
RAMDOM REALS AND POSSIBLY INFINITE COMPUTATIONS.
PART I: RANDOMNESS IN ∅′

VERÓNICA BECHER AND SERGE GRIGORIEFF

Abstract. Using possibly infinite computations on universal monotone Turing

machines, we prove Martin-Löf randomness in ∅′ of the probability that the output

be in some set O ⊆ 2≤ω under complexity assumptions about O.

§1. Randomness in the spirit of Rice’s theorem for computabil-
ity. Let 2∗ be the set of all finite strings in the binary alphabet 2 = {0, 1}.
Let 2ω be the set of all infinite binary sequences. For X ⊆ 2ω the
Lebesgue set-theoretic measure of X is denoted by µ(X). For a par-
ticular string s ∈ 2∗, µ(s2ω) = 2−|s|. If X ⊆ 2∗ is a prefix-free set then
µ(X2ω) =

∑
s∈X 2−|s| ≤ 1.

As usual (cf.[25] p.451), ∅(n) denotes the n-th jump of ∅, which is a Σ0
n

complete set of integers.
1.1. A problem about randomness and finite computations.

Randomness will mean Martin-Löf randomness (relative to possible or-
acles), which is equivalent to the definition of randomness given by the
theory prefix-free program-size complexity. In this theory one considers
Turing machines with prefix-free domains and a particular notion of uni-
versality: U is universal by “prefix adjunction” if for every Turing machine
M with prefix-free domain, there is a word e such that,

∀p ∈ 2∗ (M(p) halts ⇔ (U(ep) halts and M(p) = U(ep)))

All along the paper, U denotes a machine universal by prefix adjunction.
As pointed by Chaitin ([11], p.109), his randomness results do rely on the
fact that U is universal by prefix-adjunction.
Chaitin [9, 11] introduces, for every subset O of 2∗, the real

ΩU [O] = µ(U−1(O)2ω) =
∑

p∈U−1(O)

2−|p|

which is the probability that, on an infinite input, U halts in finite time
(reading only finitely many symbols) and produces an output in O.
Chaitin’s celebrated result [9], 1975, states that Ω = ΩU [2∗] is a random
real. Chaitin also proves randomness in the case O is Σ0

1 ([11], 1987,
stated without proof in last assertion of Note p.141). A proof is given in
§6.2 below.

Theorem 1.1 (Chaitin, 1987). If O is a non empty recursively enu-
merable subset of 2∗ then ΩU [O] is a random real.

A somewhat surprising corollary of the randomness of Ω is the following.

Corollary 1.2. There exists a recursive prefix-free set X ⊂ 2∗ such
that µ(X2ω) is a random real.

1

2 VERÓNICA BECHER AND SERGE GRIGORIEFF

Proof. Observe that Ω = µ(domain(U)2ω) where domain(U) is re-
cursively enumerable. Conclude using Prop.2.2. a
In the spirit of Rice’s theorem for computability, a naive conjecture would
state that Ω[O] is random for every non empty subset O of 2∗. However,
this has been recently disproved by Joe Miller [22] for some ∆0

2 sets O.

Theorem 1.3 (Miller, 2004). There exists a non empty ∆0
2 set O ⊂ 2∗

such that ΩU [O] is not random. Moreover, such an ΩU [O] can even be a
rational number.

The case where O is Π0
1 is still open. This leaves out the following

general problem.

Problem 1.4 (Finite computations). Find conditions on O ⊆ 2∗ in
order that ΩU [O] be random (resp. random in ∅(n)).

1.2. A problem about randomness and possibly infinite com-
putations. Investigations on prefix program-size complexity with possi-
bly infinite computations with a monotone Turing machine U universal
by prefix adjunction (cf. Def.4.1) have been initiated by Chaitin [10] and
Solovay [32] and continued in [2, 1]. Since the output may be a finite
string or a recursive infinite sequence, the output space is 2≤ω = 2∗ ∪2ω.
As for the input space, we can consider either self-delimited finite inputs
or infinite inputs (cf. Def.4.7). This leads to maps

U./ : 2∗ → 2≤ω , U∞ : 2ω → 2≤ω

Of course, the range of U./ is included in 2∗ ∪Rec(2ω) where Rec(2ω) is
the set of recursive infinite sequences.
Using such machines, one can consider, for every O ⊆ 2≤ω, the sets

U−1
./ (O) = U−1

./ (O ∩ (2∗ ∪Rec(2ω))) , U−1
∞ (O)

The real µ(U−1
∞ (O)) (resp. µ(U−1

./ (O)2ω) =
∑

p∈U−1
./ (O) 2−|p|) is the prob-

ability that, on an infinite input, the machine produces an output in O
(resp. and reads only a finite prefix of the input).
Randomness results using U./ have been obtained by Becher, Daicz, Chaitin
in [2], 2001, and Becher & Chaitin in [1], 2002.

Theorem 1.5 (Becher, Daicz & Chaitin, 2001). The probability that the
computation reads finitely many symbols of an infinite input and produces
a finite output, i.e. µ(U−1

./ (2∗)2ω), is random in ∅′.

Identifying the word 10n1 with the integer n, we associate to any infinite
word α the set θ(α) of n’s such that 10n1 is a factor of α. Let COF be
the set of infinite words such that θ(α) is cofinite.

Theorem 1.6 (Becher & Chaitin, 2002). The probability that the com-
putation reads finitely many symbols of an infinite input and produces (via
θ) a cofinite set of integers, i.e. µ(U−1

./ (COF)2ω), is random in ∅′′.

