemperman. The basic criteria, namely, Theorem 1.3 and
Corollary 1.2, were already established by Eckmann [1]. Zaretti [2] gives a slight improve-
ment of the necessary condition. Theorems 1.4 and 1.5, and Corollary 1.4, are from
Hiawka [1].

We shall now mention various aspects of the theory that could not be included in our
treatment. A completely satisfactory quantitative theory in compact groups has not yet
been developed. The first step in this direction was undertaken by Hlawka and Niederreiter
[1] and Niederreiter [1]. Another notion of discrepancy is in K. Schmidt [2, 3], who
defined it for sequences of measures in locally compact abelian groups with countable base.
If sequences of points in a compact group are considered, then Schmidt’s definition reduces
to a special case of the notion of maximal deviation introduced in Definition 2.2 of Chapter
3.
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A remarkable result was shown by Veech [3]. He calls a sequence ry, ry, . . . of positive
integets a ‘‘u.d.-sequence generator’’ if, for every compact group G and every sequence
(y,) in G that is not contained in any proper closed subgroup of G, the sequence (z,) in
G defined by x, = y,.¥,, - ¥,, is u.d. in G. The author not only shows that such u.d.-
sequence generator's exist but gives also explicit constructions, one of them based on
normal numbers.

Normal numbers, or rather a generalization thereof, also occur in a paper of Cigler
{3]. Let G be a compact abelian group with countable base, and let T be a continuous
endomorphism of G that is ergodic with respect to the Haar measure p. Then the element
€ G is called normal with respect to T if the sequence (T"x) is u.d. in G. By Exercise
2.17 of Chapter 3, this definition generalizes the classical notion of normality. By the

individual ergodic theorem and the fact that G is countable, one obtains that g-almost
all € G are normal with respect to T (for a more general result, see Philipp [2]). Other
properties of normal numbers extend also to this case. For instance, if # is normal with
respect to T, then x is normal with respect to T*forallk =1,2,...; conversely, if © is
normal with respect to T* for some k > 2, then = is normal with respect to T. It was
shown by Rohlin [1] that the ergodicity of the continuous endomorphism 7" may also be
characterized algebraically: T is ergodic with respect to s if and only if, for each nontrivial
character x of G, the functions ¥ T", n=1,2,..., on G are all distinct. For another
application of ergodic theory, see Couot [4].

Cigler [11] introduces the notion of a ‘‘strongly u.d. sequence”’ (stark gleichverteilte
Folge) in a compact group. Every well-distributed sequence and every completely u.d.
sequence (see Chapter 3, Section 3) is strongly u.d. but not every u.d. sequence is necessarily
strongly u.d. (in fact, as soon as limn e @,,2,~1 = ¢ and G contains more than one
element, then (%,) cannot be strongly u.d. in G).

An interesting application of u.d. in compact groups occurs in connection with Artin’s
conjecture on primitive roots. See Serre [1, Chapter 1] and Goldstein [1].

Maak [2, 3] studies analogues of Kronecker’s theorem for abstract groups, using a
notion of independence for unitary representations of the group. See also Helmberg [3].
For the special case of abelian groups, similar investigations were carried out by Bund-
gaard [1, 2], who also introduced a notion of u.d. for functions on the group with values
in a finite-dimensional circle group.

R. C. Baker [l, 2, 3] investigates sequences (y,) of characters of a locally compact
abelian group G such that (x,(=)) is u.d. in the circle group for almost all #€ G in the
sense of Haar measure. A basic role is played by sequences of characters that satisfy
conditions generalizing the growth condition of Weyl (see Chapter 1, Exercise 4.6).

Starting from certain sequences of finite abelian groups, Dennis [1] studies sequences in
these groups that are independently distributed in a certain technical sense. A Weyl criterion
is shown in the case where all groups are elementary abelian.

For compact groups, the existence problem for u.d. sequences can be settled in a very
satisfactory manner: namely, the compact group G admits u.d. sequences if and only if
G is separable (see Corollary 5.4 and the notes in Section 5). This follows also from the
results of Veech [3] quoted above.

Sequences of measures on compact groups were studied by Cigler [6]. This viewpoint
was pursued further by K. Schmidt [2, 3] and Sigmund [1].

Exercises

1.1. Prove that the compact group G is the support of its Haar measure .
1.2. Prove Theorem 1.4 by means of the Weyl criterion.
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1.3.

1.4.

L.5.

1.6.
1.7.

1.8.

1.9.

1.10.

UNIFORM DISTRIBUTION IN TOPOLOGICAL GROUPS

Prove that {(x, ,): o €J} is a family of equi-u.d. sequences in G if and
only if, for each D’ with 4 5 0 from the system in Theorem 1.3 and
for each & > 0, there exists a positive integer Ny(4, ¢) such that |(1/N)
SN DP(, )] < € holds for all N > Ny(4, ¢) and for all o €J.

Use the criterion in the previous exercise to give an alternative proof
for Theorem 1.5.

Use the criterion in Corollary 1.3 to prove that if (x,) is well distributed
in G and if (¢,) converges, then the sequences (c,x,) and (z,c,) are both
well distributed in G.

Prove Theorem 1.6 by going back to Chapter 3, Exercise 1.10.

For a complex square matrix A, show that [|A|2 = tr (AT A).

Deduce from the previous exercise that ||U| = Jk and |UA|l =
|AU|| = |A], where U is unitary of order k and A is an arbitrary com-
plex square matrix of the same order.

Show that |A + B| < {|A] + |Bf and |A + B|| > | |A|l — |B| | for
complex square matrices A and B of the same order.

Consult a book on topological groups and work out a detailed proof
of the fact that any representation of a compact group is equivalent to a
unitary one.

. Prove that tr (AB) = tr (BA) for complex square matrices A and B of

the same order.

12. Prove that two equivalent representations have the same character.
13. Give a detailed proof of the fact that the Kronecker product of two

1.14.

1.15.

unitary matrices is again unitary.

Prove the following generalization of Theorem 1.2 of Chapter 1: If
(z,)is u.d. in G and if lim,,, ,, x,,~* exists, then (y,) is u.d. in G.

We have seen in this section how the Gel’fond-Raikov theorem for
compact groups implies the Peter-Weyl theorem. Show, conversely,
that the latter theorem also implies the former.

2. THE GENERALIZED DIFFERENCE THEOREM

Proof via Fundamental Inequality

We have seen in Chapter 1 that one of the fundamental results in the theory of
u.d. is the so-called difference theorem of van der Corput (see Chapter 1,
Theorem 3.1). Since this theorem relies on the presence of an algebraic
structure in the underlying space, its generalization to a more abstract setting
had to be deferred in Chapter 3. The time has now come to return to this

topic.

By virtue of representation theory, a complete analogue of the difference
theorem can in fact be shown to hold in every compact topological group.
For the proof, we try to proceed along the same lines as in the classical case.
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This means, first of all, that we have to generalize van der Corput’s funda-
mental inequality (see Lemma 3.1 of Chapter 1). This is done in the following
lemma.

LEMMA 2.1. Let Dy,...,Dy be complex square matrices of the same
order k, and let H be an integer with | < H < N. Then we have

2 N
| < H(N + H — 1)2 ID,)1®

N-—h

E D, | D) | -

PROOF. We extend the definition of the D, by putting D; = 0, the zero
matrix of order k, foralli < Oand alli > N. Cons1der the matrlx HE, 1D

+2AN+H—1) z (H — h) Q.1

We may write this matrix as follows: HIY D, =S¥, SHp, Now we
put p =i+ h; then1<p<N+H—1 and so,
N+H-1 H-1
H3ZD,=3 3 D,
because of the extended definition of the D;. It follows that
N 2 N+H-1 H-1 2
"1 2D 2 2Dy (2.2)
i=1 p=1 h=0
Using Example 1.2 and (1.6), we conclude that
2 N+H-1|| H-1 2
S(IN+H-1) > || 2Dpy
p=1 h=0
N+H-1 /H-1 H-1
—W+H=-1 3 (3D,,3D,,)
p=1 h=0 h=0
N+H-1 H-1
=(N+H-1) E E D, I D,_,). (2.3)

r,5=0
For fixed i with 1 <7 < N, the number of terms (D; | D,) occurring in the
sum EMH YEAD, , | D,) is equal to H. We arrive at

>,

i=1

SHW+H—u§wm

N+H—-1 H-1

(N+H'_'1)E E(D—TIDps)
e
=H(N + H — 1)2 1D [1*
=1
N+H—-1 H-1

+(N+H—1) E E((DHID,, )+ @, | D).

p=1 7,8=0

s<r 24
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NOW (Dﬂl— |Dp s)+(Dp leD r)”‘(Dp r|Dp s)+ P rl ),_3)—2 Re

| D, ), where Re z denotes the real part of the complex number z. We

get
N 2 N
H|3D;|| <HWN +H -1 D

i=1 i=1

N+H—-1 H-1

+2N+H-1Re 3 3 (D,,|D, ). (25
p=1 r,5=0
s<r

For fixed hwith 1 < h < H—1andjwithl <j< N — h, the number of
terms (D, | D) occurring in the sum >3+~ f{s“_o(D,, _.| D,_) is equal to
H — h. Consequently, we can write

N+H—-1 H-1 N-—n
Re zl z (Dp—r | DP s) - Re z (H - h) z (D | D.H-h
= 7,5=0
s<r o Ne

=h§1 (H—h) Reg1 (D,;| D). (2:6)

But Re z < |z| for any complex number 2z, and so, together with (2.5), we
arrive at (2.1).

We are now ready to prove the desired generalization of the difference
theorem. Let G be a compact group, and let (z,) be a sequence of elements in
G. We assume that for each 1 = 1, 2, . . ., the sequence (x,,,%,7!) is u.d. in
G. We even want to show a bit more than in the mod 1 case. Namely, not
only is the sequence (,) itself u.d. but every subsequence of (z,) where the
subscripts run through an arithmetic progression is also u.d. in G.

THEOREM 2.1. Let (z,) be a sequence in the compact group G such that
for each h = 1,2, ..., the sequence (x,,,%, ™) is u.d. in G. Then, for every
positive integer g and nonnegative integer r, the sequence (z,,,,) is u.d. in G.
In particular, the sequence (z,) itself is u.d. in G.

PROOF. We suppose that g and r are fixed throughout the proof. We show
the u.d. of (z,,,,) by using the Wey] criterion as given in Theorem 1.3, In fact,
we shall verify the desired limit relation (1.9) for any nontrivial irreducible
unitary representation D of G. Such a representation being chosen, we first
note that

5 Dizyue) = z zexp( ), ) @7

n=1 j=1s=1

where exp (&) = ¢*"*for o« € R. The above identity stems, of course, from the
simple fact that (1/g) >5_;exp (js/g) =1 for s = 0 (mod g) and = 0 for
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s # 0 (mod ¢). It follows that

N 1 q aN
ZD(anﬂ‘) - z z €Xp ( )D(®s+,)
n=1 q j=1 || s=1
aN
gjmax z exp ( )D(tH,) (2.8)

We now choose an integer H with 1 < H < gN. An application of Lemma
2.1 yields for each fixed j,

aN
S H(qN + H - 1) Zl “D(xsﬂ‘)“z

1| S e ( ?)b(e,.) |

H-1
+ 2(gN + H — l)kg1 (H—h) 2l (29)

with
qN—h

% =3, (e (Z)DGe.)

=1

exp (j"’T+”))D<x,,+,+h>). (2.10)

Suppose that the degree of the representation D is m. Since D is unitary, we

have |D(»)|| = Jm for every « € G by property (v) of the matrix norm. We
can simplify Y, by using, first of all, property (i) of the inner product:

aN—n
zh = exp ( ) z (D('vpﬂ‘) | D(xp+r+h)) (2-11)

Then, using properties (iv) and (ii) of the inner product and the fact that D
is a homomorphism:

aN—h

e ) 3, (B | Dy1r1075%,)

()

where E denotes the identity matrix of order m. Now, for any complex
square matrix A = (ay;) of order m, we have (E | A) = tr (AT) = Y%, 4,,. By
the Cauchy-Schwarz inequality, we get |[(E | A=D1 a2 < m A2 or
[(E|A) < Jm |A]. In particular, we obtain

aN—h
z D(xp+r+h p+r) (212)

aN—h 1
zl D(%p 4711 %psr)
p=

|3l < Jm forallh =1,2,...,H—1. (2.13)
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Combining all these facts, the inequality (2.9) leads to

||S exp ( ), |

s=1

< HNgm(gN + H — 1)

_ H-1 aN—-h
+2/m@N + H — 1)}21(H —h) Z D(%py 41%50r (2.14)
Dividing by H2N?, we arrive at
aN
” — 21 exp D(%H)
N+H—-1 2/m(@N+H~1
< qm? 4 2m 2+ )
H°N
-1 —h 1 aN—h
SACEDE - pIRCHIER] ERD)
gN — h»21
For each fixed /, the sequence (,,,,,251,), p = 1, 2, , is u.d. by hypoth-
esis. Hence, |(1/(gN — 1) SX*D (@, pri@ai)l tends to zero as N — oo,
and this for each 1 =1, 2, ..., H — 1. Altogether, the second term on the

right-hand side of (2.15) tends to zero as N — co. The first term tends to
g°m[H as N — co. Letting H attajn arbitrarily large values, we see that

{ o
lim z exp ( )D(%8+,) =0 foreveryj=1,2,...,q. (2.16)
N-ow» Ns=1

The inequality (2.8) implies then that

lim

N-ow

Z D(%441) (2.17)

N n=1

which is exactly what we wanted to show. [l

Difference Theorems for Well-Distributed Sequences

THEOREM 2.2. Let (z,) be a sequence in the compact group G such that
for each 1 =1,2,..., the sequence (x,.,2,™) is well distributed in G.
Then, for every positive integer ¢ and nonnegative integer r, the sequence
(%gny,) is well distributed in G. In particular, the sequence (z,,) itself is well
distributed in G.
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PROOF. In order to show that (x,,,,) is well distributed in G, it suffices to

verify that
N

1
N z D(%y(nt0)4)

n=1

lim
N-ow

(2.18)

holds uniformly in & = 0, 1, 2, . . ., for every nontrivial irreducible unitary
representation D of G (see Corollary 1.3). We will show slightly more, namely,
that

AY
lim z D(%gn4s) (2.19)
N-w n=1
holds uniformly in# =0, 1, 2,..., for every such representation D of G.

For a given ¢ > 0, we choose an integer H = H(e) > 1 with H > 4g%m/e.
For each 1 with 1 < i € H — 1, the sequence (z,,,2,™") is well distributed
by assumption. This means, in particular, that there exists a positive integer
M, (e) such that

M

2

_ &

D ’v" vt .
“M'z ( +rn +'r) 4\/711 q2

holds for all M > M,(¢) and for all ¥ =0,1,2,.... Put My = My(e) =
max; <, <g—1 M, (e); then, for M > M, the inequality (2.20) holds simultan-
eously forall h=1,2,..., H— 1.

We choose now an integer N(e) with ¢N(e) > M, 4+ H. For all N > N(e),
we have then 1 < H < gN, and so, the inequality (2.15) is applicable. The
first term on the right-hand side of (2.15) is dominated by gm(2gN/HN), and
so, by ¢%/2. As to the second term, we clearly have 2\/m(qN + H — 1)JH?*N <L
4q\/m/H2 and (N — h)/N < gforallh =1,2,..., H — 1. To estimate the
matrix norm occurring in the second term, we observe that gN — h >
gN(e) —h > My + H—h > M, holds for all h=1,2,...,H—1, and
so, the inequality (2.20) is available. Altogether, we obtain the following
estimate from (2.15):

(2.20)

{ oy 2 2y HA 2
“ z exp ( )D('z‘sﬁ) 8; q\/m ’z (H - h)q 4\/ qz
_ f + in‘ (H—h) <& (2:21)

foreachj=1,2,...,4, for all N>N(s) and for all ¥ =0,1,2,.... By
(2.8), we get then
1 X
“ ; ng(an+r) <e (222)

for all N > N(e) and for all» = 0,1, 2, ..., and so, (2.19) holds. |}
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Another remarkable property of well-distributed sequences that depends
on an algebraic structure in the underlying space can be shown. We first need
an auxiliary result on unitary matrices.

LEMMA 2.2, Let Uj, U, ..., U, be unitary matrices of the same order,
and let E be the identity matrix of this order. Then

G, U, - U, — E| < lelUi — EJ. (2.23)

PROOF. We proceed by induction on r. The inequality is certainly correct
for r = 1. Suppose we have already shown the inequality for some r > 1,
Then |UUy* U Uy — Efl = [(U U, U, — E)U,;; + Uy —E[ <L
1(UUy - U, — EYU, 4l + |U,y1 — E|. Using property (v) of the matrix
norm, we conclude that |U,U, - UU, ., — E| < ||UU, - -U, — E[|+
IV, —El < 371U, — E|. M

THEOREM 2.3. Let (y,) be a well-distributed sequence in the compact
group G. If (z,) is a sequence in G with lim,,, ,, ¥ }1%,41%, %Y, = e, then (2,)
is again well distributed in G.

PROOF. Let D be a nontrivial irreducible unitary representation of G that
will be fixed throughout the subsequent consideration. For a given ¢ > 0,
there exists an Ny = Ny(e) such that [[(1/N) 3%, D(y,)| < /4 holds for all
N > Nyandforalih =0, 1,2,....Wehave to show that a similar statement
holds true for the sequence (x,). To establish a link between the two sequences,
we put u, = ¥, 11%,,12,” Y, foralln > 1 and observe that x; = y,u,_ju; 5+
uy,‘x, whenever j > i. Using this and property (v) of the matrix norm, we
get forall N > Nyand h > 1:

N+h

2 D(z,)

n=1+n

N-+h
- ( b3 D(y,.u,,_lz«n_z'-'u,,>)D<y,:1w,,)

n=1+h

N+h

= z D(yrzun—lun._z e llh)

n=1+h

N+h
S z (D(ynun—lun—2 e uh) - D(yn))

n=1-+h

N+h

> D(y,)

n=1-+h

+

N+h
< 3 ID(uu e w) —E[+ N2, (224)
n=14h 4
We now choose an integer K with K > Nyand K > 4/¢. Sincelim,,, , 4, = e,
we have lim, ., ,D(u,) = E; therefore, there exists a positive integer H such
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that

ID()) — E|| < Klz for all j > H. (2.25)
For n > h > H, we have then, by Lemma 2.2,

—
1Dty attyeg ) — E = [D(,_s) -+ * D(u,) — E|| < "~Kz—’ . (2.26)

Combining (2.24) and (2.26), the following inequality holds for all # > H:

Z"

n=14h K2

K+h

Z D("vll)

n=1+h

h

&
+KE<1+ K2, 2.27
4 4 227

Let m denote the degree of the representation D. We put N, = N,(¢) =
max (4K\/m/e, 8H\/m/s). We consider an integer N > N;. Using the division

algorithm, we write N = ¢K + r with 0 < r < K. Then, by (2.27) we obtain
the following estimate for all 4/ > H:

1 N+h )” 1 q—1 K+iK+h ) N§+:h
— D(z,) || < ” D(z, ’ ” D(x
“N n=1-+h ( N /=0 n= 1+3K+h N peiterx+n (@)
< N(l + K ) + = \/m (2.28)

Hence, for all N > N; and all 1/ > H, we have

1 i 1( g) \/m 3¢
2 3 D)< (1+kE +———. 2.29
”Nn=21+h ( ) K 4 N < + 4 ( )

It remains to consider those i with 0 < /1 < H. Using (2.29) we get, for all
N > N, and for all / in the indicated range,

N+h
(RIS
n=1+h
H 1 N+H | NtH
n=1+h N n=14+H N n=N-+h+1
H—h/m 3 H — h)J/m
<( ONL L +( N/m < (2.30)

N 4 N
Altogether, we have shown that the inequality ||(1/N) S\, D)l < ¢

n=1+4,

holds for all N > N,(¢) and for all #=0,1,2,.... Consequently, the
sequence (z,) is well distributed. [l
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It should be noted that Theorem 2.3 enunciates a special feature of well-
distributed sequences. If (y,) is only supposed to be u.d. in G and
lim y;;}kl‘,crwl"c WY =€
n-—»>w

holds, then (z,) need not be u.d. in G. Simple counterexamples can already
be constructed in the classical case G = R/Z. For (y,) we take the sequence

(\/7—1), viewed as a sequence in R/Z. We know from Example 2.7 of Chapter 1
that (y,) is u.d. in R/Z. Now every constant sequence (z,) satisfies

lim y::-}-l',crwl‘,cn_lyn =e

n—>0
in R/Z but is evidently not u.d, Other examples of this type can be found
easily.

The Method of Correlation Functions

We offer now a completely different approach to the difference theorem by
using so-called correlation functions. This approach is, first of all, of great
theoretical interest; second, it avoids the fundamental inequality; and last, it
leads to more general versions of the difference theorem. We will develop as
much of the theory of correlation functions as we need. Since it does not
require a greater effort, we carry out the investigation in the more general
context of A-u.d.

Let A = (a,,) be a positive strongly regular matrix method. By what we
know from Section 4 of Chapter 3, this means that the following conditions
are satisfied: a,, >0 for all nm,k=1,2,...; lim,,, Do au=1;
lim, @y =0 for all k=1,2,...; lim,, o D@ — @yl = 0.
Furthermore, we are given a fixed sequence w of complex square matrices
M(1), M(2), ..., M(k), ... that are of the same order and are uniformly
bounded in norm; that is, |M(k)[| < ¢ for some positive constant ¢ and all

k> 1.

DerFmuTiON 2.1. Let my <1, < -+ <n, <--+ by an increasing sequence
of positive integers such that the limit

y(h) = lim ¥ an:(M(k + h) | M(k)) (2.31)
s+ k=1
exists for h =0,1,2,.... If we extend the definition of y by putting

y(—h) = y(h) for h = 1,2, ..., then the resulting function y onZ is called
an A-correlation function of the sequence .



2. THE GENERALIZED DIFFERENCE THEOREM 245

LEMMA 2.3. The sequence w has at least one A-correlation function.

PROOF. Let € be the set of complex numbers in the usual topology, and
fet €~ denote the Cartesian product of denumerably many copies of € equipped
with the product topology. For n > 1, let £, € € be given by &, =
(€9, 60, .. ) with & =32 a,,(M(k 4+ ) | M(k)) for /i > 0. Since the
inner products (M(7) | M(j)), i,j=1,2,..., are uniformly bounded, the
sequence (£,) in €~ is contained in a.compact subset of €~. Therefore, (£,)
has a convergent subsequence (§, ) in €”. Since convergence in €* implies
coordinatewise convergence, we are done. [Jj

On the other hand, it may well be that the sequence w has more than one
A-correlation function. We want to establish an important property satisfied
by any A-correlation function of w. We recall the following well-known
definition.

DEFINITION 2.2, A complex-valued function p on an (abstract) group G is
called positive-definite if the inequality

N

2 c‘nénlp(:vﬂ:v‘"l_—l) 2 O (2‘32)
n,m=1
holds for every choice of finitely many elements #,, . . . ,  in G and for every
choice of complex numbers ¢y, . .., cy.

It is a fundamental fact for our approach that the A-correlation functions
of w are positive-definite on the additive group of integers. Before we can show
this, we need an auxiliary result that follows easily from the strong regularity
of the summation matrix A.

LEMMA 24. Letn <n, <---<n, <---be an increasing sequence of
positive integers, and let ..., b_,, b_y, by, by, by, . .. be a doubly infinite
sequence of complex numbers such that the b, with positive k are uniformly
bounded. Then, for every integer g, we have

lim Y a,.b, = lim 3 a,,bpq (2.33)
s+ k=1 s—+ok=1

whenever one of the two limits exists.

PROOF. It suffices to prove the assertion for ¢ = 1. For then we can show
the result for every nonnegative integer g by induction. If ¢ is negative, say
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g = —m, then we put b; = b;_,,, and the result follows from the corre-
sponding result for m. For fixed s > 1, we get

0

[+4]
E a‘n,kbk-{»-l - z an,kbk =
¥ F=1

akDre1 — zan,,k+lbk+1 — ayby
=1 k=1

[+4]
skzlla'n,k - an,.k+1| [brsal + app b,

< (sup |bk|) Zlan,k - an,.k+1l + a,a [bi.  (2.34)
k>2 B=1

If we now let s tend to infinity, then both terms in the last sum tend to zero
because of the strong regularity of A. Our result follows immediately. i

LEMMA 2.5. Every A-correlation function of the sequence w is a positive-
definite function on the additive group Z of integers.

PROOF. Let y be an A-correlation function of w, say

y(h) = lim 3 a, (M(k + h) | M(K) (2.35)

s o0 k=1

for h > 0 and y(—h) = y(h) for h > 1 (actually, / = 0 might be included
here as well, since ¥ (0) is real). We first want to show that the formula (2.35)
for y(h) with & > 0 also holds for negative & if we just agree to define the
matrices M(k) with k¥ < 0 in an arbitrary way but of the same order as the
M(k) with k > 1. Forh > 1, we get

y(—h) = y(h) = lim E a,,(M(k) | M(k + ).

3$—ro0 k=1

Using Lemma 2.4 with b, = (M(k) | M(k + h)) for all k € Z and q = —h,
it follows that y(—h) =limy, 32, a,,(M(k — k) | M(k)), and our
assertion is justified.

To show that v is positive-definite on Z, we choose a natural number N,
integers 4, . . . , ¥y, and complex numbers ¢, . . ., cy. Then,

N
z Cnémy(mn - xm)
m=

n, 1

z G lim za" Mk + 2, — ) | M(K) (2.36)

n,m=1 s+ o k=1
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by the extended formula (2.35) for y. For each fixed » and m, we apply

Lemma 2.4 with b, = (M(k + %, — =,) | M(k)) and g = «,,. Therefore,
N

N 0
S lc,,c‘my(wn —2,) =3 c,é,lim Ya, Mk + 2,)| Mk + «,,))

n,m= n,m=1 s o0 k=1

0 N
=1lim Y ane 2 Calu(M(k + 2,) | M(k + 2,,))
1

300 k=1 n,m=
0 N N
= tim Sau( 3 eMk + 2| 3 Mk + 2,)
300 k=1 n=1 m=1
0 N 2
=lim Y a,,| 2e,Mk+ )| >0.
3 +o0 k=1 n=1

The crucial step in our argument is the application of the classical theorem
of Bochner-Herglotz: For every continuous positive-definite function p on a
locally compact abelian group G there exists a uniquely determined non-
negative bounded regular Borel measure o in the dual group G of G such that

p(z) =J‘é &(y) da(y) for all z € G. (2.37)

As in Section 1, the symbol £ denotes the character of G defined by £(y) =
y() forall y € G.

We consider now a positive-definite function  on Z. Since Z is discrete, y is
continuous. The dual group of Z is T. For h € Z, the character / of T has the
form A(z) = #* for all z € T. The following representation of y is thus ob-
tained by the Bochner-Herglotz theorem:

y(h) = [z" do(z) forallheZ, (2.38)
JT

where ¢ is a uniquely determined nonnegative bounded regular Borel measure
in T. The surprising usefulness of the present approach stems from the fact
that rather weak conditions on those measures o suffice to allow conclusions
about the distribution of the original sequence (M(k)). In particular, it is
enough to know the o-measure of the singleton {1} to draw such con-
clusions. A good deal of the mystery will be resolved by the following
identity.

LEMMA 2.6. Lety be an A-correlation function of w. If ¢ is the measure in
T corresponding to the positive-definite function y on Z, and if B = (b,,)is a
positive strongly regular matrix method (not necessarily the same as A), then

lim S buy(k) = o({1}). (2.39)

n—+o0 k=1
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PROOF. Using the representation of y given in (2.38), we arrive at
S b9 = S by | #do(a)
r=1 k=1 T

=J (z b.,,kz") do(z)  for everyn > 1. (2.40)
T \k=1

Let us look at the function g(2) = lim, . , D 7=y b,:#* on T (the limit will turn
out to exist for every z € T). We clearly have g(1) = 1. For z # 1, it is an
easy matter to prove that the sequence (2*) is almost convergent to the value
0 (using the complex analogue of Definition 4.2 of Chapter 3). Now B, being
strongly regular, includes the summation method F of almost convergence,
and so, g(z) = 0 for z # 1 (strictly speaking, we have to apply the results of
Section 4 of Chapter 3 to the real and imaginary part of (2*)). Thus, g(2) is
nothing else but the characteristic function of the singleton {1}.
Returning to (2.40), we use the dominated convergence theorem to get

lim ib,,ky(k) =L(1im ib,,kz"‘) do(z) = Lg(z) do(z) =o({1}). W

n—ow k=1 n—+oo k=1

We are now going to exhibit how some information about o({1}) leads to
results for the original sequence w = (M(k)).

LEMMA 2.7. Suppose that for every A-correlation function of w the
corresponding measure o in T satisfies o({1}) = 0. Then,

lim Y a,,M(k) =0,

n-—+w0 k=1
the zero matrix of appropriate order.

PROOF. Let C, be the matrix C, = Y5, a,,M(k) for n > 1. We shall
show that the only limit point of the norm-bounded sequence (C,,) is the zero
matrix 0, thereby proving the lemma. Let the matrix C be a limit point of
(C,); thus, C = lim,, C, for some sequence n; <n, < -- < n, < - of
positive integers. With G(k) = M(k) — C for k > 1 we arrive then at

lim Y a,;G(k) = 0. (2.41)
s k=1
Let us introduce the summation method R = (ry) defined by ry = a,,.
It follows readily that R is positive and strongly regular. By Lemma 2.3, the
norm-bounded sequence (G(k)) has an R-correlation function d. Thus, there
exists a sequence 53 < 5, <+ < 5; < -+ of positive integers such that

©

8(h) = tim 3 r,,(G(k + )| G(K) = lim Sa, (G(k + h)| G(k) (242)
1 i+oo k=1 f

i k=
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for i > 0. Evidently, the function ¢ is also an A-correlation function of
(G(k)). To simplify the notation, we write m; = n, for i> 1. Then,
8(hy = lim,,, 332, a,, (G(k + h)| G(k)), and also lim,_, ,, 5., G (k) =
0 by (2.41). We note that (M(k + /) | M(k)) = (Gk + h) + C | Gk) + C) =
(G + 1) | Gk)) + (C | Gk + (Gtk + h) ! C) + |C|?%for all k > 1 and
all # > 0. Using Lemma 2.4, it follows that

lim S @ (M(k + h) | M(0))

i—~+oo p=1
=lim Y aux(G(k + ) | G(k)) + [C|* = 6(h) + [ICI> (2.43)
i+w k=1
for all # > 0. In other words, the function y(h) = 6(h) + ||C|? is an A-
correlation function of w = (M(k)).
By the given hypothesis and Lemma 2.6 with B = A, we have

lim 3 a,,p(k) = 0.

n—>w k=1

This implies lim, , , D 5,4,; (k) = —|/C||%. On the other hand, ¢ is an A-
correlation function of the sequence (G(k)), and so Lemma 2.6 yields
lim, . iy Gy 6(k) > 0, since the measure 7 in T corresponding to 6 is
nonnegative; hence, |C||2 < 0. But this is only possible if C =0. [l

The generalization of van der Corput’s theorem which we are heading for
is now a simple consequence of Lemmas 2.6 and 2.7.

THEOREM 2.4. Let G bea compact group, let (x,) be a sequence in G, and
let A = (a,,) and B = (b,,) be two positive strongly regular matrix methods.
Suppose that for every nontrivial irreducible unitary representation D of G,
all A-correlation functions y of the sequence (D{r,)) satisfy

lim 3 b,y (k) = 0.

n-»o0 k=1
Then the sequence (v,) is A-u.d. in G.

