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Azar y Autómatas

Clase 4: Construcción de números absolutamente normales -
Normalidad como d.u. módulo 1



Normal to a given base

Theorem (Champernowne, 1933)

0.123456789101112131415161718192021222324 . . . is normal to base 10.

It is unknown if it is normal to bases that are not powers of 10.

base 2 base 6 base 10
Plots of the first 250000 digits of Champernowne’s number.

1 / 32



Normal to one base, but not to another

Theorem (Stoneham, 1973)

α2,3 =
∑
k≥1

1

3k 23k

is normal to base 2 but not simply normal to base 6 .

base 2 base 6 base 10
Plots of the first 250000 digits of Stoneham number α2,3.
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Normal to all bases

A real number x is absolutely normal if x is normal to all bases.

Theorem (Borel 1909)

The set of absolutely normal numbers in [0, 1] has Lebesgue measure 1.

Problem (Borel 1909)

Give one example.

Problem (Borel, 1909)

Are the usual mathematical constants, such as π, e, or
√

2, absolutely
normal? Or at least simply normal to some base?

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.
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Normal to all bases
Bulletin de la Société Mathématique de France (1917) 45:127–132; 132–144
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Normal to all bases

Turing, A. M. A Note on Normal Numbers. Collected Works of Alan M. Turing, Pure

Mathematics, 117-119. Notes of editor J.L. Britton, 263-265. North Holland, 1992.
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Corrected and completed in Becher, Figueira and Picchi, 2007.
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Letter exchange between Turing and Hardy (AMT/D/5)

                        June 1
Dear Turing,

I have just came across your letter (March 28) which I seem to 
have put aside for reflection and forgotten.

I have a vague recollection that Borel says in one of his books 
that Lebesgue had shown him a construction. 
Try Leçons sur la théorie de la croissance (including the 
appendices), or the productivity book (written under his 
direction by a lot of people, but including one volume on 
arithmetical prosy, by himself).

Also I seem to remember vaguely that when Champernowne 
was doing his stuff I had a hunt, but could not find nothing 
satisfactory anywhere. 

Now, of course, when I do write, I do so from London, where I 
have no books to refer to. But if I put it off till my return, I may 
forget again.  

Sorry to be so unsatisfactory. But my 'feeling' is that Lebesgue 
made a proof which never got published.

Yours sincerely,
                                               G.H. Hardy
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Computable real numbers

A real number x is computable if there is a computer program that
outputs its fractional expansion in some base, one digit after the other.

Theorem (Turing 1936)

Let x be a real number in the unit interval. The following are equivalent:

1. x is computable.

2. there is a computable function f : N→ {0, 1} such that f (n) is the
n-th digit in the fractional expansion of x in base 2.

3. there is a computable non-decreasing sequence of rational numbers
(qj)j≥1 such that limj→∞ qj = x and for each j, |x − qj | ≤ 2−j .

4. there is a computable sequence of intervals I1, I2, I3 . . . with rational
endpoints nested, whose lengths go to 0 such hat x ∈

⋂
j≥1 Ij

Examples: 0,
√

2, π, e.
Counterexample: Cantor’s diagonal argument.
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Constructions of normal numbers

Concatenation works if we consider just one base.
For two bases, concatenation in general fails.

For example,

base 10 base 3

x = (0.25)10 = (0.020202020202 . . .)3...
y = (0.0017)10 = (0.0000010201101100102 . . .)3

x + y = (0.2517)10 = (0.0202101110122 . . .)3
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Turing’s construction of absolutely normal numbers

Theorem 1 (Turing 1937?)

There is an algorithm that computes the expansion in base 2 of an
absolutely normal number in the unit interval.

Reconstructed by Becher, Figueira and Picchi 2007.

This algorithm has double exponential computational complexity:
to compute the first n-th digits in the expansion in base 2 the algorithm
perfoms double exponential in n mathematical operations.
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Turing’s absolutely normal number

Turing uses dyadic intervals. To select I1, I2, I3 . . . his strategy is to
“follow the measure”. The computed number x is the trace of left/right
choices.
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Recall the definition of absolute normality

For the construction, the most convenient definition of absolute normality is:

A real number x is absolutely normal if it is simply normal to

all integer bases b greater than or equal to 2 .

Let x be a real in the unit interval, and let xb be its expansion in base b.

