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omAbstra
t. In his 
elebrated 1936 paper Turing de�ned a ma
hine to be
ir
ular i� it performs an in�nite 
omputation outputting only �nitelymany symbols. We de�ne � as the probability that an arbitrary ma
hinebe 
ir
ular and we prove that � is a random number that goes beyond
, the probability that a universal self delimiting ma
hine halts. Thealgorithmi
 
omplexity of � is stri
tly greater than that of 
, but similarto the algorithmi
 
omplexity of 
0, the halting probability of an ora
lema
hine. What makes � interesting is that it is an example of a highlyrandom number de�nable without 
onsidering ora
les.1 Introdu
tionAlthough almost all (in the sense of measure theory) real numbers are random,an e�e
tive example of one su
h number was by no means granted. Chaitin'sde�nition of randomness lead to a natural example [4℄. Based on his theoryof program size, Chaitin formalized the notion of la
k of stru
ture and unpre-di
tability of a random sequen
e: the pre�xes of a random sequen
e 
an not bealgorithmi
ally 
ompressed. Any stru
ture or regularity in a sequen
e 
ould be
onsidered for 
ompressing it, that is, for 
odifying 
ertain amount of bits of thesequen
e in a program having substantially less bits. Thus, in Chaitin's theorya sequen
e is de�ned to be random if its pre�xes are as long as the 
omputerprograms needed to generate them. Chaitin 
on
eived a sequen
e with this prop-erty: the binary expansion of 
. 
 relates to the simple task Turing found thatno 
omputer 
ould do: solve the halting problem. 
 is the probability that auniversal self delimiting ma
hine will eventually halt. 
 is not 
omputable be-
ause its �rst n bits would enable us to answer Turing's halting problem for allprograms up to n bits in size, and this is impossible.As there are 
ountably many universal ma
hines we 
an speak of the 
lass ofthe 
-numbers, the real numbers that are their halting probabilities. Re
ently,the 
omplementary work of Calude [2℄ and Slaman [9℄ proved a beautiful 
hara
-terization result: the 
lass of 
-numbers 
oin
ides with the 
lass of 
omputably? Honorary 
o-author.



2 Ver�oni
a Be
her, Sergio Dai
z, and Gregory Chaitinenumerable random reals. A real number is 
omputably enumerable if it 
an beapproximated from below by a non de
reasing 
omputable sequen
e of rationalsthat 
onverges to the number; that is, if it 
an be algorithmi
ally approximatedin a monotone non de
reasing way. For any given self delimiting ma
hine, itshalting probability is 
omputably enumerable, sin
e by dovetailing all possibleprograms we 
an obtain a monotone non de
reasing approximation.In this note we present a natural example of a random number that goesbeyond the 
lass of 
-numbers. The idea goes ba
k to Turing's 
elebrated paper\On 
omputable numbers, with an appli
ation to the Ents
heidungsproblem"[11℄, where he des
ribes the 
omputable numbers as the real numbers whosede
imal expansion is 
al
ulable by �nite means. A

ording to Turing's de�nition,a number is 
omputable if its de
imal expansion 
an be written down by a 
ir
lefree ma
hine. This is a ma
hine that performs an unending 
omputation in the
ourse of whi
h it writes down in�nitely many symbols. Otherwise, if it writesdown only �nitely many, Turing de�nes the ma
hine to be 
ir
ular. Cir
ularma
hines rea
h a 
on�guration from whi
h there is no possible move, or go onmoving, but do not print any more symbols.We will prove that the probability that a universal self delimiting ma
hineoutputs �nitely many symbols is a random number. We 
all this number �.We will show that the degree of randomness of � ex
eeds that of 
, as it 
or-responds to the halting probability of an ora
le ma
hine. Although a universal
omputer 
ould never de
ide in advan
e whether any given program will even-tually halt, Turing 
on
eived an ora
le ma
hine, whi
h 
ould nevertheless knowone way or the other. Thus, an ora
le ma
hine 
ould know 
. Su
h a ma
hinewould have its own halting probability, 
0, whi
h would be more random than
. The hierar
hy goes on and on: If there is an ora
le that knows 
, it is easyto 
on
eive a se
ond-order ora
le that knows 
0. This ma
hine, in turn, has itsown halting probability, 
00, whi
h is known only by a third-order ora
le. Infa
t, there exists an in�nite sequen
e of in
reasingly more random 
s. There iseven an in�nitely high-order ora
le whi
h knows all other 
s. 
! is even morerandom, more un
omputable than 
;
0; 
00; : : :. Thus, 
0; 
00; : : :, are exam-ples of numbers more random than 
 and they are not 
omputably enumerable;however, they are all de�ned by 
onsidering ora
les.We show that �, de�ned without 
onsidering ora
les, is essentially 
0, thehalting probability of a �rst-order ora
le. Although � and 
0 are de�ned in termsof re
ursively equivalent sets, a proof of randomness for � 
an not be obtaineddire
tly from the randomnes of 
0, sin
e {as we will show later{ having randomprobability is not a re
ursiveley invariant property of sets.In sum, � is a natural example of a random not 
omputably enumerablenumber. With it we dip into a topi
 that deserves more study, the algorithmi