PROOF. For the sequence w = (M(k)) in the previous considerations, we
take now the sequence (D(z,)) for some nontrivial irreducible unitary repre-
sentation D of G. Together with Lemmas 2.6 and 2.7, our assumption implies
that lim, ., ,, D40y @,:D(z,) = 0 holds for every nontrivial irreducible unitary
representation D of G. Then from Theorem 4.1 of Chapter 3 (or, more ex-
actly, from its obvious analogue for complex-valued functions) and from
the Peter-Weyl theorem, we infer that (v;) is A-ud. in G. [}

EXAMPLE 2.1. Letus verify that Theorem 2.4 really includes the difference
theorem for A-u.d. sequences as a special case. So suppose that for each /1 =
1,2,..., the sequence (%, is A-u.d. in G. For a given nontrivial
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irreducible unitary representation D of G of degree m, we get then

lim zank(D(karh)l D(z) —11m zanh(D(%Jrh% D ‘ E)

n—+o k=1
(llm > 4D (@) | E) =0 forallh > 1.
n—o k=1

Consequently, the sequence (D(z;)) has only one A-correlation function,
namely, that one given by y(0) = m and y(h) = 0 for & 5 0. Therefore, the
condition of Theorem 2.4 is trivially satisfied, and (x,) is A-u.d. in G. |}

Several other new results are contained as special cases in Theorem 2.4,
Let us mention one of them that is highly interesting because it allows us to
restrict the values of / for which we have to require the sequence (w2, 1) to
be A-u.d. in G.

THEOREM 2.5. Let G be a compact group, let (x;) be a sequence in G,
and let A = (a,,) and B = (b,,) be two positive strongly regular matrix
methods. Suppose that P is a set of positive integers such that

lim Y b,,=1.

n—w keP

If the sequence (%;4,%,%) is A-u.d. in G for every h € P, then the sequence
(z,) itself is A-u.d. in G.

PROOF. Let D be a nontrivial irreducible unitary representation of G of
degree m. Suppose

y(h) = lim 2 a1 (D () | D(y)) = (llm 2 a, D (.Y \ E

for h > 0 is an A-correlation function of the sequence (D(w;)). The hy-
pothesis implies that y(h) = 0 for & € P. For all & > 0, we obtain

ly()l £ mlim 3 a,, =m,
s k=1

since jtr (U)| < m for every unitary matrix U of order m. Let Z* denote the
set of positive integers. Then, for n > 1, we get

nk? (k){ =
1

ez ank)’(k){ S m z bnk'

keZH\P
But

@

lim > b, =Ilim (z by — > b,,k) =0
keP

n—o keZ+\P n—om

and so, lim,_, , D5 b,y (k) = 0. The rest follows from Theorem 2.4. i}



2. THE GENERALIZED DIFFERENCE THEOREM 251

The above theorem attains a particularly simple form if we take for B the
summation method of arithmetic means. We introduce the following notion,
which is fundamental in additive number theory. Let P be a set of positive
integers. For n > 1, let C(P; n) denote the number of elements from P that
are less than, or equal to, . If lim,,_, ., C(P; n)/n exists, then its value is called
the natural density of the set P.

COROLLARY 2.1. Let (%) be a sequence in a compact group G. Suppose
that the sequence (z;,;%,™) is A-u.d. in G for every value of / from a set of
natural density 1. Then, (z;) is A-u.d. in G.

PROOF. We consider the positive strongly regular matrix method B =
(b,;) defined by b, = 1fnfor ] <k <mn,and b, = Ofork > n Let Pbea
set of natural density 1. Then we simply note that

lim 3 b, = lim C(P;n)jn = 1,

n—o keP n—w

and Theorem 2.5 implies what we want. [Ili}

Weakening the Hypothesis

It suffices to impose conditions on the sequence (z;,,; ) for rather sparsely
scattered values of A only. In this direction, we present the following result,

THEOREM 2.6. Let (v;) be a sequence in the compact group G, let A =
(a,;) be a positive strongly regular matrix method, and let » be a fixed positive
integer. Suppose that the sequence (%, ,2;7) is A-u.d. in G for every value of
h that is a positive multiple of r. Then the sequence (z;) itself is A-u.d. in G.

PROOF. Take a nontrivial irreducible unitary representation D of G of
degree m, and let y be any A-correlation function of the sequence (D(zy)).
By Lemma 2.5, the function y onZ is positive-definite. It is then clear that the
function 6 onZ, defined by d(h) = y(rh) for h €Z, is also positive-definite.
By the Bochner-Herglotz theorem, there exist uniquely determined non-
negative bounded regular Borel measures ¢ and 4 on T such that y(h) =
{12 do(z) and 6(h) = [ 2" dA(z) for all h €Z. The measures o and A can be
identified in an obvious fashion with measures in [0, 1); thus, we can write
() = fro.0€*" " do(x) and O(h) = [[0.1n€*" ™ dA(x). On the other hand,
O(hy = p(rh) = [1o.n€" "™ do(x) for all h eZ.

Let us find out in what way the measures o and 2 are related. Let ¥ be the
transformation V: 2 € [0, 1) > re € [0, 7). Then, 6&(h) = [io.ne™ " dr(t),
where 7 is the measure in [0, r) defined by 7(B) = o(V~1B) for every Borel set
B in [0, r). It follows that 8(h) = X7§ fis.54n€ " dry(t), where 7; is the
measure in [, j + 1) induced by 7. For fixed j with 0 < j < r — 1, let W, be
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the transformation Wj: te€[j,j+ 1)1t —j€ [0, 1). Then

r—~1

5(h) =3 e dy (1),
j=0 J[0.1)
where v;(B) = 7;(W;71B) for a Borel set B in [0, 1). In other words, we arrive
at

r—1
o(h) =f it d( Zv,)(t) forall h eZ. (2.44)
[0.1) j=0

Hence, the uniqueness of the measure 2 implies that 2 = 3§ #,. Note that
»; 1s defined in terms of o, so this is the desired relation between 4 and o.
After those general considerations, we shall now use our hypothesis.
According to this, we have 6(#) = 0 for all & # 0 and 6(0) = n7 at any rate,
The uniqueness of the measure 4 implies that 2 has to be the Lebesgue meas-
ure in [0, 1) multiplied by the constant m. Then, 0 = A({0}) = >3 #;({0})
yields »,({0}) = 0, since all the »; are nonnegative measures. It follows that
7({0}) = 7,({0}) = 0, and so, o({0}) = 0. Thus, the corresponding measure
o in T satisfies o({1}) = 0, and an application of Lemma 2.7 completes the

proof.

One might wonder whether Corollary 2.1 and Theorem 2.6 also hold with
the stronger conclusion that we obtained in Theorem 2.1, namely, that alt
sequences of the form (v,.,), k = 1,2, ..., have to be A-u.d. In fact, this
can be shown at least in the case where A is the summation method of
arithmetic means. To do this, we first need a generalized version of our
pivotal Lemma 2.7. The following result will still hold for arbitrary positive
strongly regular A. We return to our basic sequence w = (M(k)).

LEMMA 2.8. Let g be a given positive integer. Suppose that for every A-
correlation function of w the corresponding measure o in T satisfies o({{}) =
0 for all gth roots of unity & in T. Then, lim,,_,,, >, @, ¢, M(gk + ) = 0
holds foreveryr =0,1,...,g — 1.

PROOF. For 0 <r <q— 1, we introduce an auxiliary matrix B =
(7)) with ) = qa,, 4.4, The B are again positive strongly regular matrix
methods. The only property that does not follow readilyislim,,, , >, b\p =
1. Define a sequence (¢;) by ¢, =qif k > gand k = r (modg), and ¢, =0
otherwise. Then (c;) is almost convergent to the value 1, and so, the strong
regularity of A implies 1 = lim, ., D52y @ucy = limy, o D52 94, 000r =
lim,, L, Y2 b7,

Let us now look at the sequences »'” = (M(gk + r)) with0 < r < g — 1.
For fixed r, suppose that

YO (h) = lim,., ., 372 b (M(gk + gh + 1) | M(gk + 1))
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is a B"-correlation function of ', By passing to a suitable subsequence
of (1), which we will also denote by (n,) for simplicity, we can assume that

() = lim Zb‘,,’,’,v(M(qk + qh + j) | M(gk + j)) (2.45)

s— oo k=1

is an BY-correlation function of &' for 0 < j < ¢ — 1 and that

p(h) = lim Za,,s;,(M(k + h) | M(k)) (2.46)
s—= o0 =1
is an A-correlation function of @ (use the argument in the proof of Lemma
2.3). We deduce the following important identity:

Z?f"’(h) = lim i Zb‘n’,’k(M(qk + qh + ) | M(gk + )

s—= o k=1 j=0

» ¢—1

=lim Y > qa, u.(M(gk +j + gh)|M(gk + )

s—= o0 k=1 j=0

= lim 2qansk(M(k + gqh) | M(k))

s— o k=q
= lim an,, Mk + gh) | M(k)),

since lim,_,, a,;, = 0 for 1 <k < g — 1. Therefore,

g—1
Z()y‘”(h) = qy(qgh)  forall heZ. (2.47)
fn

We put 8(#) = y(gh) for h €Z. The function § is positive-definite on Z
and therefore corresponds to a certain measure in T. As we already did in the
proof of Theorem 2.6, measures in T will be identified with measures in [0, 1).
Let o be the measure in [0, 1) corresponding to . Our hypothesis implies

that o({0}) = o({l/g}) = - - = o({(¢ — 1)/q}) = 0. Let A be the measure in
[0, 1) corresponding to é. In the first part of the proof of Theorem 2.6,
we studied the relation between 1 and o. It turned out that A = 377§ #; with

the notation introduced there. But then

(0D =S 740D = Zr() = 3rth = 5o([]) = 0. a9

For 0 <j<gq—1, let 2'” be the measure in [0, 1) corresponding to pt.
By (2.47), we have

8 = (1) 2556 ¥V () = froy €™ d((1q) 25=5 29)(@)
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for all 1 eZ. The uniqueness of the measure A implies 2 = (1/q) >3 A,
Since all the measures A’ are nonnegative, we deduce from (2.48) that
A7({0}) = 0. In other words, the measure l‘” in T corresponding to the
B‘-correlation function ¥ of the sequence " satisfies A ({1}) = 0. Note
that »'” was an arbitrary B"-correlation function of w'”. Therefore, an
application of Lemma 2.7 yields

lim 3 bIM(gk + 1) =lim 3 ga, g, M(gk + #) = 0,

n-ow k=1 n—->ow k=1

and the desired result follows. [l

EXAMPLE 2.2, The condition of Lemma 2.8 is certainly satisfied if the
measures ¢ even vanish for all singletons in T, that is, ¢({z}) = O for all
z € T. A measure of this type is called a continuous measure in I. We present
a useful criterion for the continuity of a measure that is in fact just a reformu-
lation of the criterion given in Theorem 7.5 of Chapter 1. Suppose that o
corresponds to the positive-definite function p on Z, that is, y(h) =
fr 2" do(z) for all h €Z. Then o is continuous if and only if

lim i z ly(h)|* = 0.

H—»OO
To show this, let 7 denote the product measure in the Cartesian product
T x Tinduced by o and let * and y be variables ranging over T. Then, using
Fubini’s theorem and the fact that limg.,,, (1/H) 33,2 =0 for z€ T,
z# 1, and limg_,, (1/H) zhH=1 2t = 1 forz = 1, we have

lim = ziy(h)l2 = hm = zy(h)y(h)

H-wo H =1

= lim — z f "da(’v)f y " da(y)

H-o Hi21

= lim = zf aty™ dr(x, y)
H-ow Hn T

=f (llm 13 S(ay~ 1)") dr(z, y)
TxT\H-o Hn=1

=r{(x, ) eTX T: =1y} =J.Ta({m}) do(z) =0

if and only if the measure o is continuous. [

Combining the above lemma with what we have already seen in the proof
of Theorem 2.6, we obtain the following stronger version of this theorem
in the case of A being the summation method of arithmetic means.
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COROLLARY 2.2. Suppose that (%) is a sequence in the compact group
G such that for some positive integer r, every sequence of the form (2,1
with & a positive multiple of ris u.d. in G. Then the sequence (%) is u.d. in G
for every positive integer ¢ and for every nonnegative integer s.

PROOF. Let us first work with an arbitrary summation method A (of
course, positive and strongly regular) to see exactly where we need the specific
form of A. For a nontrivial irreducible unitary representation D of G, let y
be an A-correlation function of (D(x;)). It turned out in the proof of Theorem
2.6 that the measure 4 in [0, 1) corresponding to the positive-definite function
d(hy = y(rh) onZ is just the Lebesgue measure multiplied by some positive
constant. If o denotes the measure in [0, 1) corresponding to , then we find
the relation 2 = D¢ »;. Now suppose that o({p/q}) > 0 for some rational
plqwith0 < p < g — 1. Then, fori = [rp/q], the measure v, is positive at the
point (rp/q) — [rp/q]. Hence, 4 is positive at that point, an obvious impossi-
bility. Thus, the condition of Lemma 2.8 is satisfied for all ¢, and so, we get

lim Za,, arsD@qrrs) =0 forall g and s. (2.49)
no k=

Thus, for general A, this method does not allow us to conclude that the
sequences (%,..) are A-u.d.; for that purpose, we would need

llm z ankD( qk-{-s) = 0

n—o0 k=1

But if A is the method of arithmetic means, then (2.49) yields

q [(n—s)/q]
0= qllm - Z D(a’qH-s) - llm - z D(qu+s)
n-+eo H oo N k=1
qk-{-sSn
. [(n—s)/a]
— lim q[(n s)/‘]] . 1 z D(qu+s)
n- oo n [(n — s)/q] &=

. 1 X
=lim ~ 3 D(e,s0),

N- o k=1
and we are done. ||

Using a slightly different method, the conclusion in Corollary 2.1 can be
strengthened if we agree to take for A again the summation method of arith-
metic means.

COROLLARY 2.3. Let (#,)be a sequence in a compact group G. Suppose
that the sequence (z;;2;,7!) is u.d. in G for every value of 4 from a set of
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natural density 1. Then the sequence (%) is u.d. in G for every positive
integer g and for every nonnegative integer s.

PROOF. As usual, we choose a nontrivial irreducible unitary representation
D of G of degree m, say, and consider an A-correlation function y of (D(zy)),
where A is now the matrix of arithmetic means. If P is the set of positive
integers of natural density 1 from which the values of /1 are taken, then we
have y(#) = 0O for all h € P. We have seen in the proof of Theorem 2.5 that
|y(h)| < m holds for all h > 1. For H > 1, we get

m?

o (2.50)

(H — C(P; H)) = ;712(1 — C(—Z—H—))

LS <
Hh=1y -

For the definition of C(P; H), see the discussion preceding Corollary 2.1,
The condition on P implies that limy_,, (1/H) 33, |y(h)|* = 0. By the
criterion given in Example 2.2, the measure ¢ in T corresponding to y is
continuous. Thus, Lemma 2.8 is applicable for every ¢, and we obtain

lim 2 an.qk+sD(qu+s) =0

n-—+0 k=1

for all ¢ and s. The proof is completed as in Corollary 2.2. |}

Notes

Theorems 2.1, 2.2, and 2.3 are all from Hlawka [1]. For the mod 1 case, the strengthened
version of van der Corput’s theorem, as given in Theorem 2.1, was established earlier by
Korobov and Postnikov [1]. Theorems 2.2 and 2.3 remain true if “well distributed’’ is
replaced by “weakly well distributed’’ (Hlawka [2, 8]). For the definition of “‘weakly well-
distributed sequences’’, see Chapter 3, Exercise 3.13. A detailed study of “hereditary
properties’ (erbliche Eigenschaften), that is, properties that hold for all sequences (2gp+,)
whenever they hold for all sequences (x,4,2, 0,k = 1,2, ..., was carried out by Hlawka
[8]. Other variants of van der Corput’s theorem for compact groups can be found in
Hlawka [S], Kemperman [1], and Cigler [11].

The possibility of proving van der Corput’s theorem in the mod 1 case by using corre-
lation functions was first realized by Bass and Bertrandias [1]. A detailed account of their
method is given in Bass [1]. J.-P. Bertrandias [3] shows most of the results of this section
but again only for the mod 1 case. Corollary 2.2 is attributed to Delange. For further
applications of the method to u.d. mod 1, see Bass [3], J.-P. Bertrandias [2], Bésineau
[1, 2], Lesca and Mendés France [1], and Mendés France [1, 4]. We refer also to Donoghue
[1, p. 199] for an interesting approach.

In its full generality, the method was developed by Cigler [7, 8]. In a different direction,
Cigler [6] shows that van der Corput’s theorem extends to sequences of measures on a
compact group. For the latter aspect, see also K. Schmidt [3] and Sigmund [1].

Proofs of the fundamental Bochner-Herglotz theorem can be found in Loomis [1],
Rudin [1], and Weil [1]. For very general versions of the difference theorem, see Kemper-
man [2, 3].
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Exercises

2.1.

2.2,

2.3.

2.4,

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.
2.11.

Let « be an element in a compact group G such that the sequence
((**)") is u.d. in G for every nonzero integer k. Show that the sequence
('™} is u.d. in G for every polynomial f of positive degree with
integral coefficients.

Prove that every character of a locally compact abelian group G is a
positive-definite function. What is the measure in G corresponding to a
character according to the Bochner-Herglotz theorem?

Prove the uniqueness of the measure o in the Bochner-Herglotz
theorem,

Prove the following converse of the Bochner-Herglotz theorem: The
function p(x) = fg &(x) do(x) on G is positive-definite.

Generalize Theorem 2.6 by showing that the hypothesis can be weakened
to the following one: The sequence (%2, ) is A-u.d. in G for every /
of the form /1 = pr, where p is taken from a set of natural density 1.
Generalize Corollary 2.2 by showing that the hypothesis can be
weakened to the following one: The sequence (%,,2,) isu.d. in G
for every /1 of the form /i = pr, where p is taken from a set of natural
density 1.

Explain why Theorem 2.6 is not contained as a special case in Theorem
2.5 forr > 1.

Prove that if (y,) is well distributed in the compact group G and (x,)
satisfies lim,, ,, ¥,7%, = e, then (z,) is well distributed in G.

Let G be a compact group that has at least two elements. Prove that a
sequence (x,) for which lim,,, %2, = e cannot be well dis-
tributed in G. Hint: Use Lemma 3.3 of Chapter 3.

Show that Theorem 2.3 generalizes Theorem 3.3 of Chapter 1.

Prove Lemma 2.3 using the method in Exercise 7.7 of Chapter 1.

3. CONYOLUTION OF SEQUENCES

Convolution of Measures

In this section, we want to reveal a remarkable analogy between the well-
known operation of convolution for measures in a compact group G and a
certain binary operation in the set of all sequences in G that, because of this
analogy, will also be referred to as convolution. Let us first collect some of the
pertinent data about convolution of measures. In our treatment, we are only
interested in nonnegative normed regular Borel measures in G. But one should
be aware of the fact that convolution may be defined in exactly the same way
for bounded complex regular Borel measures in locally compact groups (as is
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done in abstract harmonic analysis). The following simple lemma and the
Riesz representation theorem provide the basis for our definition.

LEMMA 3.1. Let A and v be two nonnegative normed regular Borel meas-
ures in the compact group G. The functional L on #(G) defined by L(f) =
J& §afxy) dA(z) dv(y) is a nonnegative normed linear functional.

PROOF. All the properties are easily checked. [l

LEMMA 3.2: Riesz Representation Theorem. Let X be a compact Haus-
dorff space, and let L be a nonnegative linear functional on 2(X). Then there
exists a unique bounded nonnegative regular Borel measure o in X such that
L(f) = [x fdoforall fe Z(X).1f Lis normed, then o is also normed.

DeriNiTION 3.1. The unique nonnegative normed regular Borel measure in
G corresponding to the functional L in Lemma 3.1 by virtue of the Riesz
representation theorem is called the convolution of A and », and denoted by
Axw.

More explicitly, we thus have

f fd(A*v) =f ff(xy) dA(z) dv(y) for all f € Z(G), (3.1)
@ eJa

and in the usual manner this identity can be seen to hold as well for f € €(G).
To simplify our notation, we write #*(G) for the set of all nonnegative
normed regular Borel measures in G. For a € G, let ¢, denote the normed
point measure at a (compare with Exercise 1.1 of Chapter 3).

LEMMA 3.3. The set .#+(G) is a semigroup under convolution.

PROOF. Convolution is clearly a binary operation in #+(G). To show
associativity, choose three measures 4, », o € A4 +(G). For every f € #(G), we

obtain g fd((Axv)x0) = [of o f (%2) d(Axv)(x) do(2), and with g,(2) = f(x2)
for fixed z2€ G we arrive at [gf(@2) d(Axv)(®) = [q g, () d(Axv)(x) =
(oS 8:@) dA@) dv(y) = [afaf (xyz) dA(z) dv(y). Consequently, we have

fafd ((Qxv)x0) = [ofafaf(¥y2) dA(z) dv(y) do(2).
On the other hand, putting g(y) = [ f (*y) dA(x), we get

[ttt = [.] @ a1 dose) = ) domory

B f af FU) B dole) = f af af @) dA(@) dv(y) do(?).
Therefore, (Axv)xa = Ax(vx0).
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LEMMA 34. ¢gx¢g, = ¢, foralla,beG.
PROOF. By an easy computation, we get

[ e = []seneyane = [ ra i =r@ =] s,

forall fe Z(G). N

LEMMA 3.5. The semigroup .#*(G) is commutative if and only if G is
commutative.

PROOF. If G is commutative, and A, v € £ 1(G), then

[ raaun = | [ rten aney dviy = [ [ 1) sty 1@y = [ rdomny

for all f € Z(G), and so, Ax» = »+1. But if G is not commutative (i.e., ab 5% ba
for some a, b € G), then Lemma 3.4 implies e xe, # g,*¢,, and so, A H(G) is
not commutative. i

LEMMA 3.6. A measure A € .#£*(G) is the Haar measure in G if and only if
Axy = yxA = 2 holds for all » € A*(G).

PROOF. 1t is clear that there can only be one such measure 4, for if
A, € MA*(G) has the same property, then AxA; = 1 and Ax4; = A,. Now let us
show that the Haar measure u in G enjoys this property. For » € A4 *(G) and
for any f€ Z(G), we get

[ e = [ 160 s o) =[ @ aue| ar= [ ran

because of the translation invariance of . Thus, u*y = g, and in the same
way, one shows vxu = u. [l

The operation of convolution has also a remarkably nice behavior with
respect to representations of the group G. Let D = (d,;) be a representation of
G of degree r, with entry functions d;; € €(G). We introduce the following
convenient abbreviation. For a measure » € AH(G), let »(D) be the r X r
matrix »(D) = (a;;) with o; = {5 d,; dv.

LEMMA 3.7. For 1, » € .#*(G) and any representation D of G, the matrix
identity (+»)(D) = A(D)»(D) holds.

PROOF. Let D = (d;;) be a representation of degree r, and put A(D) =
(25, (D) = (B;), and AD)»(D) = (y,;). Then

v =Suab = [ [ (Sdu@) ay0) at@ vy 62
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But X7_; di.(x) di;(y) is just the entry in the ith row and jth column of the
matrix product D(2)D(y) = D(2y) and is therefore equal to d,;(xy). Conse-
quently, v, = [ofq di;(xy) dA(x) dv(y) = [qd;; d(Axv), and the proof is
complete.

Convolution and Uniform Distribution

We shall be interested in u.d. of sequences with respect to measures in 4+ (G).
By exactly the same argument as in Section 1 (namely, application of the
Peter-Weyl theorem), the Weyl criterion as given in Theorem 1.3 can be
modified to yield the following criterion: For » € A£1(G), a sequence (x,) is
v-u.d. in G if and only if

1 N
lim = ¥ D(z,) = »(D) (3.3)

N-w n=1

holds for all irreducible unitary representations D of G.

In the Cartesian product G* of denumerably many copies of G, which we
identify with the set of all sequences in G, we define now a binary operation
that we shall also call convolution. Given two sequences (%,) and (y,) in G,
we construct a sequence (z,) in such a way that its first k* elements are just
all possible products vy, with 1 <7<k and 1 <j < k. Specifically, we
define z, by taking the unique integer k > 1 with (k — 1)* < »n < k?, and
setting z, = ay, ifn = (b — 1)* 4+ 27 — 1, and 2z, = g, if n = (k — 1) +
2i. Thus, the first terms of the sequence (z,) are 2,y,, ¥, V1Y, To¥fs, Ty,

T1Yss ¥3las TolYfs, Vals, - - -

DeriniTiON 3.2, The sequence (z,) defined above is called the convolution of
the sequences (¢,) and (¥,), and is denoted by (x,)(y,).

The intimate connection between the two convolution operations is re-
vealed by the following theorem, which also provides a good justification for
using the same terminology for both operations.

THEOREM 3.1. Let 4, » € AHG). If (x,) is A-u.d. and (y,,) is »-u.d. in G,
then (x,)*(y,) is Axv-u.d. in G,

PROOF. Let (2,) be the sequence (2,)*(¥,), and choose an irreducible
unitary representation D of G of degree r. By (3.3) we have to show that
limy.,, (1/N) S¥., D(z,) = (A+»)(D) = AD)»(D). For an integer N > 1,
there exists a unique integer k = k(N) > 1 such that k? < N < (k + 1)
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Using the properties of the matrix norm as listed in Section I, we obtain

3 D(z,) — ADWD) H

n=1

‘ >

“ ZD(zn) /1(D)v(D)+l z D(z,)

n=1 n=k® +1

’]‘\, > z D(z,) — (D)D)

By the construction of the sequence (z,), its first k? elements are exactly all
possible products miy, with 1 <7, j € k in some order. Therefore,

2060 =(E06) (3 000).

2k +1 ~
< LT
+ ~ N

1t follows that

H 5 D) — ADH(D) “

n=1

(k"le( "))(/ ZD(J")) A(D)»(D) “ 2k+1\/r. (3.4)

If we now let N tend to infinity (or, equivalently, k — o0), then

lim < _ lim zn(x,,) — AD),

N—o k—»oo

and limy.,, (1/k) >5_, D(¥,) = »(D) imply that the right-hand side of (3.4)
tends to zero. |l

An important special case occurs when G = G; X G,, that is, when G is the
direct product of two other compact groups G, and G,. The groups G, and
G,, together with their Haar measures u; and u,, may be identified with the
subgroups H, = G, X {e,} and H, = {¢;} X G, of G and their corresponding
Haar measures. We define measures »; and », on G by »(B) = u,(B N H,)
and #,(B) = u,(B N H,) for all Borel sets B in G. Let us compute »xv,.
For a function f € %(G), we get

f [ v)= f ) f S @) dn(@) draty) = fH lef(-’vy) ds(@) dpay).

Since x ranges over H;, we have « = (v,, ¢,) with %; € G|, and similarly,
y = (e;, ®) with z, € G,. Thus,

fafd("ﬁ*”z) = fa,fa,f((xn %)) duy (1) dua(,) = fafdﬂ-
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Therefore, we conclude that » %», = u, the Haar measure in G. Now consider
a u.d. sequence (¢,) in G,, and a u.d. sequence (y,) in G, Then, the
sequence ((2,, €;)) is »-u.d. and the sequence ((e,¥,)) is »-ud. in
G. By Theorem 3.1, the sequence ((,, e;))*((e;, ¥,,)) is u.d. in G. But this
sequence can be written as (¥, ¥1), (%2, ¥1), (1, ¥2), (s, ¥s), . . . , and so onin
obvious analogy to the convolution of sequences. To be exact, the nth term
w, of the resulting sequence is w, = (%, ¥,) if n = (k — 1)2 + 2/ — 1, and
w, = (®;, ¥) if n = (k — 1) + 2i, where n and k are connected as in the
definition of convolution. We have thus established a simple method of
constructing u.d. sequences in direct products of groups from u.d. sequences in
the factors.

COROLLARY 3.1. Let (z,) be ud. in Gy, and let (y,) be u.d. in G,. Then
the sequence (i,,) as defined above is u.d. in G; X G,.

A Family of Criteria for Uniform Distribution

THEOREM 3.2. The following properties of a sequence (z,) in a compact
group G are equivalent:

1. The sequence (z,) is u.d. in G.

2. For every sequence (¥,) in G, the sequence (,)x(y,) is »-u.d. in G for
some v € A 1(G).

3. For every sequence (y,) in G, the sequence (y,)*(z,) is u.d. in G.

4. The sequence (%,)*(%,) is u.d. in G.

5. The subsequence of (z,)*(v,™) consisting of all products x2;~! with
i>jisud. in G.

PROOF. It is our aim to verify the following two chains of implications:
(= @)= 2)= (1), and (1)= (5)= (4)= (1). Thereby we will have
shown the equivalence of all five properties.

(1) = (3): This step bears a resemblance to the proof of Theorem 3.1. We
may therefore abbreviate our arguments a bit. We take a nontrivial irreduc-
ible unitary representation D of G of degree r, and put (z,) = (*c,,)*(_/,,) We
note that limy., ||(1/N) 2,, 1D(x,)| = 0. Choosing N and k as in the
proof of Theorem 3.1, we obtain

1
k
L 30G |+ EEL

k* -
= Jr
< N \/ k 221
and it follows immediately that limy ., |[(1/N) an=1 D(z,)| = 0.
(3) = (2): Trivial.

Z D(z,)

N n=1 2 (x")

1 k
H - 2.D(y,)
k n=1

2I€+1 ~
+—N J7
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(2)= (1): For (y,) we first select the constant sequence e, e, . ... Then
(z) = (®a)*(e) is »-u.d. in G for some » € A*+(G). The integers N and k are
again chosen as in the proof of Theorem 3.1. We note that among the first k*
elements of (z,) we find each «; with 1 <j < k exactly k times. Therefore,
ShaDE) =k St D@, + 3N 121 D(z,), where D is an irreducible
unitary representation of G. It follows that

N
L 5De) -4 3 pe,

T ED( 'n) T e
» k2 N #=1 n=k"+1

and thus, lim.,, (1/k) dr_; D(z,) = »(D). Consequently, the sequence
(#,) is »-u.d in G.

It remains to show that » = u, the Haar measure in G. If » # u, then »
could not be translation invariant; hence, » # », for some ¢ € G, where v, is
defined by »,(B) = »(Bc) for all Borel sets B in G. Now consider the constant
sequence ¢, ¢, ¢, . . . . This sequence is clearly ¢ -u.d. in G. By Theorem 3.1, the
sequence (#,) = (x,)*(c) is then v,-u.d. in G, since it can be shown easily that
ykg, = v,. From » # %, and from the Peter-Weyl theorem, it follows that
there exists a nontrivial irreducible unitary representation D of G with
»(D) # v, (D). We are going to construct a sequence (w,) in G such that
limy., (1/N) z 1 D(¢t,) does not exist for the sequence (z,) = (x,)*(w,),
thereby contradlctlng property (2).

The sequence (w,) is defined as follows: The first 22’ terms are all equal to c,
the next 2% terms are all equal to e, the next 2% terms are all equal to c, the
next 2% terms are all equal to e, and so on. For M > 0, we set a(M) =
S, 2%, Let us first show that

1 ¢ *(2a1)

2 D(t,) = v,(D). (3.5

lim
Moo @*(2M) a

The first a?(2M) elements of (¢,) just consist of all possible products x;w; with
1<i,j < a@M). If we put b(M) = 3, 22" then exactly b2(M) of those
a?(2M) elements will be of the form z,,¢ with 1 < m < b(M). Those b¥(M)
elements will also be the first b%(M) elements of the »,-u.d. sequence (u,)
in some order. Altogether, we get

1 a(2]d)
‘Qm;m»xﬂ
b2 (M)
< 200 | Lm0 o)

a*(2M) — b (M)

M) W/r + D),
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where r denotes the degree of D. It can be shown by straightforward estimates
that lim,,,, b(M)/a@2M) = 1. Our desired limit relation (3.5) follows
then immediately. In exactly the same way, it can be verified that

a*(20+1)

lim ————— D(t,) = »(D), 3.6
Moo a¥2M + 1) ;::1 (fz) = »(D) (3:6)
by using the fact that (z,)*(e) is »-u.d. in G. The relations (3.5) and (3.6)

together imply the non-existence of
N

lim — ZD(t,,)

N—'ooN‘=

(1) = (5): If (z,) is u.d. in G, then (x,%) is u.d. in G because of
th—voo (I/N) ZN D(/v _1) = th—'oo (I/N) ZN =1 D(xn)T =

for all nontrivial irreducible unitary representations D of G. Such a represen-
tation D of degree r being chosen, we thus have || (1/N) ZfLI D, < e
for all N > N, = Ny(e). Let now (z,) be the subsequence of (x,)*(z,™)
described in (5). For given N > 1, there exists a unique integer m = m(N)
such that m(m — 1)/2 < N < (m + 1)m/2. Since

2 m(m 1)/2

H L5 pey| <] —2=""% b ” + 2
N »=1 m(m —1) ‘n=1
it will suffice to show
2 mlm—1)/2
lim |[|[——— D(z,)
m- oo 771("’1 —_ 1) n=1

We choose m > N,. By the construction of the sequence (z,), its first
m(m — 1)/2 terms just consist of all the products z,z, 1 with 1 <j < i< m.
Therefore,

|

2 m(m—1)/2

D(z,)

2 m i—1

2 2 D(x;)

m(m — Di=zj=1
Ny i—1

Z 2. D7)

m(m ==t

2— 3 (- oo 26 ) H

m{m — 1) =Ny

No— D) o 23 Sy <o

m(m — 1) m(m — 1) i=Ny41

for sufficiently large m.

mim —1) a1
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(5) = (4): Let the sequence (2,) from above be u.d. in G. Then (z,7) is also
u.d. in G and so is the sequence (y,) resulting from those two by superposition
in the following way: For m > 1, we set y,,_, = 2, and ¥,,, = 2,,7%. The
sequence (¥,) contains all the products ;=" with 7 5 j in exactly the same
order in which they occur in (z,)x(z,™). Thus, we obtain the sequence
(. )*(@,") from (y,) by inserting the terms ;2;7' = e at appropriate places.
Namely, there will be a term e preceding ¥y, and between any two terms of the
form ¥,2_, and ¥,2_,; withan > 2 we have to insert a term e. These new terms
will not affect the u.d. of the sequence, since their asymptotic relative fre-
quency is zero.

