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Years ago, Zeev Rudnick defined the Poisson generic real numbers by counting the

number of occurrences of long blocks of digits in the initial segments of the expansions

of the real numbers in a fixed integer base. Peres and Weiss proved that almost all real

numbers, with respect to the Lebesgue measure, are Poisson generic, but they did not

publish their proof. In this note, we first transcribe Peres and Weiss’ proof and then

we show that there are computable Poisson generic instances and that all Martin–Löf

random real numbers are Poisson generic.

1 Introduction and statement of results

Years ago, Zeev Rudnick defined the Poisson generic real numbers motivated by his

result in [17] that in almost all dilates of lacunary sequences the number of elements in a

random interval of the size of the mean spacing follows the Poisson law. By considering

a variation on this, Rudnick defined the notion of Poisson genericity for real numbers

by counting the number of occurrences of long blocks of digits in the initial segments

of the fractional expansions of the real numbers in a fixed integer base (he called the

notion supernormality; personal communication from Z. Rudnick to V. Becher, 24 May

2017).

Since Rudnick’s definition considers just a single integer base, it boils down to

counting occurrences of blocks of symbols in initial segments of infinite sequences of
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2 N. Álvarez et al.

symbols in a given finite alphabet. Let � be an alphabet of b symbols, for b ≥ 2. For

each positive integer k, let �k be the set of words of length k over alphabet � and let �N

be the set of infinite sequences of symbols in this given alphabet. For each k, the initial

segment of length N + k − 1 of an element in �N can be seen as N almost independent

events of words of length k, each one with equal probability p = b−k. The expected

proportion of the bk many words that occur exactly i times, for each i = 0, 1, . . ., is(
N

i

)
pi(1 − p)N−i.

The Poisson distribution arises as a limit of the binomial distributions as follows, see

also [12, p. 1]. When Np is a fixed constant λ, for i = 0, 1, . . .,

lim
N→∞
λ=Np

(
N

i

)
pi(1 − p)N−i = lim

N→∞
N(N − 1) · · · (N − i + 1)

Ni
(1 − p)N λi

i!
= e−λ λi

i!

We number the positions in words and infinite sequences starting from 1 and

we write ω[l, r] for the subsequence of ω that begins in position l and ends in position r.

We use interval notation, with a square bracket when the set of integers includes the

endpoint and a parenthesis to indicate that the endpoint is not included. For a word ω,

we denote its length as |ω|.
For j ∈ N, x ∈ �N, k ∈ N, and ω ∈ �k, we write Ij(x, ω) for the indicator function

that the word ω occurs in the sequence x at position j,

Ij(x, ω) = 1{x[j,j+k)=ω}.

For a positive real λ, x ∈ �N, k ∈ N, and i ∈ N0, we write Zλ
i,k(x) for the proportion of

words of length k that occur exactly i times in x[1, �λbk� + k),

Zλ
i,k(x) = 1

bk
#

⎧⎨
⎩ω ∈ �k :

∑
1≤j≤λbk

Ij(x, ω) = i

⎫⎬
⎭ .

Definition 1 (Zeev Rudnick). Let λ be a positive real number. An element x ∈ �N is

λ-Poisson generic if for every i ∈ N0,

lim
k→∞

Zλ
i,k(x) = e−λ λi

i!
.

An element x ∈ �N is Poisson generic if it is λ-Poisson generic for all positive real

numbers λ.
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Poisson Generic Sequences 3

Yuval Peres and Benjamin Weiss [20] strengthened the definition of Poisson

genericity by considering all sets of positions definable from Borel sets instead of just

sets of positions given by initial segments. (Talk by Benjamin Weiss entitled “Random-

like behavior in deterministic systems”, at Institute for Advanced Study Princeton

University USA, June 16, 2010.)

