
A Highly Random NumberVer�onia Beher1, Sergio Daiz1, and Gregory Chaitin?;21 Departamento de Computai�onFaultad de Cienias Exatas y NaturalesUniversidad de Buenos Airesfvbeher,sdaizg�d.uba.ar2 IBM Thomas J. Watson Researh Centerhaitin�us.ibm.omAbstrat. In his elebrated 1936 paper Turing de�ned a mahine to beirular i� it performs an in�nite omputation outputting only �nitelymany symbols. We de�ne � as the probability that an arbitrary mahinebe irular and we prove that � is a random number that goes beyond
, the probability that a universal self delimiting mahine halts. Thealgorithmi omplexity of � is stritly greater than that of 
, but similarto the algorithmi omplexity of 
0, the halting probability of an oralemahine. What makes � interesting is that it is an example of a highlyrandom number de�nable without onsidering orales.1 IntrodutionAlthough almost all (in the sense of measure theory) real numbers are random,an e�etive example of one suh number was by no means granted. Chaitin'sde�nition of randomness lead to a natural example [4℄. Based on his theoryof program size, Chaitin formalized the notion of lak of struture and unpre-ditability of a random sequene: the pre�xes of a random sequene an not bealgorithmially ompressed. Any struture or regularity in a sequene ould beonsidered for ompressing it, that is, for odifying ertain amount of bits of thesequene in a program having substantially less bits. Thus, in Chaitin's theorya sequene is de�ned to be random if its pre�xes are as long as the omputerprograms needed to generate them. Chaitin oneived a sequene with this prop-erty: the binary expansion of 
. 
 relates to the simple task Turing found thatno omputer ould do: solve the halting problem. 
 is the probability that auniversal self delimiting mahine will eventually halt. 
 is not omputable be-ause its �rst n bits would enable us to answer Turing's halting problem for allprograms up to n bits in size, and this is impossible.As there are ountably many universal mahines we an speak of the lass ofthe 
-numbers, the real numbers that are their halting probabilities. Reently,the omplementary work of Calude [2℄ and Slaman [9℄ proved a beautiful hara-terization result: the lass of 
-numbers oinides with the lass of omputably? Honorary o-author.



2 Ver�onia Beher, Sergio Daiz, and Gregory Chaitinenumerable random reals. A real number is omputably enumerable if it an beapproximated from below by a non dereasing omputable sequene of rationalsthat onverges to the number; that is, if it an be algorithmially approximatedin a monotone non dereasing way. For any given self delimiting mahine, itshalting probability is omputably enumerable, sine by dovetailing all possibleprograms we an obtain a monotone non dereasing approximation.In this note we present a natural example of a random number that goesbeyond the lass of 
-numbers. The idea goes bak to Turing's elebrated paper\On omputable numbers, with an appliation to the Entsheidungsproblem"[11℄, where he desribes the omputable numbers as the real numbers whosedeimal expansion is alulable by �nite means. Aording to Turing's de�nition,a number is omputable if its deimal expansion an be written down by a irlefree mahine. This is a mahine that performs an unending omputation in theourse of whih it writes down in�nitely many symbols. Otherwise, if it writesdown only �nitely many, Turing de�nes the mahine to be irular. Cirularmahines reah a on�guration from whih there is no possible move, or go onmoving, but do not print any more symbols.We will prove that the probability that a universal self delimiting mahineoutputs �nitely many symbols is a random number. We all this number �.We will show that the degree of randomness of � exeeds that of 
, as it or-responds to the halting probability of an orale mahine. Although a universalomputer ould never deide in advane whether any given program will even-tually halt, Turing oneived an orale mahine, whih ould nevertheless knowone way or the other. Thus, an orale mahine ould know 
. Suh a mahinewould have its own halting probability, 
0, whih would be more random than
. The hierarhy goes on and on: If there is an orale that knows 
, it is easyto oneive a seond-order orale that knows 
0. This mahine, in turn, has itsown halting probability, 
00, whih is known only by a third-order orale. Infat, there exists an in�nite sequene of inreasingly more random 
s. There iseven an in�nitely high-order orale whih knows all other 
s. 
