A Highly Random Number

Verénica Becher!, Sergio Daicz', and Gregory Chaitin*-2
! Departamento de Computacién
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
{vbecher,sdaicz}@dc.uba.ar
2 IBM Thomas J. Watson Research Center

chaitin@us.ibm.com

Abstract. In his celebrated 1936 paper Turing defined a machine to be
circular iff it performs an infinite computation outputting only finitely
many symbols. We define a as the probability that an arbitrary machine
be circular and we prove that « is a random number that goes beyond
{2, the probability that a universal self delimiting machine halts. The
algorithmic complexity of « is strictly greater than that of {2, but similar
to the algorithmic complexity of £2', the halting probability of an oracle
machine. What makes « interesting is that it is an example of a highly
random number definable without considering oracles.

1 Introduction

Although almost all (in the sense of measure theory) real numbers are random,
an effective example of one such number was by no means granted. Chaitin’s
definition of randomness lead to a natural example [4]. Based on his theory
of program size, Chaitin formalized the notion of lack of structure and unpre-
dictability of a random sequence: the prefixes of a random sequence can not be
algorithmically compressed. Any structure or regularity in a sequence could be
considered for compressing it, that is, for codifying certain amount of bits of the
sequence in a program having substantially less bits. Thus, in Chaitin’s theory
a sequence is defined to be random if its prefixes are as long as the computer
programs needed to generate them. Chaitin conceived a sequence with this prop-
erty: the binary expansion of (2. {2 relates to the simple task Turing found that
no computer could do: solve the halting problem. (2 is the probability that a
universal self delimiting machine will eventually halt. {2 is not computable be-
cause its first n bits would enable us to answer Turing’s halting problem for all
programs up to n bits in size, and this is impossible.

As there are countably many universal machines we can speak of the class of
the 2-numbers, the real numbers that are their halting probabilities. Recently,
the complementary work of Calude [2] and Slaman [9] proved a beautiful charac-
terization result: the class of {2-numbers coincides with the class of computably

* Honorary co-author.

2 Verénica Becher, Sergio Daicz, and Gregory Chaitin

enumerable random reals. A real number is computably enumerable if it can be
approximated from below by a non decreasing computable sequence of rationals
that converges to the number; that is, if it can be algorithmically approximated
in a monotone non decreasing way. For any given self delimiting machine, its
halting probability is computably enumerable, since by dovetailing all possible
programs we can obtain a monotone non decreasing approximation.

In this note we present a natural example of a random number that goes
beyond the class of 2-numbers. The idea goes back to Turing’s celebrated paper
“On computable numbers, with an application to the Entscheidungsproblem”
[11], where he describes the computable numbers as the real numbers whose
decimal expansion is calculable by finite means. According to Turing’s definition,
a number is computable if its decimal expansion can be written down by a circle
free machine. This is a machine that performs an unending computation in the
course of which it writes down infinitely many symbols. Otherwise, if it writes
down only finitely many, Turing defines the machine to be circular. Circular
machines reach a configuration from which there is no possible move, or go on
moving, but do not print any more symbols.

We will prove that the probability that a universal self delimiting machine
outputs finitely many symbols is a random number. We call this number a.

We will show that the degree of randomness of « exceeds that of {2, as it cor-
responds to the halting probability of an oracle machine. Although a universal
computer could never decide in advance whether any given program will even-
tually halt, Turing conceived an oracle machine, which could nevertheless know
one way or the other. Thus, an oracle machine could know (2. Such a machine
would have its own halting probability, 2, which would be more random than
£2. The hierarchy goes on and on: If there is an oracle that knows (2, it is easy
to conceive a second-order oracle that knows (2. This machine, in turn, has its
own halting probability, 2", which is known only by a third-order oracle. In
fact, there exists an infinite sequence of increasingly more random (2s. There is
even an infinitely high-order oracle which knows all other {2s. (2, is even more
random, more uncomputable than 2, ', 2", Thus, 2',2",..., are exam-
ples of numbers more random than (2 and they are not computably enumerable;
however, they are all defined by considering oracles.