As pointed to us by the referee, a simple application of a classical result,
due to Sacks, gives a non randomness result for some µ(U−1

∞ (O))’s.

Proposition 1.7. Let O be a countable family of non recursive ele-
ments of 2ω. Then µ(U−1

∞ (O)) = 0 (hence is not random).

RANDOMNESS IN ∅′ 3

Proof. Observe that β = U∞(α) is recursive in α. By Sacks’s result
(cf. [26] p.272 or [27] p.154), µ{α : β is recursive in α} = 0 if β is non
recursive. a
Let’s state the analog of Problem 1.4 for possibly infinite computations,
i.e. halting or non-halting computations.

Problem 1.8. 1. (Possibly infinite computations on self-delimited fi-
nite inputs) Find conditions on O ⊆ 2∗∪Rec(2ω) in order that µ(U−1

./ (O)2ω)
be random (resp. random in ∅(n)).
2. (Possibly infinite computations on infinite inputs) Find conditions on
O ⊆ 2≤ω in order that µ(U−1

∞ (O)) be random (resp. random in ∅(n)).

1.3. Main theorems. In this paper we present three theorems which
give positive answers to Problem 1.8 for large classes of sets. They rely
on diverse notions and tools that are recalled and/or developed in §2–
5. The proofs are postponed to §6 (cf. 6.3–6.5). They share the same
pattern which is that of the proof of an abstract theorem presented in
§6.1. Applications of these theorems are stated in §1.4 and proved in §7.
The first theorem (Thm.1.9) deals with the map U∞ and plain randomness
(as opposed to randomness in ∅′). The two last theorems, the main ones,
deal with the respective maps U./ and U∞ and randomness in ∅′.

Theorem 1.9. Let O = Y 2≤ω for some r.e. set Y ⊆ 2∗. If O 6= ∅ and
O 6= 2≤ω then the real µ(U−1

∞ (O)) is random.

Theorem 1.10 (1st main theorem). Suppose O ⊆ 2≤ω contains a fi-
nite string or an infinite recursive sequence. If U−1

./ (O) is Σ0
2 definable in

2∗ then the real µ(U−1
./ (O)2ω) is random in ∅′.

The key condition in the second main theorem is a hardness condition
relative to what we call semicomputable Wadge semireduction. This is
an appropriate variant of classical Wadge reduction based on the topo-
logical properties of the maps associated to Turing machines performing
possibly infinite computations (cf. §5 and the forthcoming paper [4]). As
studied in [5], these maps – which we call semicomputable maps – are not
continuous but merely lower semicontinuous. Based on the effectiviza-
tion of lower semicontinuous maps, we introduce semicomputable Wadge
semireductions of sets in 2ω to sets in 2≤ω.

Theorem 1.11 (2nd main theorem). Let O ⊆ 2≤ω satisfy the following
conditions:

- O is semicomputably Wadge hard for Σ0
2 subsets of 2ω (cf. Def.5.5),

- U−1
∞ (O) ⊆ 2ω is Σ0

2 definable in 2ω.
Then µ(U−1

∞ (O)) and µ(U−1
∞ (2≤ω \ O)) are random in ∅′.

The following simple remarks and proposition stress the role of some of
the hypothesis and delimitate the scope of the above theorems. Random-
ness in Thm.1.9 cannot be improved to randomness in ∅′, cf. the following
easy result (proved in §7.3).

Proposition 1.12. Suppose O ⊆ 2≤ω is of the form O = X ∪ Y 2≤ω

where X, Y ⊆ 2∗ are Σ0
1 and X is the union of finitely many prefix-free

sets. Then µ(U−1
∞ (O)) is not random in ∅′.

4 VERÓNICA BECHER AND SERGE GRIGORIEFF

Remark 1.13 (About Thm.1.10). 1. IfO ⊆ 2≤ω contains no finite string
nor any infinite recursive sequence then U−1

./ (O) = ∅.
2. We suppose that U−1

./ (O) is Σ0
2 in 2∗ to insure that µ(U−1

./ (O)2ω) is
left c.e. in ∅′, which is a key point in the proof of randomness.
3. Nothing can be stated about µ(U−1

./ (2≤ω \ O)2ω), contrary to what is
done in Thm.1.11. The reason is that µ(U−1

∞ (2≤ω)) = 1 but µ(U−1
./ (2≤ω)2ω) 6=

1 since it is, in fact, random in ∅′ as we shall see in Corollary 1.17. The
stumbling block is that, up to now, there is no known general technique
to deal with differences of random reals.

Remark 1.14 (About Thm.1.11). 1. We suppose that U−1
∞ (O) is Σ0

2 de-
finable in 2ω to insure that µ(U−1

∞ (O)) is left c.e. in ∅′, which is again a
key point in the proof of randomness.
2. The hypothesis O ∩ (2∗ ∪ Rec(2ω)) 6= ∅ in Thm.1.10 is much weaker
than that of Σ0

2-hardness in Thm.1.11 and is not sufficient for Thm.1.11,
cf. Prop.1.12 above.

Thm.1.16 below (proved in §5.4.) gives quite simple topological condi-
tions (cf. Def.1.15) on a given set O ⊆ 2≤ω which are sufficient to prove
the key semicomputable Wadge Σ0

2-hardness condition in Thm.1.11.