4 = (1): Let (w,) = (x,)x(,™) be ud. in G, and choose a nontrivial
irreducible unitary representation D of G. Using properties of the matrix norm
and of the inner product for matrices as listed in Section 1, we obtain

N N
tim | L 3 DG, | = tim ( 2D |y 206)
N- o n=1 N-o \N »=1 N n=1
N N
—\hm " Z Z(D(%) | D(=;))
Y_.)w l‘—‘ ’_

N N

= lim — Z Z(D(%m,_l) | E)

N-w Nzl— 1 j=1

1 N N
= (llm =3 3Dz,

2.
N-oow N%i= =1j=1

g

) =0
Therefore, (z,)isu.d. in G. |

The equivalence of properties (1) and (5) allows the following illustration,
which also reveals a relation to van der Corput’s difference theorem for
compact groups (see Section 2). The difference theorem, in its simplest form,
may be stated as follows: Let (z,) be a sequence in the compact group G, and
consider the infinite array of elements

1y
(llm — > D(w,)

N-w N n=1

ol 2,z Tt
R T AN
el gyl wgry!

If every row in this array is a u.d. sequence, then so is the first (and therefore,
every) column and the sequence (z,) itself. The equivalence of (1) and (5)
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may be interpreted as follows: The u.d. of the first (and so, of every) column
is equivalent to the u.d. of the sequence that is obtained by enumerating the
elements in the array according to the well-known diagonal counting pro-
cedure: a1, @y, gyt wyw L, wpn T, Ayl

Notes

The definition of convolution for sequences and all the main results in this section are
from Helmberg [4, 6]. A detailed treatment of convolution of measures can be found
in books on harmonic analysis (Rudin [1], Hewitt and Ross [1], Weil [1]). Some interesting
results concerning the structure of the semigroup .#%(G) are contained in a paper of
Wendel [1]. See also Stromberg [1, 2]. For the Riesz representation theorem, we refer to
Hewitt and Stromberg (1] and books on functional analysis.

For related investigations on sequences of products, see Helmberg [1, 2]. The idea of
arranging sum sets in specific abelian groups in a way that resembles convolution was
applied to density theory by Volkmann [3, 5]. A special case of Corollary 3.1 using a
slightly different arrangement was proved by Kuipers and Scheelbeek [2]. For a related
result, see Kuipers and Scheelbeek [1]. Helmberg [8] shows results analogous to Theorems
3.1 and 3.2 for the convolution (a:,,)*'(y,,) defined by the diagonal arrangement e, @y, ¥y,
Lo T1Y15 Yo, Ty, Tolly> T1Yo, Ygs v - - -

In a somewhat different context, certain types of convoluted sequences were studied
by Arnol'd and Krylov [1] and KaZdan [1].

3.1. Show that .#+(G) is a semigroup with identity.

3.2. For » € #*(G) and ¢ € G, define the translated measures », and ;» by
v,(B) = »(Bc) and ,»(B) = v(cB) for all Borel sets B in G. Prove vxe, =
v, and e v = (v.

3.3. Let 7: G X G — G be the mapping 7((», ¥)) = zy. For 4, v € A7 (G),
show that (A##)(B) = (1 X »)(+71(B)) holds for every Borel set B in G,
where 4 X » denotes the product measure of A and » in G X G.

3.4. State and prove an analogue of Lemma 3.4 for convolution of sequences.

3.5. Let G have at least two elements. Show that convolution of sequences in
G is not an associative operation.

3.6. Let G have at least two elements. Show that there is no identity with
respect to convolution of sequences, that is, that there exists no sequence
(#,) in G such that (z,)x(y,) = (¥,)*(z,) = (v,) holds for all sequences
(¥,) in G.

3.7. Give a detailed argument for the fact stated in the proof of Theorem 3.2,
part (2) = (1): limy,, , b(M)/a2M) = 1.

3.8. Referring to the proof of Theorem 3.2, part (2) = (1), show in detail
that (3.6) holds.
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3.9. Let (v,) be u.d. in G, and let (y,) be an arbitrary sequence in G. Prove
that the sequence of products x;y; in the diagonal arrangement a,y,,
1Yns Toliis T1lzy T2, Ty, Tias Tolfs, Tala, Ty, - . - i5 u.d. in G.

4. MONOTHETIC GROUPS

Definition

In the theory of u.d. mod 1, the sequences (no) with irrational o constitute a
very important class of u.d. sequences. As a natural generalization to the
compact group G, we consider now sequences of the form (a”) where a is a
fixed element in G. In particular, we will be interested in conditions on the
group G that guarantee the existence of u.d. sequences of this type.

We have noted in Section 1 that a u.d. sequence in G is necessarily every-
where dense. Thus, if a sequence (a") is u.d. in G for some a € G, then G has
to contain a dense cyclic subgroup, namely, the subgroup generated by a.
This observation leads to the following definition.

DerINITION 4.1. A topological group H is called monothetic if it contains a
dense cyclic subgroup. A generator of a dense cyclic subgroup of H is called a
generator of H.

Evidently, we are mainly interested in compact monothetic groups, al-
though we will take a brief look at the locally compact case as well (see
Theorem 4.8). Let us first show an important necessary condition for a group
to be monothetic.

THEOREM 4.1. Every monothetic group is abelian.

PROOF. Let C be the dense cyclic subgroup contained in the monothetic
group H. We want to show that the set L of all ordered pairs (¥, y)in the direct
product H x H, for which aya~'y~! = e, is equal to H x H. To this end,
let us note that the mapping (z, y) — ayx~ly~! from H x H into H is con-
tinuous. Therefore, the set L is closed. We certainly have C X C < L. But
since C is dense in H, the set C X C will be dense in H x H. Therefore,
L=Hx H Ik

It is a crucial consequence of this theorem that the duality theory for locally
compact abelian groups can be applied to the monothetic groups that are of
interest to us. Before we proceed, we provide some simple examples of com-
pact monothetic groups. A detailed classification of such groups will be given
later on (see Theorem 4.7, Corollary 4.5, and the notes).
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EXAMPLE 4.1. Clearly, every finite cyclic group in the discrete topology
is a compact monothetic group. To have a less trivial example, let us prove
that the k-dimensional circle group T* (i.e., the direct product of k copies of
the one-dimensional circle group T) is monothetic. To see this, choose real
numbers o, ..., o, such that 1, e, ..., «, are linearly independent over
the rationals. Then (e*"™1, ..., &*"*) is a generator of T*, because the u.d.
mod 1 of ((ney, ..., ne)), n=1,2,..., in R* implies the density of the
sequence ((&*™"*, ..., "™ ), n=1,2,...,in T*.

Sequences of the form (a")

THEOREM 4.2. If the sequence (") is dense in the compact group G, then
(a®) is ud. in G.

PROOF. By Theorem4.1, G is abelian. Thus, we will proceed by Corollary
1.2, If we can show y(a) # 1 for each nontrivial character y of G, then we
may use essentially the same argument as in the proof for the u.d. mod 1 of
(no) (see Example 2.1 of Chapter 1). In fact, we get then for each nontrivial
character y of G and for N > 1,

1 y n 1 N n (X(a))N+1 _ X(a)

N 22X =1 2 () NG@ =1 (4.1)
and since the numerator of the above fraction is bounded, we eventually
obtain limy.,, (1/N) EI,LI x(a") = 0. To complete the proof, let us assume
that y(a@) = 1 for some nontrivial character y of G. Then, x(x) =1 on a
dense subset of G, namely, for all elements of the sequence (a*), and so,
z(®) = 1 for all # € G. In other words, y is the trivial character, a contradic-

tion. i

A remark concerning the assumption in Theorem 4.2 is in order. Namely,
we want to point out that (a) is dense in G if and only if @ is a generator of
G. One implication is clear: If the sequence (a") is dense in G, then, a fortiori,
the cyclic subgroup generated by a is dense in G. For the converse, we must
realize that in the cyclic subgroup generated by a we find all powers of a,
whereas in the sequence (a”) we only consider the positive powers of a. The
case where G is discrete is easily dealt with, because G is then finite (by com-
pactness), and the positive powers of a generator a already exhaust all ele-
ments of G. For nondiscrete G, let U be an open set that contains a power
a* of a with k < 0. Then a=*U, as a neighborhood of ¢, contains a symmetric
open neighborhood V of e, that is, an open neighborhood with V=1 = V.
Without loss of generality, we may assume that V' contains none of the
elements a, a%, . . . , a ®. It follows from the properties of ¥ that V contains a
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positive power a™ of a with m > —k. Then a™** is a positive power of a
lying in U.

Combining Corollary 1.4 with Theorem 4.2, we arrive at the following
generalization of Exercise 5.6 of Chapter 1.

COROLLARY 4.1. If the sequence (a) is dense in the compact group G,
then (a) is well distributed in G.

Characterizations of Generators

In the course of the proof of Theorem 4.2 we have seen that if a is a generator
of the compact monothetic group G, then y(a) # | for each nontrivial charac-
ter y of G. The converse of this statement is also true. In addition, a charac-
terization of generators in terms of the ergodicity of a certain transformation
on G can be given.

THEOREM 4.3. For a compact abelian group G and an element a € G, the
following properties are equivalent:

(1) The transformation T, on G defined by T, = ax for € G is ergodic
(with respect to Haar measure).

(2) x(a) # 1 for each nontrivial character y of G.

(3) ais a generator of G.

PROOF. (1) = (2): Let x be a nontrivial character of G. From the in-
dividual ergodic theorem (see Chapter 3, Lemma 2.2) we get

1 N-1 1 N-1
lim = 3 ga"s) = lim — 3 4(T,") =fxdy ~0
N-ow N n=o N-w N n=0 G

for u-almost all z € G. In particular, there exists 2, € G with

N-1
lim S (1(a)"s(z) = 0. “2)
N-o N a=0
Now suppose that x(a) = 1. Then, (4.2) implies y(x,) = 0, which is absurd.
(2) => (3): Let H be the closure in G of the cyclic subgroup generated by a.
Then H is a closed subgroup of G. Assume H # G. Then the quotient group
G/H contains elements other than the identity. By the Gel’fond-Raikov
theorem (see Theorem 1.1), there exists a nontrivial character x5 of G/H.
We obtain a nontrivial character y of G by defining %(x) = xgx(xH) for
x € G. Now a € H and H is the identity in G/H; therefore, y(a) = yy(aH) =
1w (H) = 1. This is a contradiction. We note for later use that the same argu-
ment applies to a locally compact abelian group G.
(3) = (1): By Theorem 4.2 and the subsequent remarks, the sequence
(a")is u.d. in G. We infer from Theorem 1.4 that the sequences (@) are u.d.
in G for each « € G. Thus, for every real-valued continuous function fon G
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and every z € G, we have

lim — Zf(a %) = ffd,u.

N-ow N 2
We conclude that

lim
N-w J@

1 N
St [ raufdum = o @3

We now want to show that (4.3) remains true if fis replaced by an arbitrary
Haar-integrable function g. Take fe Z(G) and g € L'(y); then,

LS gta) - f ¢ du } du(e)

<% 3 [ ls@a) - @)l du

+f1g =1+ Ng fta) [ | duto

=2fle—fldu+| Ngf(ax) | s

In the last step, we used the translation invariance of u. The expression we
obtained as an upper bound can be made arbitrarily small because of (4.3)
and the fact that 2(G) is dense in L(u).

To show that T, is ergodic, we consider a Borel set £ in X that is left in-
variant by T, (i.e., E = aE). For the integrable function g in the above con-
sideration, we take now the characteristic function cy of E. Thus,

du(z).

lim
N-wo J@

But cz(a"x) = cx(x) for all x € G and all n > 1; therefore,

1 N
N ;cE(a"w) — W(E) | du(z) = 0.

[ Jes® ~ @ dute) 0.

This implies cx(x) = u(E) p-a.e., and since cx only attains the values 0 or 1,
we conclude u(E) = 0or 1. .

Sequences of Powers of Generators

If G is also connected, then we can prove results concerning the u.d. of more
general sequences of powers of a generator a of G. The hypothesis of con-
nectedness stems from the fact that in a compact connected abelian group
there is no nontrivial discrete character (see Corollary 1.8).
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THEOREM 4.4. Let G be a compact connected monothetic group with
generator a. If (r,,) is a sequence of integers such that (r,¢) is u.d. mod 1 for
every irrational «, then the sequence (a’) is u.d. in G.

PROOF. From the assumption on G, we infer that y(G) = T for every non-
trivial character y of G. For nontrivial y, we get then y(a) = €*"** with ir-
rational a, for otherwise, ¥ would be discrete. The Weyl criterion for u.d.
mod 1 (Theorem 2.1 of Chapter 1) implies

1 & 1 ¥,
lim — 3 x(a™ =1lim = Y & = 0.
N-w n=1 N-w n=1

By the Weyl criterion for compact abelian groups (see Corollary 1.2), the
sequence (@) isud.inG. i '

COROLLARY 4.2. Let G and a € G be as in Theorem 4.4, and let f(z) be a
nonconstant polynomial that attains integral values on the set of positive
integers. Then the sequence (a/'*) is u.d. in G.

PROOF. By the Lagrange interpolation formula, all the coefficients of
f () are rational. For a given irrational «, the polynomial af (x) has then an
irrational leading coefficient, and so, the sequence (of (%)) is u.d. mod 1 by
Theorem 3.2 of Chapter 1. An application of Theorem 4.4 completes the

proof.

COROLLARY 4.3. Let G and a € G be as in Theorem 4.4, and let k be a
nonzero integer. Then the sequence ((¢*)*) is u.d. in G. In particular, a* is
again a generator of G.

If G is not connected, then Theorem 4.4 need not hold. It suffices to dis-
prove Corollary 4.3 in this case. The duality theory tells us that for a compact
abelian G that is not connected, there exists a nontrivial discrete character y
(in particular, see Corollary 1.8). Then ™ = 1 for some positive integer m.
Now x(a™) = x™(a) = 1, thus, a™ cannot be a generator by Theorem 4.3.

The Measure of the Set of Generators

In connection with the notion of a generator, it is natural to ask how large the
set of generators can be. In the special case G = T, we know that the set of
generators is the complement of a countable subset of G. A measure-theoretic
analogue of this result can be proved for an important class of compact
abelian groups.

THEOREM 4.5. Let G be a compact connected abelian group satisfying the
second axiom of countability. Then the set of generators of G has Haar
measure 1.
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PROOF. Since G has a countable base, there are only countably many
characters of G (by Corollary 1.7). Let %, %, . . . be the nontrivial charac-
ters of G. They are all nondiscrete, since G is connected. For i > 1, let H; be
the kernel of x;. Then G/H, has infinitely many elements. Since G is the dis-
joint union of the distinct cosets of H; and all the cosets of H; have equal
p-measure (by the translation invariance of ), we must have u(H,) = 0,
By Theorem 4.3, the set S' of nongenerators of G can be written as S =
U2, H;. Therefore, u(S) = 0, and the desired resuit follows. JJj

COROLLARY 4.4. Every compact connected abelian group satisfying the
second axiom of countability is monothetic.

Another proof of the above corollary based entirely on duality theory may
be given (see Exercise 4.23). We shall now prove in a simple way that if G
is not connected, then the set of generators can never have measure 1. To
formulate this result in a precise manner, we introduce the outer Haar mea-
sure fi, which is defined for any subset 4 of G by

fi(4) = inf {u(B): Bis a Borel set in G with B = A4}. 4.4

The set function & is nonnegative, monotone, and countably subadditive,
Naturally, for a Borel set B in G the identity @(B) = u(B) holds.

THEOREM 4.6. Let G be a compact abelian group that is not connected.
Then the set of generators of G has outer Haar measure less than 1.

PROOF. By duality theory, G has a nontrivial discrete character y. The
kernel H of y is an open subgroup of G; therefore, u(H) > 0. By Theorem
4.3, the set E of generators of G satisfies E < H’, and thus, a(E) < @(H') =

wHHY<IT. R

Structure Theory for Locally Compact Monothetic Groups

THEOREM 4.7. The compact abelian group G is monothetic if and only if
its character group G is algebraically isomorphic to a subgroup of 7.

PROOF. Let G be monothetic, and let @ be a generator of G. We consider
the mapping p: G > T defined by y(x) = x(a) for x € G. The mapping v is
certainly an algebraic homomorphism from G into T (it is even a character of
G). But y is also injective by Theorem 4.3. Therefore, G is algebraically iso-
morphic to a subgroup of T.

Conversely, suppose that there exists an algebraic isomorphism ¢ from
G onto a subgroup of T. Since G is discrete, the mapping y is continuous and
thus a character of G. By the duality theorem, there exists an element a € G
such that y(x) = x(a) for all y € G. Now p is injective; therefore, (x) # 1
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for nontrivial ¥ € G, and so, y(a) ## 1 for all nontrivial y € G. Hence, ais a
generator of G by Theorem 4.3. [}

It is important to note that the mapping y considered in the above proof
will, in general, not yield a topological isomorphism from G onto a subgroup
of T, since the inverse mapping of ¢ need not be continuous. But we obtain a
topological isomorphism if we change the topology in T from the ordinary
one into the discrete topology, thereby obtaining a locally compact abelian
group that we shall denote by T,. Theorem 4.7 may then be restated as
follows: The compact abelian group G is monothetic if and only if its charac-
ter group G is topologically isomorphic to a subgroup of T,.

The duality theory allows for still another interpretation of Theorem 4.7.
Let G, be the character group of T,. As the dual of a discrete group, G, is a
compact abelian group. Furthermore, the character group of G, is T, and
hence, Theorem 4.7 implies that G, is monothetic. The group G, is the largest
compact monothetic group in the following sense.

COROLLARY 4.5. A topological group G is compact monothetic if and
only if G is a continuous homomorphic image of G,.

PROOF. It is clear that every continuous homomorphic image of the
compact monothetic group G, is again compact monothetic (note that the
image of a generator under a continuous surjective homomorphism is again
a generator ; see also Exercises 4.3 and 4.4). Now suppose that G is a compact
monothetic group. By Theorem 4.7, its character group G is topologically
isomorphic to a subgroup H of T, Hence, G, as the dual of G, is topo-
logically isomorphic to the dual of H. By Theorem 1.12, the character group
of the closed subgroup H of T, is topologically isomorphic to the quotient
group GoJA(G,, H), where A(G,, H) is the annihilator of H in G,. In other
words, G is topologically isomorphic to a quotient group of G,, and the
proof is complete. il

EXAMPLE 4.2. Let us give a more explicit description of the group G,.
This can be done by describing all characters of T,. For this purpose, it is
convenient to view T, as the quotient group R,/Z, where R, is the additive
group of reals in the discrete topology. Then, G, consists of all characters ¥
of R, for which x(m) = 1 for every m € Z. To find all such characters, we
proceed in the following way. Let @ denote the additive group of rationals,
and let B be a fixed Hamel basis of R over @ with 1 € B. Thus, every real
number o has a unique representation as a finite sum of the form o =
>t b, with r, e Q\{0} and b, € B (for a = 0, we take k = 0).

We start to define a character y of R,/Z by setting x(1) = 1 (as it should
be) and choosing an arbitrary element y(b) of T for each b € B with b # 1.
It suffices to extend the definition of ¥ to numbers of the form rb with r € @
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and b€ B, since for arbitrary « = Y&, rb, we have then necessarily
x(2) = TI%_1 x(r;b;). We note that every r € @ can be written in the form
r = m/n! with m €Z and n a positive integer. Again, it will suffice to define
%((1/nt)b), for then necessarily y((m/n!)b) = (x((1/n!)b))™. For fixed b € B,
we define y((1/n!)b) recursively. For n = 1, the expression is already defined.
Suppose we have already defined x((1/s!)b) for some s > 1. Then, necessarily,

we must have
1 s+l 1 )
b =y|—b}.
(x((s-{- ! )) x(s!

Consequently, we will take for x((1/(s 4 1)1)b) one of the s + 1roots of the
equation 25t = x((1/s1)b). Let us check whether x(rb) is then well defined,
If r = m/n! = plg! with g > n, say, then y((m/n)b) = (x((1/n))b))™ and
2(plghHb)) = (x((1/gHB))?. But p = m(n + 1)(n + 2) - - - q. Thus,

- (g
) (x(@ - ! b))m(VHH'”(q*n: T ("(ﬁ b))

From the construction of the mapping y, it is evident that y is a character of
R, that maps Z into {l1}.

We used necessary conditions for characters in each of the steps of the
construction, so clearly every character of R;/Z has to be of the above form.
In summary, a character y of R,/Z is uniquely determined by the following
prescribed data: (i) a collection {#®: b€ B} of arbitrary elements from T
that serve as the x(b), the only restriction being 'V = 1; (ii) for each b € B,
a sequence of elements Eib’, 55”, L EY L from T (which serve as the
x((1/n)b)) with £ = 5 and (£ = ¢2). We get an important special
case if we write n® = €**" with 6® e R, and define y(rb) = ¢*""*" for

re@Q W
THEOREM 4.8. A locally compact monothetic group is either compact
or topologically isomorphic to the discrete additive group Z of integers.

PROOF. Let G be a locally compact monothetic group, and let a be a
generator of G. By duality theory, the mapping w: G+ T, defined by
w(x) = x(a) for all y €G, is a character of G. Furthermore, v is injective.
For suppose x(a) = 1 for a nontrivial character y of G; then, x(a") = 1 for
any integer #, and so, x(x) = 1 for any x € G, a contradiction. We note that
G is locally compact. Thus, by the structure theorem for locally compact
abelian groups (see Theorem 1.14), G may be identified with the group
R” x H where H is a locally compact abelian group containing a compact
open subgroup K. Evidently, the mapping ¢ restricted to R* x {e} is an
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injective character. But then, R" is topologically isomorphic to a closed sub-
group of T (apply Theorem 1.8), which is only possible for n = 0. Therefore,
we can identify G with H. We consider y on the compact group K. The image
w(K) is a closed subgroup of 7. By Example 1.5, we have to distinguish two
cases. In the first case, p(K) is a finite cyclic group. Since y is injective, K
itself is a finite cyclic group. But K is open in G; therefore, G has to be dis-
crete. Then, G is compact as the dual of a discrete group. In the remaining
case, we have p(K) = T. Since y is injective, K is already all of G. In partic-
ular, G is topologically isomorphic to T. Then G, as the dual of G, is topo-
logically isomorphic to the dual of T, which is Z (see Example 1.3). Ji§

The following lemma will be of technical importance later on, but it
deserves some interest of its own. In a very convincing way, it constitutes
another indication that there is an abundance of generators in a reasonable
monothetic group (more precisely, in a compact monothetic group that is not
totally disconnected).

LEMMA 4.1. Let G be a compact monothetic group, and let y be a non-
discrete character of G. Then, for every irrational «, there exists a generator a
of G with y(a) = €™

PROOF. It suffices to prove the assertion for the group G, from Corollary
4.5. For suppose the result is true for G,. Now, if G is any compact mono-
thetic group, then G can be identified with a quotient group G,/H. Further-
more, if y is a nondiscrete character of Gy/H, then ¢(x) = y(xH) for 2 € G,
defines a nondiscrete character of G,. Thus, an irrational « being given, we can
find a generator , of G, with @(z,) = ¢*"**. But then 2,H is a generator of
Go/H with y(x,H) = ™.

To prove the lemma for G, let us recall that G, was defined as the dual of
T,. By Theorem 4.3 and the duality theorem, a character y € G will be a
generator of G, if and only if p(y) # 1 for all y € T, with y 5 1. It will again
be convenient to view T, as the quotient group R,/Z. The given nondiscrete
character of G, corresponds to an element of infinite order in the dual group
T, of Gy, hence, to a coset f + Z with irrational f. The assertion that we have
to provereadsthen as follows: For a givenirrational o, there exists a character
y of R, that is equal to 1 onZ (in other words, an element of G;) such that
w(B) = " and y(y) # 1 for all reals y with ¥ ¢ Z. We extend the system
{1, B} to a Hamel basis B = {#;: j €J} of R over Q with f; = 1 and 5, = §;
we extend {l, «} to a Hamel basis 4 = {o;: j€J} of R over @ with o, = 1
and o; = « (J denotes a suitable index set). For y € R, we have a unique
representation y = rif; + '+ + rp; with r,e Q\{0} and distinct sub-
scripts i, . . . ,Ji (for y =0, we take k = 0). We define

p(y) = exp (roy, + -+ + Py, ).
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Then y is a character of R, that is equal to 1 onZ, and also p(f) = &*"*.
Moreover, if p(y) = 1 and y = rofy + 14f;, + - + 1B;, with the rationals
r, possibly being zero and the j, distinct and different from zero, then ryey +
1oy, + + o 4 1oy = mfor some integer m, and so, 1, = mandry =+ =
1. = 0. This implies y €Z. [}

Equi-uniform Distribution

The general theory of families of equi-u.d. sequences was developed in
Section 3 of Chapter 3. In accordance with the mainstream of investigation
in the present section, we shall consider families of sequences (a"), where a
ranges over some subset of G. Since every individual sequence in a family of
equi-u.d. sequences is u.d., we may confine our attention to families of the
form {(a"): a€ A}, where A is a set of generators of G. As a matter of
convenience, we shall denote by E the set of all generators of the compact
monothetic group G.

THEOREM 4.9. Let A be a subset of E such that {(a"): a € 4} is a family
of equi-u.d. sequences in the compact monothetic group G. Then {(a"):
a € A} is also a family of equi-u.d. sequences in G.

PROOF. Again we consider families of sequences in G as subsets of the
product space G°. By Theorem 3.4 of Chapter 3, the closure {(a"): a€ 4} in
G* represents a family of equi-u.d. sequences in G. The mappingg: G +» G=,
defined by g(x) = (¥, 2%, a3, . . .) for « € G, is continuous, since each of the
coordinate functions is continuous. Therefore, g(4d) < g(d), or {(a"):
ac A} < {(a"): a€ A}, and the result follows. i

COROLLARY 4.6. Suppose G has at least two elements, and let a be a
generator of G. Then {((@™)"): m = 1,2,...} is not a family of equi-u.d.
sequences in G.

PROOF. Assume the contrary. Since the sequence a, a?, @, . . . is every-
where dense in G, the preceding theorem implies that {(b"): b€ G} is a
family of equi-u.d. sequences in G. In particular, the identity e would be a
generator of G, an obvious absurdity. [l

COROLLARY 4.7. Suppose G has at least two elements, and let 4 be a
subset of E such that {(a"): a € 4} is a family of equi-u.d. sequences in G.
Then p(d) < 1.

PROOF. By Theorem 4.9, 4 is again a subset of E. If u(4) = 1, we would
infer A = G, since the support of u is G. But then E = G, a contradiction. i

If G is not connected, then Corollary 4.7 may of course also be deduced by
combining Theorem 4.6 with Theorem 4.9.
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In Section 3 of Chapter 3 we saw that families of equi-u.d. sequences cannot
be too large. Nevertheless, it can happen that the family consisting of all the
sequences (a") that can possibly be u.d., namely, the family {(a"): a € E}, is
a family of equi-u.d. sequences. In our next theorem, we classify those com-
pact monothetic groups for which this phenomenon occurs. First, we need an
auxiliary result.

LEMMA 4.2. Let G be a compact monothetic group. Then the set E of
generators of G is closed in G if and only if G is totally disconnected.

PROOF. If G is totally disconnected, then every character of G is discrete
(see Corollary 1.8). By Theorem 4.3, E is the intersection of all sets of the
form {x € G: y(x) # 1} with nontrivial characters y. But, for discrete yx,
every set of this form is closed, and so, E itself is closed.

On the other hand, if G is not totally disconnected, then there exists a non-
discrete character y of G. Assume that E'is closed. Then, yx(E) is closed in T.
By Lemma 4.1, all the elements ¢*”* in T with irrational « lie in x(E). Con-
sequently, we must have y(E) = T. Hence, there exists a € E with y(a) = 1,
which contradicts Theorem 4.3. i}

THEOREM 4.10. Let G be a compact monothetic group. The family
{(a@"): a € E}is a family of equi-u.d. sequences in G if and only if G is totally
disconnected.

PROOF. We can easily deal with the case where G is not totally discon-
nected. If {(a¢"): a € E} were a family of equi-u.d. sequences in G, then, by
Theorem 4.9, {(a"): a € E} would also be a family of equi-u.d. sequences in G.
But the only sequences (b") in G that are u.d. are those with b € E. Therefore,
we infer £ = E, which is incompatible with Lemma 4.2.

Now, suppose that G is totally disconnected. By the complex analogue of
Theorem 3.1 in Chapter 3 and the Peter-Weyl theorem (see Theorem 1.2),
it suffices to show that for each nontrivial character 4 of G and for each given
¢ > 0, there exists an Ny(¢) independent of a € E such that

AI

I(UN) 3 7] < e

for all N > Ny(¢) and for all a € E. Since y is discrete and yx(a) # 1 for
a € E, there exists a positive constant ¢(y) independent of a € E such that
|x(@) — 1] > ¢(x) for all a € E. Thus, we obtain

2@ — y(a)
x(a) — 1
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For totally disconnected G, we have settled the problem of equi-u.d. of
sequences (a") in the optimal sense. Therefore, we shall now look at the case
of not totally disconnected groups. We prove a theorem that bears some
resemblance to results from Section 3 of Chapter 3.

THEOREM 4.11. Let G be a compact monothetic group that is not totally
disconnected, and let 4 be a subset of E such that {(¢"): a € A} is a family of
equi-u.d. sequences in G. Then 4 is nowhere dense in G.

PROOF. By Theorem 4.9, 4 is again a subset of E. Suppose 4 contains a
nonempty open set in G. We take a nondiscrete character y of G, and note
that y is an open mapping from G onto T by Corollary 1.6. Consequently,
%(A4) contains a nonempty open subset of 7. But the continuous homo-
morphism y maps generators of G into generators of T'; therefore, y(4) is a
subset of the set {{ € T: { = €*"** with irrational «}, which does not contain
a nonempty open subset of 7. |l

It should be noted that the above theorem need not hold for totally dis-
connected groups. A trivial counterexample is provided by a finite cyclic
group with the discrete topology. Such a group has an open set of generators.
Less trivial examples may also be constructed (see the notes).

Notes

Monothetic groups were introduced in a footnote of a paper by van Dantzig [1] and
were also mentioned by the same author in [3]. The first systematic treatment of monothetic
groups was given by Halmos and Samelson [1]. Another important contribution to the
subject matter is contained in Anzai and Kakutani [1]. Apparently unaware of the work
of Halmos and Samelson, Eckmann [1] proved some results on monothetic groups that
were already known at that time. For a fairly up-to-date account of the general theory of
monothetic groups, see Hewitt and Ross [1, Sections 9, 24, and 25].