We show that «, defined without considering oracles, is essentially (2', the
halting probability of a first-order oracle. Although a and {2’ are defined in terms
of recursively equivalent sets, a proof of randomness for a can not be obtained
directly from the randomnes of ', since —as we will show later— having random
probability is not a recursiveley invariant property of sets.

In sum, « is a natural example of a random not computably enumerable
number. With it we dip into a topic that deserves more study, the algorithmic
complexity of infinite computations. This topic was first studied by Chaitin in
[5], but there was no further work in this direction. The only exception was
Solovay’s paper [10], which discusses the relationship between program size and
algorithmic probability for infinite computations. In the last chapter of his re-
cent book [6], Chaitin proposes continuing this line of research to fully develop a

A Highly Random Number 3

theory of program size for infinite computations. This paper is a first step in that
direction. In a subsequent paper we will show that the probability that a uni-
versal self delimiting machine outputs a co-finite set is essentially {2, even more
random than «. That result and the main result of this work were announced in
[6].

2 Preliminaries

We will work with the binary alphabet, X' = {0,1}. As usual, we refer to a finite
sequence of elements of X' as a string, and we denote the empty string with A.
X* is the set of all strings on the X alphabet. For a € X*, |a| denotes the length
of a. We will write a < b if a is a prefix of b. We define string; as the i-th string
in the length and lexicographic order over X*.

X“ is the set of all infinite binary sequences. For X C X the set theoretic
measure of X is denoted by u(X) and represents the probability that any ar-
bitrary sequence belongs to X. For A C {0,1}*, AX“ denotes the open subset
of X% whose elements have an initial segment in A. For example, for a partic-
ular string s € X*, sX“ denotes the set of all sequences starting with s, and
p(sX¥) = 2715l Infinite binary sequences can be identified with real numbers
in [0, 1], when the sequence is taken as the binary expansion of a real number.
Hence, every real in [0, 1] has a corresponding sequence in X*. Rationals of the
form k27, for natural ¢, k, have two corresponding sequences, one ending with
infinitely many 1s, the other with infinitely many 0s. Since they form a set of
measure 0, this fact will not affect the considerations over probabilities that we
will make on this work. We will refer to elements of IR and elements of X in-
distinctly. We will use x,y to represent real numbers or infinite sequences and
we will write x; to denote the prefix of x of length .

With X*° we will denote the set X* U X, that is, the set of all strings and
all sequences over . We assume a partial order over X*° that extends the prefix
partial order of X*, so we also denote it with <. For u,v € Y*°, u < v if one of
the following three situations occur:

1. u=w.

2. u,v € X*and u <wv.

3. we X, veX¥and vy =u.

A set of strings is prefix free if and only if no proper extension of an element
of the set belongs to the set. That is, A C X* is prefix free iff for Va,b € X* if
a € A and b # X then ab ¢ A. For example, the set {\} is prefix free and so is
{a"b:n > 1}. We will also work with the dual property: a set of strings is suffiz
closed if and only if every extension of an element of the set also belongs to the
set. That is, B C X* is suffix closed iff Va,b € X* if a € B then ab € B. A trivial
example is X",

Observation 1. 1. For every suffix closed set B there exists a unique prefix
free set A C B such that A = {a:Vc € X*, ac € B}.

2. For every prefix free set A there exists a unique suffix closed set B such that
B={ac:a€ Aandce X*}.

4 Verénica Becher, Sergio Daicz, and Gregory Chaitin

Prefix free sets satisfy Kraft’s inequality [8]:

If A C X* is prefix free, then 0 < Y 27 1*l < 1.
a€EA

This property allows us to conveniently express the measure of a set of all se-
quences extending a prefix free set or a suffix closed set.