omplexity of in�nite 
omputations. This topi
 was �rst studied by Chaitin in[5℄, but there was no further work in this dire
tion. The only ex
eption wasSolovay's paper [10℄, whi
h dis
usses the relationship between program size andalgorithmi
 probability for in�nite 
omputations. In the last 
hapter of his re-
ent book [6℄, Chaitin proposes 
ontinuing this line of resear
h to fully develop a



A Highly Random Number 3theory of program size for in�nite 
omputations. This paper is a �rst step in thatdire
tion. In a subsequent paper we will show that the probability that a uni-versal self delimiting ma
hine outputs a 
o-�nite set is essentially 
00, even morerandom than �. That result and the main result of this work were announ
ed in[6℄.2 PreliminariesWe will work with the binary alphabet, � = f0; 1g. As usual, we refer to a �nitesequen
e of elements of � as a string, and we denote the empty string with �.�� is the set of all strings on the � alphabet. For a 2 ��, jaj denotes the lengthof a. We will write a � b if a is a pre�x of b. We de�ne stringi as the i-th stringin the length and lexi
ographi
 order over ��.�! is the set of all in�nite binary sequen
es. For X � �! the set theoreti
measure of X is denoted by �(X) and represents the probability that any ar-bitrary sequen
e belongs to X . For A � f0; 1g�; A�! denotes the open subsetof �! whose elements have an initial segment in A. For example, for a parti
-ular string s 2 ��, s�! denotes the set of all sequen
es starting with s, and�(s�!) = 2�jsj. In�nite binary sequen
es 
an be identi�ed with real numbersin [0; 1℄, when the sequen
e is taken as the binary expansion of a real number.Hen
e, every real in [0; 1℄ has a 
orresponding sequen
e in �!. Rationals of theform k2�i, for natural i; k, have two 
orresponding sequen
es, one ending within�nitely many 1s, the other with in�nitely many 0s. Sin
e they form a set ofmeasure 0, this fa
t will not a�e
t the 
onsiderations over probabilities that wewill make on this work. We will refer to elements of IR and elements of �! in-distin
tly. We will use x; y to represent real numbers or in�nite sequen
es andwe will write xi to denote the pre�x of x of length i.With �1 we will denote the set �� [�!, that is, the set of all strings andall sequen
es over �. We assume a partial order over �1 that extends the pre�xpartial order of ��, so we also denote it with �. For u; v 2 �1, u � v if one ofthe following three situations o

ur:1. u = v.2. u; v 2 �� and u � v.3. u 2 ��, v 2 �! and vjuj = u.A set of strings is pre�x free if and only if no proper extension of an elementof the set belongs to the set. That is, A � �� is pre�x free i� for 8a; b 2 �� ifa 2 A and b 6= � then ab 62 A. For example, the set f�g is pre�x free and so isfanb : n � 1g. We will also work with the dual property: a set of strings is suÆx
losed if and only if every extension of an element of the set also belongs to theset. That is, B � �� is suÆx 
losed i� 8a; b 2 �� if a 2 B then ab 2 B. A trivialexample is ��.Observation 1. 1. For every suÆx 
losed set B there exists a unique pre�xfree set A � B su
h that A = fa : 8
 2 ��; a
 2 Bg.2. For every pre�x free set A there exists a unique suÆx 
losed set B su
h thatB = fa
 : a 2 A and 
 2 ��g.