We define

∆N(xb) = max
d∈{0,...,b−1}

∣∣∣∣ |xb[1 . . .N]|d
N

− 1

b

∣∣∣∣
Then, x is simply normal to base b if

lim
N→∞

∆N(xb) = 0
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The construction is done by steps

We use n as the step number and define the following functions of n:

Nn = 2n0+2n,where n0 = 11, the number of digits looked at step n

bn = blog Nnc, the largest base considered at step n

εn = 1/bn difference between the expected frequency of digits

and the actual frequency of digits at step n.

Observe that bn is greater than or equal to 2 non-decreasing and
unbounded; Nn is non-decreasing and unbounded; εn is non-increasing
and goes to zero.

The value n0 is just to make the forthcoming calculations simple.
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Turing’s sets of candidates

Define the following sets of real numbers,

E0 = (0, 1), and for each n

En =
⋂

b∈{2,..,bn}

{x ∈ (0, 1) : ∆Nn(xb) < εn}.

Thus, for each n the set En consists of all the real numbers whose
expansion in the bases 2,3, . . . , bn exhibit

good frequencies of digits up to εn in the first Nn digits .

Lemma 1

The set
⋂

n≥0 En has positive measure and consists just of absolutely
normal numbers.
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Turing’s algorithm

Initial step, n = 0. I0 = (0, 1), E0 = (0, 1).

Recursive step, n > 1. In the previous step we computed In−1.
Let I 0

n be left half of In−1 and I 1
n be right half of In−1.

If µ
(

I 0
n ∩

⋂n
j=0 Ej

)
> 1/Nn then let In = I 0

n and yn = 0.

Else let In = I 1
n and yn = 1.

The outputs is y1y2y3 . . .
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Recall that there are a few bad words

Let A be an alphabet of b symbols. The set of words of length k such
that a given digit d has a number of occurrences that differs from the
expected 1/b in plus or minus εk ,

Bad(A, k , d , ε) =

{
v ∈ Ak :

∣∣∣∣ |v |dk
− 1

b

∣∣∣∣ ≥ ε} .
Lemma 2 (Adapted from Hardy and Wright )

Let b be an integer greater than or equal to 2 and let k be a positive
integer. If 6/k ≤ ε ≤ 1/b then for every d ∈ A,

|Bad(A, k , d , ε)| < 4bke−bε
2k/6.

16 / 32



About the sets of candidates En

Recall E0 = (0, 1), and for each n, En =
⋂

b∈{2,..,bn}

{x ∈ (0, 1) : ∆Nn (xb) < εn}.

We write µ for Lebesgue measure.

Proposition 1

For each n, En is a finite union of open intervals with rational endpoints, and
for n ≥ n0, µEn > 1− 1/N2

n .

Proof. The values of Nn and εn satisfy the hypotheses of Lemma 2, so,

µ{x ∈ (0, 1) : ∆Nn (xb) ≥ εn} < 2b2e−ε
2
nbNn/6.

Then, for Nn > e10 can be checked that

µ((0, 1) \ En) ≤
bn∑
b=2

2b2e−ε
2bNn/6 < 1/N2

n . Hence,

µEn ≥ 1−
bn∑
b=2

2b2e−ε
2bNn/6 ≥ 1− 1/N2

n . �

�
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Proof of Lemma 1

Recall Lemma 1 : The set
⋂

n≥0 En has positive measure and consists just of
absolutely normal numbers.

From Proposition 1 follows that
⋂

n≥0 En has positive measure.

Suppose x ∈
⋂

n≥0 En. Then, for every n, x ∈ En, so for b = 2, 3, . . . , bn,

∆Nn (xb) ≤ εn.

Let b be a base and let M be a position. Let n be such that

Nn ≤ M < Nn+1.

For each b smaller than bn we have that for each digit d in {0, . . . , b − 1},

|xb[1 . . .M]|d
M

≤ |xb[1 . . .Nn+1]|d
Nn

≤ Nn+1

Nn

(
1

b
+ εn+1

)
= 4

(
1

b
+ εn+1

)
|xb[1 . . .M]|d

M
≥ |xb[1 . . .Nn]|d

Nn+1
≥ Nn

Nn+1

(
1

b
− εn

)
=

1

4

(
1

b
− εn

)
.