Observation 2. 1. Let A C ¥* be prefix free, then u(AX“) =% -, 2-lal,
2. Let B C X* be suffix closed and let A be its prefix free counterpart, B =
{ac:a € Aand c € ¥*}. Then, u(BX“) = p(AX) =3, ca 2-lal,

3 Self Delimiting Machines

In order to talk about probabilities over programs, Chaitin required that all
program symbols be uniformly distributed. He dropped the blank used in Tur-
ing’s formalization and considered programs made of just Os and 1s without
endmarkers. Consequently, the machine must realize when to finish reading the
program tape, it should have a self delimiting reading behaviour. He formalized
this concept requiring that when a program p halts, no extension of p halts. In
other words, the set of programs that halt has to be prefix free. The abstract
definition of a self delimiting machine is a partial recursive function f : X* — X*
such that if f(a) | then f(b) 1 for all b that are proper extensions of a. And he
used this formalization to develop his algorithmic complexity theory for finite
computations.

In [5] Chaitin extends his work for infinite computations and this is the
model we follow. However, we introduce a slight modification that will allow us
to properly deal with the simulation of programs. We require that every extension
of a valid program be a valid program outputting the same result. That is, the set
of valid programs has to be suffix closed and every extension of a valid program
has to give the same result. This condition is dual to prefix freeness and we will
see that it also successfully conforms Chaitin’s self delimiting requirement

The self delimiting machine that interests us is the following version of a Tur-
ing machine: a pregiven finite table that determines the computation, a program
tape, a work tape and output tape. The program tape contains just Os and 1s
and can only be read by the machine, while the output tape can only be written
with Os and 1s. Both tapes are infinite to the right and their heads only move in
that direction. The work tape can be read, written and erased; is infinite in both
directions and its head moves in both directions. A computation starts with the
heads of the program tape and output tape in their respective leftmost cells and
the work tape being all blank.

We are interested in infinite computations, programs that do not halt. That
is, computations that do not reach a final state, because for every reached com-
bination of a symbol in the program tape, a symbol in the work tape and a
state label there is always an entry in the machine table. For such an unending
computation there are two possibilities. Either it produces an infinite number

A Highly Random Number 5

of symbols in the output tape —a sequence—, or it produces just a finite number
of symbols in the output tape and then cycles forever. Since programs are finite
objects we are only interested in unending computations in the course of which
only a finite number of symbols of the program tape are read. Therefore, com-
putations that attempt to read an infinite number of symbols from the program
tape are not valid. A program p € X* is wvalid if and only if when starting an
infinite computation having a sequence belonging to pX“ in the program tape,
the head of the program tape eventually reaches some bit of p and never moves
forward. The set of valid programs for our machine is suffix closed, that is, if p is
a valid program so is every extension of p: if the head of the program tape stops
at some bit of p it will never reach any bit ahead. The stopping reading point is
the same for every string extending p. We can understand now why this machine
is self delimiting. Since there are no blanks in the program tape, nor any other
external way of delimitation a program must contain in itself the information to
know where it ends.

Now we give an abstract definition for infinite computations. Intuitively, an
infinite computation is the result of executing a program (finitely many instruc-
tions) for an unlimited amount of time. We start by defining a self delimiting
partial recursive function f of two arguments, a program p € X* and the number
of steps involved in the computation.

Definition 3. Let f: X* x IN — X* be a partial recursive function such that
(monotone) If f(p,n) | then Vimm < n f(p,m) <X f(p,n).
(self delimiting) If f(p,n) | then Va, f(pa,n) = f(p,n).
(recursive domain) There is a total recursive function def; : ¥* x IN — X
such that defy(p,n) = 1iff f(p,n) {.

The result of computing a program p for infinitely many steps is the limit of
running p for n steps, for n going to infinity. We define f*° as a partial function
from strings to either strings or sequences, f°°(p) is the supreme of the set of
strings f(p,n), for all n.

Definition 4. Let f : X* — X f*(p) = sup{f(p,n): n > 1}.

f=(p) 4 exactly when Vn f(p,n) | . Notice that if Vnf(p,n) | then, by the
monotonicity condition of f, {f(p,n) : n > 1} is totally ordered under <, so
the supreme of this set is defined. The result of the supreme operation is in 3°°.
Thus, if {f(p,n) : n > 1} is finite, then f*°(p) will be the <-maximal string
belonging to that set. Otherwise, f*°(p) will be a sequence. f*° inherits the self
delimiting property of f:

Proposition 5. If f>(p) | then Va € X*, f>(pa) = f>(p).