We regard � as a finite probability space with uniform measure that we

denote μ. For each x ∈ �N and for each k ∈ N, on the product space �k with product

measure μk, define the integer-valued random measure Mx
k = Mx

k (ω) on the real half-line

R+ = [0, +∞) by setting for all Borel sets S ⊆ R+,

Mx
k (S)(ω) =

∑
j∈N∩bkS

Ij(x, ω),

where N ∩ bkS denotes the set of integer values in {bks : s ∈ S}.
A point process Y(·) on R+ is an integer-valued random measure. Therefore,

Mx
k (·) is a point process on R+ for each k ≥ 1. A Poisson point process on R+ is a

point process Y(·) on R+ such that the following two conditions hold: (1) for all disjoint

Borel sets S1, . . . , Sm included in R+, the random variables Y(S1), . . . , Y(Sm) are mutually

independent; and (2) for each bounded Borel set S ⊆ R+, Y(S) has the distribution

of a Poisson random variable with parameter equal to the Lebesgue measure of S. A

sequence
(
Yk(·))k≥1 of point processes converges in distribution to a point process Y(·)

if, for every Borel set S, the random variables Yk(S) converge in distribution to Y(S)

as k goes to infinity. A thorough presentation on Poisson point processes can be read

from [11] or [12].

We write μN for the product measure on �N.

Theorem 1 (Peres and Weiss [20]). For almost all x ∈ �N with respect to the product

measure μN, the point processes Mx
k (·) converge in distribution to a Poisson point

process on R+ as k goes to infinity.

Peres and Weiss communicated the proof in [20] but they did not publish it. The

1st contribution in this note is a transcription of their proof.

The definition of Poisson genericity, Definition 1, uses the function Zλ
i,k(x), which

can be formulated in terms of Mx
k (S) for the sets S = (0, λ], as follows:

Zλ
i,k(x) = μk

(
ω ∈ �k : Mx

k ((0, λ])(ω) = i
)

.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac234/6758500 by guest on 20 O

ctober 2022
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This yields the following corollary of Theorem 1:

Corollary 1 (Peres and Weiss [20]). Almost all elements in �N, with respect to the

product measure μN, are Poisson generic.

Peres and Weiss [20] also proved that for any fixed positive λ, λ-Poisson gener-

icity implies Borel normality and that the two notions are not equivalent, witnessed by

the fact that Champernowne’s sequence is not λ-Poisson generic for λ = 1. Their proof

method was used in [9, 10] for other randomness notions.

The 2nd contribution of this note is an existence proof of computable Poisson

generic elements in �N. The theory of computability defines the computable functions

from N to N and they correspond exactly to the functions that can be calculated by an

algorithm. The notion of computability extends immediately to countable spaces (by

fixing an enumeration) and to other objects and spaces, for a monograph on this see

[19]. An element x ∈ �N is computable if there is a computable function f : N → � such

that f (n) is the n-th symbol of x. We show:

Theorem 2. There are countably many computable Poisson generic elements in �N.

Theorem 2 is for Poisson genericity as the computable version of Sierpiński’s

construction [1] or Turing’s algorithm [2, 18] is for Borel absolute normality (normality

to all integer bases). We follow the same strategy first used by Turing but in the general

form presented in [6]. From Theorem 2 follows that there are Poisson generic sequences

in every Turing degree. To see this, consider a computable Poisson generic sequence x

and any given sequence y, and construct a sequence z by inserting in x the symbols

of y at prescribed very widely spaced positions. The set of these positions should be

computable and should have density zero.

Although almost all elements in �N are Poisson generic and there are com-

putable instances, no explicit example is known. The recent work [4] gives a construction

of explicit λ-Poisson generic sequences in an alphabet with at least three symbols, for

any positive fixed real number λ.

After gathering statistics on several sequences, we arrived to the following.

Conjecture. The sequences obtained by concatenating the Fibonacci numbers (in

any base), the Rudin–Shapiro along squares and the Thue–Morse, along squares, are

1-Poisson generic.
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Poisson Generic Sequences 5

The automatic sequences Rudin–Shapiro and Thue–Morse along squares are

known to be Borel normal [13, 15].

The last result of this note relates Poisson genericity with the notion of

randomness given by the theory of computability called Martin-Löf randomness. A

thorough presentation of this notion can be read from [16].