Since εn is decreasing in n and goes to 0, for each base b = 2, 3 . . .,

lim sup
N→∞

|xb[1 . . .N]|d
N

< 4
1

b
.
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Proof of Lemma 1 continuation

Then, for each base b, and every digit in base b,

lim sup
N→∞

|xb[1 . . .N]|d
N

< 4
1

b`
.

By Piatetski-Shapiro Theorem, x is simply normal to every base b.
Hence , x is absolutely normal.�
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Proof of Theorem 1

From the previous algorithm follows that

0.y1y2y3 . . . ∈
⋂
n≥1

In

the intervals I1, I2, . . . are nested and for each n, µIn = 1/2n.

To prove the correctness of the algorithm we need to prove that the
following condition is invariant along every step n of the algorithm:

µ

In ∩
n⋂

j=1

Ej

 > 0.

We prove it by induction on n. Recall Nn = 2n0+2n.
Base case n = 0.

µ(I0 ∩ E0) = µ((0, 1)) = 1 >
1

N2
0

=
1

22n0
.
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Proof of Theorem 1

Inductive case, n > 0. Assume as inductive hypothesis that

µ

In ∩
n⋂

j=0

Ej

 >
1

Nn
.

We now show it holds for n + 1. Recall µEn > 1− 1/N2
n and

Nn = 2n0+2n. Then,

µ

In ∩
n+1⋂
j=0

Ej

 = µ

(In ∩
n⋂

j=0

Ej

)
∩ En+1

 >
1

Nn
− 1

N2
n+1

>
2

Nn+1
.

Since the algorithm chooses In+1 among I 0
n and I 1

n ensuring

µ(In+1 ∩
⋂n+1

j=0 Ej) > 1/Nn+1, we conclude µ(In+1 ∩
⋂n+1

j=0 Ej) > 1/Nn+1

as required.
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Proof of Theorem 1

Finally, since (In)n≥0 is nested and µ(In ∩
⋂n

j=0 Ej) > 0, for every n,

⋂
n≥0

In =
⋂
n≥0

In ∩
n⋂

j=0

Ej

 .

By Lemma 1, all the elements in
⋂

j≥0 Ej are absolutely normal.
Hence the unique point 0.y1y2 . . . in

⋂
n≥1 In is absolutely normal. �
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Computational complexity of Turing’s algorithm

Proposition 2

Turing’s algorithm has double exponential time-complexity.

We bound the number of mathematical operations computed by the
algorithm to output the first n digits of the expansion of the computed
number in a designated base.

We do not count how many elementary operations are implied by each of
the mathematical operations, so we neglect the computational cost of
performing arithmetical operations with arbitrary precision.
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Proof of Proposition 2

At step n the algorithm computes the set In−1 ∩ En.
To do this, first it computes

In−1 ∩ En =
⋂

b∈{2,..,bn}

{x ∈ In−1 ∩ En−1 : ∆Nn(xb) < εn}

Then it chooses In to be the left or the right half of In−1.

To compute In ∩ En it must examine the folllowing number of words

(bn)Nn−Nn−1−(n−1).

Since Nn = 2n0+2n and bn = blog Nnc, this is

O
(
(2n)22n)

.

The examination of all these words requires O
(
(2n)22n)

mathematical
operations.
We conclude by noticing that using the set In ∩ En at step n the
algorithm determines the n − th binary digit of the computed number. �
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Constructions of normal numbers

Based on discrete counting
1917 Absolutely normal. Not computable

Lebesgue, Sierpiński

1937 Absolutely normal. Doubly exponential complexity
Turing

2013 Absolutely normal. Polynomial complexity
Lutz and Mayordomo; Figueira and Nies: Becher, Heiber and Slaman.

2016 Absolutely normal. Polylog-linear complexity
Lutz and Mayordomo published 2020

2017 Absolutely normal and continued fraction normal.
Becher and Yuhjtman (polynomial); Scheerer (doubly exponential)

2017 Absolutely normal. Faster convergence to normality
than almost all numbers.Exponential complexity.
Aistleitner, Becher, Scheerer and Slaman

2021 A number x and 1/x absolutely normal and continued fraction normal
Becher and Madrischt
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Constructions of normal numbers

Based on harmonic analysis (exponential complexity)
1961 Normal to prescribed bases

Schmidt.