In Theorem 4.3, the equivalence of (1) and (3) was established by Halmos and von
Neumann [1]. A discussion of this point may also be found in Halmos [2, pp. 27-28].
Our proof follows the argument of Hartman and Ryll-Nardzewski [1, Satz 2). The equiv-
alence of (2) and (3) was first observed by Halmos and Samelson [1, Section 2(c)). It should
be noted that apart from the trivial case G = {e}, the transformation 7, is not mixing
(see Exercise 4.12). Several other conditions characterizing generators were given by Hart-
man and Ryll-Nardzewski [1, Satz 2).

The basic result concerning the structure theory of compact monothetic groups, namely,
Theorem 4.7, is from Halmos and Samelson [1]. The special role of the group G, was
pointed out by Anzai and Kakutani [1}. Because of Corollary 4.5, the group G is often
referred to as the universal compact monothetic group. An explicit description of G, similar
to Example 4.2 may also be found in Hewitt and Ross (1, Section 25} and Maak (1, Section
23]. Based on a detailed group-theoretic study of T, the following important results can
be proved (sce Halmos and Samelson [1] and Hewitt and Ross [1, Section 25]). The
compact abe' .n group G with (connected) component of the identity C is monothetic if
and only ii 1ts weight w(G) satisfies w(G) < ¢ and the totally disconnected quotient group
G/C is topologically isomorphic to the direct product J |, A, where p is running through
the prime numbers and each 4, is either the trivial group {e} or cyclic of order p™ for some
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positive integer » or the additive group of p-adic integers. In particular, a compact con-
nected abelian group G is monothetic if and only if w(G) < ¢. The direct product T™ of
m copies of T, where m is some cardinal number, is monothetic if and only if m <.
Anzaiand Kakutani [1] have an interesting result involving the cardinality of G: A compact
connected abelian group G is monothetic if and only if its cardinality is at most 2¢ (com-
pare with Exercise 4.20).

The characterization of locally compact monothetic groups given in Theorem 4.8 was
already known to Weil [1, p. 97]. An interesting example of a topological group that is
monothetic but not locally compact is constructed in Anzai and Kakutani [1]. A general
structure theory for not locally compact monothetic groups was developed by Nienhuys
[1]. For further remarks on this subject, see Rolewicz [1].

A very general viewpoint is taken in a paper by Hartman and Hulanicki [1], who propose
to determine dense sets of minimal cardinality in a topological group. Among their results,
the following one is pertinent: Under the assumption of the generalized continuum

hypothesis, an infinite compact abelian group of cardinality at most 22" contains a dense
subset of cardinality at most m. This leads to an alternative proof of the fact that a compact
connected abelian group is monothetic if and only if its cardinality is at most 2¢,

Theorem 4.5 is from Halmos and Samelson {1]. Earlier results in this direction were
given by Schreier [1] and Schreier and Ulam [1], and by Auerbach [1] for linear groups.
Halmos and Samelson [1] showed also that for the compact connected monothetic group
T the set of generators is not Haar measurable. In fact, the set of generators of this group
has outer Haar measure equal to 1 and inner Haar measure equal to 0 (see also Hewitt
and Ross [1, Section 25]). For a detailed account of outer and inner measures, we refer to
Halmos [1, Chapters 2 and 3]. As to totally disconnected compact monothetic groups,
we note that in a cyclic group of order p®, p prime, n > 1, the set of generators has measure
1 — (1/p). It can then be easily seen that for a group of the form | |, 4, with A, = {e}
or cyclic of order p™ and p running through the primes, the set of generators has a measure
equal to ], (1 — (1/p)), where now p runs through all the primes with 4,, # {e}. But this
product may attain any value from the interval [0, 1]. For details, see Halmos and Samelson
[1] and Hewitt and Ross [1, Section 25].

The fact that for a generator a of a compact monothetic group the sequence (a™) is u.d.
was first discovered by Eckmann [1]. For a completely different proof, see Hewitt and Ross
[1, p. 437]. An interesting generalization was given by Helmberg [1], who considered
compact groups with a finitely generated dense subgroup. Even more general formulations
are given in Helmberg [2]. For other generalizations of Eckmann’s results, see Helmberg
[8] and Kuipers and Scheelbeek [1].

In conjunction with Corollary 4.1, let us note here that the characterization of a strongly
regular matrix method A as a matrix method including almost convergence (see Section
4 of Chapter 3) implies the A-u.d. of (a®) for every generator a € G. This was observed
by Cigler [10] but not proved in this direct manner. Theorem 4.4 is essentially from
Hartman and Ryll-Nardzewski [1]. A partial converse of Theorem 4.4 reads as follows:
Let G be a compact monothetic group that is not totally disconnected; if (r,,) is a sequence
of integers such that (a™) is u.d. in G for every generator a of G, then the sequence (r,) is
u.d. mod 1 for every irrational «. The proof is an immediate application of Lemma 4.1
(see also Exercise 4.14). Hartman and Ryll-Nardzewski [1] prove the following generaliz-
ation of Theorem 4.1 of Chapter 1: If G is a compact connected abelian group with count-
able base and (r,,) is an increasing sequence of integers, then the sequence (a") is u.d. in
G for u-almost all a€ G. A refinement was achieved by Stapleton [1], using the growth
condition in Exercise 4.5 of Chapter 1. For a slight improvement, see Philipp [2]. Another
metric result for sequences of the form (a”») was given by Zame [2].
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The results on equi-u.d., along with Lemma 4.1, are from Baayen and Helmberg [1].
The same authors also construct an example of a compact totally disconnected monothetic
group with infinitely many elements and an open set of generators. A simpler example is
the group Z, of p-adic integers. This proves again that Theorem 4.11 cannot hold for all
totally disconnected groups (simple counterexamples were already given earlier). Armacost
[1], apparently unaware of the work of Baayen and Helmberg, proves some of their
results on the set of generators but also has original results.

Exercises

4.1.

4.2.

4.3,

4.4,
4.5,

4.6.

4.7.

4.8.

4.9.

4.10.

Prove in detail that if a is a generator of the compact monothetic group
G and if y is a nondiscrete character of G, then y(a) = "™ with ir-
rational o.

Let a and G be as in the preceding exercise, but let y now be a discrete
character of G. Show that y(a) is a generator of the finite cyclic group
x(G)

Prove more generally thatif /2 G +— G’ is a continuous homomorphism
of a compact monothetic group G onto the topological group G’, then
the image of a generator of G under f'is a generator of G'. In particular,
the continuous homomorphic image of a compact monothetic group is
again compact monothetic.

Prove the last part of Exercise 4.3 by using Theorem 4.7.

Use Theorem 1.7 and Exercises 4.1 and 4.2 to give an alternative proof
of Theorem 4.2.

Let G be a compact group (not necessarily abelian), and let a € G.
Prove that the sequence (¢") is u.d. in G if and only if for all nontrivial
irreducible representations D of G, the matrix D(¢) — E is nonsingular
(where E is an identity matrix of appropriate order).

Give an alternative proof of Corollary 4.3 by going back to Theorem
4.3,

Let G be a compact abelian group with a discrete character y of order
nin G. Find u(H), where H is the kernel of y.

Let x be a nondiscrete character of the compact abelian group G. Let
arg z denote the unique value of the argument of the complex number z
lying in the interval [0, 27). Show that the set 4 = {xeG: 0
(arg x(®))/2m < o}, with 0 < o <1, has Haar measure u(4) = «.
Hint: Show the result first for « = 1/k with a positive integer k; then,
use an approximation argument.

Generalize Exercise 4.9 to the following theorem: If B is-a Borel set in
T and 4 = {x € G: x(x) € B}, then u(4) = A(B), where 2 is the Haar
measure in T. Hint: Show that the set function A, on the Borel sets of
T defined by 4,(B) = u(4) satisfies all the properties of Haar measure
in T.
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4.11.

4.12,

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

Let (Y, %, ») be a measure space with » being a nonnegative normed
measure. A measure-preserving transformation T of Y is called mixing
(with respect to ») if lim,, , »(4 N T"B) = »(4)»(B) holds for any
two sets A, Be . Prove that every mixing transformation is also
ergodic with respect to the same measure.

Let G be a compact abelian group having at least two elements, and let
a be an arbitrary element of G. Show that the transformation T,:
@ > g is not mixing with respect to Haar measure. Hint: If G has a
nontrivial discrete character y, take the set H from Exercise 4.8 and
look at lim,,, , #(H N T,”"H), for a nondiscrete character x, take the
set 4 from Exercise 4.9 with « = } and look at lim,,_, , (4 N T,7"A4).
Thus, if G is monothetic and a is a generator of G, then T, is an ergodic
transformation that is not mixing.

What is the Haar measure of the set of generators in a finite cyclic
group?

Prove that if G is a compact monothetic group that is not totally
disconnected and if (r,) is a sequence of integers such that (a™) is u.d.
in G for every generator a of G, then the sequence (r,) is u.d. mod
1 for every irrational o.

Let G be a compact monothetic group, and let 4 be a set of generators
of G. Show that {(a"): a € 4} is a family of equi-u.d. sequences in G
if and only if {(x(a")): a € A} is a family of equi-u.d. sequences in T
for every fixed nondiscrete character y of G.

Let G be a compact monothetic group. For each nondiscrete character
4 of G, choose a subset B(y) of T such that {(b"): b € B(y)} is a family
of equi-u.d. sequences in T. Put 4 = N, {x€G: x(») € B(y)}, E =
set of all generators of G, and show that {(a"): a€ 4 N E}is a family
of equi-u.d. sequences in G. Hint: Use Exercise 4.15.

Let G be a compact monothetic group satisfying the second axiom of
countability. Then, the set E of all generators of G is a Borel set
inG.

Combine Exercises 4.10, 4.16, and 4.17 to verify the following result:
Let G be a compact monothetic group satisfying the second axiom of
countability, and let ¢ > 0 be given. Then, there exists a subset 4 of
the set E of all generators of G such that u(4) > p(E) — ¢ and
{(a@"): a e A}is afamily of equi-u.d. sequences in G. We can even find a
closed set 4 with these properties. Hint: Prove the result first for
G = R/Z.

Why is w(G) < ¢ a necessary condition for a locally compact group G
to be monothetic?

Prove that for a compact abelian group G the condition w(G) < ¢ is
equivalent to card G < 2¢. Hint: Use Corollary 1.7.
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4.21. Let a be a generator of the compact monothetic group G, and let (,) be
a sequence in G with lim,_, , %,,,%,”1 = a. Prove that the sequence
(®,) is well distributed in G.

4.22. Prove that the direct product of two compact monothetic groups need
not be monothetic.

4.23. Give a purely group-theoretic proof, based on Theorem 4.7, of the fact
that a compact connected abelian group with countable base is mono-
thetic, by constructing an injective homomorphism from a discrete
countable torsion-free abelian group H into T. Hint: Let hy = e, Iy,
hy, . . . be the elements of H, and let H; be the subgroup of H generated
by hg, 1, . . ., l1;; construct the homomorphism by extension along the
chain of subgroups Hy < H; < « * .

5. LOCALLY COMPACT GROUPS

Definition and Some Examples

The natural measures on a locally compact noncompact group, the Haar
measures, are not finite measures anymore. Therefore, it is not feasible to
define u.d. in such groups in the spirit of Theorem 1.2 of Chapter 3. New
concepts have to be found that lend themselves to a meaningful treatment in
the more general situation. An important restriction on such a concept will
be its compatibility with the earlier notion of u.d. in compact groups; that is,
the new definition should include, as a special case, the familiar notion for
compact groups.

There are essentially three ideas that we shall pursue. The first one amounts
to considering, instead of the given locally compact group, its various com-
pact quotient groups in which a notion of u.d. is already available (see
Definition 5.2). Secondly, we may take the Weyl criterion for compact
groups as a definition of u.d. (see Definition 5.6). Thirdly, one could transfer
the problem of u.d. to a natural compactification of the given group in a
canonical fashion. However, in the light of certain special cases that we are
going to investigate in the subsequent chapter, the first alternative seems to
deserve a preferential treatment. For this very reason, the notion correspond-
ing to the first possibility will be called u.d. per se, whereas the other notions
will have certain prefixes attached.

Let G be an arbitrary locally compact group. We introduce an important
class of subgroups of G that are the topological analogues of subgroups of
finite index.

DEFINITION 5.1. A closed normal subgroup H of G is called a subgroup of
compact index if the quotient group G/H is compact.
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COROLLARY 5.1. If Gis discrete, then the subgroups of compact index of
G are exactly the normal subgroups of finite index.

EXAMPLE 5.1. Let Z be the additive group of integers in the discrete
topology. Since Z is cyclic, its subgroups are exactly the trivial subgroup {0}
and the cyclic subgroups #nZ, where n = 1, 2, .. .. Apart from {0}, all sub-
groups are of compact index. [l

EXAMPLE 5.2, Let R be the additive group of real numbers in the usual
topology. We determine, first of all, the closed subgroups of R. The argu-
ment is almost identical with the one employed in Example 1.5. To avoid
repetition, we give only a brief indication. Let H be a closed subgroup of R,
and let R* denote the set of positive real numbers. If inf (H N R+) = 0, then
H is a dense subgroup and thus identical with R itself. If inf (H N R¥) =
o > 0, then H is the discrete cyclic group oZ generated by o. If H N R* is
void, then H = {0}. Among those closed subgroups, the subgroups of
compact index are exactly the groups «Z with o > 0 and R itself. Note that
all the compact quotient groups R/ oZ are topologically isomorphic to
R/ Z and hence to T.

EXAMPLE 5.3. Recall that a group D is called divisible if for every x € D
and every positive integer n, there exists y € D, so that y" = x. We claim that
a divisible group D in the discrete topology does not possess a subgroup of
compact index apart from D itself. For let H be a subgroup of compact (i.e.,
finite) index, and let m be the order of D [ H. Let « € D be arbitrary; then,
we can find y € D with y™ = 2. We have (yH)™ = H; thus, x € H, and so,
H = D. As important special cases, we mention the additive group R, of
real numbers in the discrete topology and the additive group @, of rational
numbers in the discrete topology. [l

DEFINITION 5.2. A sequence (,) in the locally compact group G is called
u.d. in G if for every subgroup H of G of compact index, the sequence (v, H)
isud.in G/ H.

Our first task will be to show that in the case of a compact group G, the
above definition coincides with the standard one. Indeed, if (z,) isu.d. in G in
the sense of Definition 5.2, then we observe that H = {e} is a subgroup of
compact index, and so, (z,) is u.d. in the usual sense. Conversely, if (z,) is
u.d. in G in the usual sense, then Corollary 1.5 implies that (x,H) is u.d. in
G/ H for every closed normal subgroup H of G, and so, (z,) is u.d. in G in
the sense of Definition 5.2.

EXAMPLE 54. Let R be the additive group of real numbers in the usual
topology. We refer to Example 5.2 for a complete description of all subgroups
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of R of compact index. We may leave out the trivial subgroup R from the
subsequent discussion, since every sequence in R/R is u.d. Let now (z,) be a
given sequence of real numbers. We pointed out in Example 5.2 that the
quotient group R/«Z with o > 0 is topologically isomorphic to R/Z. More
explicitly, a topological isomorphism is given by the mapping y: R/aZ s
R/Z, defined by (8 + «Z) = (B/a) + Z for f € R. Thus, the sequence
(v, + «Z) will be u.d. in R/«Z if and only if the sequence ((¢,/0) + Z) is
u.d. in R/Z (or, in other words, if and only if (2,/0) is u.d. mod 1).

We arrive at the following useful criterion: The sequence (z,) is u.d. in R
if and only if the sequence (fx,) is u.d. mod 1 for every real number # % 0.
Our standard example in the mod I theory, namely, the sequence (¢,) = (n&)
for irrational &, is not u.d. in R, because ((I/é)w,) is not u.d. mod 1,
Nevertheless, we can construct some simple examples of u.d. sequences in R,
We know from Example 2.7 of Chapter 1 that whatever the nonzero coefficient
B € R, the sequence (fn") with + > 0 and 7 ¢ Z is u.d. mod 1. It follows
immediately that the sequence (8#") is even u.d. in R, ,

To obtain another class of u.d. sequences in R, let us determine the poly-
nomials f (¥) = 2% + o, &% + -+ - + «, with real coefficients and positive
degree for which the sequence (f(n)) is u.d. in R. We claim that (f(»)) is u.d.
in R if and only if the system {«;, o;_1, . . . , %1} has rank at least two over the
rationals. For suppose this condition is satisfied; then there exist coefficients
o; and o; of f(x) with 1 <7 < j < k that are linearly independent over the
rationals. For « # 0, at least one of ao; and «o; has to be irrational. Thus,
the polynomial of () satisfies the condition of Theorem 3.2 of Chapter 1, and
s0, (of () is u.d. mod 1. Since « was arbitrary, the sequence (f (1)) is u.d. in
R. On the other hand, if the rank of {e&, ¢;_,, . .., %} over the rationals is
1, then o, = r;or, 1 < i <k, for some real number « % 0 and rationals r,.
Consequently, the sequence ((1/a)f (1)) is not u.d. mod 1. M

EXAMPLE 5.5. If D is a divisible group in the discrete topology, then it
follows from Example 5.3 that the only compact quotient group of D is the
one-element group. Therefore, every sequence in D is u.d. In particular,
every sequence in R, and every sequence in @, is u.d. More generally, we
may introduce the following notion: A locally compact group G is called
topologically divisible if its only subgroup of compact index is G itself. An
example of a topologically divisible nondiscrete group is the additive group
of p-adic numbers. Evidently, every sequence in a topologically divisible

groupisud. W
General Properties

We ask first whether an analogue of the useful Theorem 1.6 holds for locally
compact groups as well. If we pose the question in this generality, the
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answer has to be negative. Consider the continuous homomorphism ¢: R, -
R, defined by ¢(2) = « for every x € R,. Take (2,) as a constant sequence (or
as one of the many sequences that is not u.d. in R, for that matter); then (z,)
is u.d. in R, (by Example 5.5}, but (¢(z,)) is not u.d. in R. To remedy this
situation, we have to add the hypothesis that the continuous homomorphism
be open. In fact, this condition is implicit in Theorem 1.6 as well, since a
continuous homomorphism between compact groups is automatically open
(see Theorem 1.8).

THEOREM 5.1. Let ¢ be a continuous open homomorphism from the
locally compact group G onto the locally compact group G,. If (%,) is u.d. in
G, then (¢(z,)) is u.d. in G,.

PROOF. Consider an arbitrary subgroup H, of G, of compact index. Let
H be the inverse image of H,; under ¢; then H is a closed normal subgroup
of G. The mapping y: G/H — G,/H,, given by p(xH) = @(x)H,, is easily seen
to be well defined and is certainly a surjective homomorphism. It is also
immediate that v is injective. Let us verify that v is an open mapping. We
recall that an open set in G/H is of the form {xH: x € U} for some open set
Uin G. But p({zH: xe U}) = {yH,: y € (U)}, which is open in G,/H,,
since p(U) is open in G;. Now p being open implies that the inverse mapping
vyt Gy/H, — G[H is continuous. In particular, G/H is compact. But 1, as
a continuous homomorphism between compact groups, is open, and so, p
is continuous. We have (2,H) u.d. in G/ H; thus, (yp(z,H))—thatis, (¢(z,)H,)
—is u.d. in G4/H; (by Theorem 1.6), and we are done. The attentive reader
will have observed that we essentially worked with the second isomorphism
theorem for topological groups. [}

Since u.d. in locally compact groups was defined in terms of u.d. in certain
compact groups, many of the general properties listed in Sections 1 and 2 will
carry over to the present case. We indicate two of them. The proofs are
immediate.

THEOREM 5.2, Let (v,) be a u.d. sequence in the locally compact group
G, and suppose that (c,) is a sequence in G such that lim, , , ¢, exists. Then
the sequences (c,z,) and (x,c,) are u.d. in G.

PROOF. For a closed normal subgroup H of G, the canonical mapping
from G onto G/H is continuous. Therefore, lim, ., ¢, H exists in G/H. The
assertion follows then from Definition 5.2 and Theorem 1.4. |}

THEOREM 5.3. Let (2,) be a sequence in the locally compact group G.
If (v, 2, ) isud. in G foreveryh = 1,2, ..., then (v,) itself is u.d. in G.

PROOF. This follows from Definition 5.2 and Theorem 2.1. |l
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Periodic Functions and Periodic Representations

We recall that u.d. in a compact group may be characterized as follows:
If M is a compact group and v is the Haar measure in M, then a sequence (y,)
in Misu.d.in Mifand onlyiflimy_, . (I/N)z‘,\,;lf(y,,) = [ 3y f dv holds for all
f €€ (M). If we apply this criterion to the locally compact group G, we have
to consider continuous complex-valued functions on compact quotient
groups G/H. Thus, let H be a subgroup of G of compact index, and let f be
a continuous complex-valued function on G/H. The function fy can be
viewed as a continuous complex-valued function on G in a canonical manner,
Namely, we define a function fon G by f(x) = f;(xH) for ¥ € G. Then f has
the above mentioned properties. The characteristic feature of such a function
fis the fact that fis constant on the left cosets of H. This observation suggests
the following definition.

DErFINITION 5.3. A complex-valued function f on the locally compact group
G is called periodic if fis constant on the left cosets of some subgroup of G of
compact index. More generally, a mapping @ from G into a set S is called
periodic if there exists a subgroup H of G of compact index such that p(z) =
y(y) whenever @'y € H (or, equivalently, y is constant on the left cosets of
H).

EXAMPLE 5.6. This notion of periodicity is a natural generalization of the
standard notion of periodicity for functions defined on R. For if fis a function
on R with period o > 0, then f'is constant on the cosets of the subgroup oZ
of compact index. Conversely, if f'is periodic in the sense of Definition 5.3,
then, by Example 5.2, f'is either a constant function or constant on the cosets
of «Z for some o > 0. In other words, f'is perjodic in the standard sense.

In the case where G is topologically divisible, the periodic functions on G
are precisely the constant functions. [l

We remark that if f is a continuous periodic function on G—say, f is
constant on the left cosets of the subgroup H of G of compact index—then f
may be viewed as a continuous function on G/H by considering the function
[y defined by f;(xH) = f (). We now define an integral | fdu of f by setting
§ fdu = [q/u fu des, where ug is the Haar measure on G/H. Of course, we
must show that [ fdu is well defined in this manner.

LEMMA 5.1. The integral [ fdu is well defined.

PROOF. Suppose that K is another subgroup of G of compact index so that
fs constant on the left cosets of K. We wish to show, first of all, that fis then
constant on the left cosets of the normal subgroup HK of G. We note that for
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all « € G, we have f(vh) = f(x) for each 1 € H and f(xvk) = f(x) for each
k€ K. If the elements y and z of G lie in the same left coset of HK, then
y = zhk for some elements s € H and k € K. But then f(y) = f(zhk) =
f(#h) = f(2), and out first assertion is proved.

The continuity of fimplies that fis also constant on the left cosets of the
closed normal subgroup L = HK. Now L is again a subgroup of compact
index. To see this, we consider the mapping y: G/H > G/L defined by
y(xH) = «L for x € G. This mapping is well defined, since H is contained in
L. An open set in G/L is of the form {xL: % € U} for some open set U in G.
But y({zL: x € U}) = {wH: « € UL}, which is an open set in G/H. There-
fore, G/L is compact as the continuous image of a compact space. Our goal
will be achieved once we verify that

f fu duH=f frdur,  and f frc it = f fy, duss,
GIH G/L GIK G/L

It suffices to show the first identity, the proof of the second one is anal-
ogous. It is important to observe that the set function v, defined for the Borel
sets B of G/L by v;(B) = ug(y~(B)), has exactly the same properties as the
Haar measure uz, of G/L, and therefore, the uniqueness of the Haar measure
implies uz,(B) = ug(y~1(B)) for all Borel sets B of G/L. By using the fact that
the function f5 is identical with the composite function f, o y, we obtain

[ gwdin=[ Grewdun=] fodu,
GIH GIH QIL
which is the desired result. |l

THEOREM 5.4. The sequence (z,) in the locally compact group G is u.d.
in G if and only if

lim Zf(%n) - [fdu (5:1)

N-w N a=1
holds for all continuous periodic functions f on G.

PROOF. Let (z,) be u.d. in G, and let f be a continuous complex-valued
function that is constant on the left cosets of the subgroup H of G of compact
index. As remarked earlier, the function fy; on G/H, defined by fy(xH) =
f(x) for 2 € G, is continuous. Since the sequence (x,H) is u.d. in G/H, we
conclude that

N
lim = Zf(%n) = llm - ZfH(*an) fG/IIfH du gy =ffd,u.

Noow N a=1

The converse is shown by similar arguments. [l
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DEerINITION 5.4. A representation of a locally compact group G that is a
periodic mapping is called a periodic representation. Similarly, a character of
a locally compact abelian group that is a periodic function is called a periodic
character.

LEMMA 5.2. A representation D of a locally compact group G is periodic
if and only if the kernel of D is a subgroup of G of compact index.

PROOF. Since D is constant on the cosets of its kernel, the condition is
certainly sufficient. On the other hand, if D is constant on the left cosets of the
subgroup H of G of compact index, then, in particular, we have D(/) = D(e)
for every i € H. Thus, H is contained in the kernel of D, and by the reasoning
in the proof of Lemma 5.1 we see that the kernel of D is a subgroup of com-
pact index. [

THEOREM 5.5. The sequence (z,) in the locally compact group G is u.d.
in G if and only if
AY
lim + 3 D(x,) = 0 (5.2)

Noow N a=1

holds for every nontrivial periodic irreducible unitary representation D of G.

PROOF. If(z,)isu.d.in G and D is a representation of the above form with
kernel H, then, Dy(eH) = D(x) for € G defines a nontrivial irreducible
unitary representation Dy of the compact group G/H. Since (z,H) is u.d. in
G/H, an application of Theorem 1.3 yields

1 i )= lim L S
lim — 2 D(z,) = lim —
Now N a=t ( N-ow N u=

Dll(x71H) = 0.
1

The converse is shown by similar arguments. i}

COROLLARY 5.2. The sequence (z,) in the locally compact abelian group
G is u.d. in G if and only if limy_,,, (1/N) $h_; x(=,) = 0 holds for all non-
trivial periodic characters y of G.

Compactifications

It will be a standing hypothesis for the remainder of this section that G is a
locally compact abelian group.

We shall establish a connection between u.d. in G and u.d. in certain com-
pact abelian groups. We consider the character group G of G, and denote by
G” the set of periodic characters of G. It is important to note that, in general,
G? is not a subgroup of G. An example is given below.
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EXAMPLE 5.7. Let G be the direct product G =R x Z. Since G =
Um=t ([—m, m} X {—m, —m + 1, ..., m}), the space G is o-compact. For
a given irrational «, consider the characters x, and x, of G given by
y1l(r, 2) = €™ and y,((r, 2)) = € for (r,2) € R x Z. Both ¥, and
y2 are clearly onto 7, and so, the isomorphism theorem (see Theorems 1.8
and 1.9) implies that G/(kernel x,) and G/(kernel x,) are both topologically
isomorphic to T. Then, y, and , are periodic by Lemma 5.2. Now

(1 22)((r, 2)) = &7,

and the kernel of y,4, is R x {0}. But G/(R x {0}) is topologically
isomorphic to the noncompact group Z. Therefore, x4, is not a periodic
character of G. I}

Having learned to be careful, we will rather look at the (algebraic) sub-
group of G generated by G?. If we furnish this subgroup of G with the discrete
topology (which, in general, will not be the same as the relative topology),
then its dual is a compact abelian group, the so-called periodic compactifica-
tion G? of G. More generally, if " is an arbitrary subgroup of G with the dis-
crete topology, then its compact dualis called a compactification of the original
group G. If we take for T the group G itself, then we arrive at the well-
known Bohr compactification G of G. By Theorem 1.12, any compactification
is a quotient group of the Bohr compactification. The following lemma
provides a justification for the use of the term compactification.

LEMMA 5.3. Let K = I' be an arbitrary compactification of the locally
compact abelian group G. Then there exists a natural continuous homo-
morphism ¢ from G into K such that ¢(G) is dense in K. Furthermore, ¢ is
injective if and only if the subgroup ' of G separates points; that is, if for
any two distinct points x and y in G, there exists y € I' with x(%) # x(¥)-

PROOF. The mapping ¢: G — K is constructed in the following way. For
a given x € G, the function £ on G defined by £(y) = y(x) for y€G, is a
character of G. The restriction of £ to I, which we shall denote by &, is then
clearly a character of I" and hence an element of K; we define now ¢(2) = &.
Evidently, the mapping ¢ is a homomorphism. Therefore, it suffices to show
the continuity of ¢ at the identity element e € G. We note that the topology
in K is the compact-open topology, and that the compact subsets of I" are
precisely the finite subsets. Thus, an open neighborhood from the base of open
neighborhoods of the identity element in K has the form 4 = {k € K:
|k(x) — 1| < eforl <i< n}withe>0and yq, ..., x, €. These x; are
characters of G; therefore, the set U= {xeG: |y, (®) — 1| <& for 1 <
i < n} is an open neighborhood of e € G. Once we have shown ¢(U) € 4,
the continuity of ¢ is established. But for any x € U we get |#(y,) — 1| < ¢
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for 1 < i< n,andso,|&(y,) — 1] < eforl < i< n. Inother words, for any
2 € U we have & € A.

Suppose that @(G) is not dense in K. Then ¢(G) is a proper closed sub-

group of K. Using the fact that K/@(G) admits a nontrivial character and that
every character of a quotient group of K can be viewed as a character of K,
we arrive at the following situation: There exists a nontrivial character = of

K with 7(p(G)) = {1}. Since K = IA“, an application of the duality theorem
tells us that there exists a nontrivial character y € I' such that = (k) = k() for
all k € K. But then, for all x € G, we have | = 7(&) = &(x) = £(y) = (=),
an obvious contradiction to y being nontrivial.

To prove the last assertion, let H be the kernel of ¢ and let % denote the
identity in K. The homomorphism ¢ is injective if and only if H = {e}. We
have the following chain of equivalences: v € H<= p(2) = n<=>48(y) = 1
for all y € I'<< y(x) = 1 for all y € I. If H contains an element & 3£ ¢, then
I' would not separate « from e. On the other hand, if I" does not separate the
distinct elements « and y, then y(xy) = 1 forall y € I', and 2~y would be an
element of H distinct from e. [}

1t should be remarked that a converse of the above lemma also holds true.
Namely, whenever K is a compact abelian group and ¢ is a continuous homo-
morphism from G into K with dense image, then X is topologically isomorphic
to a compactification of G. Let K be the discrete character group of K.
Consider the mapping o: y € K > 9* € G, where y* is the character of G
given by p*(x) = p(@(®)) for # € G. The mapping o is not only a continuous
homomorphism, but o is also injective. For if g, * = y,* for ¢, v, € K, then
the characters y, and v, are identical on the dense subgroup ¢(G), and so,
¥, = y,. If we furnish the image I" of ¢ with the discrete topology, then K
is even topologically isomorphic to I'. But then K is topologically isomorphic

to I', which is a compactification of G.

LEMMA 5.4. Let I be a subgroup of G with the discrete topology, and let

K = T be the corresponding compactification of G. Let ¢. G > K be the
mapping constructed in Lemma 5.3, and suppose that (z,) is a sequence in G.
Then (g(x,)) is u.d. in K if and only if limy_., (1/N) 3¥_, x(x,) = 0 holds
for all nontrivial characters y € I'.

PROOF. By Coroliary 1.2, the sequence (@(2,)) is u.d. in K if and only if
limy_,, (1/N) 3N, w(p(x,)) = 0 holds for every nontrivial character y of
K. By duality theory, the nontrivial characters of K are precisely the functions
4 for some nontrivial character x € ', where as usual %(r) = 7(x) for all
7 € K. With the notation employed in the proof of Lemma 5.3, we write
#(@,) = &, Then £(p(@,)) = #(&) = #,(1) = %,(x) = x(x,), and the proof
is complete. [l
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THEOREM 5.6. Let G” be the periodic compactification of the locally
compact abelian group G, and let ¢: G > G” be the natural mapping con-
structed in Lemma 5.3. Suppose that (z,) is a sequence in G such that
(p(z,)) is u.d. in G?. Then (z,) is u.d. in G.