4 Ver�oni
a Be
her, Sergio Dai
z, and Gregory ChaitinPre�x free sets satisfy Kraft's inequality [8℄:If A � �� is pre�x free, then 0 �Xa2A 2�jaj � 1:This property allows us to 
onveniently express the measure of a set of all se-quen
es extending a pre�x free set or a suÆx 
losed set.Observation 2. 1. Let A � �� be pre�x free, then �(A�!) =Pa2A 2�jaj.2. Let B � �� be suÆx 
losed and let A be its pre�x free 
ounterpart, B =fa
 : a 2 A and 
 2 ��g. Then, �(B�!) = �(A�!) =Pa2A 2�jaj.3 Self Delimiting Ma
hinesIn order to talk about probabilities over programs, Chaitin required that allprogram symbols be uniformly distributed. He dropped the blank used in Tur-ing's formalization and 
onsidered programs made of just 0s and 1s withoutendmarkers. Consequently, the ma
hine must realize when to �nish reading theprogram tape, it should have a self delimiting reading behaviour. He formalizedthis 
on
ept requiring that when a program p halts, no extension of p halts. Inother words, the set of programs that halt has to be pre�x free. The abstra
tde�nition of a self delimiting ma
hine is a partial re
ursive fun
tion f : �� ! ��su
h that if f(a) # then f(b) " for all b that are proper extensions of a. And heused this formalization to develop his algorithmi
 
omplexity theory for �nite
omputations.In [5℄ Chaitin extends his work for in�nite 
omputations and this is themodel we follow. However, we introdu
e a slight modi�
ation that will allow usto properly deal with the simulation of programs.We require that every extensionof a valid program be a valid program outputting the same result. That is, the setof valid programs has to be suÆx 
losed and every extension of a valid programhas to give the same result. This 
ondition is dual to pre�x freeness and we willsee that it also su

essfully 
onforms Chaitin's self delimiting requirementThe self delimiting ma
hine that interests us is the following version of a Tur-ing ma
hine: a pregiven �nite table that determines the 
omputation, a programtape, a work tape and output tape. The program tape 
ontains just 0s and 1sand 
an only be read by the ma
hine, while the output tape 
an only be writtenwith 0s and 1s. Both tapes are in�nite to the right and their heads only move inthat dire
tion. The work tape 
an be read, written and erased; is in�nite in bothdire
tions and its head moves in both dire
tions. A 
omputation starts with theheads of the program tape and output tape in their respe
tive leftmost 
ells andthe work tape being all blank.We are interested in in�nite 
omputations, programs that do not halt. Thatis, 
omputations that do not rea
h a �nal state, be
ause for every rea
hed 
om-bination of a symbol in the program tape, a symbol in the work tape and astate label there is always an entry in the ma
hine table. For su
h an unending
omputation there are two possibilities. Either it produ
es an in�nite number