Assume the alphabet � has b symbols, b ≥ 2. We write �<N for the set of all

finite words
⋃

k≥1 �k. In the space �N with the product measure μN consider the basic

open sets Bω = {ωz : z ∈ �N}, for each ω ∈ �<N. Then, μN(Bω) = b−|ω|. A set O ⊆ �N

is computably open if O = ⋃
i≥1 Bf (i) for some computable function f : N → �<N . A

sequence (On)n≥1 of open sets is uniformly computable if there is a computable function

f : N × N → �<N such that for each n ∈ N, On = ⋃
i≥1 Bf (n,i).

A Martin-Löf test is a uniformly computable sequence (On)n≥1 of open sets

whose measure is computably bounded and goes to 0 as n goes to infinity. A sequence

x ∈ �N is Martin-Löf random if, for every Martin–Löf test (On)n≥1, the sequence x is not

in ∩n≥1On. Since there are only countably many tests it follows that almost all elements

in �N are Martin–Löf random.

An equivalent formulation says that x ∈ �N is Martin–Löf random if x is the

base-b expansion of a real number y such that the sequence (bny)n≥1 is uniformly

distributed modulo one for all computably open sets, not just for intervals [3]. Since

changing the base representation is achievable by a computable function, this formu-

lation of Martin–Löf randomness can be stated requiring that the sequence (cny)n≥1 be

uniformly distributed modulo one for computably open sets, with any integer c ≥ 2.

Here we prove:

Theorem 3. All Martin–Löf random elements in �N are Poisson generic.

Theorem 1 proves a metric result on a notion of Poisson genericity stronger than

that of Definition 1 by considering point processes on R+. The technique used to prove

Theorems 2 and 3 apply for this stronger notion as well, after some tweaking in the

bounds.

2 Proof of Theorem 1

We follow Peres and Weiss’ proof [20]. They first give a randomized result where one

randomizes the sequence x ∈ �N. They call it the annealed result. Then, they obtain the

wanted pointwise result required in Theorem 1—also referred as the quenched result—

by applying a concentration inequality.
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2.1 The annealed result

For each k ∈ N, on the product space (�N × �k, μN × μk), we define the integer-valued

random measure Mk = Mk(x, ω) on R+ by

Mk(S)(x, ω) =
∑

j∈N∩bkS

Ij(x, ω),

where N ∩ bkS denotes the set of integer values in {bks : s ∈ S}.
We write A

(d)−−→ B to indicate convergence in distribution.

Lemma 1. Let Y(·) be a Poisson process on R+. Then, Mk(·) (d)−−→ Y(·), as k → ∞.

The proof of Lemma 1 uses a well-known sufficient condition for a sequence of

point processes to converge to a Poisson point process.

Proposition 1 (cf. [8, Theorem 4.18]). Let (Xk(·))k∈N be a sequence of point processes on

R+ and let Y(·) be a Poisson process on R+. If for any S ⊆ R+ that is a finite union of

disjoint intervals with rational endpoints we have

1. lim sup
k→∞

E[Xk(S)] ≤ E[Y(S)] and

2. lim
k→∞

P
(
Xk(S) = 0

) = P (Y(S) = 0)

then Xk(·) (d)−−→ Y(·), as k → ∞.

The total variation distance dTV between two probability measures P and Q on

a σ−algebra F is defined via

dTV(P, Q) = sup
A∈F

|P(A) − Q(A)| .

For a random variable X taking values in R, the distribution of X is the probability

measure μX on R defined as the push-forward of the probability measure on the sample

space of X. The total variation distance between two random variables X and Y is simply

dTV(X, Y) = dTV(μX , μY).

Notice that X and Y do not need to be defined over the same space.

Given a family {Ij}j∈J
of random variables on the same probability space, a

dependency graph for such a family is a graph L with underlying vertex set J such that
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Poisson Generic Sequences 7

for any pair of disjoint subsets A, B ⊆ J of vertices with no edge e = (a, b), a ∈ A, b ∈ B

connecting them, the subfamilies {Ii}i∈A and {Ij}j∈B
are mutually independent.

Proposition 2 ([7, Theorem 6.23]). Let Po(λ) be a Poisson random variable with mean λ.