! is even morerandom, more unomputable than 
;
0; 
00; : : :. Thus, 
0; 
00; : : :, are exam-ples of numbers more random than 
 and they are not omputably enumerable;however, they are all de�ned by onsidering orales.We show that �, de�ned without onsidering orales, is essentially 
0, thehalting probability of a �rst-order orale. Although � and 
0 are de�ned in termsof reursively equivalent sets, a proof of randomness for � an not be obtaineddiretly from the randomnes of 
0, sine {as we will show later{ having randomprobability is not a reursiveley invariant property of sets.In sum, � is a natural example of a random not omputably enumerablenumber. With it we dip into a topi that deserves more study, the algorithmiomplexity of in�nite omputations. This topi was �rst studied by Chaitin in[5℄, but there was no further work in this diretion. The only exeption wasSolovay's paper [10℄, whih disusses the relationship between program size andalgorithmi probability for in�nite omputations. In the last hapter of his re-ent book [6℄, Chaitin proposes ontinuing this line of researh to fully develop a



A Highly Random Number 3theory of program size for in�nite omputations. This paper is a �rst step in thatdiretion. In a subsequent paper we will show that the probability that a uni-versal self delimiting mahine outputs a o-�nite set is essentially 
00, even morerandom than �. That result and the main result of this work were announed in[6℄.2 PreliminariesWe will work with the binary alphabet, � = f0; 1g. As usual, we refer to a �nitesequene of elements of � as a string, and we denote the empty string with �.�� is the set of all strings on the � alphabet. For a 2 ��, jaj denotes the lengthof a. We will write a � b if a is a pre�x of b. We de�ne stringi as the i-th stringin the length and lexiographi order over ��.�! is the set of all in�nite binary sequenes. For X � �! the set theoretimeasure of X is denoted by �(X) and represents the probability that any ar-bitrary sequene belongs to X . For A � f0; 1g�; A�! denotes the open subsetof �! whose elements have an initial segment in A. For example, for a parti-ular string s 2 ��, s�! denotes the set of all sequenes starting with s, and�(s�!) = 2�jsj. In�nite binary sequenes an be identi�ed with real numbersin [0; 1℄, when the sequene is taken as the binary expansion of a real number.Hene, every real in [0; 1℄ has a orresponding sequene in �!. Rationals of theform k2�i, for natural i; k, have two orresponding sequenes, one ending within�nitely many 1s, the other with in�nitely many 0s. Sine they form a set ofmeasure 0, this fat will not a�et the onsiderations over probabilities that wewill make on this work. We will refer to elements of IR and elements of �! in-distintly. We will use x; y to represent real numbers or in�nite sequenes andwe will write xi to denote the pre�x of x of length i.With �1 we will denote the set �� [�!, that is, the set of all strings andall sequenes over �. We assume a partial order over �1 that extends the pre�xpartial order of ��, so we also denote it with �. For u; v 2 �1, u � v if one ofthe following three situations our:1. u = v.2. u; v 2 �� and u � v.3. u 2 ��, v 2 �! and vjuj = u.A set of strings is pre�x free if and only if no proper extension of an elementof the set belongs to the set. That is, A � �� is pre�x free i� for 8a; b 2 �� ifa 2 A and b 6= � then ab 62 A. For example, the set f�g is pre�x free and so isfanb : n � 1g. We will also work with the dual property: a set of strings is suÆxlosed if and only if every extension of an element of the set also belongs to theset. That is, B � �� is suÆx losed i� 8a; b 2 �� if a 2 B then ab 2 B. A trivialexample is ��.Observation 1. 1. For every suÆx losed set B there exists a unique pre�xfree set A � B suh that A = fa : 8 2 ��; a 2 Bg.2. For every pre�x free set A there exists a unique suÆx losed set B suh thatB = fa : a 2 A and  2 ��g.