Definition 1.15. 1. O ⊆ 2≤ω satisfies condition (∗) if there exists a
recursive increasing chain of words (with respect to the prefix ordering) in
O, the limit of which is not in O.
2. O ⊆ 2≤ω satisfies condition (∗∗) if there exists u ∈ 2∗ such that O
is effectively dense for u2∗ in 2≤ω and effectively codense for u2∗ in 2ω,
i.e. if there exist total computable maps F : 2∗ → O and G : 2∗ → 2ω \O
such that, for all v ∈ 2∗, uv is a prefix of F (v) and G(v).

Theorem 1.16. If O satisfies (∗) or O is Σ0
2 in 2≤ω and satisfies (∗∗)

then O is semicomputably Wadge hard for Σ0
2 subsets of 2ω.

1.4. Applications of the main theorems on ∅′-randomness. The
main theorems dealing with ∅′-randomness have diverse applications, the
proofs of which are given in §7. First, an application of Thm.1.10.

Corollary 1.17. Let O = X∪Y 2≤ω for some Σ0
2 sets X, Y ⊆ 2∗ such

that X ∪ Y 6= ∅. Then µ(U−1
./ (O)2ω) is random in ∅′.

In particular, letting O = 2≤ω, we see that the probability µ(U−1
./ (2≤ω)2ω) =

µ(domain(U./)2ω) that an infinite word contains some self-delimited pre-
fix is random in ∅′.

Remark 1.18. The set of self-delimited inputs in the prefix-free domain
of a universal machine relative to halting computations is a recursively
enumerable set (cf. the proof of Cor.1.2). However, the set U−1

./ (2≤ω)
of self-delimited inputs relative to infinite computations of a universal
prefix-free machine is merely Σ0

1 ∧ Π0
1, cf. Prop.4.9. In fact, this set

cannot be not r.e. since then its associated measure would be left c.e.,
hence recursive in in ∅′, which is not the case since it is random in ∅′.

Thm.1.11 and Thm.1.16 have the following corollary which answers a
question raised by An.A. Muchnik [24]).

Corollary 1.19. 1. Let O = X ∪ Y 2≤ω for some Σ0
2 sets X, Y ⊆ 2∗.

Suppose O satisfies one of the two conditions (∗) or (∗∗) described in

RANDOMNESS IN ∅′ 5

Def.1.15. Then µ(U−1
∞ (O)) and µ(U−1

∞ (2≤ω \ O)) are random in ∅′.
In particular, letting O = 2∗, the probability µ(U−1

∞ (2ω)) (resp. µ(U−1
∞ (2∗)))

that the output is infinite (resp. finite) is random in ∅′.

A direct corollary of Thm.1.11 dealing with Π0
2 sets, but not contained

in Cor.1.19, is as follows.

Corollary 1.20. Let O = X ∪ Y 2≤ω ∪ Z where X, Y ⊆ 2∗ are Σ0
1

subsets of 2∗ and X is the union of finitely many prefix-free sets and Z is
a Π0

2 subset of 2ω. Suppose Y 2ω ∪ Z is semicomputably Wadge hard for
Π0

2 subsets of 2ω. Then µ(U−1
∞ (O)) and µ(U−1

∞ (2≤ω \ O)) are random in
∅′.
In particular, letting Z = 2ω \ 2∗0ω and X = Y = ∅, the probability
µ(U−1

∞ (2ω \2∗0ω)) that the output contains infinitely many 1’s is random
in ∅′.

1.5. Higher order randomness and possibly infinite compu-
tations. The main theorems on randomness in ∅′ proved in this paper
suggest that adding a hardness condition on O relative to semicomputable
Wadge semireduction leads to randomness in the successive jumps. Such
extensions of Thm.1.10 and Thm.1.11 obtained by replacing all Σ0

2 as-
sumptions by their Σ0

n analogs are considered in a forthcoming paper [3].

§2. From 2ω to 2≤ω topological spaces. We consider on 2ω the
usual compact Cantor topology generated by the countable family of basic
open sets s2ω where s varies over 2∗. If X ⊆ 2∗ then X2ω denotes the
open subset of 2ω whose elements have an initial segment in X. If α ∈ 2ω

we denote by α�n the prefix of α of length n. For a ∈ 2∗, |a| denotes the
length of a. The empty string is denoted by λ. If a ∈ 2∗, a�n is the prefix
of a with length min(n, |a|). We assume the prefix ordering � in 2∗, and
we write a � b if a is a prefix of b, and a ≺ b if a is a proper prefix of b.

2.1. Prefix-free sets. X ⊆ 2∗ is prefix-free if and only if no proper
extension of an element of X belongs to X. We denote by min(X) the
prefix-free set consisting of all minimal elements of X with respect to the
prefix ordering �. A prefix-free set X ⊂ 2∗ is maximal iff for any a 6∈ X,
X ∪ {a} is not prefix-free. For example, the sets {λ} and {0n1 : n ≥ 0}
are both maximal prefix-free.
If X ⊂ 2∗ is prefix-free and every sequence α ∈ 2ω has an initial segment
in X then X is maximal and

∑
a∈X 2−|a| = 1. The converse is not true:

1∗0 is maximal prefix-free and
∑

a∈{1}∗0 2−|a| = 1 but 1∗0 contains no
prefix of the sequence 1ω. In fact, a simple application of König’s Lemma
proves that finiteness is required.

Proposition 2.1. Let X ⊆ 2∗. Then X2ω = 2ω, if and only if X
contains a finite maximal prefix-free set. In particular, if X is prefix-free
then X2ω = 2ω if and only if X is finite and maximal prefix-free.