Let {Ij}j∈J
be a family of random variables on a given probability space and let L be

its dependency graph with underlying vertex set J. Suppose that the random variable

XJ = ∑
j∈J Ij satisfies λ = E[XJ ] = ∑

j∈J E[Ij]. Then,

dTV(XJ , Po(λ)) ≤ min
{
1, λ−1

}⎛
⎝∑

j∈J

E
[
Ij
]2 +

∑
i,j:(i,j)∈edges(L)

(
E
[
IiIj

]
+ E

[
Ii
]
E
[
Ij
] )⎞⎠ .

For a measurable set S ⊆ R+, we write |S| for the Lebesgue measure of S.

Proof of Lemma 1. We apply Proposition 1. For the 1st condition, it is enough to

consider S ⊆ R+ to be an interval (p, q) with rational endpoints, in which case

E
[
Mk(S)

] =
∫

(x,ω)∈�N×�k

Mk(S)(x, ω) d(μN × μk)

= 1

bk

∑
ω∈�k

∑
j∈N∩bkS

∫
x∈�N

Ij(x, ω)d(μN)

= 1

b2k
bk

(
bk|S| + O(1)

)
.

Then, E
[
Mk(S)

]
converges to |S| as k goes to ∞. The O(1) term is in fact bounded by 2.

For the 2nd condition of Proposition 1, we show that when S is finite union of

intervals with rational endpoints, the total variation distance dTV(Mk(S), Y(S)) goes to 0

as k goes to infinity. This implies that the sequence (Mk(S))k≥1 of random variables

converges in distribution to the Poisson random variable Y(S).

We regard the indicator functions Ij = Ij(x, ω) as random variables on the space

(�N × �k, μN × μk),

Ij(x, ω) = 1{x[j,j+k)=ω}.

The dependency of these random variables is very sparse. There is some dependence

between Ii and Ij only when |j − i| < k. Even in such a case, Ii(x, ω)Ij(x, ω) = 1 is only

possible when the prefix of ω of length k − (j − i) is the same as the suffix of the same
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8 N. Álvarez et al.

length. If i < j and j − i < k then

μk
(
ω ∈ �k : ω(j − i, k] = ω[1, k − (j − i)]

)
= b−k+(j−i)

and for each of these ω’s

μN

(
x ∈ �N : x[i, i + k) = x[j, j + k) = ω

)
= b−k−(j−i).

Hence,

μN × μk
(
(x, ω) ∈ �N × �k : Ii(x, ω)Ij(x, ω) = 1

)
= b−2k,

which is the same as if Ii and Ij were independent. Notice that E[Ij] = b−k, and

E[IiIj] = b−2k. The dependency graph L is (i, j) ∈ edges (L) if and only if |i − j| < k. We

apply Proposition 2 to bound dTV(Mk(S), Y(S)), where Y(S) has a Poisson distribution

with mean |S|. For a union of n disjoint intervals S =
n⋃

i=1
(pi, qi) it yields,

dTV

(
Mk(S), Y(S)

) ≤ min
{
1, |S|−1

}
⎛
⎜⎜⎜⎝

∑
j∈N∩bkS

E[Ij]
2 +

∑
i,j∈N∩bkS
|i−j|<k

(
E[IiIj] + E[Ii]E[Ij]

)
⎞
⎟⎟⎟⎠

≤
∑

j∈N∩bkS

b−2k +
∑

i,j∈N∩bkS
|i−j|<k

2b−2k

≤
(
|S|bk + n

)
b−2k +

(
|S|bk + n

)
2k 2b−2k.

The last expression goes to 0 as k goes to infinity. Then, Mk(S)
(d)−−→ Y(S), as k goes to

infinity. �

2.2 The quenched result

We use now a classical concentration inequality, which estimates the error from the

average behaviour.

Proposition 3 (McDiarmid’s inequality [14]). Let X1, . . . , XN be independent random

variables taking values in some set �. Assume f : �N → R satisfies that for any two
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Poisson Generic Sequences 9

vectors x, x′ ∈ �N , which differ only in a single coordinate, we have

∣∣f (x) − f (x′)
∣∣ ≤ c, (†)

for some positive c = c(N). Let us write f (X) for the composition f (X1, . . . , XN) and let P

denote the probability on the underlying domain. Then, for any t ≥ 0, we have

P (|f (X) − E[f (X)]| > t) ≤ 2 exp
(−2t2

Nc2

)
.