1971 Absolutely normal with discrepancy O
(

(log n)3

√
n

)
.

Levin

2015 (Simply) normal to prescribed bases.
Becher and Slaman: Becher, Bugeaud Slaman

2015 Absolutely normal and Liouville.
Becher, Heiber and Slaman

2019 Normal to all bases except 3
Aistleitner, Becher, Carton
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Uniform distribution modulo 1

Let (xj)j≥1 be a sequence of real numbers in the unit interval.

The discrepancy of the N first elements is

DN((xj)j≥1) = sup
0≤u<v≤1

∣∣∣∣ |{j : 1 ≤ j ≤ N and u ≤ xj ≤ v}|
N

− (v − u)

∣∣∣∣ .
The sequence (xj)j≥1 is uniformly distributed in the unit interval if

lim
N→∞

DN((xj)j≥1) = 0.

Theorem 2 (see Kuipers and Niederreiter 2006)

Almost all sequences of real numbers are uniformly distributed modulo 1.

Schmidt (1972) proved that for every sequence (xj)j≥1 of reals in the unit
interval there are infinitely many Ns such that

DN((xj)j≥1) ≥ log N

100 N
.

There are sequences that achive this lower bound (see Drmota and Tichy 1997)
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Normality in terms of uniform distribution modulo 1

Theorem 3 (Wall 1949)

A real number x is normal to base b if and only if (bjx)j≥0 is uniformly
distributed modulo 1.

By way of Weyl’s criterion of equidistribution: x is normal to base b if
and only if for every non-zero integer t,

lim
n→∞

1

n

n−1∑
j=0

e2πitbjx = 0.

Suggestion: Try it in Wolframalpha with x = π: x = e: x = 1/2, etc.
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Speed of convergence to normality

The discrepancy modulo 1 of the sequence (bjx)j≥0 gives the speed of
convergence to normality to base b.

Theorem 4 (Gál and Gál 1964: Philipp 1975: Fukuyama 2008)

For almost all real numbers x the discrepancy modulo 1 of the sequence
(bjx)j≥0 is essentially the same and it obeys the law of iterated logarithm
up to a constant factor that depends on b.

For every real θ > 1, there is a constant Cθ such that for almost all real
numbers x there is Nθ,0 such that for every N ≥ Nθ,0,

DN((θjx mod 1)j≥0) ≤ Cθ

√
log log N

N
.

For instance, in case θ is an integer greater than or equal to 2,

Cθ =



√
84/9, if θ = 2√
2(θ + 1)/(θ − 1)/2, if θ is odd√
2(θ + 1)θ(θ − 2)/(θ − 1)3/2, if θ ≥ 4 is even.
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The discrepancy modulo 1 of the sequence (bjx)j≥0 gives the speed of
convergence to normality to base b.

Theorem 4 (Gál and Gál 1964: Philipp 1975: Fukuyama 2008)
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A number that goes faster to absolute normality

Theorem 5 (Aistleitner, Becher, Sheerer and Slaman 2017)

There is an absolutely normal number x such that for each integer b ≥ 2,
there are numbers N0(b) and Cb such that for all N ≥ N0(b),

DN((bjx mod 1)j≥0) ≤ Cb√
N
.

and we can choose the constant Cb = 3433 b.

Moreover, there is an algorithm that computes the first N digits of the
expansion of x in base 2 after performing exponential in N mathematical
operations.
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Much faster to absolute normality

Theorem 5 does not supersede the discrepancy bound obtained by Levin
(1999) in one fixed base:

For a fixed integer b ≥ 2, Levin constructed a real number x such that
for every N sufficiently large

DN((bjx mod 1)j≥0) <
Cθ(log N)2

N
.
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Two central questions remain open

1. Asked by Korobov 1955:
For a fixed integer b ≥ 2, what is the function ψ(N) with maximal speed
of decrease to zero such that there is a real number x for which

DN((bjx mod 1)j≥0) = O (ψ(N)) as N →∞?

2. Asked by Bugeaud (personal communication, 2017):
Is there a number x satisfying the minimal discrepancy estimate for
normality not only in one fixed base, but in all bases at the same time?
More precisely, let ψ be Korobov’s function from above. Is there a real
number x such that for all integer bases b ≥ 2,

DN((bjx mod 1)j≥0) = O (ψ(N)) as N →∞?
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