Proof. The ⇐ direction is easy. For the ⇒ direction, suppose X ⊆ 2∗

contains no finite maximal prefix-free and define inductively α ∈ 2ω such
that for all n ∈ N the set X(n) = {p ∈ 2∗ : (α � n)p ∈ X} contains no
finite maximal prefix-free set. Equality X2ω = 2ω insures α ∈ X2ω, hence
there is an n such that α�n ∈ X. Whence, λ ∈ X(n) and the singleton set
{λ} is a finite maximal prefix-free subset of X(n). A contradiction. a

6 VERÓNICA BECHER AND SERGE GRIGORIEFF

Proposition 2.2. If X ⊆ 2∗ is r.e. then there exists a recursive prefix-
free set Y ⊂ 2∗ such that X2ω = Y 2ω. Moreover, one can recursively go
from an r.e. code for X to r.e. codes for Y and 2∗ \ Y .

Note. In general, min(X) is not r.e., hence cannot be the wanted Y .

Proof. Let f be a partial recursive function with domain X. Let Xt

be the set of strings with length ≤ t on which f is defined and converges
in at most t computation steps. Set Y =

⋃
t∈N Yt where

Yt = {u ∈ 2∗ : |u| = t+max
v∈Xt

|v| ∧ ∃v ∈ Xt v � u ∧ ∀i < t ∀w ∈ Xi ¬(w � u)}

An easy induction shows that Xt2ω = (
⋃

i≤t Yi)2ω for all t, whence
X2ω = Y 2ω. Also, the Yt’s are finite and prefix-free and their elements
are pairwise incomparable, so that Y is also prefix-free.
Moreover, Y is recursive since a string of length k is in Y if and only if it
is in Yt for some t ≤ k.
Finally, the passage from X to Y and 2∗ \ Y is clearly effective. a

2.2. Arithmetical and Borel hierarchies on 2ω. We shall use the
classical representation of effective open subsets of the Cantor space.

Proposition 2.3. The three following conditions are equivalent.
- X is a Σ0

1 subset of the Cantor space 2ω,
- X = X2ω for some recursively enumerable X ⊆ 2∗,
- X = Y 2ω for some prefix-free recursive Y ⊆ 2∗.

Moreover, one can recursively go from X to Y in the above equivalences.

2.3. Topology and Arithmetical Hierarchy for the 2≤ω space.
We extend to 2≤ω the prefix partial order on 2∗. For ξ, η ∈ 2≤ω, ξ � η if
and only if ξ, η ∈ 2∗ and ξ � η or ξ ∈ 2∗, η ∈ 2ω and η � |ξ| = ξ.

We consider on 2≤ω the compact zero dimensional metrizable topology
generated by the basic open sets {s} and s2≤ω = {ξ ∈ 2≤ω : s � ξ},
where s varies over 2∗ (Boasson & Nivat, [6], Tom Head [16, 17], Becher&
Grigorieff [5]). The induced topology on the subspace 2∗ is the discrete
topology and that on the subspace 2ω is the compact Cantor topology.
As a subset of 2≤ω, 2∗ is open and dense, hence not closed. So that 2ω is
closed and not open.
As for the Cantor space, the Arithmetical Hierarchy can be extended to
subsets of the topological space 2≤ω by effectivization of the finite levels
of the Borel hierarchy. Let’s mention the representation of open and Fσ

(resp. Σ0
1 and Σ0

2) subsets of 2≤ω which will be used in §5.3, 7.2.

Proposition 2.4. Let X ⊂ 2≤ω.
1. The three following conditions are equivalent.
i. X is open (resp. Σ0

1) in 2≤ω,
ii. X = X ∪ Y 2≤ω for some X, Y ⊆ 2∗ (resp. r.e. X, Y),
iii. X = Z ∪ T2≤ω for some Z, T ⊆ 2∗ (resp. r.e. Z and recursive T),
such that T is prefix-free.
Moreover, one can recursively go from X, Y to Z, T in the above equiva-
lences.
2. X is clopen (i.e. closed and open) in 2≤ω if and only if it is of the
form X = X ∪ Y 2≤ω where X, Y ⊆ 2∗ are finite.

RANDOMNESS IN ∅′ 7

Proposition 2.5. If X ⊆ N × 2∗ and i ∈ N then Xi = {u ∈ 2∗ :
(i, u) ∈ X}.
For X ⊆ 2≤ω, the three following conditions are equivalent.
i. X is Σ0

2 in 2≤ω,
ii. X =

⋃
i∈N 2≤ω \ (Xi ∪ Yi2≤ω) where X, Y ⊆ N× 2∗ are r.e.

iii. X =
⋃

i∈N 2≤ω \ (Zi ∪ Ti2≤ω) where Z, T ⊆ N× 2∗, Z is r.e. and T
is recursive prefix-free.
Moreover, one can recursively go from X, Y to Z, T in the above equiva-
lences.

The relation between the arithmetical hierarchies relative to 2∗, 2ω and
2≤ω is as follows.