4 Ver�onia Beher, Sergio Daiz, and Gregory ChaitinPre�x free sets satisfy Kraft's inequality [8℄:If A � �� is pre�x free, then 0 �Xa2A 2�jaj � 1:This property allows us to onveniently express the measure of a set of all se-quenes extending a pre�x free set or a suÆx losed set.Observation 2. 1. Let A � �� be pre�x free, then �(A�!) =Pa2A 2�jaj.2. Let B � �� be suÆx losed and let A be its pre�x free ounterpart, B =fa : a 2 A and  2 ��g. Then, �(B�!) = �(A�!) =Pa2A 2�jaj.3 Self Delimiting MahinesIn order to talk about probabilities over programs, Chaitin required that allprogram symbols be uniformly distributed. He dropped the blank used in Tur-ing's formalization and onsidered programs made of just 0s and 1s withoutendmarkers. Consequently, the mahine must realize when to �nish reading theprogram tape, it should have a self delimiting reading behaviour. He formalizedthis onept requiring that when a program p halts, no extension of p halts. Inother words, the set of programs that halt has to be pre�x free. The abstratde�nition of a self delimiting mahine is a partial reursive funtion f : �� ! ��suh that if f(a) # then f(b) " for all b that are proper extensions of a. And heused this formalization to develop his algorithmi omplexity theory for �niteomputations.In [5℄ Chaitin extends his work for in�nite omputations and this is themodel we follow. However, we introdue a slight modi�ation that will allow usto properly deal with the simulation of programs.We require that every extensionof a valid program be a valid program outputting the same result. That is, the setof valid programs has to be suÆx losed and every extension of a valid programhas to give the same result. This ondition is dual to pre�x freeness and we willsee that it also suessfully onforms Chaitin's self delimiting requirementThe self delimiting mahine that interests us is the following version of a Tur-ing mahine: a pregiven �nite table that determines the omputation, a programtape, a work tape and output tape. The program tape ontains just 0s and 1sand an only be read by the mahine, while the output tape an only be writtenwith 0s and 1s. Both tapes are in�nite to the right and their heads only move inthat diretion. The work tape an be read, written and erased; is in�nite in bothdiretions and its head moves in both diretions. A omputation starts with theheads of the program tape and output tape in their respetive leftmost ells andthe work tape being all blank.We are interested in in�nite omputations, programs that do not halt. Thatis, omputations that do not reah a �nal state, beause for every reahed om-bination of a symbol in the program tape, a symbol in the work tape and astate label there is always an entry in the mahine table. For suh an unendingomputation there are two possibilities. Either it produes an in�nite number



A Highly Random Number 5of symbols in the output tape {a sequene{, or it produes just a �nite numberof symbols in the output tape and then yles forever. Sine programs are �niteobjets we are only interested in unending omputations in the ourse of whihonly a �nite number of symbols of the program tape are read. Therefore, om-putations that attempt to read an in�nite number of symbols from the programtape are not valid. A program p 2 �� is valid if and only if when starting anin�nite omputation having a sequene belonging to p�! in the program tape,the head of the program tape eventually reahes some bit of p and never movesforward. The set of valid programs for our mahine is suÆx losed, that is, if p isa valid program so is every extension of p: if the head of the program tape stopsat some bit of p it will never reah any bit ahead. The stopping reading point isthe same for every string extending p. We an understand now why this mahineis self delimiting. Sine there are no blanks in the program tape, nor any otherexternal way of delimitation a