A Highly Random Number 5of symbols in the output tape {a sequen
e{, or it produ
es just a �nite numberof symbols in the output tape and then 
y
les forever. Sin
e programs are �niteobje
ts we are only interested in unending 
omputations in the 
ourse of whi
honly a �nite number of symbols of the program tape are read. Therefore, 
om-putations that attempt to read an in�nite number of symbols from the programtape are not valid. A program p 2 �� is valid if and only if when starting anin�nite 
omputation having a sequen
e belonging to p�! in the program tape,the head of the program tape eventually rea
hes some bit of p and never movesforward. The set of valid programs for our ma
hine is suÆx 
losed, that is, if p isa valid program so is every extension of p: if the head of the program tape stopsat some bit of p it will never rea
h any bit ahead. The stopping reading point isthe same for every string extending p. We 
an understand now why this ma
hineis self delimiting. Sin
e there are no blanks in the program tape, nor any otherexternal way of delimitation a program must 
ontain in itself the information toknow where it ends.Now we give an abstra
t de�nition for in�nite 
omputations. Intuitively, anin�nite 
omputation is the result of exe
uting a program (�nitely many instru
-tions) for an unlimited amount of time. We start by de�ning a self delimitingpartial re
ursive fun
tion f of two arguments, a program p 2 �� and the numberof steps involved in the 
omputation.De�nition 3. Let f : �� � IN! �� be a partial re
ursive fun
tion su
h that(monotone) If f(p; n) # then 8m � n f(p;m) � f(p; n):(self delimiting) If f(p; n) # then 8a; f(pa; n) = f(p; n).(re
ursive domain) There is a total re
ursive fun
tion deff : �� � IN! �su
h that deff (p; n) = 1 i� f(p; n) #.The result of 
omputing a program p for in�nitely many steps is the limit ofrunning p for n steps, for n going to in�nity. We de�ne f1 as a partial fun
tionfrom strings to either strings or sequen
es, f1(p) is the supreme of the set ofstrings f(p; n), for all n.De�nition 4. Let f1 : �� ! �1, f1(p) = supff(p; n) : n � 1g.f1(p) # exa
tly when 8n f(p; n) # : Noti
e that if 8nf(p; n) # then, by themonotoni
ity 
ondition of f , ff(p; n) : n � 1g is totally ordered under �, sothe supreme of this set is de�ned. The result of the supreme operation is in �1.Thus, if ff(p; n) : n � 1g is �nite, then f1(p) will be the �-maximal stringbelonging to that set. Otherwise, f1(p) will be a sequen
e. f1 inherits the selfdelimiting property of f :Proposition 5. If f1(p) # then 8a 2 ��; f1(pa) = f1(p):For instan
e, if we de�ne a program p su
h that f(p; 2n) = (01)n and f(p; 2n+1) = (01)n0;8n � 0 we obtain f1(p) = 010101 : : :, Turing's �rst example in[11℄.Ma
hines that are 
apable of simulating any other ma
hine are universal.First of all we will 
hoose a self delimiting universal ma
hine U : �� ! �� (a
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hine for �nite 
omputations, a partial re
ursive fun
tion), assuming a givene�e
tive enumeration of all self delimiting ma
hines su
h that Mi is the i-thma
hine in su
h an enumeration. U reads its program tape until it �nds the�rst 1. If it read i 0s, it starts simulating the exe
ution of Mi, taking the restof the program tape as a program for Mi. So we get U(0i1p) = Mi(p). We setK = dom(U).We also 
hoose a universal ma
hine for in�nite 
omputations, U1 : �� !�1, su
h that U1(0i1p) = M1i (p), and denote K1 = dom(U1). We 
ansplit K1 into two disjoint sets, the set of programs that output �nitely manysymbols and those that output in�nitely many. In Turing's terminology, 
ir
ularand 
ir
le free programs.K1 = K
ir
ular [K
ir
lefreeWe want to prove that the probability that a universal self delimiting ma
hineoutputs �nitely many symbols, is a random number. That is, we want to provethat �(K
ir
ular�!) is random. The rest of this paper deals with how to proveit. The usual te
hnique for proving the randomnes of 
 uses the fa
t that it is
omputable enumerable [4℄. We 
an not dire
tly apply this te
hnique be
ause theset K
ir
ular is not re
ursively enumerable. We need a ma
hine with an ora
lefor the halting problem to enumerate K
ir
ular.Ora
le ma
hines provide relative 
omputability. A fun
tion that 
an be 
om-puted by a ma
hine with an ora
le for A is said A-
omputable, and a set that
an be enumerated by a ma
hine with and ora
le for A is said to be A-re
ursivelyenumerable.We �x U 0, a universal self delimiting ma
hine with an ora
le for the haltingproblem in U , U 0 : �� ! ��, su
h that dom(U 0) is pre�x free and U 0(0i1p) =M 0i(p), and set K 0 = dom(U 0).Proposition 6. K
ir
ular is K-re
ursively enumerable.Proof. We will denote by u the partial re
ursive fun
tion used to de�ne U1.The following algorithm for U 0 enumerates K
ir
ular.K
ir
ular := ;dovetail among every s 2 ��t:=1while (s 62 K
ir
ular) doif ora
le(U(n:=t;while(defu(s; n) andu(s; n) = u(s; n + 1)) do; n:=n+1; end do )") thenK
ir
ular := K
ir
ular [ fsgelset:=t+1end doend dovetail utProposition 7. Every 
omputably enumerable real is K-
omputable.