Proposition 2.6 ([5]). 1. Let n ≥ 2 and X ⊆ 2≤ω. Then

X is Σ0
n(2≤ω) ⇔ X ∩ 2∗ is Σ0

n(2∗) ∧ X ∩ 2ω is Σ0
n(2ω)

X is Π0
n(2≤ω) ⇔ X ∩ 2∗ is Π0

n(2∗) ∧ X ∩ 2ω is Π0
n(2ω)

2. For n = 1 we only have

X ⊆ 2∗ ⇒ (X is Σ0
1(2

∗) ⇔ X is Σ0
1(2

≤ω))
X ⊆ 2ω ⇒ (X is Π0

1(2
ω) ⇔ X is Π0

1(2
≤ω))

Remark 2.7. For counterexamples to Point 1 with n = 1, consider X =
2∗ and X = 2ω.

The following straightforward corollary of Prop.2.6 is used in applica-
tion of the randomness theorems of this paper.

Proposition 2.8. Let n ≥ 2 and X, Y ⊆ 2∗ be Σ0
n (resp. Π0

n). Then
X ∪ Y 2≤ω is an open Σ0

n (resp. Π0
n) subset of 2≤ω.

Remark 2.9. As already noticed, the above proposition fails for Π0
1 : 2∗

is Π0
1 in 2∗ but it is not closed in 2≤ω, hence not Π0

1 in 2≤ω.

§3. Computably enumerable random reals.
3.1. Computably enumerable reals. Infinite binary sequences can

be identified with real numbers in [0, 1], when the sequence is taken as
the binary expansion of a real number. Hence, every real in [0, 1] has a
corresponding sequence in 2ω. This sequence is unique except for dyadic
rational numbers of the form k2−i, for natural numbers i, k, for which
there are two of them. Since they form a set of measure 0, this fact does
not affect the considerations over probabilities that we make in this work.
A real x is computable if its fractional part x − bxc has recursive binary
expansion.

Definition 3.1 (Soare, 1965 [30]). A real is left (resp. right) com-
putably enumerable (in short c.e.) if and only if its left (resp. right)
Dedekind cut is r.e. The definition extends in an obvious way to sequences
of reals.

Much information about c.e. reals can be found in Downey’s lectures
[12] or Downey & Hirschfeldt’s book [13]. We shall use the following
result, due to Calude & Hertlind & Khoussainov & Wang, 1998 [8], and
Downey & Laforte [15], 2002.

8 VERÓNICA BECHER AND SERGE GRIGORIEFF

Proposition 3.2 ([8],[15]). The following conditions on a real a ∈ [0, 1]
are equivalent.

i. a is left c.e.
ii. There exists an r.e. prefix-free set X such that a = µ(X2ω).
iii. There exists a recursive prefix-free set X such that a = µ(X2ω).

Moreover, the passage between these conditions is effective.

The following result is one of the tools we shall use to prove all theorems
about randomness.

Proposition 3.3. 1. If (ai)i∈N is recursive in ∅(n) then supi∈N ai and
infi∈N ai are respectively left and right c.e. in ∅(n), hence recursive in
∅(n+1).
2i. If X ⊆ 2ω is Σ0

n (resp. Π0
n, resp. ∆0

n) then µ(X) is left ∅(n−1)-c.e.
(resp. right ∅(n−1)-c.e., resp. ∅(n−1)-computable).
2ii. If i 7→ Xi is a Σ0

n (resp. Π0
n) sequence of subsets of 2ω then

supi∈N µ(Xi) (resp. infi∈N µ(Xi)) is left (resp. right) c.e. in ∅(n−1).

Proof. 1. Straightforward.
2i-ii. Initial case n = 1 : Direct application of Prop.2.3 and Prop.3.2.
Induction step. Suppose that the property is true for n and let X be
Σ0

n+1. Then X =
⋃

i∈NXi for some Π0
n increasing sequence (Xi)i. The

induction hypothesis insures that the sequence (µ(Xi))i is right c.e. in
∅(n−1) hence recursive in ∅(n). Thus, µ(X) = supi µ(Xi) is left c.e. in ∅(n).
Idem with sequences of Π0

n+1 sets. a
3.2. Random reals. We assume the notion of randomness (and ran-

domness in an oracle) for elements of 2ω as introduced by Martin-Löf,
[21] 1966, and Schnorr’s characterization using the prefix-free program-
size complexity function H introduced by Chaitin, [9] 1975. Cf. textbooks
[20, 13, 11, 7].
Randomness for real numbers x is defined via the corresponding binary
sequences of their fractional parts (i.e. x − bxc). The definition is given
for the alphabet {0, 1}, but it can be shown to be invariant under any al-
phabet. That is, the property of being random is inherent to the number
and it is independent of the system in which it is represented.
The existence of random reals can be established by a measure-theoretic
argument. As stated in §1.1, explicit random reals have been found by
Chaitin, cf. Thm.1.1.

3.3. Combining random reals. Recall Solovay’s reducibility and its
classical relation to prefix-free program-size complexity function H and
randomness (cf. [13, 12, 14]).

Definition 3.4 (Solovay, [31] 1975). Let a, b ∈ [0, 1] be c.e. reals. Let’s
denote by lc(x) = {q ∈ Q : q < x} the Dedekind left cut of x. We say
that a is Solovay reducible to b if there exists some constant c and some
partial computable function f : lc(b) → lc(a) with domain lc(b) such that,
for all q ∈ lc(b),

c(b− q) > a− f(q)

Theorem 3.5 (Solovay, [31] 1975). Let a, b ∈ [0, 1] be c.e. reals asso-
ciated to α, β ∈ 2ω. If a is Solovay reducible to b then there exists some
constant d such that, for all n, H(α �n) ≤ H(β �n) + d. In particular, if
a is random then so is b.

