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Intuition for randomness

A real number is random if it belongs to not set of probability 0.

A literal reading is not good: no real number would be random.
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Martin-Löf randomness

A sequence is Martin-Löf random if it belongs to no computably
definable null set. Since there is a universal computably definable null
set, it suffices to consider this one.

Equivalently,

A sequence is Martin-Löf random if it passes all computably definable
tests of non-randomness. Since there is a universal test, it suffices that to
consider just this universal Martin-Löf test.



Martin-Löf random reals

Definition (Martin-Löf 1966)

A real x is random if for every computable sequence (Vn)n≥1 of
computably enumerable open sets of reals such that µ(Vn) < 2−n,

x 6∈
⋂
n≥1

Vn.

Almost all (for Lebesgue measure) reals are Martin-Löf random.



How do we know that the definition is right?

The definition of randomness was accepted when two different
formulations were shown to be equivalent.

(This is similar to what happened with the notion of algorithm in 1930s
with Church-Turing thesis.)



How do we know that the definition is right?

Theorem (Schnorr 1975)

Martin-Löf and Chaitin definitions coincide.



How is randomness related to theory of uniform distribution?





Uniform distribution modulo one

For a real x, {x} = x− bxc.

Definition

A sequence of reals (xn)n≥1 is uniformly distributed modulo one,
abbreviated u.d. mod 1, if for all a, b ∈ [0, 1],

lim
N→∞

#
{
n : 1 ≤ n ≤ N, {xn} ∈ [a, b)

}
N

= b− a



Weyl’s criterion

A sequence (xn)n≥1 of real numbers is u.d. mod 1 if for every Reimann
integrable function f ,

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x)dx

Theorem (Weyl 1916)

A sequence (xn)n≥1 of real numbers is u.d. mod 1 if and only if for every
non-zero integer h,

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0



Hermann Weyl on a seesaw at a Gasthaus in Nikolausberg, Germany in 1932



Examples

Theorem (Bohl; Sierpiński; Weyl 1909-1910)

A real x is irrational if and only if (nx)n≥1 is u.d. mod 1.

Theorem (Wall 1949)

A real x is Borel normal to base b if and only if (bnx)n≥1 is u.d. mod 1.



Koksma’s General Metric Theorem

Given a real x in [0, 1] and (un : [0, 1]→ R)n≥1 consider (un(x))n≥1.

Definition (Koksma 1935)

Let Kall be the class of sequences (un : [0, 1]→ R)n≥1 such that

1. un(x) is continuously differentiable for every n,

2. u′m(x)− u′n(x) is monotone on x for all m 6= n,

3. there exists K > 0 such that for all x ∈ [0, 1] and all m 6= n,
|u′m(x)− u′n(x)| ≥ K.

Examples:
(nx)n≥1

(2nx)n≥1

(anx)n≥1 where (an)n≥1 is a sequence of distinct integers.



Koksma’s General Metric Theorem

Theorem (Koksma General Metric Theorem 1935)

Let (un : [0, 1]→ R)n≥1 in Kall. Then, for almost all (Lebesgue
measure) reals x in [0, 1], (un(x))n≥1 is u.d. mod 1.



Avigad’s Theorem

Theorem (Avigad 2013)

If a real x is random then for every computable sequence (an)n≥1 of
distinct integers, (anx)n≥1 is u.d. mod 1.

Actually Avigad’s theorem holds for Schnorr randomness which is weaker
than Martin-Löf randomness.
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Effective Koksma class K

Definition

Let K be the class of computable sequences (un : [0, 1]→ R)n≥1 in Kall
such that the sequence of derivatives (u′n : [0, 1]→ R)n≥1 is also
computable.



Strict inclusion

Theorem 1

Let x be a real in [0, 1]. If x is random then for every
(un : [0, 1]→ R)n≥1 in K the sequence (un(x))n≥1 is u.d. mod 1.

The reverse of Theorem 1 does not hold (porved by Avigad for a smaller
class).



Strict inclusion

Theorem 1

Let x be a real in [0, 1]. If x is random then for every
(un : [0, 1]→ R)n≥1 in K the sequence (un(x))n≥1 is u.d. mod 1.

The reverse of Theorem 1 does not hold (porved by Avigad for a smaller
class).