A Highly Random Number 7Proof. Assume r is 
omputably enumerable. Then there is a 
omputable se-quen
e of rationals (an) that 
onverges to r. We will denote by dth(q; d) the d-thsymbol of the de
imal expansion of q. The following program for U 0 prints thede
imal expansion of r, digit by digit.d:=1t:=1do foreverif ora
le(U(n:=t;while(dth(an ; d) = dth(an+1; d)) do; n:=n+1; end do)") thenprint dth(at; d)d:=d+1elset:=t+1end do ut4 Algorithmi
 ComplexityThe algorithmi
 
omplexity of a string in a given ma
hine is the minimal lengthof a program for that ma
hine that produ
es it as a result. Let f : �� ! �� beself delimiting partial re
ursive. Chaitin de�nes the algorithmi
 
omplexity of astring s in a ma
hine f as:Hf (s) = �minfjpj : f(p) = sg if s is in the range of f .1 otherwiseFor self delimiting ora
le ma
hines, f 0 : �� ! ��,Hf 0(s) = �minfjpj : f 0(p) = sg if s is in the range of f 0.1 otherwiseAnd we de�ne program size 
omplexity for in�nite 
omputations, identi
ally. Letf1 : �� ! �1 be self delimiting.Hf1(x) = �minfjpj : f1(p) = xg if x is in the range of f1.1 otherwiseIn [3℄ Chaitin introdu
es a notion of universality di�erent from the 
lassi
alnotion. A self delimiting partial re
ursive fun
tion U is Chaitin universal i� forany self delimiting partial re
ursive fun
tion f , there is a 
onstant 
 su
h thatfor all s, HU (s) � Hf (s) + 
. For any pair of universal ma
hines U1 and U2there is a 
onstant 
 su
h that for every string s, jHU1(s) � HU2(s)j � 
. Thisis known as the invarian
e theorem and implies that the algorithmi
 
omplexityis more or less independent of the universal ma
hine being used. Sin
e universal
omputers are asymptoti
ally optimal, the algorithmi
 
omplexity in a universalma
hine 
ounts as an absolute measure of 
omplexity.The universal ma
hine U we �xed is Chaitin universal, sin
e for a givenenumeration of all tables de�ning a 
omputer su
h that fi is the i-th in the
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her, Sergio Dai
z, and Gregory Chaitinenumeration, U(0i1p) = fi(p), i 2 IN, p 2 ��. Then 8fi, HU (s) � Hfi(s)+ i+1.For the same reason, U1 and U 0 that we �xed in the previous se
tion are alsoChaitin universal. From now on we drop the subindexes U , U1, and U 0, andwrite H , H1, and H 0.4.1 RandomnessWe 
an now introdu
e the de�nition of randomness. We will say that a realnumber in [0; 1℄ is random if its 
orresponding binary sequen
e is random. Thede�nition is given for alphabet � = f0; 1g, but it 
an be shown to be invariantto any alphabet [1℄. That is, the property of being random is inherent to thenumber and it is independent of the system in whi
h it is represented.Chaitin [4℄ de�nes a sequen
e x 2 �! to be random i� there is a 
onstant
 su
h that for all n, H(xn) > n� 
. And he de�nes the probability that a selfdelimiting universal ma
hine U halts
 = XU(p)# 2�jpjSin
e U : �� ! ��, with dom(U) pre�x free, �(K�!) = 
. Chaitin proves that
 is 
omputably enumerable and random.Let us remark that the property of a pre�x free set of strings of having arandom probability is not re
ursively invariant.Proposition 8. For A = f0i�11 : stringi 2 Kg, r =Ps2A 2�jsj is not random.Proof. By de�nition, the i-th bit of r is 1 i� U(stringi) #. Then, the �rst 2n bitsof r are determined by the halting behavior of all programs of length less thann. There will be m of them, 0 � m � 2n, halt in U .For any n, the �rst 2n bits of r 
an be dramati
ally 
ompressed: there is analgorithm whi
h given 2n and m, by dovetailing all programs of length less thann �nds the m that halt and determines the �rst 2n bits of r. Then, H(r2n) �log 2n + log m+ 
 � 2 log 2n + 
 = 2n+ 
, for some 
onstant 
. Hen
e, r is notrandom. utK and A are re
ursively equivalent. However, 
 is random and r is not.4.2 Comparison between H, H1 and H 0We 
an now ask how this di�erent 
omplexity measures relate. First we showthat for any string H 0 � H1 � H within a 
onstant term. Next we show thatthe inequalities obtained are stri
t, i.e.: H � H1 and H 0 � H1 
an not bebounded by a 
onstant.Proposition 9. 1. 9
8s 2 �� H 0(s) � H(s) + 
:2. 9
8s 2 �� H 0(s) � H1(s) + 
.3. 9
8s 2 �� H1(s) � H(s) + 
.