program must ontain in itself the information toknow where it ends.Now we give an abstrat de�nition for in�nite omputations. Intuitively, anin�nite omputation is the result of exeuting a program (�nitely many instru-tions) for an unlimited amount of time. We start by de�ning a self delimitingpartial reursive funtion f of two arguments, a program p 2 �� and the numberof steps involved in the omputation.De�nition 3. Let f : �� � IN! �� be a partial reursive funtion suh that(monotone) If f(p; n) # then 8m � n f(p;m) � f(p; n):(self delimiting) If f(p; n) # then 8a; f(pa; n) = f(p; n).(reursive domain) There is a total reursive funtion deff : �� � IN! �suh that deff (p; n) = 1 i� f(p; n) #.The result of omputing a program p for in�nitely many steps is the limit ofrunning p for n steps, for n going to in�nity. We de�ne f1 as a partial funtionfrom strings to either strings or sequenes, f1(p) is the supreme of the set ofstrings f(p; n), for all n.De�nition 4. Let f1 : �� ! �1, f1(p) = supff(p; n) : n � 1g.f1(p) # exatly when 8n f(p; n) # : Notie that if 8nf(p; n) # then, by themonotoniity ondition of f , ff(p; n) : n � 1g is totally ordered under �, sothe supreme of this set is de�ned. The result of the supreme operation is in �1.Thus, if ff(p; n) : n � 1g is �nite, then f1(p) will be the �-maximal stringbelonging to that set. Otherwise, f1(p) will be a sequene. f1 inherits the selfdelimiting property of f :Proposition 5. If f1(p) # then 8a 2 ��; f1(pa) = f1(p):For instane, if we de�ne a program p suh that f(p; 2n) = (01)n and f(p; 2n+1) = (01)n0;8n � 0 we obtain f1(p) = 010101 : : :, Turing's �rst example in[11℄.Mahines that are apable of simulating any other mahine are universal.First of all we will hoose a self delimiting universal mahine U : �� ! �� (a



6 Ver�onia Beher, Sergio Daiz, and Gregory Chaitinmahine for �nite omputations, a partial reursive funtion), assuming a givene�etive enumeration of all self delimiting mahines suh that Mi is the i-thmahine in suh an enumeration. U reads its program tape until it �nds the�rst 1. If it read i 0s, it starts simulating the exeution of Mi, taking the restof the program tape as a program for Mi. So we get U(0i1p) = Mi(p). We setK = dom(U).We also hoose a universal mahine for in�nite omputations, U1 : �� !�1, suh that U1(0i1p) = M1i (p), and denote K1 = dom(U1). We ansplit K1 into two disjoint sets, the set of programs that output �nitely manysymbols and those that output in�nitely many. In Turing's terminology, irularand irle free programs.K1 = Kirular [KirlefreeWe want to prove that the probability that a universal self delimiting mahineoutputs �nitely many symbols, is a random number. That is, we want to provethat �(Kirular�!) is random. The rest of this paper deals with how to proveit. The usual tehnique for proving the randomnes of 
 uses the fat that it isomputable enumerable [4℄. We an not diretly apply this tehnique beause theset Kirular is not reursively enumerable. We need a mahine with an oralefor the halting problem to enumerate Kirular.Orale mahines provide relative omputability. A funtion that an be om-puted by a mahine with an orale for A is said A-omputable, and a set thatan be enumerated by a mahine with and orale for A is said to be A-reursivelyenumerable.We �x U 0, a universal self delimiting mahine with an orale for the haltingproblem in U , U 0 : �� ! ��, suh that dom(U 0) is pre�x free and U 0(0i1p) =M 0i(p), and set K 0 = dom(U 0).Proposition 6. Kirular is K-reursively enumerable.Proof. We will denote by u the partial reursive funtion used to de�ne U1.The following algorithm for U 0 enumerates Kirular.Kirular := ;dovetail among every s 2 ��t:=1while (s 62 Kirular) doif orale(U(n:=t;while(defu(s; n) andu(s; n) = u(s; n + 1)) do; n:=n+1; end do )") thenKirular := Kirular [ fsgelset:=t+1end doend dovetail utProposition 7. Every omputably enumerable real is K-omputable.