Σ0
1-u.d. mod 1

Definition

A sequence (xn)n≥1 of reals is Σ0
1-u.d. mod 1 if for every computably

enumerable open set A ⊆ [0, 1],

lim
N→∞

1

N
#

{
n : 1 ≤ n ≤ N, {xn} ∈ A

}
= µ(A).



Σ0
1-u.d. mod 1 is different from u.d. mod 1

Proposition

If x is computable and irrational then (nx)n≥1 is u.d. mod 1 but not
Σ0

1-u.d mod 1.

Proof. Let x be computable and irrational, for example π.

A =
⋃
n≥1

(
{nx} − 2−n−3 , {nx}+ 2−n−3

)
Then,

µ(A) ≤
∑
n≥1

2 2−n−3 = 1/2 and
1

N
#

{
n : 1 ≤ n ≤ N, {xn} ∈ A

}
= 1.

Hence, (nx)n≥1 is not Σ0
1-u.d. mod 1.
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Almost all sequences are Σ0
1-u.d. mod 1

Consider Lebesgue measure µ on [0, 1] and the product measure µ∞ on [0, 1]N.

Proposition (easy extension of Hlawka, 1956)

µ∞-almost all elements in [0, 1]N are Σ0
1-u.d. in the unit interval.



Inclusion

Theorem 2

Let x be a real number in [0, 1]. If there is (un : [0, 1]→ R)n≥1 in K
such that (un(x))n≥1 is Σ0

1-u.d. mod 1 then x is random.



Characterization

Theorem (Franklin,Greenberg,Miller,Ng 2012; Bienvenu,Day,Hoyrup,Mezhirov,Shen 2012)

A real x is random if and only if (2nx) is Σ0
1-u.d. mod 1.



Randomness and uniform distribution

exists (un)n≥1 in K, (un(x))n≥1 is Σ0
1-u.d. mod 1

⇓ ⇑?

(2nx)n≥1 is Σ0
1-u.d. mod 1

⇓ ⇑

x is random

⇓ 6⇑

for all (un)n≥1 in K is (un(x))n≥1 is u.d. mod 1



Discrepancy associated to random reals

Problem

Is there a random real x such that (2nx)n≥1 has discrepancy
O((logN)/N) ?



Discrepancy associated random reals

Definition

DN ((xn)n≥1) = sup
0≤u<v≤1

∣∣∣∣#{n : 1 ≤ n ≤ N, u ≤ {xn} < v}
N

− (v − u)

∣∣∣∣

Thus, (xn)n≥1 is u.d. mod 1 if lim
N→∞

DN ((xn)n≥1) = 0.

Schmidt, 1972, proved that there is a constant C such that for every
(xn)n≥1 there are infinitely many Ns with

DN ((xn)n≥1) ≥ C logN

N
.

There are Van der Corput sequences such that there is C such that for
cofinitely many Ns,

DN ((xn)n≥1) ≤ C logN

N
.
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Questions and answers about random sequences

Are random sequences normal?

Yes. Incompressibility by a Turing machine imples incompressibility by a
finite automaton.

Yes. Another proof: Construct a Martin-Löf test that covers all non-
normal sequences.
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normal sequences.



Questions and answers about random sequences

Are random sequences normal?

Yes. Incompressibility by a Turing machine imples incompressibility by a
finite automaton.

Yes. Another proof: Construct a Martin-Löf test that covers all non-
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Questions and answers about random sequences

Are almost all sequences random?

Yes. By definition, the set of random sequences is the whole set minus
the effectively defined universal null set. Then, with probability 1 an
arbitrary sequence belongs to the set of random sequences.
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Questions and answers about random sequences

Is the spell of good luck (or bad luck) necessarily short?

Yes (“Nothing lasts forever. . . ”).

Proof: Think of 0s and 1s. Suppose a random sequence starts a1a2...an.
If there is a run of 0’s longer than log n, then a1a2...an is compressible.
Randomness ensures that this will happen only finitely many times.
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Questions and answers about random sequences

Can a computer output a random sequence?

“Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.”

John Von Neumann (1951). Various techniques used in connection with random digits.

Proof: Every computable sequences is dramatically compressible by a
Turing machine! An initial segment of length n can be compressed to
2 log n+constant. Hence, computable sequences are not random.
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