A Highly Random Number 9Proof. 1. There is an ora
le ma
hine M 0i that does not use its ora
le and be-haves exa
tly as U . Then for every p 2 ��, U(p) = U 0(0i1p). Thus, if H(s) isthe length of the shortest program that produ
es s in U , there is a programof length H(s) + i+ 1 whi
h produ
es s in U 0. So we 
an take 
 = i+ 1.2. Any program p for U1 that outputs �nitely many symbols 
an be simulatedon U 0 by in
reasing number of steps. At ea
h step, the simulation pollsthe ora
le to determine whether p would output more symbols or not. Thesimulation ends when there is no more output left. The following programperforms that task.t:=1while( ora
le(U(n:=t;while(u(p; n) = u(p; n + 1))do; n:=n+1; end do ))#) dot:=t+1end doprint(u(p,t))There is an i that instru
ts U 0 to exe
ute this program on input 0i1p. So, ifp is the minimal program for s in U1, there is a program for U 0 of lengthjpj+ i+ 1 that outputs s.3. There is an i that instru
ts U1 to perform exa
tly the same a
tions as Uand 
y
le forever when U would halt. So, if p is the minimal program for sin U , there is a program for U1 of length jpj+ i+ 1 that outputs s. utProposition 10. 1. 8
9s H(s)�H1(s) > 
2. 8
9s H1(s)�H 0(s) > 
Proof. 1. We will show a family of strings in whi
h the diferen
e between Hand H1 
an be made arbitrarily large. Consider the following program forU1 that re
eives a minimal program for n and outputs a string s(n):
ompute napprox:=0 (the approximation of 
n)previous:=0dovetail among every programea
h time a program p haltsprevious:=approxapprox:=approx+ 2�jpjif (first n bits of previous)6=(first n bits of approx) thenprint the first n bits of approxend dovetailThis program outputs a 
on
atenation of strings of n bits obtained as su
-
essive approximations to 
n from below until the �rst n bits of 
 havebeen obtained: b11 : : : b1nb21 : : : b2n : : : bm1 : : : bmn
n.s(n) is the result of an in�nite 
omputation by this program, so we have:H1(s(n)) � H(n) + 
1 (1)