We can now give the proof of Theorem 1. We use the well-known Borel–Cantelli

lemma, see [5, Chapter 3, Lemma 1], which says that for a sequence of subsets (An)n∈N
in a probability space (X, μ

X
), if

∑
n≥1 μ

X
(An) < ∞, then μ

X
(lim sup An) = 0, that is, the

set of points which are contained in infinitely many An has null measure. Under these

conditions, X − lim sup An is a full measure set.

Proof of Theorem 1. We want to show that, for almost every x in �N, as k goes to

infinity, the processes Mx
k (.) converge in distribution to Y(·), where Y(·) is a Poisson

process on R+. By Proposition 1, it suffices to consider sets S ⊆ R+ that are finite

unions of disjoint intervals with rational endpoints. The 1st condition of Proposition 1

holds because or each such S, E[Mx
k (S)] = |S| + O(b−k).

We now verify the 2nd condition of Proposition 1. Let n be the number of disjoint

intervals of S. Given x ∈ �N, the probability μk
(
ω : Mx

k (ω)(S) = i
)

depends on N = |S|bk+
εnk coordinates of x, for some ε ∈ [0, 1). This is because S is the union of n disjoint

intervals and for each of them one must consider at most one extra coordinate to take

into account its alignment with integer values, and k − 1 extra coordinates to fit ω. We

apply Proposition 3 to the function fk : �N → R given by

fk(x) = μk (ω : Mx
k (ω)(S) = i

)
.

Since a one-coordinate change in x affects no more than k of the ωs in the counting for

Mx
k (ω), the inequality (†) is satisfied with c = kb−k. By choosing tk = 1/k one gets

∞∑
k=1

μN
(
x :

∣∣fk(x) − E[fk(x)]
∣∣ > tk

) ≤ 2
∞∑

k=1

exp
(

−k−4bk
(
|S| + 2nkb−k

)−1
)
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10 N. Álvarez et al.

and this expression converges. Then, by the Borel–Cantelli lemma, the limsup event

{
x :

∣∣fk(x) − E[fk(x)]
∣∣ > tk for infinitely many k

}

has probability μN zero. That is to say, for almost every x ∈ �N, the probabilities

μk (ω : Mx
k (S)(ω) = i

)

converge, as k goes to infinity, to the same limit as that of

E
[
μk (ω : Mx

k (S)(ω) = i
)]

.

Given the identity

E
[
μk (ω : Mx

k (S)(ω) = i
)] = μN × μk ((x, ω) : Mk(S)(x, ω) = i

)
,

and that, by Lemma 1,

Mk(S)
(d)−−→ Y(S), as k → ∞,

we conclude that

μk (ω : Mx
k (S)(ω) = i

)
converge to P (Y(S) = i) , as k → ∞.

This happens for every i ≥ 0 and for every S that is a finite union of intervals with

rational endpoints. Since a countable union of sets of probability zero has probability

zero as well, we conclude that for μN-almost every x ∈ �N,

Mx
k (S)

(d)−−→ Y(S), as k → ∞

for all such sets S. �

3 Proofs of Theorem 2 and Theorem 3

In this section, we use three technical results from [6] for computable metric spaces X

and computable probability measures μ
X

on X. We start with the primary definitions.

The notion of computability is defined for many objects and spaces [19]. For

instance, a real number x is computable if there is a computable function f : N → Q
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Poisson Generic Sequences 11

such that |x − f (n)| ≤ 2−n, for all n. A sequence of elements in a space X is uniformly

computable if there is a computable function f : N × N → X such that the n-th element

in the sequence is computed by the projection fn(x) = f (n, x).

A metric space is a pair (X, d), where X is non-empty and d is a distance between

elements in X. A metric space is complete if every Cauchy sequence of elements in X

has a limit also in X. A space X is separable if it contains a countable dense subset. A

computable metric space is a triple (X, d, S), where X is a separable metric space (also

known as a Polish space) that contains a countable dense subset S = {si ∈ X : i ∈ N} and

the distance d(x, y) between elements x, y in S is computable. A probability measure

μ
X

over a computable metric space (X, d, S) is computable if the probability measure

of any finite union of balls with rational radius and centered in elements in S can be

computably approximated from below, uniformly.