A Highly Random Number 7Proof. Assume r is omputably enumerable. Then there is a omputable se-quene of rationals (an) that onverges to r. We will denote by dth(q; d) the d-thsymbol of the deimal expansion of q. The following program for U 0 prints thedeimal expansion of r, digit by digit.d:=1t:=1do foreverif orale(U(n:=t;while(dth(an ; d) = dth(an+1; d)) do; n:=n+1; end do)") thenprint dth(at; d)d:=d+1elset:=t+1end do ut4 Algorithmi ComplexityThe algorithmi omplexity of a string in a given mahine is the minimal lengthof a program for that mahine that produes it as a result. Let f : �� ! �� beself delimiting partial reursive. Chaitin de�nes the algorithmi omplexity of astring s in a mahine f as:Hf (s) = �minfjpj : f(p) = sg if s is in the range of f .1 otherwiseFor self delimiting orale mahines, f 0 : �� ! ��,Hf 0(s) = �minfjpj : f 0(p) = sg if s is in the range of f 0.1 otherwiseAnd we de�ne program size omplexity for in�nite omputations, identially. Letf1 : �� ! �1 be self delimiting.Hf1(x) = �minfjpj : f1(p) = xg if x is in the range of f1.1 otherwiseIn [3℄ Chaitin introdues a notion of universality di�erent from the lassialnotion. A self delimiting partial reursive funtion U is Chaitin universal i� forany self delimiting partial reursive funtion f , there is a onstant  suh thatfor all s, HU (s) � Hf (s) + . For any pair of universal mahines U1 and U2there is a onstant  suh that for every string s, jHU1(s) � HU2(s)j � . Thisis known as the invariane theorem and implies that the algorithmi omplexityis more or less independent of the universal mahine being used. Sine universalomputers are asymptotially optimal, the algorithmi omplexity in a universalmahine ounts as an absolute measure of omplexity.The universal mahine U we �xed is Chaitin universal, sine for a givenenumeration of all tables de�ning a omputer suh that fi is the i-th in the



8 Ver�onia Beher, Sergio Daiz, and Gregory Chaitinenumeration, U(0i1p) = fi(p), i 2 IN, p 2 ��. Then 8fi, HU (s) � Hfi(s)+ i+1.For the same reason, U1 and U 0 that we �xed in the previous setion are alsoChaitin universal. From now on we drop the subindexes U , U1, and U 0, andwrite H , H1, and H 0.4.1 RandomnessWe an now introdue the de�nition of randomness. We will say that a realnumber in [0; 1℄ is random if its orresponding binary sequene is random. Thede�nition is given for alphabet � = f0; 1g, but it an be shown to be invariantto any alphabet [1℄. That is, the property of being random is inherent to thenumber and it is independent of the system in whih it is represented.Chaitin [4℄ de�nes a sequene x 2 �! to be random i� there is a onstant suh that for all n, H(xn) > n� . And he de�nes the probability that a selfdelimiting universal mahine U halts
 = XU(p)# 2�jpjSine U : �� ! ��, with dom(U) pre�x free, �(K�!) = 
. Chaitin proves that
 is omputably enumerable and random.Let us remark that the property of a pre�x free set of strings of having arandom probability is not reursively invariant.Proposition 8. For A = f0i�11 : stringi 2 Kg, r =Ps2A 2�jsj is not random.Proof. By de�nition, the i-th bit of r is 1 i� U(stringi) #. Then, the �rst 2n bitsof r are determined by the halting behavior of all programs of length less thann. There will be m of them, 0 � m � 2n, halt in U .For any n, the �rst 2n bits of r an be dramatially ompressed: there is analgorithm whih given 2n and m, by dovetailing all programs of length less thann �nds the m that halt and determines the �rst 2n bits of r. Then, H(r2n) �log 2n + log m+  � 2 log 2n +  = 2n+ , for some onstant . Hene, r is notrandom. utK and A are reursively equivalent. However, 
 is random and r is not.4.2 Comparison between H, H1 and H 0We an now ask how this di�erent omplexity measures relate. First we showthat for any string H 0 � H1 � H within a onstant term. Next we show thatthe inequalities obtained are strit, i.e.: H � H1 and H 0 � H1 an not bebounded by a onstant.Proposition 9. 1. 98s 2 �� H 0(s) � H(s) + :2. 98s 2 �� H 0(s) � H1(s) + .3. 98s 2 �� H1(s) � H(s) + .