RANDOMNESS IN ∅′ 9

As an easy corollary, we get the following result on which we shall rely
for the proof of the main theorems (cf. §6).

Proposition 3.6. If a, b are both left (resp. right) c.e. and a is ran-
dom then a + b is random.

Proof. We prove that a is Solovay reducible to a+b. Dividing a, b by
some power of 2, we reduce to the case a+b < 1. Clearly, a+b is left c.e.
Let q < a + b. Since a, b are c.e., we can recursively enumerate the left
Dedekind cuts of a, b and find q0, q1 in these cuts such that q0 + q1 ≥ q.
Then a + b > q0 + q1 ≥ q, hence a + b − q > a + b − (q0 + q1) > a − q0.
Letting c = 1 and f(q) = q0, we see that a is Solovay reducible to a + b.
Considering 1−a, 1−b, the right c.e. case reduces to the left c.e. one. a

Corollary 3.7. Let n ≥ 1. If X = X1 ∪ X2 ⊆ 2ω where X1,X2 are
disjoint and Σ0

n(2ω) (resp. Π0
n(2ω)) and µ(X1) is random in ∅(n−1) then

µ(X) is random in ∅(n−1).

Proof. Apply Prop.3.3 and Prop.3.6 relativized to oracle ∅(n−1). a

§4. Different maps associated to the same Turing machine.
4.1. Monotone Turing machines. In the case of halting computa-

tions different architectures of Turing machines are irrelevant in terms
of computability. Turing machines, under any architecture whatsoever,
compute exactly all partial recursive functions. However, architectural
decisions on the moving abilities of the output head and the possibility
of overwriting the output do affect the class of functions that become
computable via possibly infinite computations.
In this paper we consider solely monotone Turing machines. This was in-
deed Turing’s original assumption [33], insuring that in the limit of time
the output of a non halting computation always converges, either to a
finite or an infinite sequence. This concept was also considered by Levin
[19], Schnorr [28, 29], see [20] p.276.

Definition 4.1. A Turing machine is monotone if its output tape is
one-way and write-only (hence no erasing nor overwriting is possible).
Thus, the sequence of symbols written on the output tape increases mono-
tonically with respect to the prefix ordering as the number of computation
steps grows.

Remark 4.2. A sequence β ∈ 2ω is the output of some monotone Turing
machine with input α ∈ 2ω if and only if β is recursive in α.

All the material in this paper goes through mutatis mutandis when
oracles are added to monotone Turing machines.

4.2. Maps representing machine behavior. A possibly infinite
computation on a Turing machine is either a halting or a non halting
computation. The output may be finite or infinite, and the input actually
read by the machine may also be finite or infinite. This leads to consider
2∗ or 2ω as the set of inputs, and 2≤ω as the set of outputs. Hence to
represent the machine behavior as maps 2∗ → 2≤ω or 2ω → 2≤ω.
Whereas there is a unique notion of computability for maps with values in
2ω, when values in 2≤ω are allowed there are two notions: computability
and semicomputability [5].

10 VERÓNICA BECHER AND SERGE GRIGORIEFF

Definition 4.3. Let S be among the sets 2∗, 2ω and 2≤ω and let
F : S → 2≤ω be a total map.
1. F is semicomputable if it is the input/output behaviour of some mono-
tone Turing machine with inputs in S and possibly infinite computations.
2. F is computable if it is the output/output behaviour of some Turing
machine with inputs in S and possibly infinite computations which halts
in case the output is finite.

Remark 4.4. 1. It is clear that total computable maps 2∗ → 2∗ are
exactly the recursive ones. However, as concerns semicomputability, in-
finite computations really add. For instance, consider F : 2∗ → {λ, 0}
such that F (0n) = λ (the empty word) and F (0n1s) is 0 if ϕn(n) ↓, else
undefined, where ϕ : N2 → N is a universal partial recursive function
2. The “semi” character comes from the fact that for α ∈ 2ω, if F (α) is
a finite string with length < n then the computation can nevertheless go
on forever: though the output is completely written at some finite time,
we never know that there is no more output to expect. Thus, to decide
whether F (α) has length greater than n, we have to compute F (α) up to
the moment (if there is any) the output has length > n. This is not a
decision algorithm but merely a semi-decision one. Moreover, the decision
of whether F (α) is finite is a Σ0

2 problem.

Semicomputable maps have a very simple characterization as limits of
monotone maps 2∗ → 2∗ (cf. [5] for more developments).

Proposition 4.5. A map F : 2ω → 2≤ω is semicomputable if and only
if there exists a total recursive monotone increasing map f : 2∗ → 2∗ such
that F (α) = limt→∞ f(α� t).

Proof. ⇐ is straightforward. As for ⇒, let M semicompute F . Ob-
serve that on input uα, the current output of M at step |u| does not de-
pend on α because the input head has read ≤ |u| symbols. This allows us
to define a total recursive f as follows: f(u) is the current output of M on
input u at step |u|. Clearly, f is monotone increasing and F = lim f . a

4.3. Maps with prefix-free domain. For purposes in the theory of
program-size complexity Chaitin [9] introduced the notion of self-delimiting
inputs for halting computations on Turing machines. Instead of the usual
assumption on Turing machines that the input tape contains a finite string
followed by a blank symbol marking the end of the input, one now as-
sumes no blanks, nor any other external way of input delimitation. An
input must contain in itself the information to know where it ends, so the
machine can realize when to finish reading the input tape; this is what
self-delimiting means. Formally, an input p is self-delimiting for M if dur-
ing its computation M reads p entirely and makes no attempt to move
beyond the last symbol of p.
In order to properly deal with the case of an empty input, we suppose
that the input tape contains a first dummy cell which receives no symbol
and which is scanned by the head when the computation starts.
The following result characterizes these computations.