For instance, if we define a program p such that f(p,2n) = (01)" and f(p,2n +
1) = (01)"0,¥n > 0 we obtain f>°(p) = 010101..., Turing’s first example in
[11].

Machines that are capable of simulating any other machine are universal.
First of all we will choose a self delimiting universal machine U : X¥* — X* (a

6 Verénica Becher, Sergio Daicz, and Gregory Chaitin

machine for finite computations, a partial recursive function), assuming a given
effective enumeration of all self delimiting machines such that M; is the i-th
machine in such an enumeration. U reads its program tape until it finds the
first 1. If it read 7 Os, it starts simulating the execution of M;, taking the rest
of the program tape as a program for M;. So we get U(0'1p) = M;(p). We set
K = dom(U).

We also choose a universal machine for infinite computations, U : X* —
¥ such that U>®(0lp) = M (p), and denote K> = dom(U>). We can
split K*° into two disjoint sets, the set of programs that output finitely many
symbols and those that output infinitely many. In Turing’s terminology, circular
and circle free programs.

oo
K> = Kcirculm‘) Kcirclefree

We want to prove that the probability that a universal self delimiting machine
outputs finitely many symbols, is a random number. That is, we want to prove
that p(Kcircutar2®) is random. The rest of this paper deals with how to prove
it. The usual technique for proving the randomnes of {2 uses the fact that it is
computable enumerable [4]. We can not directly apply this technique because the
set K ircular 1S not recursively enumerable. We need a machine with an oracle
for the halting problem to enumerate K ijrcular-

Oracle machines provide relative computability. A function that can be com-
puted by a machine with an oracle for A is said A-computable, and a set that
can be enumerated by a machine with and oracle for A is said to be A-recursively
enumerable.

We fix U’, a universal self delimiting machine with an oracle for the halting
problem in U, U’ : ¥* — X* such that dom(U’) is prefix free and U’'(0'1p) =
M!(p), and set K' = dom(U').

Proposition 6. K j.cuar 15 K-recursively enumerable.

Proof. We will denote by u the partial recursive function used to define U*°.
The following algorithm for U’ enumerates Kcircurar-

Keircular = @
dovetail among every s € X
t:=1

while (s € Kcircular) do
if oracle(U(n:=t;while(def,(s,n) and
u(s,n) =wu(s,n+1)) do; n:=n+1; end do)1) then
Keircutar := Keircutar U {5}
else
ti=t+1
end do
end dovetail

Proposition 7. Every computably enumerable real is K-computable.

A Highly Random Number 7

Proof. Assume r is computably enumerable. Then there is a computable se-
quence of rationals (a,) that converges to r. We will denote by dth(q, d) the d-th
symbol of the decimal expansion of ¢q. The following program for U’ prints the
decimal expansion of r, digit by digit.

d:=1
t:=1
do forever
if oracle(U(n:=t;while(dth(a,,d) = dth(an+1,d)) do; n:=n+l; end do)?T) then
print dth(a¢,d)
d:=d+1
else
ti=t+1
end do

4 Algorithmic Complexity

The algorithmic complexity of a string in a given machine is the minimal length
of a program for that machine that produces it as a result. Let f : ¥* — X* be
self delimiting partial recursive. Chaitin defines the algorithmic complexity of a
string s in a machine f as:

Hy(s) = min{|p| : f(p) = s} if sis in the range of f.
UASCEN S otherwise

For self delimiting oracle machines, f': X* — X*

Hys) = min{|p| : f'(p) = s} if s is in the range of f'.

! 00 otherwise
And we define program size complexity for infinite computations, identically. Let
foo X — X be self delimiting.

man{|p|: f>°(p) = «} if « is in the range of f.

Hye () = {oo otherwise
In [3] Chaitin introduces a notion of universality different from the classical
notion. A self delimiting partial recursive function U is Chaitin universal iff for
any self delimiting partial recursive function f, there is a constant ¢ such that
for all s, Hy(s) < Hy(s) + c. For any pair of universal machines Uy and U,
there is a constant ¢ such that for every string s, |Hy, (s) — Hy,(s)| < c. This
is known as the invariance theorem and implies that the algorithmic complexity
is more or less independent of the universal machine being used. Since universal
computers are asymptotically optimal, the algorithmic complexity in a universal
machine counts as an absolute measure of complexity.