PROOF. We apply Lemma 5.4 with I' being the subgroup of G generated
by G», the set of perlodlc characters. The assumptlon that (g(x,)) is u.d. in

f‘ implies, in particular, that limy.,,, (1/N) X, x(=,) = 0 holds for
all nontrivial periodic characters y of G. By Corollary 5.2, the sequence (x,)
isthenud.in G. |l

Under what circumstances is the converse of this theorem true ? Obviously,
if G admits no u.d. sequence at all, then the converse holds trivially. In the
interesting case where G admits u.d. sequences, it turns out that the validity
of the converse of Theorem 5.6 is equivalent to G® being a subgroup of G.
In particular, if G? is a subgroup of G, then we arrive at the following
criterion: (z,) is u.d. in G if and only if ((p(x,,)) is u.d. in G?.

THEOREM 5.7. Let G be a locally compact abelian group that admits a
u.d. sequence. Then the following two conditions are equivalent:

i. The set G? of all periodic characters of G forms a subgroup of G.
ii. The sequence (¢(z,)) is u.d. in the periodic compactification G? of G,
whenever (2,) is u.d. in G.

PROOF. The implication (i) = (ii) follows immediately from Corollary
5.2 and Lemma 5.4. The implication (ii) = (i) requires more work. We
assume that G? is not a subgroup of G. Let I" be the subgroup of G generated
by G?; then G is a proper subset of I". We have to construct a u.d. sequence
(z,) in G such that (g(,)) is not u.d. in G?. In terms of characters, we search
for a sequence (z,) in G such that limy_, (l/N) ZNH1 x(z,) = 0 for all non-
trivial € G? but such that limy._,,, (I/N) Y, %:1(#,) = 0 does not hold for
some x; € ['\G.
By assumption, there exists a sequence (y,,) in G such that
N

l
lim — =0

N—I;I:o N nng(y")
holds for all nontrivial y € G2, It might well be that (y,,)is already the sequence
we are looking for. If this is not so, then limy_,, (1/N) 21::1 2(y,) = 0 has
to hold for all nontrivial ¥ € I'. We shall now prove a bit more than we origi-
nally intended to. Namely, given a character y, € I'\G?, we can rearrange
and repeat the elements ¥, so as to produce a sequence (z,) in G satisfying
limy_,, (1/N) 2,, 1 x(®,) = 0 for all nontrivial characters y € G?, and

1 X
lim — z Xl(’vn) # 0.

N—»oo
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This is done in the following way: Let f be the real-valued function on G
defined by f(2) =1 + 3(x1(®) + x2(*)) for x € G. Then f(z) > 0 for all
2€G, For j>1 and k > 1, we define the integer p; = [kf(¥;)]. Then
| £k — pufk? < 1/k2, alld $0, 5oy | fWlk — pulk? < k. Put A4, =
% ) P We describe the sequence (x,) blockwise, the first 4, terms constitut-
ing the first block, the next 4, terms constituting the second block, and so on,
The kth block will be the finite sequence consisting of the A, terms
Yir v oo s Yo Yss oo v s Yoo oo s Ypo -« » Yy, Where y; occurs p, times for
j=12, , k. To simplify the notation, let us label the terms of the kth
block by zi’”’, 28, ..., 2%, Now choose an arbitrary character y € I. We
have

# Epmx(yj) Zf CAED)
< §=1 j=1

1 Ak 1 k
= 22@E) — = 3 [y =
I® v=1 ¢ =1

1
<k.

Therefore,

lim — Zx(z(“) = 11m Zf(?/j)%(yj)

—'ooCs

- hml Zx(yj) + -hm Z(Xlx)(./i)

k-

Liim L Z(xlx)(yj) (5.3)

2/,—»00 e j=1

Let us abbreviate the latter sum by «(y). Taking for y the trivial character,
we deduce that limy.,, 4/k? =1 (in particular, 4, > O for sufficiently
large k). This limit relation, together with (5.3), implies that

lim Z Zx(z"") =a(y) forallyel.

koo Ag v=1

Furthermore, since 4, is of the order of magnitude k2, we have

lim Ay,q/(A; + -+ + 4) =0,

k—
By Lemma 4.1 of Chapter 2, we obtain
lim = Zx(w )=ua(y) forallyel.
N-w N »=1

It remains to compute «(x). For a nontrivial character y € G?, we note that
both yx;x and #,x are nontrivial, for otherwise, y; would be periodic. Thus,
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a(x) = 0 for such yx, as it should be. On the other hand, we get a(y,) =
3 limy, ., (1/k) > i 2:%(y;) + %, which is either 1 or }, depending on whether
1 is trivial or nontrivial (in fact, it is not hard to see that x;* has to be non-
trivial). At any rate, we have shown the desired result. [

EXAMPLE 5.8. Let R, as usual, be the additive group of real numbers in
the ordinary topology. The group R is self-dual; that is, the dual group of
R is topologically isomorphic to R itself. The characters of R are exactly the
functions y, with o € R, where y,(z) = ¢ for » € R. We observe that x,
is the trivial character and that for « 7 0, the kernel of yx, is the subgroup
(1/e)Z of R of compact index. Thus, every character of R is periodic. In
particular, the periodic characters form a group, and the periodic compacti-
fication of R is identical with the Bohr compactification R of R. From the
previous theorems, we conclude that (z,) is u.d. in R if and only if (p(2,)) is
u.d. in R. How can we describe the Bohr compactification in this case? By
definition, R is the compact dual of R;. Thus, R consists of all homo-
morphisms (continuous or not) of R into 7. As to the explicit form of R,
we may refer to an earlier example. Namely, the elements of R are con-
structed in exactly the same way as in Example 4.2 if we just abolish the
condition x(1) = 1, which was required there. It follows from Theorem 1.12
that R contains the universal compact monothetic group G, as a closed sub-
group. The mapping ¢: R > R has the explicit form () = g, forz € R. i

EXAMPLE 5.9. For G = Z, the characters are the functions y, with 7 € R,
where y,(m) = """ for m € Z (the number ¢ is, of course, only relevant
mod 1). If 7 is irrational, then the kernel of y, is just {0}. For rational ¢, the
kernel of y, is a subgroup of compact index. Thus, the periodic characters of
Z are exactly those corresponding to rational values of t. Consequently, the
periodic characters form a group in this case. More conveniently, the dual of
Z can be viewed as R/Z, which is topologically isomorphic to T. Therefore,
the group of periodic characters of Z can be regarded as the subgroup U of
T consisting of all roots of unity. The Bohr compactification Z of Z is a group
that we already know, for Z is the dual of T,, which is nothing else but the
universal compact monothetic group G, The periodic compactification
Z» of Z, being a quotient group of the Bohr compactification, will thus be
monothetic by Corollary 4.5. The group Z? is commonly referred to as the
universal monothetic Cantor group G;. To give some idea of what G; looks
like, we first offer an alternative description of the group U. To be sure, let
us emphasize once again that if we furnish U with the discrete topology, then
its dual will be G,.

For a fixed prime p, we define the so-called quasi-cyclic group Z(p*) as the
subgroup of T consisting of all the numbers of the form €*"**™", with n a
nonnegative and k an arbitrary integer. We claim that U is isomorphic to the
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weak direct product [T* Z(p®), where p runs through all the primes. For
typographic convenience, we write exp (o) instead of ¢*"** with « € R. Let
& be an arbitrary element of U, say, & = exp (r/m) with m > 0 but r/m not
necessarily in reduced form. Furthermore, let p,, p,, ... be the primes in
ascending order. Then we have m =[], p,* with e, > 0, and at most
finitely many e; are positive. For each i > 1, let g, be a solution of the linear
congruence & H’% p#=r (modps). We define a mapping 7: Urs
i

TIsZ(p™) by (£) = (exp (aypr™), - - - , €xp (@ilps), . . .). It is a straight-
forward exercise in elementary number theory to show that =(&) is well
defined and that 7 is an isomorphism of U onto T[XZ(p®).

If both groups are considered in the discrete topology, then = is even a
topological isomorphism. The compact group Z,, of p-adic integers has the
discrete group Z(p®) as its dual (see Exercise 2.3 of Chapter 5). By the duality
theorem, the dual of Z(p™) is then just Z,. An application of Theorem 1.15
yields that G, is topologically isomorphic to the direct product [],Z,. [l

Monogenic Groups

We found out that for every generator a of a compact monothetic group, the
sequence (a") is u.d. (see Theorem 4.2). This clearly holds as well for Z, the
only locally compact noncompact monothetic group. These results suggest the
following definition.

DErFINITION 5.5. A locally compact abelian group G is called monogenic if
there exists an element @ € G such that the sequence (") is u.d. in G. The
element a is called a monogenic generator of G.

EXAMPLE 5.10. By the brief discussion preceding Definition 5.5, every
locally compact monothetic group is monogenic. For compact abelian
groups, ‘“monothetic’” and “monogenic” are equivalent concepts. There are
many monogenic groups that are not monothetic. For instance, every topo-
logically divisible abelian group G (see Example 5.5) is evidently monogenic,
whereas if G has more than one element, then G cannot be monothetic (for
otherwise, G would have to be either compact or topologically isomorphic to
Z, and both alternatives are incompatible with G being topologically divis-
ible). A word of warning is in order. A continuous homomorphic image of a
monogenic group need not be monogenic again (compare with Exercise 4.3).
Just take the group R,, which is monogenic by Example 5.5. The mapping
7: R, — R with 7(z) = «for « € R,is certainly a continuous homomorphism.
But R is not monogenic, since no sequence of the form (ne), « € R, is u.d.
in R (see Example 5.4). However, it follows from Theorem 5.1 that if
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: G > G, is a continuous open homomorphism from the monogenic group
G onto the locally compact group G,, then G, is also monogenic. Also, the
direct product of two monogenic groups need not be monogenic. This is
certainly clear by Exercise 4.22. But we can also give an example with non-
compact groups. We know that Z is monogenic, but Z?2 is not monogenic,
since it is easily seen that no sequence of the form ((na, nb)) with a, b € Z can
be ud. inZ2 |

The structure of monogenic groups is completely known (see the notes). As
can be expected from Example 5.10, their classification is much harder than
for locally compact monothetic groups. For properties that may be proved
readily, we refer to the Exercises 5.13-5.18. The next theorem exhibits an-
other relation between monogenic and monothetic groups.

THEOREM 5.8. If G is monogenic, then every compact quotient group of
G is monothetic and every discrete subgroup of G is algebraically isomorphic
to a subgroup of T.

PROOF. Let a be a monogenic generator of G. Then (¢”) is u.d. in G and
so for every compact quotient group G/H, the sequence (¢"H) is u.d. in
G/H. Consequently, the coset aH is a generator of G/H. For the second asser-
tion, we note that every discrete subgroup of G is the dual of some compact
quotient group G/H. The rest follows from Theorem 4.7. i

Unfortunately, the converse of the above result does not hold true. For
G = R, the nontrivial compact quotient groups are all topologically iso-
morphic to T (see Example 5.2), and so, monothetic. But R itself is not
monogenic by Example 5.10.

Hartman-Uniform Distribution

DEFINITION 5.6. A sequence (z,) in a locally compact abelian group G is
called Hartman-u.d. in G if limy., . (1/N) Z,,N=1 %(z,) = 0 holds for every
nontrivial character x of G.

COROLLARY 5.3. Every Hartman-u.d. sequence in G is u.d. in G.
PROOF. This is an immediate consequence of Definition 5.6 and Corollary

52. A

One might ask under what conditions on G the notions of Hartman-u.d.
and u.d. per se are completely equivalent. This is not difficult to answer.

THEOREM 5.9, The notions of Hartman-u.d. and u.d. in the locally
compact abelian group G coincide if and only if either G admits no u.d.
sequence or every character of G is periodic.



296 UNIFORM DISTRIBUTION IN TOPOLOGICAL GROUPS

PROOF. The sufficiency of the condition is clear. If G admits no u.d.
sequence, then both notions are vacuous by Corollary 5.3, and thus identical.
So, suppose that G admits a u.d. sequence (y,), and assume that G has a
nonperiodic character y;. Then limy.,, (1/N) Z,, 1 x@W,) =0 for every
nontrivial y € G?. By just repeating the argument in the proof of Theorem
5.7, we can then construct a sequence (%,) in G such that

‘\7

lim (1/M) E x(®) =0

for every nontrivial y € G?, but limy., , (1/N) Zﬂ=1 x1(x,) = 0does not hold.
In other words, the sequence (2,,) is u.d. but not Hartman-u.d. in G. [l

EXAMPLE 5.11. By Example 5.8, every character of R is periodic. Thus,
in the group R, Hartman-u.d. and u.d. are equivalent. The picture changes
if we consider G = Z. In Example 5.9 we saw that not every character of Z
is periodic. Then, Theorem 5.9 implies that there have to exist u.d. sequences
in Z that are not Hartman-u.d. We shall exhibit such sequences explicitly.
We first give another characterization of Hartman-u.d. sequences in Z. A
sequence (¥,) in Z is Hartman-u.d. in Z if and only if (z,) is u.d. inZ and
(az,) is u.d. mod 1 for every irrational o« € R. To prove our assertion, we
note that a sequence (x,) in Z is Hartman-u.d. precisely if

lim (1/N) z et = ()

N—©

holds for all # € R\Z. Thus, a Hartman-u.d. sequence (x,)) and an irrational «
being given, we have llmN_,(,o (1/N) 3, €% = 0 for all nonzero integers
m. The classical Weyl criterion (see Theorem 2.1 of Chapter 1) implies then
that («®,) is u.d. mod 1. Conversely, from the u.d. inZ of (x,) we infer that
limy., o (1/N) SN, €*"**n = 0 holds for all t€ Q\Z. The corresponding limit
relation for irrational ¢ follows from the fact that (sz,) is u.d. mod 1.

We will show in Theorem 1.5 of Chapter 5 that for irrational «, the sequence
([#e])is u.d.in Z. By Theorem 1.8 of Chapter 5, this sequenceis not Hartman-
u.d. in Z. However, examples of Hartman-u.d. sequences in Z can easily be

given (see Exercise 5.28). [l

When discussing u.d. in G, we realized that in many cases the theory could
be reduced to the distribution theory in one single compact group (namely,
the periodic compactification). This is even more so for Hartman-u.d.
sequences, as the following simple result shows.

THEOREM 5.10. Let G be a locally compact abelian group, let G be its
Bohr compactification, and let ¢: G+> G be the natural homomorphism

(see Lemma 5.3). Then (x,) is Hartman-u.d. in G if and only if (¢(,)) is u.d.
in G.
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PROOF. This is, in fact, a special case of Lemma 5.4 with I' = G. i

Almost-Periodic Functions

Although Theorem 5.10 is trivial once we have Lemma 5.4, it gives rise to an
interesting relation between Hartman-u.d. and almost-periodic functions on
G. There are many equivalent characterizations of almost-periodic functions,
we shall choose one that is suitable for our purposes.

We adopt the same notation as in Theorem 5.10, and we note that ¢: G —
G is injective by the second part of Lemma 5.3. Now let f'be a given complex-
valued function on G. Then the composite function fo g~ is a complex-
valued function on ¢(G). If fo @™ can be extended to a continuous
function on G, then f itself is called an almost-periodic function on G.
Since @(G) is dense in the compact group G, the function fo ¢~ can
have at most one continuous extension to G. Alternatively, the function f
is almost-periodic if fo @~ is the restriction to ¢(G) of a continuous function
on G. Clearly, every almost-periodic function on G is bounded. Trivial
examples of almost-periodic functions on G are the constant functions. For
further examples, see Exercises 5.19 and 5.22. With addition, multiplication,
and scalar multiplication defined pointwise, and equipped with the norm
If]l = supsee | f(®)], the set &/(G) of all almost-periodic functions on G
forms a Banach algebra. This Banach algebra is closed under still another
operation. For fixed a € G, define the translate ,f of a function f on G by
J@) = f(av) for all z € G. Then we have ,f € &/ (G) whenever f € & (G).

We introduce the mean value M(f) of the almost-periodic function f on G
in the following way: Let g be the unique continuous extension of fo ¢~ to
G, and let » be the Haar measure on G. Then we define M(f) = fqgdv. It
is not hard to see that Mis acomplex linear functional on &/(G) that is normed
in the sense that if f= 1, then M(f) = 1. Furthermore, M satisfies M(, /)=
M(f) for all fe &/ (G) and all ae G, and M is strictly positive—that is,
M(f) > Ofor all fe &/(G) with f > 0 and f # 0. Actually, all the properties
of M listed here follow easily from the corresponding properties of the Haar
integral on G.

As is true for the concept of almost periodicity itself, the mean value M(f)
allows an internal description; that is, we need not go “outside” of G. This
characterization becomes particularly simple if G is o-compact. In this case
the following result holds (see Hewitt and Ross [1, Theorem 18.14]). There
exists an increasing sequence /, € H, < -+ € H, < - - - of relatively com-
pact open sets that exhausts G such that

M(f) =lim ;‘?——f fda for every continuous f € &(G),
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where 1 is a Haar measure on G. Two special cases are worth mentioning,
For G = R, we have the identity

Amn=ggﬁ; ﬂwm—hm—ff@Mm

for every continuous f € &/ (R). For G = Z, the identity

N N

M(f) = lim > f(n) =lim = Zf(n)

Noow 2N + 1.==N N-oow N n=1

holds for every f e o/ (Z).
The pertinence of the above concepts in the theory of Hartman-u.d. is re-
vealed by the following theorem, which is a counterpart to Theorem 5.4.

THEOREM 5.11. The sequence (w,) in the locally compact abelian group
G is Hartman-u.d. in G if and only if

N-ow N n=1

holds for every almost-periodic function f on G.

PROOF. If (z,)is Hartman-u.d. in G, then (p(2,)) is u.d. in G by Theorem
5.10. Thus, limy. , (1/N) 3_, g(p(®,)) = fg g dv holds for every g € €(G).
Now let fe &7(G); then, on ¢(G), the function fo ¢~ is identical with its
continuous extension g to G. Thus, we get g(p(x,)) = (f° g )(p(r,)) =
f(x,) for all n > 1. Consequently, limy,,, (1/N) Z‘,‘,':lf(:c,,) = fggdv =
M(f). For the converse, we use exactly the same ideas. We start out from an
arbitrary g € ¥(G). Then f = go ¢ defines an almost-periodic function on
G. By hypothesis, we get

N
lm—Zawm—m—zﬂm—Mm‘hm

N—w N— N

Hence, (¢(z,)) is u.d. in G, and an application of Theorem 5.10 completes
the proof. i

Existence of Hartman-Uniformly Distributed Sequences

THEOREM 5.12. The locally compact abelian group G admits a Hartman-
u.d. sequence if and only if card G < «.

PROOF. It is rather easy to see that the condition is necessary. For if (x,) is
Hartman-u.d. in G, then Theorem 5.10 implies that (¢(z,)) is u.d. in the
compact group G. In particular, G is separable. Since a character y of G is
determined by its values on a countable dense set in G and since y takes values
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in the set T of cardinality ¢, we have at most ¢® = ¢ characters of G. By the
construction of the Bohr compactification G, its dual is algebraically iso-
morphic to G. Thus, we arrive at card G < c.

The converse of our result is much harder to prove. It will be advantageous
to have the following special cases of two theorems of Kakutani [1, Theorems
1 and 3] available:

i. If card H < ¢ for a compact abelian group H, then card A < a (see also
Hewitt and Ross [1, (24.47)]).

ii. A compact abelian group H is separable if and only if card H# < ¢
(incidentally, we showed the “only if”” in the first part of the proof).

We first want to show that the hypothesis card G < ¢ implies that G is
separable. By Theorem 1.14, it suffices to consider a group G of the form
R* x H where the locally compact abelian group H contains a compact open
subgroup K. The quotient group Q = G/(R* x K) is discrete. Its compact
dual Q is topologically isomorphic to a subgroup of G; thus, card 0 < .
It follows from (i) that Q itself is countable. Moreover, the dual of the com-
pact group K is topologically isomorphic to a quotient group of H, and so,
card K < c. But then (ii) implies that K is separable. Evidently, R" is
separable, and so, the direct product R* x K is separable. Combining all
those results, we see that G can be written as the counteble union of the pair-
wise disjoint cosets of R" x K, all of which are separable. Hence, G itself is
separable.

Let now (y,) be a dense sequence in G. We shall use the elements of this
sequence to construct a Hartman-u.d. sequence in G. Consider the following
sequence (x,), whose law of construction will be described in detail:

YuY1Y2:Y1 Y2, Y1Ye?, Y1228 Y1¥2%, Y1028, 1i¥ets Y2t YaYelas ¥iYaYas Y1%YaYs,
L) ?/13%9%27, L) y1y2 v y'nu L) ylmy2m2 e ymm"‘, s

The sequence is built up from certain blocks that begin with 4,9, - - - y,, and
end with 4,™y,™" * - - y,,™". Let us describe the way in which such a block is
constructed for given m > 1. The terms of the mth block B,, are elements of
the form y,"1y,% - - - y,,% with the exponents g; satisfying 1 < a; < m? for
1 £ j < m. The exponent of y, runs in ascending order through the integers
from 1 to m and then cycles. The exponent of y, runs through the integers
from 1 to m?* in blocks of m and then cycles. In general, for 1 < j < m, the
exponent of ¥, runs through the integers from 1 to m? in blocks of m?*~1/2 and
then cycles. The mth block B,, has m™™+1/2 terms.
Let x be a given nontrivial character of G. We have to show that

1 N
lim — = 0.
Jim % 22
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Since (y,) is dense in G, the continuous function y cannot be identical to 1 for
allthey,. Letr > 1 be the smallest subscript such that x(y,) # 1. We consider
one of the above blocks B,, with m > r. Each element of B,, is of the form
Yo" yirty by ¢ -y, where b runs from I to m” in blocks of m’"—1/2
and then cycles. One such cycle for b has then a length of m""+1)/2, We divide
B,, into subblocks according to the cycles of b. The first cycle of b defines a
subblock C,,, of B,, (which is nothing else but the first m™"+1)/2 elements of
B,), the second cycle of b defines a subblock C,,, of B,, (comprising the next
m"r+1/% elements of B,,), and so on to the last subblock C,,, with s, =
mmmD/z=rir+0/2. Now let us look at the behavior of the exponents a; with
r < j < min such a subblock. We notice that such an g, attains its values in
blocks of length m?U=1/2 In other words, each value of a; is first repeated
m?=1/2 times before a; proceeds on to the next value. But note that j(j — 1)/2
> r(r + 1)/2 forj > r, and so the length m"™1)/2 of one of our subblocks
is a divisor of m?¥=1/2; this is an important motivation for the particular
choice of the sequence (%,). Consequently, the exponents a; with j > r are
simply constant on a fixed subblock Cm, with 1 <t < s,,. This makes it easy
to evaluate y at one of the terms @ = g, -+« yfrsty bylrar - - -y amof a given
subblock C,,,. We use that y(y,) =1for 1 <j<r—1, and that y I+ -
Y. is a fixed element z depending only on the subblock C,,,. Thus, x(z) =
x(y")x(?) for all terms « of C,,,. We shall mean by 3 ;.c, , a sum over all the
terms of C,,, (thus an element « occurs in the sum with the same multiplicity
with which it occurs in the block C,,), and by |C,,,|, the number of terms in
the block C,,,. Similar conventions will be employed for other blocks. Using
the behavior of the exponents b in a fixed block C,,,, we arrive at

> e )(

X(z) rnr(r —1)/2 b
|lel weCmt ‘ Icmtl z (yT )

r(r—l) /2 [m7™-1

> aw)Y| < 2m 7

l 2(y) — 11
Now we enumerate all the blocks C,,; in the same order as they occur in the

sequence (#,) from the block B, onward: D,, D,, D, . ... Since m eventu-
ally becomes arbitrarily large, (5.5) implies

(5.5)

r(r+1)/2

lim — 3 y(2) =

P 0 | | xeDp

To establish limy_, ,, (1/N) 3N, y(x,) = 0, we use Lemma 4.1 of Chapter 2.
It suffices then to show that

lim Dy =0, (5.6)
p2o [Dy| + 00 4 [ Dy
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We consider sufficiently large p. Let D,,, = C,, for some m > r + 2 and
1 S f S Sine Then)
| Dpyal |Conel _ m e

|D1| 4+ |Dp: - |Bm-1| - (’n _ 1)m(m~—1)/2 '
Letting p — oo (or, equivalently, m — o) in (5.7), we arrive at (5.6). [l

(5.7

COROLLARY 5.4, The compact abelian group G admits a u.d. sequence
if and only if G is separable.

PROOF. In the compact abelian group G, the notions of Hartman-u.d.
and u.d. are equivalent. Thus, Theorem 5.12, together with the auxiliary
result (ii) in the proof of this theorem, implies our assertion. [l

Many More Notions of Uniform Distribution

Let K be a compactification of the locally compact abelian group G with
natural homomorphisin ¢: G — K. We may call a sequence (z,) K-u.d. in G
if ((®,)) is u.d. in K. If I‘Ais the subgroup of G, equipped with the discrete
topology, for which K = I', then Lemma 5.4 implies that (x,) is K-u.d. in G
if and only if limy., ., (1/N) 21};1 2(x,) = 0 holds for all nontrivial characters
y € I'. Clearly, Hartman-u.d. is equivalent to G-u.d. Moreover, if G? isa
subgroup of @, then u.d. in G is equivalent to GP-u.d. If I separates the
points of G, then g is injective by Lemma 5.3; in this case, one can define a
complex-valued function f on G to be K-almost periodic if the function
f° ¢! on @(G) has a continuous extension to K. It is easy to see that every
K-almost periodic function is almost-periodic (see Exercise 5.20) and that
(x,) is K-u.d. if and only if limy_ ., (1/N) 32, f(x,) = M(f) holds for all
K-almost periodic functions fon G (see Exercise 5.21).

Notes

The general definition for u.d. in locally compact groups is from Rubel [1]. For two
special noncompact groups—namely, for G =Z and G = [R—the notion was already
studied earlier by Niven [2] and Cigler [6], respectively. In Cigler’s paper, our Theorem
5.11 was taken as the definition (note that by Example 5.11 u.d. and Hartman-u.d. are
equivalent for G = R).

For locally compact abelian groups, a satisfactory theory of u.d. was developed in a
joint paper by Berg, Rajagopalan, and Rubel [1]. Many results on periodic characters
that are closely related to the material in this section can be found in Berg and Rubel [2].
Let us report on some of the theorems that could not be accommodated here.

Most important, the following existence theorem holds for u.d. sequences in a locally

compact abelian group G: If card 6r < ¢, then G admits a u.d. sequence; if G? is a sub-
group of G and G admits a u.d. sequence, then card G? < ¢; for any cardinal number m,
there existsa locally compact abelian group G with card G? > m that admits a u.d.sequence.
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A necessary and sufficient condition can also be given, but it is not so satisfactory. The
group G is called K-separable if there exists a sequence (»,) in G such that, for every sub-
group H of G of compact index, the sequence (v,H)is dense in G/H. Then G admits a u.d.
sequence if and only if G is K-separable.

The following notion is useful. A D-compactification of G is a compactification X of G,
with natural homomorphism ¢: G +— K, such that (v,) is u.d. in G if and only if (p(x,))

is u.d. in K. Theorems 5.6 and 5.7 together show that whenever G?isa subgroup of é,
then G? is a D-compactification of G. In this case, G? is the only D-compactification of

G. If G¥ is not a subgroup of G, then there exists no D-compactification. Moreover,

G? is a subgroup of G if and only if either G is totally disconnected or every discrete
quotient group of G is a group of bounded order (some interesting relations between
topological groups and the algebraic property of bounded order in a group are presented
in Rudin [1, Section 2.5]). All those results are from Berg, Rajagopalan, and Rubel [1].

Some of the above results were generalized to arbitrary locally compact groups by
Benzinger [1]. A construction similar to that in the proof of Theorem 5.12 can be carried
out in the nonabelian case as well. In particular, Corollary 5.4 holds for arbitrary compact
groups. Using the theory of commutative Banach algebras, the author also introduces and
proves results about D-compactifications.

The notion of monogenic group was introduced by Rubel [1]. The discrete monogenic
groups were completely characterized by Rajagopalan and Rotman [1]. They showed
that a discrete monogenic group is the direct product of a divisible group with certain
pure subgroups of products of the form | [ peP C,, where P is a set of distinct primes and
C, is either a cyclic p-group or the group of p-adic integers. Moreover, a discrete abelian
group is monogenic if and only if it is monothetic in the Priifer (or n-adic) topology. A
complete characterization of all monogenic groups, and also of all topologically divisible
abelian groups, was given by Rajagopalan [1]. The results are too complicated to be
restated here.

The notion of Hartman-u.d. was first discussed by Hartman [4]. The intimate relation
to almost-periodic functions was already pointed out in this paper. The existence criterion
given in Theorem 5.12, together with the ingenious construction of a Hartman-u.d. sequence
reproduced in our proof, is again from Berg, Rajagopalan, and Rubel [1]. Zame [6] uses
a somewhat similar method in a related construction problem.

The universal monothetic Cantor group G;, which emerged in Example 5.9 as the
periodic compactification of Z, was studied in detail by van Dantzig [2]. For this matter,
see also Hewitt and Ross [1, (25.7)]. We note that results that are in the same spirit as
(i) and-(ii) in the proof of Theorem 5.12 can be found in Hartman and Hulanicki [1].

There is also a very fruitful measure-theoretic aspect in the theory of u.d. on locally
compact abelian groups. This viewpoint was explored by Berg and Rubel [1, 2] and Rubel
[2] and led to many interesting problems.

For a general survey of the theory of almost-periodic functions, see Maak [1]. A pre-
sentation whose spirit is closer to ours can be found in Loomis [1, Section 41] and Weil
[1, Sections 33-35].

Exercises

The symbol G always denotes a locally compact abelian group.
5.1. Give an example of a group G and subgroups H, and H, of G of com-
pact index such that H; N H, is not of compact index.
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5.2.
5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

Show that a bounded sequence cannot be u.d. in R.

Prove the following criterion: G is topologically divisible if and only if
G admits no nontrivial periodic character.

Prove that G is topologically divisible if and only if G is torsion-free
and contains only compact elements.

If G is topologically divisible, then every quotient group G/H is topo-
logically divisible, where H is a closed subgroup of G.

Prove that if the closed subgroup H of G contains the connected
component C of the identity in G, then G/H is totally disconnected.
Use Exercise 5.6 to prove the following: If the kernel H of a character
% of G contains C, then G/H is discrete, and so, y is periodic if and only
if G/H is finite. Prove also that if H does not contain C, then G/H is
topologically isomorphic to T, and so, yx is periodic.

Prove that every topologically divisible abelian group is totally dis-
connected.

Show the following characterization for periodic characters: The
character y of G is periodic if and only if the closed subgroup of G
generated by y is discrete.

If G is not totally disconnected, then G? generates G algebraically.
Thus, in this case, the periodic compactification G? is identical with the
Bohr compactification G.

Whenever G is a discrete group of bounded order (i.e., a torsion group
with a uniform bound on the order of its elements), then G is totally
disconnected.

Prove more generally that G is totally disconnected if and only if G is
totally disconnected and every discrete quotient group of G is of bounded
order.

The element € G is a monogenic generator of G if and onlyif y(x) # 1
for every nontrivial periodic character y of G.

If « is a monogenic generator of G, then xH is a monogenic generator
of G/H, where H is a closed subgroup of G.

Let H be a topologically divisible closed subgroup of G such that G/H
is monogenic. Prove that G itself is monogenic.

Suppose G is monogenic and G? is a subgroup of G. Then G? is iso-
morphic to a subgroup of T.

Let # € G be a monogenic generator of G. Then all powers a*, k =
1,2,..., are monogenic generators as well if and only if every com-
pact quotient group G/H is connected.

In the same situation as in Exercise 5.17, all powers2*, k =1,2,...,
are monogenic generators of G if and only if every discrete subgroup of
G is torsion-free.

Prove that every character of G is an almost-periodic function on G.
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5.20.