Theorem 4.6 (Chaitin, [9] Thm 2.1). A partial recursive function has
prefix-free domain if and only if it is the input/output behavior of some
Turing machine on halting computations on its self-delimiting inputs.

RANDOMNESS IN ∅′ 11

Chaitin [10] also developed the notion of self-delimiting inputs for pos-
sibly infinite computations. As the sole condition for these computations,
he requires the input p to be finite and self-delimiting: p has to be en-
tirely read and the head of the input tape should make no attempt to
read beyond the last symbol of p. These computations determine maps
2∗ → 2≤ω with prefix-free domains which we shall call self-delimiting
semicomputable maps.
We will refer to the following different maps associated to the same Turing
machine M .

Definition 4.7. Let M be a monotone Turing machine.
1. (Chaitin [9]) M : 2∗ → 2∗ is the partial recursive map associated to
halting computations of M on the set of its self-delimited inputs. The
domain of M is a prefix-free set.
2. M./ : 2∗ → 2≤ω is the self-delimiting semicomputable map associated
to possibly infinite computations of M on the set of its self-delimited in-
puts. The domain of M./ is a prefix-free set.
When defined, M./(p) ∈ 2≤ω is the limit in 2≤ω of the monotone increas-
ing sequence of current outputs at successive steps.
3. M∞ : 2ω → 2≤ω is the total semicomputable map (cf. Def.4.3) for
possibly infinite computations of M provided with inputs in 2ω. If α has
no prefix in domain(M./) then the computation reads α entirely, else it
reads only this prefix α� i and M∞ is constant on (α� i)2ω.

The domains of M and M./ can be described in terms of computations
on infinite words. This is the contents of the following straightforward
proposition.

Proposition 4.8. Let M be a monotone Turing machine. Then

domain(M) = {p : for some infinite input α � p, M∞ halts
and reads exactly the finite prefix p of its input}

= {p : for all infinite input α � p, M∞ halts
and reads exactly the finite prefix p of its input}

domain(M./) = {p : for some infinite input α � p,
M∞ reads exactly the finite prefix p of its input}

= {p : for all infinite input α � p,
M∞ reads exactly the finite prefix p of its input}

The next proposition gives the syntactical complexity of the domains
of M and M./.

Proposition 4.9. Let M be a monotone Turing machine. Then
- domain(M) is Σ0

1(2
∗).

- domain(M./) is (Σ0
1 ∧Π0

1)(2
∗) and this bound can not be improved.

Proof. Observe that the definition of domain(M./) involves the con-
junction of an existential condition with a universal one, namely:

- at some computation step the input has been entirely read,
- the head of the input tape never moves beyond the end of the input.

To see that this complexity bound is sharp consider the Busy Beaver
function bb : N → N where bb(n) is the maximum number of 0’s that can

12 VERÓNICA BECHER AND SERGE GRIGORIEFF

be produced by some Turing machine with no input having n states and
which halts. It is easy to devise a monotone Turing machine M such that
domain(M./) = {0n1p : |p| = bb(n)}. To conclude, recall that bb is not
recursive but recursive in ∅′. a

4.4. Universal machines and simulation by prefix adjunction.
Assume an effective enumeration of all tables of instructions of monotone
machines. This determines an effective enumeration k 7→ Mk.

Definition 4.10. 1. The universal monotone Turing machine U is de-
fined as follows:
- U reads the input looking for a prefix of the form 0k1 for some k ∈ N,
- if it finds some, U simulates Mk on the remaining part of the input.
2. We denote by UA the machine with oracle A which is similarly ob-
tained.

The above universal machine has very fine simulation abilities.

Proposition 4.11 (Simulation by prefix adjunction). 1. By prefix ad-
junction to the input, U simulates any Turing machine for finite com-
putations as well as for infinite ones: for all k ∈ N, p, q ∈ 2∗, α ∈ 2ω,
ξ ∈ 2≤ω,
i. p ∈ domain(Mk) (i.e. Mk halts on p and p is self-delimited for Mk)
and Mk(p) = q if and only if 0k1p ∈ domain(U) and U(0k1p) = q.
ii. p ∈ domain((Mk)./) (i.e. p is self-delimited for Mk) and (Mk)./(p) = ξ

if and only if 0k1p ∈ domain(U./) and U./(0k1p) = ξ.
iii. (Mk)∞(α) = ξ if and only if U./(0k1α) = ξ.
2. Let f be a total recursive function. By prefix adjunction to the input,
U simulates Mf(k): there exists η ∈ 2∗ such that for all k, p, q, α, ξ, the
above equivalences and equalities hold with η0k1 in place of 0k1.

Proof. 1. Trivial from the definition of U .
2. Set η = 0`1 where M` is the Turing machine which behaves as follows:
- it reads the input looking for a prefix of the form 0k1 for some k ∈ N,
- if such a prefix exists then it computes f(k),
- it then simulates machine Mf(k) on the part of the input not yet read. a

§5. Semicomputable Wadge semireductions.
5.1. Semicomputability and lower semicontinuity. As is well known,

computable maps 2ω → 2ω are continuous for the usual Cantor topology.
Indeed, for maps 2ω → 2ω, computability is the effectivization of con-
tinuity. However, as we developed in another paper [5], for maps into
2≤ω the topological counterparts of computability and semicomputability
are respectively continuity and lower semicontinuity. This last notion is
the analog of the classical notion of lower semicontinuity for real valued
functions, but for functions with values in 2≤ω with respect to the prefix
ordering on this space.