Fact 1. The space (�N, d, S) where S is the set of computable elements in �N and

d(x, y) = b−lcp(x,y) with b equal to the cardinality of � and lcp(x, y) equal to the

length of the longest common prefix between x and y is a computable complete metric

space. The product measure μN is a computable probability measure on the Borel

sets of �N.

A sequence (xi)i≥1 of real numbers is effectively summable if for every ε ∈ Q, we

can compute n = n(ε) such that
∑

i≥n xi < ε. A sequence (Un)n≥1 of open sets included

in a computable metric space X is constructive Borel–Cantelli if it is a uniformly

computable sequence of open sets such that the sequence (μ
X
(X \ Un))n≥1 is effectively

summable. Given a constructive Borel–Cantelli sequence (Un)n≥1 the corresponding

Borel–Cantelli set is
⋃

k≥1
⋂

n>k Un.

Lemma 2 ([6, Lemma 3]). Let X be a computable probability space with computable

measure μX . Every constructive Borel–Cantelli sequence can be transformed into a

constructive Borel–Cantelli sequence (Un)n≥1 giving the same Borel–Cantelli set, with

μ
X
(X \ Un) < 2−n.

Proof. Let (Vn)n≥1 be a constructive Borel–Cantelli sequence. As
(
μ
X
(X \ Vn)

)
n≥1 is

effectively summable, an increasing sequence (ni)i≥0 of integers can be computed such
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12 N. Álvarez et al.

that for all i ≥ 1,
∑

n≥ni
μ
X
(X \ Vn) < 2−i. We now gather the Vn by blocks, setting

Ui =
⋂

ni≤n<ni+1

Vn.

Then, the sequence (Ui)i≥1 of open sets is is uniformly computable, μ
X
(X \ Ui) < 2−i and

⋃
k≥1

⋂
n≥k

Vn =
⋃
i≥1

⋂
n≥ni

Vn =
⋃
i≥1

⋂
j≥i

Uj.
�

The diameter of a set V in a metric space is the supremum of distances between

its elements and it is denoted by diam(V). We write V for the closure of V.

Lemma 3 ([6, Lemma 4]). Let X be a computable metric space with computable measure

μX . Let (Vi)i≥1 be a sequence of uniformly computable non-empty open sets such that

for each i, Vi+1 ⊆ Vi and diam(Vi) converges effectively to 0 as i goes to infinity. Then⋂
i≥1 Vi is a singleton containing a computable element.

Proof. Since each Vi is non-empty, there is a computable sequence of elements (si)i≥1,

si ∈ Vi. This is a Cauchy sequence, which converges by completeness. Let x be its limit:

it is a computable element as diam(Vi) converges to 0 in an effective way. Fix some i.

For all j ≥ i, sj ∈ Vj ⊆ Vi, so x = limj→∞ sj ∈ Vi. Hence, x ∈ ⋂
i≥1 Vi≥1 = ⋂

i≥1 Vi. �

Lemma 4 ([6, Theorem 1]). Let X be a computable complete metric space and with

computable probability measure μ
X

. Every constructive Borel–Cantelli set contains a

sequence of uniformly computable elements, which is dense in the support of μ
X

.

Proof. Let (Un)n≥1 be a constructive Borel–Cantelli sequence such that μ
X
(Un) >

1 − 2−n (by Lemma 2 this can always be obtained). Let B be a basic open set. In B,

we construct a computable element that lies in
⋃

n≥1
⋂

k≥n Uk, in a way that is uniform

in B.

Here is the construction. Let V0 = B and n0 be such that μ
X
(B) > 2−n0+1 (such

an n0 can be effectively found from B). We construct a sequence (Vi)i≥1 of uniformly

computable open sets and a computable increasing sequence (ni)i≥1 of positive integers

satisfying:

(1) μ
X
(Vi) + μ

X

( ⋂
k≥ni

Uk

)
> 1,
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(2) Vi ⊆ ⋂
n0≤k<ni

Uk,

(3) diam(Vi) ≤ 2−i+1,

(4) Vi+1 ⊆ Vi.