The universal machine U we fixed is Chaitin universal, since for a given
enumeration of all tables defining a computer such that f; is the i-th in the

8 Verénica Becher, Sergio Daicz, and Gregory Chaitin

enumeration, U(0'1p) = fi(p),i € N, p € X¥*. Then Vf;, Hy(s) < Hy,(s) +i+1.
For the same reason, U* and U’ that we fixed in the previous section are also
Chaitin universal. From now on we drop the subindexes U, U, and U’, and
write H, H*°, and H'.

4.1 Randomness

We can now introduce the definition of randomness. We will say that a real
number in [0, 1] is random if its corresponding binary sequence is random. The
definition is given for alphabet X = {0,1}, but it can be shown to be invariant
to any alphabet [1]. That is, the property of being random is inherent to the
number and it is independent of the system in which it is represented.

Chaitin [4] defines a sequence x € X* to be random iff there is a constant
¢ such that for all n, H(x,) > n — c. And he defines the probability that a self
delimiting universal machine U halts

0= Z 9—Ipl

U(p)d

Since U : ¥* — X*, with dom(U) prefix free, u(K X*) = (2. Chaitin proves that
{2 is computably enumerable and random.

Let us remark that the property of a prefix free set of strings of having a
random probability is not recursively invariant.

Proposition 8. For A ={0"""1:string; € K}, r =3 ., 27151 is not random.

Proof. By definition, the i-th bit of is 1 iff U(string;) J. Then, the first 2™ bits
of r are determined by the halting behavior of all programs of length less than
n. There will be m of them, 0 < m < 2" halt in U.

For any n, the first 2" bits of r can be dramatically compressed: there is an
algorithm which given 2" and m, by dovetailing all programs of length less than
n finds the m that halt and determines the first 2" bits of r. Then, H(rsn) <
log 2" +log m + ¢ < 2 log 2" + ¢ = 2n + ¢, for some constant c. Hence, r is not
random. O

K and A are recursively equivalent. However, (2 is random and r is not.

4.2 Comparison between H, H* and H’

We can now ask how this different complexity measures relate. First we show
that for any string H' < H® < H within a constant term. Next we show that
the inequalities obtained are strict, i.e.: H — H*® and H' — H* can not be
bounded by a constant.

Proposition 9. 1. 3cVs € ¥* H'(s) < H(s) +c.
2. dcVs € ¥* H'(s) < H*®(s) +c.
3. Vs € ¥* H>®(s) < H(s) +c.

A Highly Random Number 9

Proof. 1. There is an oracle machine M/ that does not use its oracle and be-
haves exactly as U. Then for every p € X*, U(p) = U'(0'1p). Thus, if H(s) is
the length of the shortest program that produces s in U, there is a program
of length H(s) + i + 1 which produces s in U’. So we can take ¢ =i + 1.

2. Any program p for U that outputs finitely many symbols can be simulated
on U’ by increasing number of steps. At each step, the simulation polls
the oracle to determine whether p would output more symbols or not. The
simulation ends when there is no more output left. The following program
performs that task.

t:=1

while(oracle(U(n:=t;while(u(p,n) = u(p,n + 1))do; n:=n+1; end do))]}) do
ti=t+1

end do

print (u(p,t))

There is an ¢ that instructs U’ to execute this program on input 0¢1p. So, if
p is the minimal program for s in U, there is a program for U’ of length
Ip| + @ + 1 that outputs s.
3. There is an 7 that instructs U to perform exactly the same actions as U
and cycle forever when U would halt. So, if p is the minimal program for s
in U, there is a program for U* of length |p| + ¢ + 1 that outputs s.
O

Proposition 10. 1. Vcds H(s) — H®(s) > ¢
2. ¥eds H>®(s) — H'(s) > ¢

Proof. 1. We will show a family of strings in which the diference between H
and H* can be made arbitrarily large. Consider the following program for
U that receives a minimal program for n and outputs a string s(n):

compute n
approx:=0 (the approximation of f2,)
previous:=0
dovetail among every program
each time a program p halts
previous:=approx
approx:=approx+ 2Pl
if (first n bits of previous)#(first n bits of approx) then
print the first n bits of approx
end dovetail