A Highly Random Number 9Proof. 1. There is an orale mahine M 0i that does not use its orale and be-haves exatly as U . Then for every p 2 ��, U(p) = U 0(0i1p). Thus, if H(s) isthe length of the shortest program that produes s in U , there is a programof length H(s) + i+ 1 whih produes s in U 0. So we an take  = i+ 1.2. Any program p for U1 that outputs �nitely many symbols an be simulatedon U 0 by inreasing number of steps. At eah step, the simulation pollsthe orale to determine whether p would output more symbols or not. Thesimulation ends when there is no more output left. The following programperforms that task.t:=1while( orale(U(n:=t;while(u(p; n) = u(p; n + 1))do; n:=n+1; end do ))#) dot:=t+1end doprint(u(p,t))There is an i that instruts U 0 to exeute this program on input 0i1p. So, ifp is the minimal program for s in U1, there is a program for U 0 of lengthjpj+ i+ 1 that outputs s.3. There is an i that instruts U1 to perform exatly the same ations as Uand yle forever when U would halt. So, if p is the minimal program for sin U , there is a program for U1 of length jpj+ i+ 1 that outputs s. utProposition 10. 1. 89s H(s)�H1(s) > 2. 89s H1(s)�H 0(s) > Proof. 1. We will show a family of strings in whih the diferene between Hand H1 an be made arbitrarily large. Consider the following program forU1 that reeives a minimal program for n and outputs a string s(n):ompute napprox:=0 (the approximation of 
n)previous:=0dovetail among every programeah time a program p haltsprevious:=approxapprox:=approx+ 2�jpjif (first n bits of previous)6=(first n bits of approx) thenprint the first n bits of approxend dovetailThis program outputs a onatenation of strings of n bits obtained as su-essive approximations to 
n from below until the �rst n bits of 
 havebeen obtained: b11 : : : b1nb21 : : : b2n : : : bm1 : : : bmn
n.s(n) is the result of an in�nite omputation by this program, so we have:H1(s(n)) � H(n) + 1 (1)



10 Ver�onia Beher, Sergio Daiz, and Gregory ChaitinBut given n and s(n) one an easily ompute 
n, and we know that 
 israndom, so there must exist a 2 suh that for every n:H(s(n)) +H(n) > n� 2 (2)Joining (1) and (2) we get:H(s(n))�H1(s(n)) > n� 2H(n)� 3The term on the right side an be made arbitrarily large as n inreases.2. Now we have to show that the di�erene between H1 and H 0 is unbounded.If u is the partial reursive funtion used to de�ne U1, we an onsider afamily of reursive funtions fn : �� ! �� suh that:fn(p) = u(p;minfk : ju(p; k)j = ng)With this de�nition, if U1(p) = 
n, then fn(p) = 
n. As fn is a omputablefuntion that depends on n and its argument, we have:H(
n) � H1(
n) +H(n) + 1 (3)
 is a random number. So, from (3) we get:H1(
n) > n�H(n)� 2 (4)On the other side, 
 is K-omputable by proposition 7, so:H 0(
n) � H(n) + 3 (5)Joining (4) and (5) we get:H1(
n)�H 0(
n) > n� 2H(n)� 4And again, the term on the right side an be made arbitrarily large as ninreases. ut5 The Probability of Cirular ProgramsWe de�ne the probability that a self delimiting universal mahine for in�niteomputations produes only a �nite amount of output.� = XU1(p) is �nite 2�jpj = �(Kirular�!):We will show that � is inompressible even if we ount with an orale for thehalting problem in U . To prove it we will �rst establish a orrespondene betweenthe programs that halt in U 0 and a subset of the irular programs in U1. This



A Highly Random Number 11orrespondene will allow us to show that if we have the �rst n bits of � we ansolve the halting problem for all programs for U 0 of length less than or equal ton minus a onstant. Then using Chaitin's original argument for his proof of therandomness of 
 we will prove that � is random.To prove the orrespondene result, we will take from [5℄ a tehnique alledsimulation in the limit that is as follows: a omputation in U 0 is simulated byinreasing number of steps. In step t the orale for the halting problem is simu-lated answering that U(q) halts i� it does so within time t. Using this tehnique,we will be able prove that there is a pre�x % suh that U1(%pa) is �nite foralmost every a 2 �� if and only if U 0(p) halts. Therefore, the probability thatU1(%p) is �nite is exatly equal to 