The last two conditions assure that
⋂

i≥1 Vi is a computable element, and the 2nd

condition assures that this element lies in
⋂

k≥n0
Uk. Suppose Vi and ni have been

constructed.

By the 1st condition,

μ
X

(
Vi ∩

⋂
k≥ni

Uk

)
> 0,

so there exists a basic open set B′ of radius 2−i−1 such that

μ
X

(
Vi ∩

⋂
k≥ni

Uk ∩ B′) > 0.

Then, there is m > ni such that

μ
X

(
Vi ∩

⋂
k≥ni

Uk ∩ B′) > 2−m+1,

and hence,

μ
X

(
Vi ∩

⋂
ni≤k<m

Uk ∩ B′) > 2−m+1.

this inequality can be semi-decided, such an m and a B′ can be effectively found. For

Vi+1, take any finite union of basic open sets whose closure is contained in

Vi ∩
⋂

ni≤k<m

Uk ∩ B′

and whose measure is greater than 2−m+1. Put ni+1 = m. Conditions 2, 3, and 4 directly

follow from the construction, Condition 1 follows from

μ
X

(
Vi+1

)
> 2−m+1 > 1 − μ

X

( ⋂
k≥m

Uk

)
.

�
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Tail estimates quantify the rate of decrease of probabilities away from the

central part of the distribution. As a corollary of the proof of Theorem 1, we obtain

the following result. It considers the space �N, the measures μN, μk, μN × μk, for every

k ≥ 1, and the integer-valued random measures on R+, Mx
k = Mx

k (ω) just on sets S = (0, λ],

for λ ∈ R+.

Lemma 5 (Tail bound). Let b ≥ 2 be the number of symbols of alphabet �, i a non-

negative integer and λ ∈ R+. Then, for every k ≥ k0(λ) = max
{
24, 2 log2(λ + 1)

}
, we have

μN

(
x ∈ �N :

∣∣∣∣∣μk (Mx
k ((0, λ]) = i

) − e−λλi

i!

∣∣∣∣∣ > 2/k

)
≤ exp

(
−2bk

λk4

)
.

Proof. Let Po(λ) be a Poisson random variable with mean λ. From the proof of

Lemma 1,

dTV

(
Mk((0, λ]), Po(λ)

) ≤ (λ + 1)b−k5k,

which is less than 1/k provided k ≥ k0(λ) = max
{
24, 2 log(λ + 1)

}
. This implies, for every

i ≥ 0, ∣∣∣μN × μk
(
Mk((0, λ]) = i

)
− P

(
Po(λ) = i

)∣∣∣ < 1/k.

Using Proposition 3 for the functions fk introduced in the proof of Theorem 1, we know

that for every k ≥ 1 and i ≥ 0,

μN

(
x ∈ �N :

∣∣∣μk
(
Mx

k ((0, λ]) = i
)

− μN × μk
(
Mk((0, λ]) = i

)∣∣∣ > 1/k
)

≤ 2 exp

(
−2bk

λk4

)
.

Given that P (Po(λ) = i) = e−λλi/i!, combining the two inequalities above, we obtain the

wanted result. �

Proofs of Theorems 2 and 3. Consider the topology generated by the countable family

of basic open (and closed) sets {ωz : z ∈ �N} where ω varies over �<N. For each integer

k ≥ 1, define the open sets

Ok =
⋃
λ∈Lk

⋃
i∈Jk

Bad(λ, k, i)
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where

Bad(λ, k, i) =
{

x ∈ �N :

∣∣∣∣∣μk (Mx
k ((0, λ]) = i

) − e−λλi

i!

∣∣∣∣∣ > 2/k

}
,

Lk = {p/q : q ∈ {1, . . . , k}, p/q < k},
Jk = {0, . . . , bk − 1}.