This program outputs a concatenation of strings of n bits obtained as suc-
cessive approximations to (2, from below until the first n bits of {2 have
been obtained: b11 e blnb21 N b2n N bml e bmn-Qn

s(n) is the result of an infinite computation by this program, so we have:

H>(s(n)) < H(n) +c1 (1)

10 Verénica Becher, Sergio Daicz, and Gregory Chaitin

But given n and s(n) one can easily compute (2,,, and we know that (2 is
random, so there must exist a co such that for every n:

H(s(n))+ H(n) >n —c (2)
Joining (1) and (2) we get:
H(s(n)) — H*(s(n)) >n —2H(n) —c3
The term on the right side can be made arbitrarily large as n increases.

2. Now we have to show that the difference between H* and H' is unbounded.
If u is the partial recursive function used to define U, we can consider a
family of recursive functions f, : X* — X* such that:

fn(p) = u(p,min{k : |u(p, k)| = n})

With this definition, if U (p) = (2,,, then f,,(p) = 2,. As f,, is a computable
function that depends on n and its argument, we have:

H(2,) < H®(02) + H(n) + ¢1 (3)
(2 is a random number. So, from (3) we get:
H>(2,) >n—H(n) —co (4)
On the other side, 2 is K-computable by proposition 7, so:
H'({2,) < H(n) + c3 (5)
Joining (4) and (5) we get:
H>(2,) — H'(2,) >n —2H(n) — ¢4

And again, the term on the right side can be made arbitrarily large as n
increases.
a

5 The Probability of Circular Programs

We define the probability that a self delimiting universal machine for infinite
computations produces only a finite amount of output.

@ = Z 27|p| = ,U(Kcirculm‘xw)-
U==(p) is finite

We will show that « is incompressible even if we count with an oracle for the
halting problem in U. To prove it we will first establish a correspondence between
the programs that halt in U’ and a subset of the circular programs in U®°. This

A Highly Random Number 11

correspondence will allow us to show that if we have the first n bits of a we can
solve the halting problem for all programs for U’ of length less than or equal to
n minus a constant. Then using Chaitin’s original argument for his proof of the
randomness of {2 we will prove that « is random.

To prove the correspondence result, we will take from [5] a technique called
simulation in the limit that is as follows: a computation in U’ is simulated by
increasing number of steps. In step ¢ the oracle for the halting problem is simu-
lated answering that U(g) halts iff it does so within time ¢. Using this technique,
we will be able prove that there is a prefix % such that U (%pa) is finite for
almost every a € X* if and only if U'(p) halts. Therefore, the probability that
U (%p) is finite is exactly equal to 2'. We have to allow possible extensions a of
p because the simulation in the limit may initially read extra bits. This happens
because the domain of U’ is not recursively enumerable, and the algorithm for
the simulation runs on U, so it has no way to determine where the program p
ends until it has the correct oracle answers. In the meantime, it may have read
extra bits from the program tape, and the head of the program tape can not
move backwards. But the actual value of the extra bits is irrelevant because once
the algorithm reaches the correct oracle answers it will know where p ends. For
example, suppose p is the following simple program for U’.

if oracle(U(factorial 100)|) then halt
else do forever read next bit of the program tape

Our simulation will need to compute factorial 100. The simulated oracle will give
the wrong answer for many steps ¢, until ¢ is large enough to complete the task.
The simulation will read as many extra bits from the program tape as needed
steps to complete the simulation of factorial 100. In general, the extra bits may
determine different execution paths at intermediate steps of the simulation. But
for each t the simulation of U’(p) is restarted. So, although they are unavoidable,
in the end the extra bits are ignored. Any sequence of Os and 1s after p on the
program tape, will lead to the correct simulation of U’(p). This motivates the
following

Definition 11. A set A C X* is unavoidable iff A is prefix free and every
sequence of X¥'* has a prefix in A.