10 Ver�oni
a Be
her, Sergio Dai
z, and Gregory ChaitinBut given n and s(n) one 
an easily 
ompute 
n, and we know that 
 israndom, so there must exist a 
2 su
h that for every n:H(s(n)) +H(n) > n� 
2 (2)Joining (1) and (2) we get:H(s(n))�H1(s(n)) > n� 2H(n)� 
3The term on the right side 
an be made arbitrarily large as n in
reases.2. Now we have to show that the di�eren
e between H1 and H 0 is unbounded.If u is the partial re
ursive fun
tion used to de�ne U1, we 
an 
onsider afamily of re
ursive fun
tions fn : �� ! �� su
h that:fn(p) = u(p;minfk : ju(p; k)j = ng)With this de�nition, if U1(p) = 
n, then fn(p) = 
n. As fn is a 
omputablefun
tion that depends on n and its argument, we have:H(
n) � H1(
n) +H(n) + 
1 (3)
 is a random number. So, from (3) we get:H1(
n) > n�H(n)� 
2 (4)On the other side, 
 is K-
omputable by proposition 7, so:H 0(
n) � H(n) + 
3 (5)Joining (4) and (5) we get:H1(
n)�H 0(
n) > n� 2H(n)� 
4And again, the term on the right side 
an be made arbitrarily large as nin
reases. ut5 The Probability of Cir
ular ProgramsWe de�ne the probability that a self delimiting universal ma
hine for in�nite
omputations produ
es only a �nite amount of output.� = XU1(p) is �nite 2�jpj = �(K
ir
ular�!):We will show that � is in
ompressible even if we 
ount with an ora
le for thehalting problem in U . To prove it we will �rst establish a 
orresponden
e betweenthe programs that halt in U 0 and a subset of the 
ir
ular programs in U1. This
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orresponden
e will allow us to show that if we have the �rst n bits of � we 
ansolve the halting problem for all programs for U 0 of length less than or equal ton minus a 
onstant. Then using Chaitin's original argument for his proof of therandomness of 
 we will prove that � is random.To prove the 
orresponden
e result, we will take from [5℄ a te
hnique 
alledsimulation in the limit that is as follows: a 
omputation in U 0 is simulated byin
reasing number of steps. In step t the ora
le for the halting problem is simu-lated answering that U(q) halts i� it does so within time t. Using this te
hnique,we will be able prove that there is a pre�x % su
h that U1(%pa) is �nite foralmost every a 2 �� if and only if U 0(p) halts. Therefore, the probability thatU1(%p) is �nite is exa
tly equal to 
0. We have to allow possible extensions a ofp be
ause the simulation in the limit may initially read extra bits. This happensbe
ause the domain of U 0 is not re
ursively enumerable, and the algorithm forthe simulation runs on U1, so it has no way to determine where the program pends until it has the 
orre
t ora
le answers. In the meantime, it may have readextra bits from the program tape, and the head of the program tape 
an notmove ba
kwards. But the a
tual value of the extra bits is irrelevant be
ause on
ethe algorithm rea
hes the 
orre
t ora
le answers it will know where p ends. Forexample, suppose p is the following simple program for U 0.if ora
le(U(fa
torial 100)#) then haltelse do forever read next bit of the program tapeOur simulation will need to 
ompute fa
torial 100. The simulated ora
le will givethe wrong answer for many steps t, until t is large enough to 
omplete the task.The simulation will read as many extra bits from the program tape as neededsteps to 
omplete the simulation of fa
torial 100. In general, the extra bits maydetermine di�erent exe
ution paths at intermediate steps of the simulation. Butfor ea
h t the simulation of U 0(p) is restarted. So, although they are unavoidable,in the end the extra bits are ignored. Any sequen
e of 0s and 1s after p on theprogram tape, will lead to the 
orre
t simulation of U 0(p). This motivates thefollowingDe�nition 11. A set A � �� is unavoidable i� A is pre�x free and everysequen
e of �! has a pre�x in A.For example, f0; 10; 110; 1110; 1111g is unavoidable, and f0g is not.Proposition 12. For every unavoidable set A, �(A�!) =Pa2A 2�jaj = 1.Hen
e, if A is unavoidable, s is any string and B = fsa : a 2 Ag, thenPb2B 2�jbj= Psa2B 2�jsaj = Psa2B 2�jsj2�jaj= 2�jsjPa2A 2�jaj = 2�jsj.Lemma 13. 9%8p9A unavoidable su
h that 8a 2 A;%pa is 
ir
ular i� U 0(p)halts.Proof. % 
ontains instru
tions for U1 to perform the simulation in the limit ofthe program for U 0 that 
omes afterwards in the program tape. The following



12 Ver�oni
a Be
her, Sergio Dai
z, and Gregory Chaitinalgorithm performs that task:t:=1maximum:=0 (number of simulated instru
tions of U 0 when it halts)do forever1. Simulate U 0 for at most t instru
tions. For ea
h question to the ora
le of whetherU(q) halts, simulate U(q) and take as an answer whether it halts in at most t steps.2. If U 0 did not halt, then print t on the output tape. Else, let 
 be the a
tualnumber of instru
tions of U 0 that have been simulated (the simulation for U(q)is not 
harged). If 
 ex
eeds the maximum number of simulated instru
tions forall previous values of t, then update the maximum to 
 and print 
 on the outputtape.Otherwise nothing is printed on the output tape.3. t:=t+1end doLet us see that this % has the desired property. Suppose U 0(p) #. Then p haltsin �nitely many steps. Then it 
an perform only �nitely many ora
le questions.Let us 
all Q the set of programs for U that are 
onsulted to the ora
le. Everyq 2 Q su
h that U(q) # halts in some �nite time. Let us 
allm the maximum timerequired to halt by the programs of Q. For values of t less than m, the simulationof some ora
le questions will be wrong, but for every value of t � m, they will be
orre
t. If U 0(p) halts after n steps, then when t ex
eeds the maximum betweenm and n, the simulation at step t will �nd out that p halts. For larger values oft the maximum number of exe
uted steps will stabilize in n and there will beno more symbols printed on the output tape. Thus, for every a 2 �� of lengthgreater than m and n, U1(%pa) will be �nite. The set of all strings of lengthmax(m;n) is an unavoidable set.Suppose now that U1(%pa) is �nite. Then, during the simulation the headof the output tape prints �nitely many positive integers, and then it prints nomore. Say the last number printed is n. We have to show that U 0(p) halts.Suppose not. Then the exe
ution of U 0 does not halt in less than n+1 steps.In su
h n + 1 steps only a �nite number of ora
le questions 
an be performed,over a �nite number of programs. Following the same reasoning as before, thereis a maximum number of steps m that lead to the 
orre
t answer for all theprograms q 2 Q that halt in U . Therefore, in the maximum step between m andn + 1, the simulation should perform exa
tly what U 0 does in the �rst n + 1instru
tions, whi
h we assumed does not halt. Then, the number n+1 is printedin the output tape, 
ontradi
ting that the maximum number printed was n.Thus, it must be U 0(p) #. utNow we 
an prove that � is in
ompressible even if we 
ount with an ora
lefor the halting problem. In this sense, � is highly random.Theorem 14. 9
8n, H 0(�n) > n� 
.