5.21.

5.22.

5.23.

5.24.

5.25.

5.26.

5.27.

5.28.

5.29.

5.30.
5.31.
5.32.

UNIFORM DISTRIBUTION IN TOPOLOGICAL GROUPS

Let K = I' be a compactification of G with I separating the points of
G. Prove that every K-almost periodic function on G is almost-periodic,
Let K be as in Exercise 5.20. Show that (»,) is K-u.d. in G if and only if
limy. o (1/N) 3%, f(2,) = M(f) holds for every K-almost periodic
function f on G.

Show that every continuous periodic function on G is almost-periodic.
Verify the following identity for continuous periodic functions f on
G: M(f)= | fdu.

If the compactification K of G is a quotient group of the compactifica-
tion L of G, then every L-u.d. sequence in G is K-u.d. in G.

Let K = I' be a compactification of G with a closed subgroup I of G.
Prove the following existence theorem for K-u.d.: If card I' < ¢, then
G admits K-u.d. sequences.

Let K = I" be a compactification of G. We say that G is K-monogenic
if there exists a sequence of the form (¢") in G that is K-u.d. in G. Prove
that if G is K-monogenic, then I is isomorphic to a subgroup of T.
Consider the same situation as in Exercise 5.26. Give additional con-
ditions on I' that guarantee that G is K-monogenic if and only if I' (in
the relative topology of G) is topologically isomorphic to a subgroup of
T.

Prove that Z is Z-monogenic by showing that the sequence of positive
integers is Hartman-u.d. in Z.

Call a sequence (x,) in G well distributed in G if (x, H) is well distributed
in G/H for every subgroup H of G of compact index. Show that this isa
natural generalization of the concept of well-distributivity in compact
groups.

Exhibit a well-distributed sequence in Z.

Exhibit some well-distributed sequences in R.

Let 2 be a monogenic generator of G. Prove that the sequence (z") is
well distributed in G.



SEQUENCES OF
INTEGERS AND
POLYNOMIALS

In this chapter, we are concerned with the distribution of sequences in special
domains, such as the ring of rational integers, rings of p-adic integers, and
polynomial rings over finite fields. The general theory developed in Chapter 4
applies to many of these cases, but for the most part our exposition will be
independent of that chapter.

1. UNIFORM DISTRIBUTION OF INTEGERS

Basic Properties

Let (a,), n=1,2,..., be a sequence of rational integers. For integers
N2> 1, m>2, and j, define A(j, m,N) as the number of terms among a;,
a,, . .. , ay that satisfy the congruence a; = j(mod m).

DerINITION 1.1, The sequence (a,) is said to be uniformly distributed modulo
m (u.d. mod m) in case

i AG 1, N) 1

N-w N m

and (a,) is said to be uniformly distributed in Z (u.d. in Z) if (1.1) is satisfied
for every integer m > 2.

forj=1,2,...,m, (1.1)

305
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This definition is, of course, a special case of Definition 5.2 of Chapter 4
(compare with Example 5.1 of Chapter 4). It is easily seen that a sequence
that is u.d. mod m is also u.d. mod k whenever k > 2 is a divisor of m (see
Exercise 1.1). On the other hand, the periodic sequence 0, 1,...,m — 1,
0,1,...,m—1,...is an example of a sequence that is u.d. mod m but
not u.d. mod k if k does not divide m. We also have the following result.

THEOREM 1.1. There is a sequence (a,) of integers that is not u.d. inZ
but is u.d. mod p* for every prime p and every integer o > 1.

PROOF. We prove even more. Forn > 1, definea, = nifn=0,1,2,0r5
(mod 6), a, =n — 2 if n =3 (mod 6), and a, = n + 2 if n = 4 (mod 6).
Then (a,) is u.d. mod m for all m > 2 that are not divisible by 6. But (a,) is
not u.d. mod 6. |l

A Weyl criterion for u.d. mod m follows from Corollary 1.2 and Example
1.4 of Chapter 4. The criterion may also be verified directly by using ele-
mentary arguments (see Exercise 1.6).

THEOREM 1.2. Let (a,) be a sequence of integers. A necessary and suffi-
cient condition that (a,) be u.d. mod m is that

N .
lim £ Sémmam =0 forh=1,2...,m—1  (1.2)
Now N a2t

COROLLARY 1.1. A necessary and sufficient condition that (a,) be u.d.
inZ is that

N .
lim L Se*™ =0  for all rational numbers ¢ ¢ Z. (1.3)
N-w n=1

Restriction to increasing sequences (a,) of positive integers leads to an
alternative definition of u.d. mod m. Let 4*(j, m, N) be the number of terms
of (a,) that satisfy the conditions a;, < N and a, = j(mod m). Let A(N) be
the number of terms g, satisfying @, < N. Then the equivalent of (1.1) is

A*(j,m,N) 1
m—""""" = =

forj=1,2,...,m. 1.4
N-ow A(N) m g (14)

We remark that limy_,,, A(N)/N is called the lower (asymptotic) density of the
sequence (a,,).

THEOREM 1.3. Let (a,) be an increasing sequence of positive integers

whose complement (a,) with respect to the positive integers, arranged in
increasing order, has positive lower density. Then if (a,) is u.d. mod m, so is

(@,).
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PROOF. First we have

A*G,m, N) + AGom N =2 4o, <1, (L5)
m

where bars refer to the complementary sequence (a,). Since A(N) + A(N) =
N, we get from (1.5),

A*(, m,N)(1 _ A"(N)) LG m, N) AN) 1 o«

A(N) N A(N) N m N’

or
A‘(N)(A'*(j, m, N) _ A*(, m,N)) _1_AUmN) o
N A(N) AN) | m A(N) N

Now let N — oo. Then the right-hand side of (1.6) goes to zero, and since
limy. A(N)|N is positive, we see that

. A*G,m,N) 1
lim —2—— = =,
Now  A(N) m u

Uniform Distribution in Z and Uniform Distribution Mod 1

THEOREM 14. Let (x,), n=1,2,..., be a sequence of real numbers
such that the sequence (x,/m) is u.d. mod 1 for all integers m > 2. Then the
sequence ([,]) of integral parts is u.d. in Z.

PROOF. For fixed m > 2 and for j with 0 <j < m — 1, the relation
[+,] =j (modm) is equivalent to jim < {x,/m} < (j + 1)/m. Hence,
A(j, m, N) = A([j[m, (j + 1)/m); N), where the second counting function
refers to the sequence (2,/m). Since (x,/m) is u.d. mod 1, we get

i A0 m, N) . AQm, G+ D/m); N) L
N-o N Now N m
forallj=0,1,...,m — 1. Thus, ([%,]) is u.d. mod m forallm > 2. |

Theorem 1.4 is a powerful result. By means of this theorem we can find a

great variety of u.d. sequences of integers. We mention the following applica-
tions.

EXAMPLE 1.1. The sequence ([f(#)]) is u.d. inZ in each of the following
cases:

L f(t) = ogt® + oyt 4+ - -+ 4 oyt + o, is a polynomial over R with
at least one of the coefficients o;, i > 1, being irrational (see Chapter 1,
Theorem 3.2).
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ii. f(9), t > 1, is a real-valued differentiable function with f'(¢) ] 0 and
tf'(t) — oo as t - o (see Chapter 1, Corollary 2.1).

iii. f(#), t > 0, has a continuous derivative with f'(¢) log t — C, a positive
constant, as t — oo (see Chapter 1, Theorem 9.8). i

THEOREM 1.5. For 0 € R, the sequence ([10]) is u.d. in Z if and only if
6 is irrational or 8 = 1/d for some nonzero integer d.

PROOF. For irrational 8, Example 1.1, part (i), yields the desired conclu-
sion. Now let § 5 0 be rational, say 8 = a/b with (a,b) = 1 and b > 1. We
note that the sequence ([na/b]) is periodic mod [a| with period b. Thus, if
([na/b)) is u.d. inZ, then |a| must divide b. Together with (a, b)) = 1 we get
a = £1. On the other hand, it is easily seen that the sequence ([n/d]) is u.d.
inZ for every nonzero integer d. i

COROLLARY 1.2. If @ is irrational, |6 < 1, then the following sequence
(a,) is u.d. in Z: Take all positive integers a, such that there is an integer
between 0a, and 6(a, + 1), and arrange them in increasing order.

PROOF. 1t suffices to prove this for 6 > 0. Let b, be an integer with
fa, < b, < 8(a, + 1). Then a, < 5,07 < a, + 1, or a, = [b,67]. More-
over, 6 < 1 implies that b, = n, since there is always a multiple of 6 between
two consecutive nonnegative integers. The rest follows from Theorem 1.5. i

Another theorem that reveals the close relation between u.d. mod 1 and
u.d. of integers is the following.

THEOREM 1.6. The sequence (z,) in R is u.d. mod 1 if and only if the
sequence ([mz,]) is u.d. mod m for all integers m 2> 2.

PROOF. Asin the proof of Theorem 1.4, the u.d. mod 1 of (x,) implies the
u.d. mod m of ([mz,]). Conversely, if ([m=z,]) is u.d. mod m, we get by the
same arguments that

im A(j, m, N) _ 1

i ALiIm, ( + D[m); N3 (2,)) _ .
N—-ow N N-oow N m

for all j=0,1,...,m — 1. Letting m run through all the integers > 2, it
follows that

i Al B3 N3 () _
N—ow N

B —
holds for all subintervals [, £) of the unit interval with rational end points.

By Exercise 1.3 of Chapter 1 the proof is complete. [}

The set X of u.d. sequences of positive integers contains as members all
sequences ([#0]) with 6 irrational and > 1, so X has at least cardinality ¢ of
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the continuum. Since X is a subset of the set of all sequences of positive
integers, & has cardinality ¢. The sequences that are not u.d. in Z have also
cardinality ¢, for if (a,) is u.d. inZ, then (ma,), m > 2, is not u.d. mod m,
and distinct sequences (a,,) yield distinct sequences (ma,,).

EXAMPLE 1.2. Every increasing sequence (a,), n = 1, 2, ..., of positive
integers can be mapped onto an infinite decimal in the binary system, with a
digit 0 in the position a, and 1 elsewhere. In this way we obtain a one-to-one
correspondernce between increasing sequences of positive integers and the real
numbers @ with 0 < & < 1, expressed in the binary system. But if « is normal
to base 2, then the corresponding (a,,) is u.d. inZ, and moreover, almost all
numbers are normal to base 2. Hence, in the sense of the above mapping,
almost all increasing sequences of positive integers are u.d. inZ. i

THEOREM 1.7. Let the sequence (a,) of integers be u.d. in Z. Then the
sequence (a,) is almost u.d. mod 1 for almost all real numbers a.

PROOF. Itsuffices to consider 0 < o < 1. Let B(k) be the number of terms
a,, | < n < N, that are equal to k. Then

A(j,m,N)y= Y  B(k).
. k=4(mod m)
For integers ' #0, we have

1
f z 2niha,a
N n=1

Given any real number ¢, 0 < & < 1, we choose an integer m such that
5e=1 < m < 25(4¢)7L. For sufficiently large N we have

2rihka

“do = ;1’—2 3 5. (L)

’M_l <§ forj=1,2,...,m.

N m
Then

m m

Y Bk) <Z 1 . (4@, m, N))®

Nz; =1 k=j(mod m)

—232(/)

m

4¢*

<m—<es 1.8

< z (m 5) ' 25 (1.8)
Thus, according to (1.7) and (1.8), we have

lim ZZ—MIJ ze%ma «
N-oowo h#0 0

11 1
Because of Fatou’s lemma, we obtain

1
f lim ( zz—lhl zezmha @
0 Noyoo \RF#O

an

2

) do =0,
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and therefore, for almost all o, there exists a sequence of positive integers
N, < N, < - -+, which may depend on «, such that

N;
lim L Y et = 0 for all h # 0.

’L—'(I)N n=1

This proves the theorem. [J§

For special sequences (a,) of integers, one may characterize the real
numbers o for which (a,) is u.d. mod 1, as is done in the following theorem,

THEOREM 1.8. For rational 8, the sequence ([nf]n), n=1,2,..., is
u.d. mod 1 either for all irrationals o or for no real number o, depending on
whether 8 # 0 or 6 = 0. If 6 is irrational, then ([#0]o),n = 1,2,...,isu.d.
mod 1 if and only if 1, 6, e are linearly independent over the rationals.

PROOF. The case 8 = 0 being trivial, we suppose § = rfs where s > 1
and r # Oare integers. Let o be any irrational number. Given N > s, put
M = [N/s]. With exp (x) = ¢*"** for 2 € R, we get for each integer h 7 0,

Ms

gexp (h[nblx) = Eexp (hnr/s]e) + O(1)

=1

M-1 s

= > Eexp (hl(ks + m)r/sle) + O(1)

k=0 m=1

M-—-1

= E exp (h[mr/s]e) E exp (hkra) 4+ O(1).

Now hro is irrational, so

Milexp (khre) = exp (Mhre) — 1
exp (hre) — 1

Therefore, EN 1€xp (h[nBle) = O(1) for all integers 41 % 0, and so, by the
Weyl criterion for u.d. mod 1, we are done.

Now let 8 be irrational, and suppose first that 1, 6, 6« are linearly depen-
dent over the rationals. There exist integers u, v, w, not all zero, such that
u + v6 = who.. Note that w % 0, since 6 is irrational. In order to prove that
([n6]e) is not u.d. mod 1, it suffices to show that

= O(1).

lim % S exp (WnBlos) 5 0. (1.9)

N-o n=1
Using the linear dependence relation, we get
exp (w[nb]o) = exp (n(who) — winb}e) = exp (n(u + v6) — winb}a)
= exp (v(n0) — w{nb}e) = exp ((v — wa){nb}) = g(nb),
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where g(x) = exp ((v — we){z}) for x € R. Clearly, g is periodic mod 1.
Since (), n =1,2,...,is u.d. mod 1, we have

lim — Zexp (w[nble) = 11m = Zg(n(i) (1g(w) dx

N-w n=1

by Corollary 1.1 of Chapter 1. But

exp (v — wa) — 1

[)g(w) dx =L16Xp ((v — w)z) do = £0,

27i(v — wa)
which proves (1.9).

Finally, suppose that 1, 8, 0« are linearly independent over the rationals.
For each nonzero integer /1, we shall show that

lim — Zexp (h[n0]e) = 0. (1.10)
N-wo N a=1

We have
exp (h[nflo) = exp (h(nbo) — h{nb}a) = f(nb, nba),

where f (x, ) = exp (hy — h{z}o) for (z, y) € R Note that f is periodic mod

1 in each variable. Since ((n0, nfe)), n =1,2,...,is u.d. mod 1 in R2
we have
1rm
lim E zeXp (h[n]«) = hm = z f(n8, nbo) = f f(z,y)dzdy
N-o® n=1 0

by Exercise 6.3 of Chapter 1. Since the above double integral is zero, (1.10)
is established. i}

Sequences of Polynomial Values

Let f(¥) be a polynomial with integral coefficients. A useful observation is
that the question whether or not the sequence (f(n)), n =1,2,...,is u.d.
mod m is equivalent to the question whether or not the integers £ (1), (2), - . .,
f (m) constitute a complete residue system mod m. Let us first consider mono-
mials axz* with a % 0 and k > 1. Obviously, if k = 1, the sequence (an),
n=1,2,..., is u.d. mod m if and only if (¢, m) = 1.

THEOREM 1.9. Let p be a prime and let k& > 1. Determine the integer K
by the conditions k = p*K and (p, K) = 1. Then (an*), n=1,2,..., s
u.d. mod p if and only if (a,p) = (K, p — 1) = L.

PROOF. Let (an*) be u.d. mod p. Then first (a, p) = 1. Moreover, for any

integer =, we have 2% = 2?"% and 2?"® = 2 (mod p) by Fermat’s theorem.
Let (b, p) = 1. Then 2™ = b (mod p) has (K, p ~ 1) incongruent solutions
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or no solution depending on whether

pP-VIIK 1) = 1 (mod p) (1.11)

or not. Now (1.11) s satisfied by & = 1. Thus, the congruence 2% = 1 (mod p)
has (K, p — 1) incongruent solutions and therefore the congruence aa* =
a(mod p) has (K,p — 1) incongruent solutions. But according to our
assumption, ax* = a(mod p) has only one solution; hence, (K,p — 1) = 1,

Now we shall show the sufficiency of the condition. Suppose (a, p) =
(K,p — 1) = 1. Then, (1.11) is true foreach b = 1,2,...,p — 1. To each
such b there corresponds a unique », 0 < @ < p, with 2* = b(mod p). It
follows that the sequence (an*) is u.d. mod p.

COROLLARY 1.3. For &k > 2, there are infinitely many primes p such
that (@n*), n = 1,2, ...,1is not u.d. mod p.

PROOF. Let g be any prime such that q[ k. The arithmetic progression
1 +¢,1+ 2q,... contains an infinite number of primes. Let p be any such
prime with p > k. Then ¢ is a divisor of p — 1. Thus, (k,p — 1) > 1 and
according to Theorem 1.9 the sequence (an®) is not u.d. mod p. Obviously
there are infinitely many primes of the required type. [l

COROLLARY 14. If £k > 1 and odd, then there exist infinitely many
primes p such that (an*),n =1,2,...,is u.d. mod p.

PROOF. We have (2,k) = 1. Then the arithmetic progression 2 -+ £k,
2 + 2k, . .. contains an infinite number of primes. Let p = 2 + mk be any
such prime with p > |a. If dis a divisor of p — 1 = 1 + mk and if d is also
a divisor of k, then d must be a divisor of 1. Hence, (k, p — 1) = 1 and by
Theorem 1.9 we see that (an*) is u.d. mod p. Clearly there are infinitely many
primes of that type. i}

THEOREM 1.10. For k > 2, the sequence (an*), n =1,2,..., is u.d.
mod m if and only if m is square-free and (an*) is u.d. mod p for each prime
divisor p of m.

PROOF. Set f(n) = an®*. Let m be square-free, say, m = p, -+ - p, with
distinct primes p,, . . . , p,, and suppose (f(n)) is u.d. mod p, for 1 <i < r.
If f(x) = f(y) (mod m) with 1 <w, y < m, then f(z) = f(y) (mod p;) for
1 <i<r, and so, 2 = y(mod p;) for 1 <7 < r. It follows that x = y;
therefore, (f(n)) is u.d. mod m.

Conversely, suppose (f(1)) is u.d. mod m. Assume that there exists a prime
p with p? | m. Since (f(n)) is u.d. mod p, we must have (a, p) = 1. But then
the congruence ax* = p(mod p?) is not solvable for z, a contradiction to the
fact that (f(n)) should be u.d. mod p® Thus, m must be square-free, and of
course (f(#)) is u.d. modulo every prime divisor of m. ||
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We mention the following result concerning arbitrary polynomials over Z.

THEOREM 1.11. Let f(x) be any polynomial with integer coefficients.
Then:

i. The sequence (f(m),n =1,2,...,is ud. inZ if and only if f(2) is of
the form 2 + c.

ii. If f(2) is not linear, then there are infinitely many primes p for which
(/@) is not u.d. mod p.

PROOF. We first show (ii). The case of constant polynomials being trivial,
assume that f () has degree at least 2. Since (f(n)) and (f(n) — f(0)) behave
the same way, it suffices to consider F(x) = f(x) — f(0). If F(x) is a mono-
mial, then we are done by Corollary 1.3. If F(x) is not a monomial, write
F(x) = 2ig(x) with j > 1 and

g@) =a, + ayx + -+ - + a2k, k>1,a,#0,a,#0.

Now for any such nonconstant polynomial g(x) there are infinitely many
primes p such that g(z) = 0 (mod p) is solvable (see Exercise 1.14). Choose
such a prime p > |g|, and let » be an integer such that g(r) = 0 (mod p).
Then r # 0 (mod p), since g(0) = g, # 0 (mod p). Hence, F(z) = 0 (mod p)
has solutions ¥ = r (mod p) and # = 0 (inod p), and therefore, (F(n)) is not
u.d. mod p.

By (ii), only sequences (f(#)) with linear f(2) can be u.d. in Z. Now the
sequence (an + ¢), n = 1,2, ..., is u.d. mod m if and only if (a, m) = 1.
Hence, if f(z) is of the foim ax + ¢, then (f(»)) is u.d. inZ if and only if

a==+1. I}

Measure-Theoretic Approach

Making use of the so-called measure u of Banach-Buck on the set Z* of
positive integers, the above theory can be extended in the following sense.
Let & be the algebra generated by all finite subsets of Z+ and all subsets of
Z* that are arithmetic progressions. If £ < Z+ and F is finite, then define
W(E) = 0;if E < Z* is an arithmetic progression with common difference d,
then u(E) = 1/d,andif A € #, Be Z,and A N Bis finite, then u(4 U B) =
u(4) + u(B). Let & be the class of all subsets of Z*; then we define an outer
measure 4* on & by

p*(E) = inf {u(H): E < He @},

where E & H means E\C & H\C for some finite C < Z*, Let E’ denote the
complement of E with respect to Z*. Let .# be the class of all sets E€ &
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such that
w¥X) = pu*(X NE)+ pu*(X N E for all X e &.

Then p* is a finitely additive measure on A, Z < A, and pu*(E) = w(E)
for E € . Call . the set of all measurable sets of Z+ and write u(E) instead
of u*(E)for Ec 4.

THEOREM 1.12. (i) Let 4 = (a,) be a sequence of positive integers u.d.in
Z, Then u*(A4) = 1. (ii) Conversely, let A = (a,) be an increasing sequence

of positive integers. If A is measurable and y(4) = 1, then the sequence (a,,) is
ud. in Z

PROOF. (i) If the sequence (a,) is u.d. in Z, then

lim = Zcﬂ(a,,) = w(E)

V— o0 n=1

for all E € Z, and conversely. (Here ¢y denotes the characteristic function of
the set E.) Because of the structure of % the equivalence of both definitions
of u.d. is quite obvious. If 4 < H and He Z, then A < H U C for some
finite set C, Ce &, u(C) = 0, and

1=1lim = ZCA((I") < lim Ly ZCH((I,,) + lnn = ZCC(a,,)
N-ow n=1 N-wo N p=1 =1
= u(H) + u(C) = u(H).
Since u(H) < 1 it follows that u(H) = 1, and hence, 4 has outer measure 1.
This establishes part (i).
(ii) Let m, j be integers such that m > 2,0 < j < m, and let F ={n € Z*:
n = j (mod m)}. Then

N

ZCFnA(") + zcrnA (n) =— Z"’r(n) = + o(1) (1.12)

7l~1 71 =1 n=1

as N — oo,
If a, < N < ap,;, then A(N), the number of terms a, with a, < N, is
equal to k, and hence

A(N) - A(j, m, k)

= . 1.13
N ZlanA(r 1) = Nk (1.13)
Moreover,
1 X 1 X A(N)
0< — e (n) < — (n=1—-— 1.14
< N n§=:1CFnA (n) <L N ;::1‘&1 (n) N ( )

Now it is known that for any set £ with a density D(E) = lim,,_,,, E(n)/n,
we have D(E) < p*(E) < 1 and that in case E is measurable, we have the
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existence of D(E) and the relation D(E) = u(E) (see Buck [1, p. 572)).
Hence, since A4 is measurable and u(4) = 1, we have limy_, , A(N)/N = 1,
and so, from (1.12), (1.13), and (1.14), we obtain the relation

lim AGsm k) 1 N

k- k m

EXAMPLE 1.3. The condition in Theorem 1.12, part (ii), that the sequence
(a,) be increasing cannot be omitted as is shown by the following example:
Setay,, =nanda,, ;,=1,n=1,2,...;then A = Z+* and u(Z*) = 1, but
obviously the sequence is not u.d. in Z. Furthermore, theconditionin (ii) that
A be measurable with u(4) = 1 cannot be weakened to u*(4) =1, as is
shown by the following example: Let o be irrational and > 1. Set b, = [na],
then B = (b,) is u.d. in Z by Theorem 1.5, and as can be shown, B has outer
measure 1 (see Buck [1, p. 570]). Let A = B U {2n: n € Z+*}, and let (a,)
be the increasing sequence consisting of all elements of A. Then evidently
u*(4) = 1, but the sequence (a,,) is not u.d. mod 2, for if [Na] = ay,, then
A, 2, k(N)) = £N + o(N) and A(0, 2, k(N)) = N« + o(N) as N — co.
Furthermore A(l, 2, k(N)) + A(0, 2, k(N)) = k(N), so that

Z\llirn AL 2, k(N)kN)= (1 + o). i

Independence

Let m be an integer >2. Let (f(n)) be a sequence of integers all reduced mod
m,or0 <L f(n) <m—1forn > 1. Let A(j, m, N) have the usual meaning.
If h(j) = limy., ., A(j, m, N)/N exists for every j =0,1,...,m — 1, then
the sequence (f(n)) is said to be relatively measurable. 1t is easy to see that if
the sequence (f(n)) is relatively measurable, then the mean value

N

M(f) =1lim = 3 f(n)

I
N-w N a=1

of the sequence (f(n)) exists.

Now let (/,(n), (fa()), ..., (fi(n)) be k relatively measurable sequences
all reduced mod m. Let j,, j,, . . . ,J; be k integers with 0 < j, < mforl <
r < k. The sequences (fi(n), (f2(m), . .., (fi(m) are called independent if
the limit

h(js, -5 dw)

.1 . , .
=21,1m Ncard {n: fl(") =]1,f2(n) = Jas e ,fk(n) = Jis 1 S n S N}
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exists and if, moreover,
h(j, -y Je) = MODR() - I

for all (jy,...,J.). Here h.j,) refers to the sequence (f,(m), 1 <r <k,
There is a criterion for the independence of k sequences of integers reduced
mod . First, the notion of mean value M(f) can be extended to more general
sequences. We have then the property that the relatively measurable sequences

(i), (fo(m), . .., (fx(n) are independent if and only if

M(eZﬂi(hlf1+h2f2+---+hkfk)/m) — ﬁ M(eZ”“'rfr/’")
r=1
for all integers /iy, iy, ..., I With 0 < h, < mfor 1 < r < k. In the follow-
ing, we present some examples of how the notion of independence can be used
in the theory of u.d. mod m.

EXAMPLE 1.4. Let the sequences (f;(n), (fo(m), ..., (fi()), all reduced
mod m, be independent. Suppose that the sequence (f1(n)) is u.d. mod m.
Then the sequence (hy fi(1) + hy fo(n) + -+ + Iy fy(n)) is u.d. mod m when-
ever h,€ Z for 1 < r < k and (hy, m) = 1. See Exercise 1.18. [}

EXAMPLE 1.5. Let (a,) and (b,) be two sequences of integers, both re-
duced mod m. Then the sequence (a, + mb,) is u.d. mod m? if and only if
simultaneously: (i) (a,), (b,) are u.d. mod m; (ii) (a,) and (b,) are inde-
pendent. See Exercise 1.19. [l

Measurable Functions

Let f(t) be a real-valued function with [0, 00) as its domain and Lebesgue
measurable on each interval [0, T], T > 0. Let m > 2 be an integer, let
[f(t)],. denote the greatest muitiple of m less than, or equal to, f(¢) and
set {f(1)}., = f(t) — [f(t)],.. Let A(E) denote the Lebesgue measure of a
Lebesgue-measurable set E. By E(T) we denote the intersection £ N [0, T].
In the following, we consider the m sets

Ey={tel0, ) j< (O <j+1} j=0,1,...,m—1

DeriNITION 1.2, The function f'(¢) is said to be c.u.d. mod m if for every j =
0,1,...,m—1,

lim L AE,(T) =+

T T m
If these relations hold for every m = 2, 3, . .., then f(¢) is said to be c.u.d. in
Y/
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THEOREM 1.13. Let the function f(s) be cu.d. in Z. Let w(u) be a
Riemann-integrable function on [0, 1]. Then

lim lim* }L w({f (D },u/m) dt —f w(u) du, (1.15)

m-w Tow

where lim* means lim or lim.

PROOF. Let W(t) denote the integrand of the integral on the left-hand side
of (1.15). We have

T m—1
f wdt =Y W() dt.
0 =0 JE,(T)

Let W*(j, T)denote the supremum of W(f)in the domain E;(T), and W, (j, T)
its infimum in E,(T). Then we have

m-1 2B (T 1 T 7"12E T *
é_%@w*(j,T)g;L W(t)dtsz ( ())W(J',T)-

Now let T'— oo. Let W*(j) denote the supremum of W(¢) in E; and let w*(j)
denote the supremum of w(u) in the interval [j/m, (j + 1)/m). Let W, (j) and
Wy (j) have similar meanings. Taking into account that f(¢) is c.u.d. inZ, we
see that the above inequalities lead to

"ilw*(j)/m mi W.(j)/m < lim — f W(t) dt
=0 T—)(x)
< lim —f W(t) dt mle*(])/m mE_: w () m.
T—*w

According to the definition of the Riemann integral, the extreme members
of the above inequalities tend to [§w(u) duas m— . |l

Notes

The notions of u.d. mod 1 and u.d. in Z are from Niven [2] (see also Niven [4]). Zame
[6] has a generalization of Theorem 1.1. For Theorem 1.2 see Niven [2], who has a partial
result, and S. Uchiyama [1] and Kuipers [12]. We refer also to Exercise 1.6. Various results
relating u.d. in Z with density were established by Niven [2] (see Theorem 1.3), Vanden
Eynden [1], Dijksma and Meijer [1] (see Exercise 1.17), Kelly [1], and Carlson [L]. The
latter author proved the following interesting theorem: Suppose 0 < o < B < 1; then
there is an increasing sequence of positive integers that is u.d. in Z and that has lower
asymptotic density « and upper asymptotic density 8. For Theorems 1.4 and 1.6 see Vanden
Eynden [1]. Theorem 1.5 and Corollary 1.2 were shown by Niven [2]. See also Niven
[3, pp. 27-28]. Theorem 1.7 is from Kuipers and Uchiyama [1], who corrected a statement
of S. Uchiyama [1]. It should be noted that Meijer and Sattler [1] constructed a sequence
(b,) of integers such that (b,) is u.d. in Z and (b,a) is not u.d. mod 1 for all « in a set
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V < [0, 1] with Lebesgue measure A(V) = 1. This improves an earlier result of Meijer [4],
Theorem 1.8 is from Carlson [1], who also studies sequences ([P(n)]e) with a polynomial
P(xz) over R. Sequences of polynomial values were investigated by Niven [2], Zane [1],
and Cavior [1]. Theorem 1.12 is from Dijksma and Meijer [1], who corrected an earlier
version by M. and S. Uchiyama [1]. The measure 1 on Z+ was introduced by Buck [1].
The sections on independence and on measurable functions are based on the work of
Kuipers and Shiue [5] and Kuipers [8], respectively.

The Fibonacci sequence and its generalizations were investigated with respect to u.d.
by Kuipers and Shiue [1, 2, 3, 4] and Niederreiter [7]. For sequences arising from g-adic
expansions, see Kuipers and Shiue [5] and Carlson [1]. The distribution mod m of integer-
valued additive functions was studied by Delange [1, 2, 5, 8, 11]. Veech [1, 2, 4] and Hlawka
[27] discuss u.d. mod m of counting functions. For sequences of integral parts of exponential
sequences, see Forman and Shapiro [1] and Shapiro and Sparer [1]. A notion of weak

14

u.d. mod m was introduced by Narkiewicz [1]. See also Sliwa [1] and S. Uchiyama [3]. For
““irregularities of distribution”, see Hodges [4] (his results can be improved using Schmidt’s
lower bounds in Section 2 of Chapter 2). U.d. mod  with respect to summation methods is
discussed in Schnabl [1]. Metric results for u.d. in Z were shown by Chauvineau [4, 6]. A
notion of Hartman-u.d. in Z (see Chapter 4, Example 5.11) with uniformity condition was
studied by Veech [4]. The theory of u.d. in Z¥, the additive group of k-dimensional lattice
points, was developed by Niederreiter [8, 12]. In particular, a multidimensional version of
Theorem 1.5 is established in these papers.

Exercises

1.1. If a sequence of integers is u.d. mod m and if k | m and k > 2, then the
sequence is also u.d. mod k.

1.2. If a sequence of integers is u.d. mod m and u.d. mod k with (m, k) =
1, then the sequence is not necessarily u.d. mod mk.