For example, {0,10,110,1110,1111} is unavoidable, and {0} is not.

Proposition 12. For every unavoidable set A, p(AX%) =, 271l = 1.

Hence, if A is unavoidable, s is any string and B = {sa : a € A}, then }_,_,; 271"l
=3 ucB 9—lsal — > sach 9—Islg—lal= 9—Is| > aca 9—lel = 9—ls|,

Lemma 13. 3%Vp3A unavoidable such that Ya € A, %pa is circular iff U'(p)
halts.

Proof. % contains instructions for U to perform the simulation in the limit of
the program for U’ that comes afterwards in the program tape. The following

12 Verénica Becher, Sergio Daicz, and Gregory Chaitin

algorithm performs that task:

t:=1
maximum:=0 (number of simulated instructions of U’ when it halts)
do forever

1. Simulate U’ for at most ¢ instructions. For each question to the oracle of whether
U (g) halts, simulate U(q) and take as an answer whether it halts in at most ¢ steps.

2. If U’ did not halt, then print ¢ on the output tape. Else, let ¢ be the actual
number of instructions of U’ that have been simulated (the simulation for U(q)
is not charged). If ¢ exceeds the maximum number of simulated instructions for
all previous values of ¢, then update the maximum to ¢ and print ¢ on the output
tape.
Otherwise nothing is printed on the output tape.

3. ti=t+l

end do

Let us see that this % has the desired property. Suppose U’(p) J.. Then p halts
in finitely many steps. Then it can perform only finitely many oracle questions.
Let us call @ the set of programs for U that are consulted to the oracle. Every
q € @ such that U(q) | halts in some finite time. Let us call m the maximum time
required to halt by the programs of). For values of ¢ less than m, the simulation
of some oracle questions will be wrong, but for every value of t > m, they will be
correct. If U'(p) halts after n steps, then when ¢ exceeds the maximum between
m and n, the simulation at step t will find out that p halts. For larger values of
t the maximum number of executed steps will stabilize in n and there will be
no more symbols printed on the output tape. Thus, for every a € X* of length
greater than m and n, U (%pa) will be finite. The set of all strings of length
max(m,n) is an unavoidable set.

Suppose now that U (%pa) is finite. Then, during the simulation the head
of the output tape prints finitely many positive integers, and then it prints no
more. Say the last number printed is n. We have to show that U’(p) halts.

Suppose not. Then the execution of U’ does not halt in less than n + 1 steps.
In such n + 1 steps only a finite number of oracle questions can be performed,
over a finite number of programs. Following the same reasoning as before, there
is a maximum number of steps m that lead to the correct answer for all the
programs ¢ € @ that halt in U. Therefore, in the maximum step between m and
n + 1, the simulation should perform exactly what U’ does in the first n + 1
instructions, which we assumed does not halt. Then, the number n+ 1 is printed

in the output tape, contradicting that the maximum number printed was n.
Thus, it must be U'(p) |. O

Now we can prove that « is incompressible even if we count with an oracle
for the halting problem. In this sense, a is highly random.

Theorem 14. c¢Vn, H' (a,) > n — c.

A Highly Random Number 13

Proof. Consider the following algorithm for U’ that receives as input a minimal
program for U’ that computes a,:

1. Compute ay,.

2. As we proved in Proposition 6, K icuiqr i K-recursively enumerable. Let
g be a K-recursive function whose range is K jrcuiqr- Enumerate enough
programs g(1), g(2), ... until we have a prefix free set X = {g(i1),...,9(im)},
such that w,, =) cx 27171 > @,

3. Enumerate the set K' to obtain a set Y C K’ such that for every %p in X
there exists a y € Y such that y < p.

4. Output z the first string that does not belong to {U’(p) : p € Y'} and halt.

We have to show that H'(z) > n — |%]|. There must be some minimal program
p for U’ such that U'(p) = z, but we know that p ¢ Y. By Lemma 13, there
exists an unavoidable set A such that for all a € A, %pa is circular. Since p € Y,
then for all a € A, %pa ¢ X. We shall now consider the contribution of these
circular programs to «. Since ZaGA 2-1%pal — 2=1%2| the unavoidable set A can
be ignored. By our construction,

ap < Wiy
Let us add 271%7! to both sides of the inequality,
ay + 27170l <, 4 271701

Since there are infinitely many circular programs we have that w,, +2~1%?| < q,
then
an + 2717 < w,, + 27170l < o

Finally, using that a < «a,, + 27", we obtain
an + 271701 < 4y, 271701 < <a,+27"
Thus, a, + 271%?l < a,, + 27", which means that
|%p| > n

We conclude that n — |%| < H'(2).