0. We have to allow possible extensions a ofp beause the simulation in the limit may initially read extra bits. This happensbeause the domain of U 0 is not reursively enumerable, and the algorithm forthe simulation runs on U1, so it has no way to determine where the program pends until it has the orret orale answers. In the meantime, it may have readextra bits from the program tape, and the head of the program tape an notmove bakwards. But the atual value of the extra bits is irrelevant beause onethe algorithm reahes the orret orale answers it will know where p ends. Forexample, suppose p is the following simple program for U 0.if orale(U(fatorial 100)#) then haltelse do forever read next bit of the program tapeOur simulation will need to ompute fatorial 100. The simulated orale will givethe wrong answer for many steps t, until t is large enough to omplete the task.The simulation will read as many extra bits from the program tape as neededsteps to omplete the simulation of fatorial 100. In general, the extra bits maydetermine di�erent exeution paths at intermediate steps of the simulation. Butfor eah t the simulation of U 0(p) is restarted. So, although they are unavoidable,in the end the extra bits are ignored. Any sequene of 0s and 1s after p on theprogram tape, will lead to the orret simulation of U 0(p). This motivates thefollowingDe�nition 11. A set A � �� is unavoidable i� A is pre�x free and everysequene of �! has a pre�x in A.For example, f0; 10; 110; 1110; 1111g is unavoidable, and f0g is not.Proposition 12. For every unavoidable set A, �(A�!) =Pa2A 2�jaj = 1.Hene, if A is unavoidable, s is any string and B = fsa : a 2 Ag, thenPb2B 2�jbj= Psa2B 2�jsaj = Psa2B 2�jsj2�jaj= 2�jsjPa2A 2�jaj = 2�jsj.Lemma 13. 9%8p9A unavoidable suh that 8a 2 A;%pa is irular i� U 0(p)halts.Proof. % ontains instrutions for U1 to perform the simulation in the limit ofthe program for U 0 that omes afterwards in the program tape. The following



12 Ver�onia Beher, Sergio Daiz, and Gregory Chaitinalgorithm performs that task:t:=1maximum:=0 (number of simulated instrutions of U 0 when it halts)do forever1. Simulate U 0 for at most t instrutions. For eah question to the orale of whetherU(q) halts, simulate U(q) and take as an answer whether it halts in at most t steps.2. If U 0 did not halt, then print t on the output tape. Else, let  be the atualnumber of instrutions of U 0 that have been simulated (the simulation for U(q)is not harged). If  exeeds the maximum number of simulated instrutions forall previous values of t, then update the maximum to  and print  on the outputtape.Otherwise nothing is printed on the output tape.3. t:=t+1end doLet us see that this % has the desired property. Suppose U 0(p) #. Then p haltsin �nitely many steps. Then it an perform only �nitely many orale questions.Let us all Q the set of programs for U that are onsulted to the orale. Everyq 2 Q suh that U(q) # halts in some �nite time. Let us allm the maximum timerequired to halt by the programs of Q. For values of t less than m, the simulationof some orale questions will be wrong, but for every value of t � m, they will beorret. If U 0(p) halts after n steps, then when t exeeds the maximum betweenm and n, the simulation at step t will �nd out that p halts. For larger values oft the maximum number of exeuted steps will stabilize in n and there will beno more symbols printed on the output tape. Thus, for every a 2 �� of lengthgreater than m and n, U1(%pa) will be �nite. The set of all strings of lengthmax(m;n) is an unavoidable set.Suppose now that U1(%pa) is �nite. Then, during the simulation the headof the output tape prints �nitely many positive integers, and then it prints nomore. Say the last number printed is n. We have to show that U 0(p) halts.Suppose not. Then the exeution of U 0 does not halt in less than n+1 steps.In suh n + 1 steps only a �nite number of orale questions an be performed,over a �nite number of programs. Following the same reasoning as before, thereis a maximum number of steps m that lead to the orret answer for all theprograms q 2 Q that halt in U . Therefore, in the maximum step between m andn + 1, the simulation should perform exatly what U 0 does in the �rst n + 1instrutions, whih we assumed does not halt. Then, the number n+1 is printedin the output tape, ontraditing that the maximum number printed was n.Thus, it must be U 0(p) #. utNow we an prove that � is inompressible even if we ount with an oralefor the halting problem. In this sense, � is highly random.Theorem 14. 98n, H 0(�n) > n� .