Using Lemma 5, we give an upper bound of μN(Ok). For each k ≥ 24,

μN(Ok) = μN

⎛
⎝ ⋃

λ∈Lk

⋃
i∈Jk

Bad(λ, k, i)

⎞
⎠

≤
∑
λ∈Lk

bk−1∑
i=0

μN(Bad(λ, k, i))

≤
∑
λ∈Lk

bk−1∑
i=0

2 exp

(
−2bk

λk4

)

≤
∑
λ∈Lk

bk−1∑
i=0

2 exp

(
−2bk

kk4

)

=
∑
λ∈Lk

2bk exp

(
−2bk

k5

)

≤ 2bkk3 exp

(
−2bk

k5

)
.

It follows that (μN(Ok))k≥1 is effectively summable. Notice that for

Uk = �N \ Ok,

the set
⋃

k≥1
⋂

n>k Un is a Borel–Cantelli set.

Applying Lemma 4 on the space �N, we conclude that there is a sequence of

uniformly computable elements. Each of them is λ-Poisson generic for every rational λ.

To prove that the property holds for all real numbers, observe that for every pair of
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positive reals λ, λ′, with λ < λ′,

Mx
k ((0, λ′])(ω) − Mx

k ((0, λ])(ω) =
∑

j∈N∩bk[λ,λ′)
Ij(x, ω),

where, since x is fixed, Ij(x, ω) is a function on �k. Hence,

dTV(Mx
k ((0, λ′]), Mx

k ((0, λ])) ≤ 1

bk
#
(
N ∩ bk[λ, λ′)

)
= λ′ − λ + O(b−k).

Also observe that dTV(Po(λ′), Po(λ)) → 0 as λ → λ′. From these two observations and the

fact that the rational numbers are a dense subset of the real numbers, we conclude that

each element in
⋃

k≥1
⋂

n>k Un is λ-Poisson generic for every positive real λ and hence,

Poisson generic. This completes the proof of Theorem 2.

The remaining lines prove Theorem 3. We show that all non-Poisson generic

elements in �N are not Martin–Löf random. For this we define a Martin–Löf test (Tm)m≥1

such that
⋂

m≥1 Tm contains all the non Poisson generic elements. Fix k0 = 24. Define

(Tm)m≥1 by

Tm =
⋃

k≥m+k0

Ok.

Clearly, (Tm)m≥1 is a Martin–Löf test because it is a uniformly computable sequence of

open sets, μN(Tm) is computably bounded and it goes to 0 as m goes to infinity,

μN(Tm) ≤
∑

k≥m+k0

μN(Ok) ≤
∑

k≥m+k0

2bkk3 exp

(
−2bk

k5

)
.

Now we prove that for every m0,
⋂

m≥m0
(�N \ Tm) contains only Poisson

generic elements. By way of contradiction, assume there exists a value m0 such that

x ∈ ⋂
m≥m0

(�N \ Tm) but x is not Poisson generic. Using the same argument as above,

x is not λ-Poisson generic for some positive rational λ. Then, there is a non-negative

integer i, a positive real ε, and infinitely many values k such that

∣∣∣∣∣μk (Mx
k ((0, λ]) = i

) − e−λλi

i!

∣∣∣∣∣ > ε.

Fix k1 ≥ m0 large enough such that λ ∈ Lk1
, i ∈ Jk1

and ε > 2/k1. Since (Lk)k≥1 and (Jk)k≥1

are increasing and 2/k is decreasing in k, this is still valid for every k ≥ k1. Since we
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assumed x ∈ ⋂
m≥m0

(�N \ Tm) then, for every k ≥ k1 and for every i ∈ Jk, we have

∣∣∣∣∣μk (Mx
k ((0, λ]) = i

) − e−λλi

i!

∣∣∣∣∣ < 2/k.

Since i ∈ Jk and 2/k < ε, we reached a contradiction. Therefore, all elements in⋂
m≥1(�N\Tm) are λ-Poisson generic for every positive rational λ, hence Poisson generic.

Finally, consider any x ∈ �N that is not Poisson generic. Then, x belongs to no

set

Wn =
⋂

m≥n

(�N \ Tm),

for any n. Thus, x belongs, for each n, to the complement set (�N \ Wn). Then,

x ∈
⋂
n≥1

(�N \ Wn) =
⋂
n≥1

( ⋃
m≥n

Tm

)
=

⋂
n≥1

Tn.

Hence, x is not Martin–Löf random. This completes the proof of Theorem 3. �
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