1.3. If a sequence of integers is not u.d. inZ, then there are infinitely many
moduli m for which the sequence is not u.d. mod m.

1.4. Let both sequences (a,) and (b,) be u.d. mod m. Then the sequence
(a,b,) is not u.d. mod m2

1.5. For a sequence (a,) in Z, prove that

m-1|1 XN ihap/m 2 ml(A(j, m, N 1\2
S |= S = m ((]—) - —) forevery N > 1.
=1t | N aZ1 j=0 N m

1.6. Deduce Theorem 1.2 from Exercise 1.5.

1.7. Prove the equivalence of (1.1) and (1.4) for increasing sequences of
positive integers.

1.8. Prove statements (i)—(iii) in Example 1.1.

1.9. The sequence of the integral parts of the logarithms of the Fibonacci
numbers is u.d. inZ (compare with Exercise 3.3 of Chapter 1).

1.10. For ¢ > 0, o ¢ Z, prove that the sequence (a,), n =1, 2, ..., defined

by a, = [n°%], is u.d. inZ for every real number  # 0.
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1.11. Show that in the sufficiency part of Theorem 1.6, we need only assume
that ([mx,]) is u.d. mod m for infinitely many m > 2.

1.12. See Example 1.2. Prove in detail that if « is normal to base 2, then the
corresponding (a,) is u.d. in Z.

1.13. Does the converse of the statement in Exercise 1.12 hold?

1.14. Prove that every nonconstant polynomial f'(z) with integral coefficients
has infinitely many prime divisors, that is, that there exist infinitely
many primes p such that f(x) = 0(mod p) is solvable. Hint: Proceed as
in Euclid’s proof of the infinitude of primes.

1.15. Let f (=) be a polynomial with integral coefficients. If (f(»)) is u.d. mod
m and u.d. mod k with (m, k) = 1, then (f(»)) is u.d. mod mk. Com-
pare with Exercise 1.2.

16. Show that the measure 4 on Z* is not g-additive.
7. Let 4 = (a,) be an increasing sequence of positive integers. Prove that
if A has density D(4) = 1, then (a,) is u.d. in Z.

1.18. Prove the result enunciated in Example 1.4. Hint: Use the criterion for
independence.

1.19. Prove the result enunciated in Example 1.5. Hint: Use elementary
counting arguments.

1.20. If the sequence (¥,/m), n = 1,2,...,is u.d. mod 1, then the sequence
([,]) is u.d. mod m.

1.21. For any m > 2, the function log (¢ + 1),z > 0, is not c.u.d. mod m.

1.22. Let the function f'(¢), # > 0, be c.u.d. mod m and let w(u) be defined at
the points 4 = jim, j=0,1,...,m — 1. Then,

. 1 T 1 m—1 .
lim —f w([{f(O)}ulm) dt = = 3 w(j/m).
70 T Jo m j=0
1.23. The function f(¢), ¢ > 0, is c.u.d. mod m if and only if

T
lim L f 2rilithadim g — forh=1,2,...,m—1,
T-0 T Jo

1.24. Prove that Theorem 1.7 remains true if (a,) is u.d. mod m for infinitely
many m > 2.

2. ASYMPTOTIC DISTRIBUTION IN Z,

Definitions and Important Properties

Let p be a prime number. Let Z, be the ring of p-adic integers. Let (%,),

=1,2,..., be a sequence of elements of Z , and let E be a subset of Z,.
Let A(E; N) denote the number of elements among 2, ..., xy that are
contained in E. Let %/ be the algebra of finite unions of open spheres in Z,,
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DEefINITION 2.1, If for every E € &/ the limiting value

ﬂm=mﬂ5@

N-w

exists, then the sequence (z,) is said to have the distribution function y.

The function y is a g-additive set function on &7 with y(Z,) = 1 (compare
with Exercise 2.10). Let now E be the spheie o 4 p*Z ,, where « € Z, and k is
a positive integer. Write E = Sy(a), A(E; N) = A(a, k, N), x(E) = y(e).
Evidently the sequence (%,) in Z, has the distribution function y if and only if
for every « € Z,, and every positive integer k,

Ao, k, N
(o) = i e ke, N) -

N-ow

DEerINITION 2.2. For given k > 1, the sequence (»,) in Z, is said to be
uniformly distributed of order k (abbreviated k-u.d.)in Z,, if for every o € Z,,,
x5, (0) exists and

Ao, Ik, N)

2u(®) = lim . 2.0

N- o
The sequence (v,)is said to be u.d. in Z,, if (z,) is k-u.d. foreveryk =1, 2, . ...

THEOREM 2.1. Let a,b€ Z,. The sequence (na + b), n=1,2,...,is
u.d. inZ, if and only if a is a unit.

PROOF. Let E = S)(«) be the sphere o + p*Z,. Let a be a unit of Z,.
Distinguish two cases. First, suppose that @ and b are nonnegative rational
integers. We have (a, p) = 1. The sequence (na 4+ b), n =1, 2, ..., has the
property that p* consecutive terms form a complete residue system mod p*,
Now it is easily shown that (2.1) holds. For the conditionna + b€ o + p*Z,
is equivalent to the first k& coefficients in the canonical representations of
na + b and « being the same. Hence, A(wx, k, N)JN —p~% as N — co.
Second, let @ and b be arbitrary p-adic integers with a being a unit. Consider
two nonnegative rational integers a* and b* whose p-adic expansions coincide
with those of a and b, respectively, for indices <k and whose coefficients for
indices >k vanish. We have then a € S;,(¢*) and b € S,(b*), and therefore,
na + b e S,(na* + b*)forn=1,2, ..., or the p-adic integers na + b and
na* + b* have the same first k coefficients. According to the first part of the
proof, the sequence (na* + b*)is u.d. inZ,, and hence, (na + b) is k-u.d.
Thisholdsforallk = 1,2,....

If a is not a unit, then no element of (na + b) lies in the sphere b + 1 4
PZ,, and so, the sequence is not ud.in Z,. i
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Theorem 2.1 implies that the sequence of natural numbers is u.d. in Z,.

Furnished with the norm given by the p-adic valuation, the quotient field
@, of Z,, is a complete, separable and locally compact space. With respect to
addition, @, is a locally compact abelian group containing Z,, as a compact
subgroup. The notions of u.d. in Z, given by Definition 1.1 of Chapter 4 and
Definition 2.2 of this chapter coincide (compare with Theorem 2.3). We note
that @, can be provided with a Haar measure u such that u(Z,) = 1.

Consider a set ¥V < Z, coinciding with some residue class mod p*Z,,
v > 1, or a union of some classes mod p*Z . Let u(V) denote the Haar
measure of V.

DEerFINITION 2.3. A sequence (x,) of elements of V is said to be u.d. in V
if for all « € V and all integers k > v,

. A, k, Ny p*
lim = .
N- o N ‘LL(V)
THEOREM 2.2. Let p be an odd prime and let b € Z, be a unit. Then there

exists a rational integer a (in fact, there exist infinitely many) such that the
sequence (@"b), n = 1,2, ..., is u.d. in the set U formed by the units of Z,,.

PROOF. Note first that U is the union of p — 1 residue classes mod pZ,.
Choose the rational integer a to be a primitive root mod p% For givenk > 1,
let b be the rational integer whose expansion coincides with that of b for terms
of index <k and whose terms of index >k vanish. Note that a is a primitive
root mod p*, Hence, if n runs through p*~1(p — 1)consecutive positiveintegers,
the product a"b runs through a reduced residue system mod p*. Since a"b
and a”b are identical mod p*Z ,, we have for all «. € U,

N
Ao, ky Ny = ————— 4+ 6, 6] <. (2.2)
-1

However, u(U) = (p — 1)/p; hence, from (2.2), it follows that
lim Ao, k, NN = p~*{p(U). W

Noow

Weyl Criteria

THEOREM 2.3. The sequence (%,) of p-adic integers is u.d. in Z,, if and
only if for every real-valued Riemann-integrable function f onZ,, we have

N-w

1 X
lim - 3 (@) = fzw fdpu. (2.3)
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PROOF. The condition is sufficient. For let ¢g () be the characteristic
function of a sphere Sy (); then (2.3) becomes

N
lim & Sen() = [ s du=r
or the sequence (,) is u.d. in Z .

Now, we show the necessity of (2.3). Without loss of generality, we suppose
that fis a nonnegative function on Z,, with K = supy.z f(¥)> 0. Fork > 1,
consider the subdivision of Z, into pairwise disjoint spheres S;(), say,
S, ..., S with g = p*. Let r, R be the infimum resp. supremum of
f on S@. Set

q
my, = al S M= RY,

=1 i

[
M

1

Suppose that f is Riemann-integrable. Then, given ¢ > 0, there exists a k,
such that for all k > k,,

[ ra=t<msm<| st
z, 2 z, 2

On the other hand, we have

LS jer=3% 3 sy <3r0(E Swe), e
N.&' " _i=1N =l e N n=1 mp '
XpeS

where ¢ is the characteristic function of S*9. Since (z,) is u.d. in Z,, we get
for sufficiently large N,

1 N ) . 6p—k
E zlc“ (2,) — p < EI? fori=1,2,...,q. (2.5)
n=
Because of (2.4) and (2.5), we have
LS 1 )SGZR‘“( "‘+6”_k) <M +esf fdu+
- x - £
NS AT AR T ) ST TS T

for sufficiently large N. Similarly, for N large enough,

1 N
S22 [ S
N p=1 z,
This proves the theorem completely. [l

In the following, R stands for the set of rationals in [0, 1) that in lowest
terms have p* as denominator, and we set

Ri= U R® fork>1 and R,=URW.

0Sh=<Ek h20
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THEOREM 2.4. The sequence (2,) of p-adic integers has a distribution
function y inZ, if and only if

, = lim 13 S i (2.6)

N-w N a=1
exists for each r € R,. Moreover, (2.6) implies
pF—1

& =3 () @)

for every k > 1 and every r € R}, and

1 —2rira
xk(a) = 'p—k %k c.e amir (28)
TE »
for every k > 1 and every o € Z,,.

PROOF. LetreRjand 0 <j < p*. Then for every z, € S,(j) one has
e2rrira:" — eZniri‘
Hence, by partitioning,

7l 2nirj A(]’ k7 N)

= z 2riren _ z

N n=1 N

and if (z,) has a distribution function y, then c, exists and (2.7) holds.
Conversely, suppose that ¢, exists for every r € R,. For o € Z,, consider
the expression

b

AN — z e—amraz e27irtn — Z z etrir(e, —a) (2.9)

reR n=1 reR

If z, € S,(«), then the inner sum on the extreme right of (2.9) is equal to
P*, the number of r in R}, and if =, ¢ S,(«), this sum is equal to

p¥—1 2ni{@,—a)
Z e2fru(a:,.—az)/zz‘L _ Lﬂl__l_ =0
= - = = Q.
% e2m(a:,,-—a)/p -1
Hence,
3 | |
2. p* = p*A(e, k, N),
n=1
¢nESk(G)
and so,

Ao, k, N )
(Lc___)_)lk Z e——z:nracr as N — oo,
N P rer}

Therefore, (x,) has a distribution function y satisfying (2.8). [}
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We recall that y is a normed o-additive set function on &. Let & be the
o-algebra generated by &7, that is, the collection of all Borel sets of Z,. The
unique extension ¥ of y to # is a probability measure on .

For fixed o € Z,, the sequence (y,(«)), k = 1,2,..., is nonincreasing.

Moreover, y,(«) > 0 for k > 1; hence, (x;(e)) is convergent. So, one can
define

J(o) = lim z(a)
k-

for every « € Z,. We call j(«) the jump functionof . The set function y is said
to be continuous at o if j(«) = 0. Furthermore, y is continuous on Z, if j(a) =
Oforallac Z,.

THEOREM 2.5, If the sequence (z,) has a distribution function 4 in Z,,
then

lim - 3, lof = 3 '), (2.10)
k*wp reR
where (o) denotes the jump function of y onZ, and D is the (countable)
set of values « € Z, where y is discontinuous.

PROOF. According to (2.7) one has for every r e R}, k > 1, the following
identities:

|C -c— — z— rrlrhx (h) z e 2rrzrmx (’")

m=0

hence,

2 lof* = b} PROTACD W

reR h,m=0 ren

On the right-hand side, the last sum is equal to p* if # = m, and this sum
vanishes if i % m. Hence, for every k > 1, one has

> el = Zx,f(m) (2.11)
p reR, m=0
Now y,(m) is the constant value of y,(«) on the sphere S,(m) of j-measure
1.(m). Hence, the right-hand side of (2.11) can be expressed by means of an
integral with respect to the measure j on &, and so, we have

LS ier= f 14(0) d7().
P reR p z,

But x,.(«) lj(d) as k — o0, and thus, according to the monotone convergence
theorem,

tim L 3 o) = f ) 7o) = 3 ). M

k- oo P reR
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THEOREM 2.6. The sequence (x,) has a continuous distribution function
g on Z, if and only if ¢, exists for every r € R, and

.1
lim= 3 |c,[* = 0. (2.12)

k=w D reR,’,‘

PROOF. This follows immediately from Theorem 2.4, equation (2.10),
and the fact that y is continuous onZ, if and only if D,.pj%(«) = 0.

Notes

An introduction to p-adic number theory can be found in the books of Bachman [1],
Borevich and Shafarevich [1], and Mahler [5]. U.d. in Z, was first studied by Cugiani [1],
who gave Definitions 2.2 and 2.3 and proved Theorems 2.1, 2.2, and 2.3. Definition 2.1
is from Chauvineau [6], where Theorems 2.4, 2.5, and 2.6 can also be found. Concerning
these definitions and the Weyl criterion, see also Zaretti [1, 2] and Kuipers and Scheelbeek
[2]. Chauvineau [3] considered some special sequences. Quantitative results were shown
by Beer [1, 2, 3]. For metric theorems, see Chauvineau [4, 6] and F. Bertrandias [1].
P.V. numbers in QQ,, were studied by Chabauty [1] and Schreiber [1, 2]. A notion of *‘very
well distributed sequence’’ (suite trés bien répartie) was introduced by Amice [1]. Chauvineau
[5, 6] studied u.d. of functions in @Q,,.

The theory was extended to g-adic numbers (see Mahler [3]) by Meijer [2, 3]. See also
Shiue [1]. Another extension is to rings of adeles. We refer to F. Bertrandias [1], Cantor
[2], Decomps-Guilloux [1, 2], Grandet-Hugot [1], and Lesca [1].

Exercises

2.1. Let p be an odd prime, and let a and b be units of Z, such that a* ¢
14+ pZ, for 1 <ax<p—2 and a**¢1 + p?Z,. Prove that the
sequence (a"b) is u.d. in U.

2.2. Prove the Weyl criterion for u.d. in Z,: The sequence (z,,) isu.d. in Z,, if
and only if

. 1 N .
lim = > ¥ =0 for each r e R,, r # 0.
N-oow N a=1
Hint: Use Theorem 2.4,

2.3. Prove that the characters of the compact additive group Z, are exactly
given by the functions y,, r € R,, defined by y,(o) = *"™for w € Z,.
Note: In the light of Exercise 2.2, this shows again that the notions of
u.d. in Z given by Definition 1.1 of Chapter 4 and Definition2.2 of this
chapter coincide.

2.4. For a prime p, let ¢,: Z, +— [0, 1] be the Monna map (see Monna
[1]) defined as follows: For o = >®,a,p' in Z,, we set @,(«) =

2o a;p~i~L. Prove that (x,) is u.d. in Z, if and only if (¢,(x,)) is u.d.
mod 1.
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2.5. The numbers ¢, in Theorem 2.4 are all real if and only if y, () = y;(—«)
for every k > 1 and every o« € Z,,

2.6. The set of points « € Z,, where x is not continuous is countable.

2.7. Prove that (2.12) is equivalent to the condition

.1
lim= 2 le|=0.
koo D7 reR,
Hint: Use |¢,| < 1 and the Cauchy-Schwarz inequality.
2.8. Show the identity

1 _oni 1
= 2 et = (@) — = (@)
p reR‘:’ 4
for every k> 1 and every o € Z,, where we set y,(a) = 1 forall « € Z,,
2.9. Prove that the condition in Exercise 2.7 is equivalent to

.1
lim= > el =0.
k2o P 1‘ER;k)
Hint: Use Exercise 2.8.
2.10. Prove that every finitely additive set function on & is also g-additive.
Hint: Note that an open sphere is also closed inZ,,

3. UNIFORM DISTRIBUTION OF SEQUENCES IN GF[q, x]
AND GF{g, x}

Uniform Distribution in GF[q, x]

Let ® = GFJq, «] denote the ring of polynomials in z over an arbitrary
finite field GF(q) of q elements, where ¢ = p”, p is a prime, and r is a positive
integer. Let M be any element of ® of degree m > 0. Then a complete residue
system mod M contains ¢ elements.

DrerFINITION 3.1, Let 6 = (4,), n=1,2,..., be an infinite sequence of
elements of ®. For any B € ® and any integer N > 1, define A(B, M, N) =
A(B, M, N, 0) as the number of terms among A4,, 4,, ..., Ay such that
A, = B(mod M). Then the sequence 0 is said to be u.d. mod M if

limA(B, M, N) g

for all B € @, 3.1
N-w

Furthermore, we say that the sequence 0 is u.d. if (3.1) holds for every M € ®
of positive degree.
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It is evident that in (3.1) it suffices to let B run through a complete residue
system mod M. Moreover, we can restrict the investigation to the case where
M is monic.

THEOREM 3.1. (i) If a sequence 0 is u.d. mod M and if F divides M, then
6 is u.d. mod F. (ii) If a sequence 6 is not u.d., then there exist infinitely many
moduli M for which 6 is not u.d. mod M.

PROOF. (ii) follows from (i), for there is an F for which 8 is not u.d. mod F
and then this property is shared by all of the infinitely many distinct monic
multiples M of F. The statement (i) is shown in the following manner.
Assume that the sequence 0 is u.d. mod M and that F divides M. Let B be
any element of a complete residue system mod F and of degree < f, the
degree of F. Suppose C is any element of a complete residue system mod M
of degree < m, the degree of M, such that C = B(mod F), or C = KF + B,
where the degree of K is less than m — f. We then have

AKF + B,M,N) _ -

lim 3.2
N-ow N ( )
Furthermore, since F divides M, we have
A(B,F,N) = 3 A(KF + B, M, N), (3.3)
K

where the summation is over all X of degree < m — f. The number of such K
is gm~7. Therefore, from (3.2) and (3.3), we have for any B,

A(B’ F’ N) — qm—fq—m —f‘

N-o

Hence, 0 is u.d. mod F. [}

EXAMPLE 3.1. If F does not divide M, then there exists a sequence 0 that
is u.d. mod M but is not u.d. mod F. Let m and fbe the degrees of M and F,

respectively. Let (R,), 7 = 1,2, ..., g™, be a complete residue system mod M
with R, = M and 0 < degree R, < m for i =2,3,...,q9™ Let 0 be the
periodic sequence Ry, ..., Rgm, Ry,..., Rpm,.... Then 6 is clearly u.d.

mod M. However, 0 is not u.d. mod F. For if m < f, then thereis no R, = 0
(mod F), and so, our assertion is true. Second, let f < m. Then all the R, of
degree < fare # O(mod F). For each z, f < z < m, the (g — 1)g* elements
R, of degree z are divided evenly among the ¢/ residue classes mod F, each
residue class containing (¢ — 1)¢*~ such R,. Since R, = M 3 O(mod F),
the total number of R;, 1 <7 < g™, such that R; = O(mod F) is equal to

m—1

S(@— D7 =g — 1.

z=f

However, if 0 were u.d. mod F, there would have to be g™ such R,. [l
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EXAMPLE 3.2. If a sequence 6 is both u.d. mod M and u.d. mod F, where
M and F are relatively prime, then 0 need not be u.d. mod MF. Consider the
following example. Let oy, . . . , «, be the elements of GF(q) listed in any fixed
order, and let 6 be the periodic sequence ¢y, . . ., 0, 3, . . . 5 %, . ... NOW
take M = x and F =« + 1. Then M and F are relatively prime, 6 is u.d.
mod M and u.d. mod F, but obviously not u.d. mod MF since the residues of

degree 1 are not in this sequence. [l

A residue of a polynomial 4 mod M can be written as an expression of the
form o, 21 +-o,, ™2 4 -+ oy with o, e GF(g) for 0 < i < m — 1.
Let w,, ..., o, be a fixed basis for the vector space GF(g) over GF(p). Then
Oy = a4y + + ** + a,w, with a; € GF(p) for 1 < j < r. Define

e(A, M) — ezm’al/ﬂ,
where we identify, of course, GF(p) with Z/pZ.
THEOREM 3.2. The sequence (4,) in @ is u.d. mod M if and only if

N

lim £+ Se(4,C,M) =0 forall C # 0 (mod M).

N+w N a1
PROOF. The notion of u.d. mod M is identical with the notion of u.d. in
the residue class ring ®/M®, considered as an additive abelian group in the
discrete topology. In the light of Corollary 1.2 of Chapter 4, it will suffice to
show that the characters of the above group are precisely the functions
po(4) = e(AC, M), where C runs through a complete residue system mod
M. 1t is easily seen that each y is a character of ®/M®. Now, let C # 0(mod
M), so without loss of generality we may take C to be of the form

C=ypa + -+, 0Lr<m » #0.

With 4 = w,y, lam>" we get then e(4C, M) # 1. If C # D(mod M), then
the preceding argument shows the existence of an 4 € ® with e(4(C — D),
M) # 1,0re(AC, M) # e(AD, M). Thus, distinct polynomials C and D from
a complete residue system mod M yield distinct characters yo and yp.
Since the cardinality of the set of characters of ®/M® is equal to the car-
dinality of a complete residue system mod M, we are already done. [l

Uniform Distribution in GF{q, x}

Let ®' = GF{g, «} denote the field containing ® = GFlg, ] that consists

of all the expressions
m

a= 2 ¢a',  c¢;€GF(q).

i=—w



3. SEQUENCES IN GF[q, x] AND GF{q, x} 329

By definition, m is the degree of o (provided that c,, # 0). The integer # may
be positive, negative, or 0. We write degree 0 = — co. The integral part of «
is [a] = 2% c2, and the fractional partis {o} = D72, ¢ Hence, []isa
polynomial over GF(q). Obviously we have [« + f] = [o] + [f] and {« +

py = {o3 + {B}.

DerFINITION 3.2. Let (e,), n =1,2,..., be a sequence in @', let § be an
arbitrary element in @', and let N and k be positive integers. Finally, let
A(P, k, N)be the number of «, with 1 < » < Nsuch thatdegree ({o,, — f}) <
—k. Then the sequence («,) is said to be u.d. mod 1 in ®' if

A(B, k, N L
lim (B, k )=qk

N-oow

forall k > 1 and all e ®’.

For given 0. € ®’, let c_, be the coefficient of 27 in the expression for « (set
c_; = 0if 27 does not appear in the expression for o). Let w,, . . . , w, again
be a fixed basis for the vector space GF(g) over GF(p). Thenc_; = byw; + -
+ b, with b; € GF(p) for 1 < j < r. We define

e(a) — eZnim/D‘ (34)
THEOREM 3.3. The sequence (2,) is u.d. mod 1 in @’ if and only if
1 N
lim — Y e(Ca,) =0 forevery Ce®, C # 0. (3.5)
N-ow n=1

PROOF. Theset®, = {o. € ®': degree o. < 0} is an additive abelian group.
Let k > 1 be fixed. Then ®;, = {0 € ®’: degree o < —k} is a subgroup of
@, and the condition

L AN
im =q

N-w

for all B € @’

characterizes the u.d. of ({»,} + ®;),n =1,2,..., in the quotient group
P, /®;, furnished with the discrete topology. As in the proof of Theorem 3.2,
one shows that the nontrivial characters of ®,/®;, are precisely the functions
po(o + @) = e(Ca) with Ce®, C # 0, and degree C < k. Letting k run
through all positive integers, we arrive at the desired criterion. [l

DEerINITION 3.3, The sequence (o) in @’ is said to be weakly u.d. mod I in
@' if
A H ] H ¢
lim (B : q) _ q—-k
t->w q

forall k > 1andall fe®’.

DEerINITION 3.4. An element & € ®' is called irrational if £ is not contained
in GF(q, z), the collection of all quotients A/B of elements 4, B € ®, B # 0.
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THEOREM 3.4. Let &£ € P’ be irrational. Let (4,,) be a sequence formed by
using all the elements of ® and such that degree 4,.,; > degree 4, for n > 1
and 4, # 4; fori # j. Then the sequence (4,,£) is weakly u.d. mod 1 in ®@’,

PROOF. In obvious analogy with the criterion in (3.5), we have to show

ql
lim g™ e(4,CE) =0  forevery Ced, C 0. (3.6)

t=+ o n=1

By the construction of (4,), (3.6) is equivalent to

limg?t 3 e(4,C8) =0 foreveryCe®,C#0, (3.7)
e degreZAﬂn<t

and since ¢ is irrational, (3.7) follows from the relation

limg™ 3 e(de)=0 foraec®'\®,
t—+ o Aed
degree A<t

which in turn is an easy consequence of the fundamental relation

> e(Aa)=0 for o € @’ with degree {«} > —m,  (3.8)
Aded
degree 4 <m

where m is any positive integer. [l

Notes

Definition 3.1 and Theorem 3.1 are from Hodges [1]. The Weyl criterion in Theorem 3.2
was given by Kuipers and Scheelbeek [2]. Earlier Hodges [1] had found a necessary con-
dition. Other Weyl criteria for u.d. mod M have been established by Meijer and Dijksma
[1] and Dijksma [2] (see Exercise 3.1). Definitions 3.2, 3.3, and 3.4 and Theorem 3.3 and
3.4 are from Carlitz [2]. The definition of the function e(«) is from Carlitz [1]. Theorem
3.4 was greatly improved by Meijer and Dijksma [1], who showed that with a specific
ordering of the sequence (A4,) the sequence (4,&) will even be u.d. mod 1 in ®’. The
theory of u.d. in @ was further developed by Hodges [1, 2, 3], Dijksma [1, 2, 3], and
Meijer and Dijksma [1]. For u.d. mod M with the special polynomial M = %, see Gotusso
[1] and also Exercises 3.5-3.8. Various interesting results on u.d. in @’ were shown by
Hodges [3], Dijksma [2, 3], Meijer and Dijksma [1], and Rhin [2, 3]. Since @, is a compact
(additive) group in the topology induced by the degree valuation, the results of Chapter 4
apply to u.d. mod 1 in ®’. A good account of the theory of u.d. in both @ and &’ can be
found in Dijksma [S]. For metric theorems, see Dijksma [4] (with some improvements in
Dijksma [5]), de Mathan [, 2], and Rhin [1]. An analogue of P.V. numbers in @’ was
defined by Bateman and Duquette [1] and further studied by Grandet-Hugot [2, 3]. For
results on u.d. in the setting of local fields, we refer to Beer [2] and de Mathan [3].
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Exercises

3.1

3.2

3.3.

34.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

Let e(s) be the function defined in (3.4). Prove the following Weyl
criterion. The sequence (4,) in @ is u.d. mod M if and only if

1 N
lim = > e(CM™4,) =0
N-w n=1
for all C € ® with C # 0 and degree C < degree M.
The sequence (4,) in @ is u.d. if and only if

.1 ¥

lim = > e(ad,) =0

N-ow N n21
for all “rationals” o € GF(q, *) with « ¢ ®.
Let («,) be a sequence in ®’, and let M € ® have positive degree.
Prove that if (Ma,) is u.d. mod 1 in @', then ([e,]) is u.d. mod M.
Let (4,) be a sequence in ¥ such that (4,£) is u.d. mod 1 in ¥’ for
every irrational £ €®’ (see the notes for the existence of such a
sequence). Prove that the sequence ([4,,£]) is u.d. for every irrational
ted’,
Let by, by, ..., b, be the elements of GF(q). For a sequence (a,) of
elements in GF(q) and N > 1, let A(s, N) be the number of elements
among 4y, . . ., ay that are equal to b,. Show first that (a,) is u.d.
mod M = « if and only if limy_, A(s, N)JN = 1/q for 1 < s <q.
Prove also that (g,) is u.d. mod # if and only if

limy ..., A(h, N)|A(k, N) = 1

for1 < h, k < q.1If (a,) is u.d. mod «, we say that (a,) is u.d. in GF(g).
If (a,) is u.d. in GF(q) (see Exercise 3.5), then the same holds for the
sequence (@,) where 4, = a,”! for a, ¥ 0 and 4, = 0 for g, = 0.
Let (a,) be u.d. in GF(q) (see Exercise 3.5), and let f(z) = a*, k > 1.
Then, (f(a,)) is u.d. in GF(g) if and only if (k,g — 1) = 1.