Since we obtained z as the output of the algorithm above, there is a constant
g such that H'(z) < H'(ay)+¢. Thus, H'(ay,) > n—q—|%|. Taking ¢ = ¢+ |%],
we obtain the desired result. O

Proposition 15. 3c¢vn H'(12),) < H'(a,) + ¢

Proof. Given a minimal program for U’ for the first n bits of «,, we can compute
the first n — |%| bits of 2’ with the following algorithm for U’.

As in the proof of Theorem 14, enumerate enough programs of K i cuiar
until we have a prefix free set X = {g(i1),...,g(isn)} such that }° 27 Iel >
- Applying Lemma 13 we obtain Q;z—\%| = E%pEX 2-IPI. Thus, H'(12,) <
H'(ap) + |%| + constant. 0

14 Verénica Becher, Sergio Daicz, and Gregory Chaitin

We conclude with the following:
Corollary 16. « is random and not computably enumerable.

Proof. From Theorem 14 and Proposition 9, « is random. Also from Theorem 14,
« can not be K-computable, therefore by Proposition 7, it can not be computably
enumerable. O

We have chosen the formulation of a as the probability that a self delimiting
universal machine outputs finitely many symbols. However, there are a number
of alternative though equivalent formulations of a. One is to define it as the
probability that a self delimiting universal machine (for finite and infinite com-
putations) reads a finite number of bits of the program tape, as we did it in [7].
It is also possible to define « is as the probability that a universal self delimiting
machine enumerates a finite set. And yet another equivalent formulation is that
it computes a partial recursive function with a finite graph.

A cknowledgements. We thank Cristian Calude for his valuable comments
in an earlier stage of this work. Serge Grigorieff and Max Dickmann provided us
with useful comments that helped us improve the presentation of this work.

The first author is supported by grant 11-05382 from the Agencia de Pro-
mocion Cientifica y Tecnoldgica and a postdoctoral fellowship from the CONI-
CET.

References

1. Cristian. S. Calude. Information and Randomness. An Algorithmic Perspective.
Springer-Verlag, Berlin, 1994.

2. Cristian S. Calude, Peter H. Hertlind, Bakhadyr Khoussainov, and Yongee Wang.
Recursively enumerable reals and Chaitin {2 numbers. Theoretical Computer Sci-
ence. In press.

3. G. J. Chaitin. Information-theoretic limitations of formal systems. J. ACM,
21:403-424, 1974.

4. G. J. Chaitin. A theory of program size formally identical to information theory.
J. ACM, 22:329-340, 1975.

5. G. J. Chaitin. Algorithmic entropy of sets. Computers € Mathematics with Ap-

plications, 2:233-245, 1976.

G. J. Chaitin. Ezploring Randomness. Springer-Verlag, London, 2001.

S. Daicz. Una nueva versién de la probabilidad de detencién. Tesis de licenciatura,

Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, 2000.

8. L. G. Kraft. A device for quantizing, grouping and coding amplitude modulated
pulses. Master’s thesis, Dept. of Electrical Engineering, M.I.T., Cambridge, Mas-
sachusets, 1949.

9. T. Slaman. Randomness and recursive enumerability. SIAM J. on Computing. to
appear.

10. R. M. Solovay. On random r.e. sets. In A. I. Arruda, N. C. A. da Costa, and
R. Chuaqui, editors, Non-Classical Logics, Model Theory and Computability, pages
283-307. North-Holland Publishing Company, 1977.

11. A. Turing. On computable numbers, with an application to the entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 2nd series, 42:230-265, 1936.

o