A Highly Random Number 13Proof. Consider the following algorithm for U 0 that reeives as input a minimalprogram for U 0 that omputes �n:1. Compute �n.2. As we proved in Proposition 6, Kirular is K-reursively enumerable. Letg be a K-reursive funtion whose range is Kirular. Enumerate enoughprograms g(1); g(2); : : : until we have a pre�x free setX = fg(i1); : : : ; g(im)g,suh that wm =Px2X 2�jxj > �n.3. Enumerate the set K 0 to obtain a set Y � K 0 suh that for every %p in Xthere exists a y 2 Y suh that y � p.4. Output z the �rst string that does not belong to fU 0(p) : p 2 Y g and halt.We have to show that H 0(z) > n � j%j. There must be some minimal programp for U 0 suh that U 0(p) = z, but we know that p 62 Y . By Lemma 13, thereexists an unavoidable set A suh that for all a 2 A, %pa is irular. Sine p 62 Y ,then for all a 2 A, %pa 62 X . We shall now onsider the ontribution of theseirular programs to �. SinePa2A 2�j%paj = 2�j%pj, the unavoidable set A anbe ignored. By our onstrution, �n < wmLet us add 2�j%pj to both sides of the inequality,�n + 2�j%pj < wm + 2�j%pjSine there are in�nitely many irular programs we have that wm+2�j%pj < �,then �n + 2�j%pj < wm + 2�j%pj < �Finally, using that � � �n + 2�n, we obtain�n + 2�j%pj < wm + 2�j%pj < � � �n + 2�nThus, �n + 2�j%pj < �n + 2�n, whih means thatj%pj > nWe onlude that n� j%j < H 0(z):Sine we obtained z as the output of the algorithm above, there is a onstantq suh that H 0(z) � H 0(�n)+q: Thus, H 0(�n) > n�q�j%j. Taking  = q+ j%j,we obtain the desired result. utProposition 15. 98n H 0(
0n) � H 0(�n) + Proof. Given a minimal program for U 0 for the �rst n bits of �n we an omputethe �rst n� j%j bits of 
0 with the following algorithm for U 0.As in the proof of Theorem 14, enumerate enough programs of Kirularuntil we have a pre�x free set X = fg(i1); : : : ; g(im)g suh that Px2X 2�jxj >�n. Applying Lemma 13 we obtain 
0n�j%j = P%p2X 2�jpj. Thus, H 0(
n) �H 0(�n) + j%j+ onstant. ut



14 Ver�onia Beher, Sergio Daiz, and Gregory ChaitinWe onlude with the following:Corollary 16. � is random and not omputably enumerable.Proof. From Theorem 14 and Proposition 9, � is random. Also from Theorem 14,� an not beK-omputable, therefore by Proposition 7, it an not be omputablyenumerable. utWe have hosen the formulation of � as the probability that a self delimitinguniversal mahine outputs �nitely many symbols. However, there are a numberof alternative though equivalent formulations of �. One is to de�ne it as theprobability that a self delimiting universal mahine (for �nite and in�nite om-putations) reads a �nite number of bits of the program tape, as we did it in [7℄.It is also possible to de�ne � is as the probability that a universal self delimitingmahine enumerates a �nite set. And yet another equivalent formulation is thatit omputes a partial reursive funtion with a �nite graph.Aknowledgements. We thank Cristian Calude for his valuable ommentsin an earlier stage of this work. Serge Grigorie� and Max Dikmann provided uswith useful omments that helped us improve the presentation of this work.The �rst author is supported by grant 11-05382 from the Agenia de Pro-moi�on Cient���a y Tenol�ogia and a postdotoral fellowship from the CONI-CET.Referenes1. Cristian. S. Calude. Information and Randomness. An Algorithmi Perspetive.Springer-Verlag, Berlin, 1994.2. Cristian S. Calude, Peter H. Hertlind, Bakhadyr Khoussainov, and Yongee Wang.Reursively enumerable reals and Chaitin 
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