A Highly Random Number 13Proof. Consider the following algorithm for U 0 that re
eives as input a minimalprogram for U 0 that 
omputes �n:1. Compute �n.2. As we proved in Proposition 6, K
ir
ular is K-re
ursively enumerable. Letg be a K-re
ursive fun
tion whose range is K
ir
ular. Enumerate enoughprograms g(1); g(2); : : : until we have a pre�x free setX = fg(i1); : : : ; g(im)g,su
h that wm =Px2X 2�jxj > �n.3. Enumerate the set K 0 to obtain a set Y � K 0 su
h that for every %p in Xthere exists a y 2 Y su
h that y � p.4. Output z the �rst string that does not belong to fU 0(p) : p 2 Y g and halt.We have to show that H 0(z) > n � j%j. There must be some minimal programp for U 0 su
h that U 0(p) = z, but we know that p 62 Y . By Lemma 13, thereexists an unavoidable set A su
h that for all a 2 A, %pa is 
ir
ular. Sin
e p 62 Y ,then for all a 2 A, %pa 62 X . We shall now 
onsider the 
ontribution of these
ir
ular programs to �. Sin
ePa2A 2�j%paj = 2�j%pj, the unavoidable set A 
anbe ignored. By our 
onstru
tion, �n < wmLet us add 2�j%pj to both sides of the inequality,�n + 2�j%pj < wm + 2�j%pjSin
e there are in�nitely many 
ir
ular programs we have that wm+2�j%pj < �,then �n + 2�j%pj < wm + 2�j%pj < �Finally, using that � � �n + 2�n, we obtain�n + 2�j%pj < wm + 2�j%pj < � � �n + 2�nThus, �n + 2�j%pj < �n + 2�n, whi
h means thatj%pj > nWe 
on
lude that n� j%j < H 0(z):Sin
e we obtained z as the output of the algorithm above, there is a 
onstantq su
h that H 0(z) � H 0(�n)+q: Thus, H 0(�n) > n�q�j%j. Taking 
 = q+ j%j,we obtain the desired result. utProposition 15. 9
8n H 0(
0n) � H 0(�n) + 
Proof. Given a minimal program for U 0 for the �rst n bits of �n we 
an 
omputethe �rst n� j%j bits of 
0 with the following algorithm for U 0.As in the proof of Theorem 14, enumerate enough programs of K
ir
ularuntil we have a pre�x free set X = fg(i1); : : : ; g(im)g su
h that Px2X 2�jxj >�n. Applying Lemma 13 we obtain 
0n�j%j = P%p2X 2�jpj. Thus, H 0(
n) �H 0(�n) + j%j+ 
onstant. ut



14 Ver�oni
a Be
her, Sergio Dai
z, and Gregory ChaitinWe 
on
lude with the following:Corollary 16. � is random and not 
omputably enumerable.Proof. From Theorem 14 and Proposition 9, � is random. Also from Theorem 14,� 
an not beK-
omputable, therefore by Proposition 7, it 
an not be 
omputablyenumerable. utWe have 
hosen the formulation of � as the probability that a self delimitinguniversal ma
hine outputs �nitely many symbols. However, there are a numberof alternative though equivalent formulations of �. One is to de�ne it as theprobability that a self delimiting universal ma
hine (for �nite and in�nite 
om-putations) reads a �nite number of bits of the program tape, as we did it in [7℄.It is also possible to de�ne � is as the probability that a universal self delimitingma
hine enumerates a �nite set. And yet another equivalent formulation is thatit 
omputes a partial re
ursive fun
tion with a �nite graph.A
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