Let (a,) be u.d. in GF(q) (see Exercise 3.5). For f € ®, prove that (f(a,))
is u.d. in GF(q) if and only if f'is a permutation polynomial, that is, if
and only if the mapping ¢,: a — f(a), a € GF(q), is a permutation of
GF(g)-

See the proof of Theorem 3.3. Prove in detail that the characters of
Pg/P;, are precisely the functions ypo with C € @ and degree C < k.
Give a detailed proof for (3.8).
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Uniform Distribution:
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uniform distribution, uniformly distributed

uniform distribution modulo 1, uniformly distributed
modulo 1,1

A-uniform distribution modulo 1, A-uniformly distrib-
uted modulo 1, 61

continuous uniform distribution modulo 1, continuously
uniformly distributed moduio 1, 78

uniform distribution modulo A, uniformly distributed
modulo A, 4

uniform distribution modulo m, uniformly distributed
modulo m, 305

continuous uniform distribution modulo m, continuously
uniformly distributed modulo m, 316

uniformly distributed of order &, 320

well distributed modulo 1, 40

distribution function, 56

distribution function modulo 1, 53

asymptotic distribution function modulo 1, 53

A-asymptotic distribution function modulo 1, 60

counting function, 1,47,175, 319

40,48

counting function modulo m, 305
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(in Chapter S, Section 2), 320

(in Chapter S, Section 3), 326

(in Chapter S, Section 3), 329
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X (@)

Algebra, Linear Algebra:
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E
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GF(q)
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(in Chapter 1, Section 2), counting function for double
sequences, 18

69

69

78,83

251

discrepancy, 88

discrepancy, 90

multidimensional discrepancy, 93

multidimensional discrepancy, 93

discrepancy of infinite sequence (or of finite sequence
containing at least N terms), 89, 90,93

isotropic discrepancy, 93

isotropic discrepancy of infinite sequence (or of finite
sequence containing at least N terms), 94

LP discrepancy, 97

discrepancy with respect to distribution function, 90

remainder function, 107

maximal deviation, 189

Pisot-Vijayaraghavan number, 36

convolution of sequences, 260

320

standard inner product in RS, 48

linear subspace spanned by 77, 172, 221

identity matrix

norm of complex square matrix, 222

trace of complex square matrix, 223

conjugate of complex square matrix, 222

transpose of complex square matrix, 222

inner product of complex square matrices, 223

Kronecker product of matrices, 225

general linear group of rank & over C, 222

unitary group of rank k over C, 222

finite field of ¢ elements, 326

ring of polynomials over GF(q), 326

field of rational functions over GF(q), 329

completion of GF(q, x) with respect to degree valuation,
328

329

congruence in GF[q, x], 326

integral part of « € GF {q, x}, 329

fractional part of « ¢ GF {q, x}, 329
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328
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Group Theory, Topological Groups:

QI Q)
i

DM Q)

identity element, 220

inverse of a

left (right) translate of M by a, 221

set of inverses of elements of M, 221

direct product of (topological) groups G and H, 233
direct product of family of (topological) groups

weak direct product of family of groups, 233

(in Chapter 4), Haar measure (unless stated otherwise),
221

259

Banach algebra of almost-periodic functions on G, 297

mean value of almost-periodic function f, 297

dual group (character group) of G, 232

set of periodic characters of G, 288

(in Chapter 4, Section S), Bohr compactification of G,
289

periodic compactification of G, 289

232

annihilator of H in 6, 232

additive group of integers in discrete topology

additive group of s-dimensional lattice points in discrete
topology

quasi-cyclic p-group, 293

additive group of p-adic integers in p-adic topology, 321

additive group of rational numbers in discrete topology,
283

additive group of p-adic numbers in padic topology, 321

additive group of real numbers in euclidean topology

additive group of s-dimensional euclidean space in euclid-
ean topology

{e}, 233

additive group of real numbers in discrete topology, 273

one-dimensional circle group, 224

s-dimensional circle group, 268

one-dimensional circle group in discrete topology, 273

universal compact monothetic group, 273

general linear group of rank k over C in topology of entry-
wise convergence, 222
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Measure Theory:
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Topology, Functional Analysis:

int M
M
oM
MI

°m
x=
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unitary group of rank k over C in topology of entrywise
convergence, 222

320

322

322

322

Lebesgue measure (unless stated otherwise)

(in Chapter 3), nonnegative regular normed Borel measure,
171

(in Chapter 4), Haar measure (unless stated otherwise),
221

normed point measure at x, 179,258

outer measure induced by u, 198

(complete) product measure induced by u on product
of denumerably many copies of given measure space,
182

measure defined by (7 1) () = w(T7L.), 179

convolution of measures, 258

286

mean value of almost-periodic function f, 297

set of nonnegative regular normed Borel measures on G,
258

(in Chapter S, Section 1), 313

(in Chapter S, Section 2), 319

(in Chapter S, Section 2), 324

interior of M, 94

closure of M, 94

topological boundary of M, 174

(in Chapters 3 and 4), complement of M in underlying
space, 174

characteristic function of M

Cartesian product of denumerably many copies of space
X in product topology, 182

weight of space X, 227

uniformity, 194

194

170

one-sided shift (unless stated otherwise), 183,216
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HAx)
H(x)
€ X

Z(G)
L2[0,1]
LY(w)
I

ot

1AM
(AIB)

Banach algebra of bounded real-valued Borel-measurable
functions on X under supremum norm, 171

Banach algebra of real-valued continuous functions on
X under supremum norm, 171

Banach algebra of complex-valued continuous functions
on X under supremum notm, 172

Banach algebra of almost-periodic functions on G, 297

Banach space of square-integrable functions on [0, 1},25

Banach space of u-integrable functions, 270

supremum norm of f e Z(X), 171

supremum norm of bounded sequence ¢ of real numbers,
216

norm of complex square matrix, 222

inner product of complex square matrices, 223

end of proof, end of example
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Abel method, 65
discrete, 213,216
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Additive number-theoretic function, distri-
bution of, 66,318
Admissible double partition of T ¥, 151,
153,154
Admissible sequence, 42, 43, 44, 46, 47
Algebraic homomorphism, 231
Algebraic irrational number, 124, 128, 129
Algebraic isomorphism, 231
Almost-arithmetic progression, 118, 119,
120,127,128
Almost convergence, 215, 216, 218,219
Almost convergent sequence, 44, 215, 216,
218,219
with respect to summation method, 216
Almost-periodic function, 297, 298, 302,
303, 304
K-, 301, 304
Almost uniformly distributed sequence
mod 1, 53, 66, 68,309, 317, 319
Almost well-distributed sequence, 205
Annihilator, 232
Anormal number, 77
Applications to ergodic theory, 30
Applications to integral equations, 159
Applications to interpolation problems, 159
Applications to the Cauchy problem, 159
Artin’s conjecture, 235
Asymptotic distribution function, 56, 57,
66,68
Asymptotic distribution function mod 1,

53-57, 59-69, 76,90, 99, 137-141
with respect to summation method, 60-68

Baire’s category theorem, 198, 205

Banach algebra, 171, 172, 297, 302

Banach-Buck measure, 313, 314, 315, 318,
319

Banach limit, 215, 216

Banach space, 171, 216

Bernoulli polynomials, 24, 157, 168

Block frequencies, number with prescribed,
75

Bochner-Herglotz theorem, 247, 256, 257

Bohr compactification, 289, 293, 303

Borel-Cantelli lemma, 211

Borel-measurable function, 171,172

Borel measure, 171

Borel property, 190, 208, 211, 212, 213,
214,218,219

Borel set, 171

Borel’s metric theorem, 70, 74, 75, 76, 193

Brigg logarithms, 9

Carlson-Pélya theorem, 22
Carrier of measure, 191, 192
Cauchy problem, applications to the, 159
Cesiro means, 62, 63, 65, 68, 82,213, 214,
21§, 216,219

Champernowne’s number, 8, 22, 75
Character, discrete, 230, 234

nondiscrete, 230

of compact abelian group, 224, 231

of locally compact abelian group, 231
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of representation, 224
periodic, 288, 289, 293, 301, 303
trivial, 227
Character group, 232
Circle group, finite-dimensional, 235, 268
one-dimensional, 224, 230
Collectives, von Mises’s theory of, 77
Compact element, 234, 303
Compactification, 288, 289, 290
Bohr, 289, 293, 303
D-, 302
periodic, 289, 291, 293, 302, 303
Compact index, subgroup of, 282, 283, 302
Compact-open topology, 232
Completely reducible representation, 226
Complete uniform distribution, 45, 75, 204,
205, 206, 235
Connected component, 233, 234
Construction of normal numbers, 75
Continued fractions, 122, 128
Continuity set, 5, 174, 175, 176, 178, 179,
180, 191, 200, 201
Continuous distribution function on Zp,
324, 325, 326
Continuous homomorphism, 222
Continuously uniformly distributed func-
tion, inZ, 316, 317, 318
mod 1, 78-87, 99
mod m, 316, 318, 319
Continuous measure, 254
Continuous uniform distribution on Qp, 8s,
325
Continuous uniform distribution inZ, 316,
317,318
Continuous uniform distribution mod 1,
7887, 99
definition, 78
in R¥, 83-87
in sequences of intervals, 84
of stochastic processes, 84
quantitative theory, 84
with respect to summation method, 84
Continuous uniform distribution mod m,
316, 318, 319
Continuous uniform distribution on group,
235
Continuous uniform distribution on surface,
85
Convergence-determining class, 172-175,
179, 180, 181, 189, 190, 192
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Convergents to an irrational, 122
Convex hull, 94
Convex polytope, closed, 94
open, 94
Convex programming, 116
Convolution of measures, 257-262, 266
Convolution of sequences, 257, 260-266
Correlation function, 244-256
with respect to summation method, 244-
256
Counting function, 1, 4, 18, 40, 47, 48, 69,
88, 175, 30s, 306, 319, 326, 329
¢Muniform distribution mod 1, 85
¢MLyniform distribution mod 1, 85, 86
Cylinder set, 184, 190

Darboux step function, lower, 160
upper, 160
D-compactification, 302
Degree of representation, 222
Degree valuation, 330
Density, lower asymptotic, 306, 317
natural, 251, 314, 315, 317, 319
upper asymptotic, 317
Diameter, 96
Difference operator, 28, 29, 31, 80, 86,
147, 148
Difference theorems, for continuous uni-
form distribution, 84, 86
quantitative, 163-169
for uniformly distributed sequences, 25-
31,51, 169, 236-240, 244, 249-252,
255,256,257, 265, 285
for well-distributed sequences, 46, 240-
244,256, 257
Digit, 69
Digit properties, set defined by, 75
Diophantine approximation, 121, 122, 128
Diophantine inequalities, 28, 30
Direct product, 233
uniformly distributed sequence in, 262,
266
weak, 233, 234, 294
Dirichlet’s theorem, 121
Discrepancy, definition, 88, 89, 90, 97, 98,
99
definition, multidimensional case, 93, 98
discrete case, 98
extreme, 98
isotropic, 93-99, 116
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L*,97,98,103, 115,158
LP,97,98,115
lower bounds, 90, 92,93, 97, 100-109,
115,116
other notions of, 98, 158, 189, 190, 191,
192,234
over intervals mod 1, 114, 117
upper bounds, 110-117
with respect to distribution function, 90,
99, 142
Discrete Abel method, 213,216
Discrete character, 230, 234
Distribution function in the sense of proba-
bility theory, 54
Distribution function mod 1, 53, 54, 55,
58,66,67,68, 141, 142
asymptotic, see asymptotic distribution
function mod 1
lower, 53, 58,59, 66,67, 68
of measurable function, 84
upper, 53, 58,59, 66, 67, 68
Distribution function of sequence inzp,
320, 323-326
Divisible group, 283, 284
Double sequence, 18
Dual group, 232
Duality theorem of Pontryagin-van Kampen,
232

Egoroff’s theorem, 199, 205

Elementary criteria for uniform distribu-
tion mod 1, 6, 86, 89,91, 93,97, 127,
128

Empirical distribution function, 98

Ensemble normal, 76

Equicontinuous transformations, 194

équirépartition en moyenne (mod 1), 67

Equi-uniform distribution, see Family of
equi-uniformly distributed sequences

Equivalence of nondecreasing functions, 54,
55

Equivalent representations, 223

Equivalent summation methods, 61

Erbliche Eigenschaften, 256

Erdos-Turdn-Koksma theorem, 116, 154,
167

Erdés-Turdn theorem, 112, 113, 114, 116,
117,122

Ergodic theory, 22, 30, 39, 46, 75, 76, 183,
190, 191, 193, 235, 269, 278, 281
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applications to, 30

Ergodic transformation, 75, 76, 183, 190,
191, 193, 235, 269, 278, 281

Euler method, 63, 68

Euler summation formula, 8, 19, 24

Everywhere dense sequence, 6, 8,52, 132-
135, 139-142, 179, 185-188, 190, 191,
192,202, 221

Expansion, b-adic, 69, 77, 117, 206, 318

Exponential sums, 15, 17, 21, 110-114,
116,117,129, 143, 158, 160, 162,
163

Extendable set, 22, 24, 31

Extreme discrepancy, 98

Family of equi-uniformly distributed se-
quences, in compact group, 228, 229,
236,276,2717,278, 280, 281

in compact space, 193-199, 205
in monothetic group, 276, 277, 278, 280,
281

Farey points, 135, 136, 137, 141, 142

Fastkonvergenz, 215

Fejér’s theorem, 13, 14, 15, 19, 20, 22, 23,
24,29, 30

Fibonacci numbers, 31, 318

Finite field, uniformly distributed sequence
in, 330, 331

First category, set of, 75, 184, 185, 218

Fractional part, 1, 47

of element in GF{q,x}, 329

Frobenius theorem, 13

Function of bounded variation, 143, 147,
159, 160

in the sense of Hardy and Krause, 147,
151, 158
in the sense of Vitali, 147, 162

g-adic numbers, 325

Gaps for (n8), 22

Gel’fond-Raikov theorem, 224, 232, 236

General linear group, 222

Generator of monothetic group, 267-272,
275-282, 294

Generic point, 205

Glivenko-Cantelli theorem, 98

Good lattice point, 154-157, 159, 162

Group of bounded order, 302, 303

Haar measure, 220, 221, 259, 282
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outer, 272

Hamel basis, 273, 275

Hammersley sequence, 129, 130, 158

Hartman-uniformly distributed sequence,
295-302, 304, 318

Hauptsystem, 190

Hausdorff dimension, 75

Helly-Bray lemma, 54, 55

Helly-Bray theorem, 57

Helly selection principle, 54

Hereditary properties, 256

Hill condition, 208, 211, 213,218

Holder means, 62, 67, 82

Homogeneously equidistributed sequence
mod 1, 6

Homogeneous set, 190

Imaginary part of function, 171
Improper integral, 22, 159
Inclusion-exclusion formula, 180
Inclusion of summation methods, 61, 62,
63, 65, 68, 213, 214, 216
Independence of functions, 84
Independent sequences, 315, 316, 318,
319
Individual ergodic theorem, 39, 75, 76, 183,
190, 191, 193, 204, 235, 269
Infinite-dimensional unit cube, 39, 51, 98,
130, 158
Inner product, 48
Inner product of matrices, 223
Integral equations, applications to, 159
Integral part, 1, 47
of element in GF {q,x}, 329
Intensititsdispersion, 97
Interpolation problems, applications to,
159
Irrational element of GF{q,x}, 329, 330,
331
Irrational number, algebraic, 124, 128, 129
of constant type, 121, 122, 124, 125,
128, 157
sequence of multiples of, see special
sequence, (n9)
type of, 121, 122, 124
with bounded partial quotients, 122, 124,
125, 128, 157
Irrational numbers, classification of, 121
Irreducible representation, 224
Irregularities of distribution, 105-109, 115,
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116, 128, 129, 318
Isomorphism theorem, 231
Isotropic discrepancy, 93-99, 116

Jointly normal k-tuple, 76
Jordan-measurable set, 5, 93
Jump function, 324

K-almost periodic function, 301, 304
Khintchine’s conjecture, 39
Kinetic gas theory, 51, 84, 159
K-monogenic group, 304
Koksma-Hlawka inequality, 147, 151, 158
Koksma’s inequality, 142, 143, 1485, 146,
147,157, 158, 160
Koksma’s metric theorem, 34, 35, 36, 39,
40,51, 84
Kolmogorov-Smirnov limit theorem, 98, 99
Kolmogorov test, two-sided, 98
Kronecker product, of matrices, 225, 236
of representations, 225
Kronecker’s theorem, 22
for groups, 235
K-separable group, 302
K-uniformly distributed sequence in locally
compact group, 301, 304

Lacunary sequence, 22, 39, 46, 66, 128,
129

Law of large numbers, 182, 190

Law of the iterated logarithm, 98, 99, 190

L? discrepancy, 97, 98, 103, 115, 158

LP discrepancy, 97, 98, 115

Lebesgue-integrable function, S, 6, 75

Lebesgue-measurable set, 5, 6, 39

Lebesgue measure, S

Left translation invariant measure, 221

Left uniformity, 228

LeVeque’s inequality, 110, 111, 112, 116,
117

Logarithmic sequence, see Special sequence,
(clogn)

Logarithms, Brigg, 9

Lorentz condition, 218

Lower asymptotic density, 306, 317

Lower Darboux step function, 160

Lower distribution function mod 1, 53, §8,
59, 66,67, 68

Matrix method, 60, 207
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equivalent, see equivalent summation
methods
inclusion, see inclusion of summation
methods
positive, 218, 244
regular, see regular summation method
strongly regular, 216, 218, 219, 244
Matrix norm, 222, 223
Maximal deviation, 189, 190, 192, 234
Mean value of almost-periodic function,
297, 298, 304
Measurable set in Z*, 314, 315
Measure, Banach-Buck, 313, 314, 315, 318,
319
Borel, 171
carrier of, 191, 192
continuous, 254
Haar, 220, 221, 259, 282
Lebesgue, S
left translation invariant, 221
normed, 171
outer, 198
outer Haar, 272
point, 178, 179, 199, 258, 259, 266
projection of, 206
regular, 171
restriction of, 177, 180, 206
right translation invariant, 221
support of, 176, 177, 206
Wiener, 84
Measure-preserving transformation, 183
Metric space, 175, 181, 190, 191, 193, 219
Metric theorems, on almost uniformly dis-
tributed sequences, 309, 317, 319
on complete uniform distribution, 204
on continuous uniform distribution, 84,
99
on normal numbers, 70, 71, 74, 75, 193,
235
quantitative, 39, 75, 84, 98, 99, 128-131,
190, 191
on uniform distribution in GF {q,x} and
GF[q,x], 330
on uniform distribution in Z, 309, 318
on uniform distribution inZ ;, 325
on uniformly distributed sequences, 32-
40, 51, 52, 59, 66, 75, 76, 182-18S,
190, 191, 208, 211, 213, 218, 23§,
279

on well-distributed sequences, 44-47, 201,
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204, 205
Mixing transformation, 278, 281
Modulus of continuity, 145, 146, 158, 161
Monna map, 32§
Monogenic generator, 294, 303, 304
Monogenic group, 294, 29§, 302, 303, 304
K-, 304
Monothetic group, 267-282, 293, 294, 295,
302
generator of, see generator of monothetic
group
Motion, rectilinear uniform, 83, 84, 87

Natural density, 251, 314, 315, 317, 319
Noncontinuable power series, 12, 22, 24
Nondiscrete character, 230
Normal element, 235
Normality with respect to different bases,
75,176,171
Normal k-tuple, 76
jointly, 76
Normal number, 69-78, 193, 206, 235, 309,
319
absolutely, 71, 74, 75
construction of, 75
G,e)-, 76
of order k, 76, 77
simply, 69, 73, 74, 75, 77
Normal periodic system of digits, 75
Normal set, 39, 76, 77, 78
Normed measure, 171
Number with prescribed block frequencies,
75
Numerical integration, 130, 142-163

One-sided shift, 183, 193, 200, 216
Optimal coefficients, 159

Quter Haar measure, 272

Quter measure, 198

p-adic integers, 158, 279, 280, 294, 302,
319-326

p-adic numbers, 284, 321

p-adic valuation, 321

Parseval’s identity, 111

Partial quotients, 122

Partition ofl_k, 147

Periodic character, 288, 289, 293, 301, 303

Periodic compactification, 289, 291, 293,
302, 303
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Periodic function, 3, 25, 84, 85, 86, 156,
159, 161, 162, 286
on locally compact group, 286, 287
Periodic mapping, 286
Periodic representation, 288
Permutation polynomial, 331
Peter-Weyl theorem, 226, 227, 236
Pisot-Vijayaraghavan number, 36, 39, 40,
76
in GF {g,x}, 330
in Qp, 32§
Point measure, 178, 179, 199, 258, 259,
266
Pélya-Cantelli theorem, 98
Polynomial over R, sequence of values of,
see Special sequence, (f(n)), f poly-
nomial
Polynomial over Z, sequence of values of,
311, 312, 313, 318, 319
Positive-definite function, 245, 246, 247,
257
Positive matrix method, 218, 244
Positive Toeplitz matrix, 60
Power series, 10-13,22, 24,50, 51, 53
noncontinuable, 12, 22, 24
Product measure, 39, 46, 182
Prohorov distance, 191
Projection of measure, 206
Priifer topology, 302
Pseudorandom numbers generated by con-
gruential methods, 130

Quasi-cyclic group, 293, 294
Quotient group, 230

Rademacher functions, 77, 116, 117

Radical-inverse function, 129

Random number generator, 205

Random variables, uniform distribution of,
39

Rational function, 10, 11, 12, 22

Real part of function, 171

Rearrangement of sequences, 132-137, 139-
142, 185-190, 192, 202, 218

Rectilinear uniform motion, 83, 84, 87

Reducible representation, 224

Regular measure, 171

Regular summation method, 61, 62

Relatively equidistributed sequence, 178,
190
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Relatively measurable sequence, 315
Relativ gleichverteilt, 178
Representation, 222
completely reducible, 226
equivalent, 223
irreducible, 224
periodic, 288
reducible, 224
trivial, 225
unitary, 224, 235, 236
Residue modulo 1, 1
Restriction of measure, 177, 180, 206
Riemann-integrable function, 3, 6, 12, 18,
46, 50,52, 67, 85, 142, 158, 159, 162,
317
onZp, 321
Riemann integral, 2, 142
Riemann-Stieltjes integral, 54, 61, 144, 160,
168
Riemann zeta-function, 30, 156
Riesz means, simple, 63-66, 68,213, 214,
216,218,219
Riesz representation theorem, 56, 258, 266
Right translation invariant measure, 221
Right uniformity, 228
Roth’s method, 100-107, 115
Roth’s sequence, 129

Schmidt’s method, 107, 108, 109, 115
Schwach gleichmadssig gleichverteilt, 205
o-compact topological space, 231
Secular perturbations, 21
Separating points, 173
Sequence, admissible, 42, 43, 44, 46, 47
almost convergent, 44, 215, 216, 218,
219
almost uniformly distributed mod 1, 53,
66, 68, 309, 317, 319
almost well-distributed, 205
completely uniformly distributed, see
Complete uniform distribution
double, 18
everywhere dense, see Everywhere dense
sequence
Hartman-uniformly distributed, 295-302,
304, 318
homogeneously equidistributed mod 1, 6
K-uniformly distributed, 301, 304
relatively equidistributed, 178, 190
relatively measurable, 315
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special, see Special sequence
strongly uniformly distributed, see
Strongly uniformly distributed sequence
summable, 60
two-sided, 67
uniformly distributed, see Uniformly
distributed sequence ., . .
weakly uniformly distributed, see Weakly
uniformly distributed sequence
weakly well-distributed, 205, 206, 256
well-distributed, see Well-distributed
sequence
with empty spectrum, 77
Sequence of measures, uniformly distri-
buted, 178, 234, 235, 256
Set defined by digit properties, 75
Set of first category, 75, 184, 185, 218
Shift, one-sided, 183, 193, 200, 216
Silverman-Toeplitz theorem, 62, 66
Simple Riesz means, 63-66, 68, 213, 214,
216, 218,219
Simply normal number, 69, 73, 74,75, 77
Slowly growing sequence, see Special
sequence, slowly growing
Special sequence, almost-arithmetic pro-
gression, 118, 119, 120, 127, 128
Hammersley sequence, 129, 130, 158
lacunary, 22, 39, 46, 66, 128, 129
other sequences, 30, 31, 51, 52, 66, 86,
130
pseudorandom numbers, 130
Roth’s sequence, 129
sequence of rationals, 6, 7, 39, 47, 67, 69,
90, 99, 106, 118, 130, 136, 137, 141,
142
slowly growing, 13, 14, 15,22, 23, 24,47,
58,59, 64, 65,67, 128
trigonometric, 23, 36-39, 68
van der Corput-Halton sequence, 129,
130, 158
van der Corput sequence, 127, 129, 132,
137
(ne), 8, 21,22, 23, 39, 42, 46, 67, 122-
126, 128, 129, 131, 157, 158, 159,
161, 219, 267, 284
(n#), subsequence of, 8, 22, 128, 129
((ne,, ..., noy),48,49,51, 52, 129,
132,268
(a,9), a, integers, 22, 32, 34, 39, 40, 76,
128, 129, 163,271, 279, 281, 296,
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309, 310, 317, 318, 319

(b"6), b integer, 8, 39, 42, 46, 66, 70, 71,
74-78, 128, 129, 158, 163

(A”x), 51,76

(A, %), A, teal, 35, 36, 39, 40, 45, 46, 76,
717, 284

(a'x), « real, 35, 36, 39, 40, 44, 46, 47,
76

(f(n)), f polynomial, 27, 28, 30, 46, 129,
284

(f(p,)), f polynomial, 30, 129

((f, (n), . . ., fs(M)), f; polynomials, 49,
51, 52,129

(f(n)), f entire function, 30

(f(n)), f growing somewhat faster than a
polynomial, 30, 129

(an?), 14, 15, 22, 24, 30, 31, 40, 130,
244,284

(clogn),8,9,22,24,57, 58, 59, 66, 68,
142,218

(log py), 22

(n log n), 15, 18, 132

(n logy n), 18, 24, 132

(an? log” n), 14, 15, 31, 130, 142

(p(n)/n), 66, 142

Special sequence in group, ("), 229, 267,

268, 269, 276-281, 294, 295, 304

(@M, 257,270, 271,279, 281

Special sequence of integers, (f(n)), f poly-

nomial, 311, 312, 313, 318, 319
([na]), 296, 307, 308, 310, 317, 318
Stark gleichverteilte Folge, 235
Steinhaus conjectures, 22
Step function, 2, 160, 179
Steps for (n9), 22
Stochastic processes, applications to, 39, 84
continuous uniform distribution mod 1
of, 84
Stone-Weierstrass theorem, 173, 177
Strongly regular matrix method, 216, 218,
219, 244
Strongly uniformly distributed sequence, in
compact group, 235
in compact space with respect to summa-
tion method, 218
Subgroup of compact index, 282, 283, 302
Subsequence, uniform distribution of, 6, 8,
39,40, 178, 180
Suites eutaxiques, 129, 191
Suite trés bien répartie, 325
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Summable sequence, 60
Summation method, 60, 178, 190, 207,
215,217,218
equivalent, 61
inclusion, 61, 62, 63, 65, 68, 213, 214,
216
regular, 61, 62
Superposition of sequences, 6,47, 115,
116, 180
Supporting hyperplane, 94
Support of measure, 176, 177, 206
Supremum norm, 97, 171, 216
Symmetric set, 194

Tauberian theorem, 15, 62, 63, 65

Thue-Siegel-Roth theorem, 124, 128

Tietze’s extension theorem, 177

Toeplitz matrix, positive, 60

Topological isomorphism, 231

Topologically divisible group, 284, 286,
294, 302, 303

Topologically isomorphic groups, 231

Torsion-free group, 233

Torsion group, 234

Torsion subgroup, 233

Trace of matrix, 223

Transform with respect to summation
method, 60

Trigonometric polynomial, 7

Trigonometric sequence, 23, 36-39, 68

Trivial character, 227

Trivial representation, 225

Two-sided Kolmogorov test, 98

Two-sided sequence, 67

Type of irrational number, 121, 122, 124

Uniform distribution in compact group,
definition, 221, 234
with respect to summation method, 221,
244,249-252, 256,257,279
Uniform distribution in compact space,
definition, 171, 175, 176, 178, 179,
189
with respect to summation method, 207-
215,217,218, 219
Uniform distribution in finite field, 331
Uniform distribution in GF[q,x], 326, 327,
328, 330, 331
Uniform distribution in 7%, 51, 130, 191
Uniform distribution in local field, 330

SUBJECT INDEX

Uniform distribution in locally compact
group, definition, 283, 301
Uniform distribution in locally compact
space, 178, 190
Uniform distribution in R, 283, 284, 296,
301, 303
Uniform distribution in ring of adeles, 325
Uniform distribution in VC Z 5, 321, 325
Uniform distribution in Z, 296, 304-310,
313, 314, 315, 317, 318, 319
relation to uniform distribution mod 1,
307-311, 317, 318, 319
Uniform distribution inZ ¥, 318
Uniform distribution in Zp, 320, 321, 322,
325
quantitative theory, 325
Uniform distribution mod 1, definition, 1,
2,5,6
elementary criteria, 6, 86, 89,91, 93, 97,
127, 128
inC, 48, 51, 52
in GF{q,x}, 329, 330, 331
in R®, 47-52, 76, 93, 97, 98, 99
in sequences of intervals, 49, 50, S1
of double sequence, 18, 19, 23, 2§
of double sequence in the squares 1 <,
k<NasN -, 19,620,21,23,25
with respect to summation method, 61-
68, 76
Uniform distribution mod m, 305-309, 311,
312, 313, 316-319
with respect to summation method, 318
weak, 318
Uniform distribution mod M in GF|[q,x],
326, 327, 328, 330, 331
Uniform distribution modulo a subdivision,
4,5, 39,46
Uniform distribution of function in Qp, 85,
325
Uniform distribution of function on group,
235
Uniform distribution of function on surface,
85
Uniform distribution of order k inZ p, 320,
325
Uniform distribution of sequence of
measures, 178, 234, 235, 256
Uniform distribution of sequence on curve,
51
Uniform distribution of sequence on
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sphere, 51
Uniform distribution of sequence on sur-
face, 51
Uniformity, 194
Uniformity class, 98, 178
Uniformly distributed double sequence
mod 1, 18, 19, 23, 25
in the squares 1 <j,k < NasN —, 19,
20, 21, 23, 25
Uniformly-distributed-sequence generator,
235
Uniformly distributed sequence in compact
group, definition, 221, 234
existence, 235, 301, 302
with respect to summation method, 221,
244, 249-252, 256, 257, 279
Uniformly distributed sequence in compact
space, definition, 171, 175, 176, 178,
179, 189
existence, 171, 178, 179, 180, 190, 191,
192
with respect to suimmation method, 207-
215,217, 218, 219
Uniformly distributed sequence in direct
product of groups, 262, 266
Uniformly distributed sequence in finite
field, 331
Uniformly distributed sequence in GF[q,x],
326, 327, 328, 330, 331
Uniformly distributed sequence in 7™, 51,
30, 191
Uniformly distributed sequence in locally
compact group, definition, 283, 301
existence, 301, 302
Hartman-, see Hartman-uniformly distri-
buted sequence
K-, 301,304
Uniformly distributed sequence in locally
compact space, 178, 190
Uniformly distributed sequence in R, 283,
284, 296, 301, 303
Uniformly distributed sequence in V' SZP,
321, 325
Uniformly distributed sequence inZ, 296,
304-310, 313, 314, 315, 317, 318, 319
Uniformly distributed sequence in Zp, 320,
321, 322, 325
Uniformly distributed sequence mod 1,
almost, 53, 66, 68, 309, 317, 319
definition, 1,2, 5, 6
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inC, 48, 51,52
in GF{q,x}, 329, 330, 331
in RS, 47-52, 76, 93, 97, 98, 99
with respect to summation method, 61-
68, 76
Uniformly distributed sequence mod m,
305-309, 311, 312, 313, 316-319
weakly, 318
with respect to summation method, 318
Uniformly distributed sequence mod M in
GFlq,x], 326, 327, 328, 330, 331
Uniformly distributed sequence mod A, 4,
5, 39,46
Uniformly distributed sequence of
measures, 178, 234, 235, 256
Uniformly distributed sequence of order k&
ian, 320, 325
Uniformly distributed sequence on curve,
51
Uniformly distributed sequence on sphere,
51
Uniformly distributed sequence on surface,
51
Uniform space, 194, 214, 228
Unitary group, 222
Unitary matrix, 222
Unitary representation, 224, 235, 236
Unit circle, 12, 170, 171, 172, 181
Unit cube, 47
closed, 48
infinite-dimensional, 39, 51, 98, 130, 158
Unit interval, 1
closed, 2
Universal compact monothetic group, 273,
274, 278, 293
Universal monothetic Cantor group, 293,
294, 302
Upper asymptotic density, 317
Upper Darboux step function, 160
Upper distribution function mod 1, 53, 58,
59,66,67,68
Urysohn function, 174
Urysohn metrization theorem, 181

Van Aardenne-Ehrenfest theorem, 105, 115

Van der Corput-Halton sequence, 129, 130,
158

Van der Corput’s difference theorem, 26,
217, 30,46, 165, 167, 169, 236, 238,
249, 250, 256, 265, 285
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Van der Corput sequence, 127, 129, 132,
137

Van der Corput’s fundamental inequality,
25, 30, 237

Variation, see Function of bounded
variation

Very well distributed sequence in Z p
325

Vinogradov’s method, 129

Von Mises’s theory of collectives, 77

Walsh functions, 117
Weak convergence of measures, 178
Weak direct product, 233, 234, 294
Weakly uniformly distributed sequence,
mod 1 in GF{q,x}, 329, 330
mod m, 318
Weakly well-distributed sequence, 205,
206, 256
Weak uniform distribution mod m, 318
Weierstrass approximation theorem, 7
Weighted arithmetic means, 63-66, 68, 213,
214,216, 218, 219
Weight of topological space, 227, 233, 278,
279, 281
Well distributed function mod 1, 84
Well-distributed sequence, almost, 205
in compact group, 221, 227, 229, 235,
236, 240-244, 256, 257, 269, 282

in compact space, 200-206, 215, 217, 218

in compact space, existence, 201, 205

in compact space with respect to summa-
tion method, 217, 218, 219

in locally compact group, 304

mod 1, 40-47

mod 1 in RS, 48, 51,52
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mod A, 46
weakly, 205, 206, 256
Weyl criterion, for asymptotic distribution
mod 1, 54, 61, 66, 68
for continuous uniform distribution, 78,
83, 84, 85
for equi-uniform distribution, 197, 236
for uniform distribution in compact group,
226, 227,234, 260
for uniform distribution in compact space,
177, 181
for uniform distribution in GF[q,x] and
GF{q,x}, 328-331
for uniform distribution in locally com-
pact group, 288, 301
for uniform distribution in Z, 306, 317,
318
for uniform distribution inZ p, 321, 322,
323,325
for uniform distribution mod 1, 7, 8, 18,
21,48,51, 117
for uniform distribution mod 1, generali-
zation, 21, 23
for well-distributed sequence in compact
group, 227
for well-distributed sequence in compact
space, 200
for well-distributed sequence mod 1, 41,
46,52
Wey!’s growth condition, 40, 235
Wey!’s method, 30
Wiener measure, 84
Wiener-Schoenberg theorem, 55, 66, 68,
254, 325, 326

Zero-one law, 190
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