Definition 5.1. Let S be 2ω or 2≤ω. A map F : S → 2≤ω is lower
semicontinuous at ξ ∈ S if, for all n ∈ N, there exists a neighborhood V
of ξ such that F (η)�n � F (ξ)�n for all η ∈ V.

The following easy proposition (cf. [5]) shows that lower semicontinuity
differs from continuity only at points with finite image.

RANDOMNESS IN ∅′ 13

Proposition 5.2. Let F : S → 2≤ω and ξ ∈ S.
1. If F (ξ) ∈ 2ω then F is lower semicontinuous at ξ if and only if F is
continuous at ξ.
2. If F (ξ) ∈ 2∗ then F is continuous (resp. lower semicontinuous) at ξ
if and only if there exists a neighborhood V of ξ such that F (η) = F (ξ)
(resp. F (η) � F (ξ)) for all η ∈ V.

Proof. 1. If F (ξ) ∈ 2ω (or merely |F (ξ)| ≥ n) then the condition
F (η) � n � F (ξ) � n exactly means F (η) � n = F (ξ) � n, which is the
condition for continuity.
2. Recall that finite strings are isolated points in the 2≤ω space. ⇐ is
trivial. As for ⇒, let n = |F (ξ)|. a
The following proposition is easy.

Proposition 5.3. Every semicomputable map F : S → 2≤ω (cf. Def.4.3)
is lower semicontinuous.

Remark 5.4. Semicomputable maps 2ω → 2≤ω are not continuous in
general. For instance, let erase(α) be obtained by erasing all zeros in α.
Then erase : 2ω → 2≤ω is semicomputable and discontinuous at all points
α ∈ 2∗0ω.

5.2. Wadge semireducibility. The classical Wadge hierarchy (cf.
textbooks: Moschovakis [23], Kechris [18]) provides a refinement of the
Borel hierarchy based on the simple topological notion of inverse image by
a continuous function. The notion of Wadge reduction has best proper-
ties with zero-dimensional Polish spaces, in particular with the compact
spaces 2ω and 2≤ω. Effectivizing continuous maps by the computable
ones (cf. Def.4.3), one can also consider computable Wadge reductions.
Associated to lower semicontinuous maps into 2≤ω we introduce the no-
tion of Wadge semireduction and its effectivization by the semicomputable
maps, which is the kind of effectivization yielded by possibly infinite com-
putations on monotone Turing machines, cf. the forthcoming paper [4].

Definition 5.5. Let S, T be 2ω or 2≤ω, X ⊆ S, Y ⊆ T .
1. (Wadge, 1972 [34, 35]) X is Wadge reducible to Y (denoted X �W Y)
if there exists a continuous map F : S → T such that X = F−1(Y).
2. In case T = 2≤ω, Wadge semireducibility �sW is defined similarly
with lower semicontinuous maps.
3. Computable Wadge reducibility �eff

W and semicomputable Wadge semire-
ducibility �s−eff

sW are similarly defined with computable and semicom-
putable maps.
4. Let C be a class of subsets of S. Relative to any one of the above
reducibilities, Y is C-hard if every set X ∈ C is reducible to Y.

The following proposition is straightforward.

Proposition 5.6. Relative to any one of the above reducibilities, if X
is reducible to Y then the complement of X is reducible to that of Y.
If X is hard for a class C then the complement of X is hard for the class
of complements of sets in C.

5.3. Wadge hardness. Let’s denote by Σ˜ 0
n(2ω) and Π˜ 0

n(2ω) the finite
levels of the Borel hierarchy on 2ω. As a well known consequence of the

14 VERÓNICA BECHER AND SERGE GRIGORIEFF

hierarchy theorem, if a subset of 2ω is Wadge hard for the class Σ˜ 0
n(2ω)

(resp. Π˜ 0
n(2ω)) then it cannot be in Π˜ 0

n(2ω) (resp. Σ˜ 0
n(2ω)). One of the

key results in Wadge’s theory is that the converse is also true.

Theorem 5.7 (Wadge [34, 35], cf.[23] or [18]). Let n ≥ 1 and X ⊆ 2ω.
X is �W Σ˜ 0

n(2ω)-hard ⇔ X is �W Σ0
n(2ω)-hard ⇔ X /∈ Π˜ 0

n(2ω)
X is �W Π˜ 0

n(2ω)-hard ⇔ X is �W Π0
n(2ω)-hard ⇔ X /∈ Σ˜ 0

n(2ω)

A naive expectation is that the same result is true for hardness with re-
spect to computable Wadge reducibility and the effective Σ0

n or Π0
n classes

of 2ω subsets. But this is false. Only the ⇒ implication of the last equiv-
alence remains true (which is the straightforward direction).
The quite classical result of Point 1 of the next proposition leads to a
somewhat surprising result (Point 3) concerning hardness relative to semi-
computable semireductions from 2ω to 2≤ω (cf.[4] for more developments).

Proposition 5.8. 1. 2∗0ω is a Σ0
2 subset of 2ω which is �eff

W -hard for
Σ0

2(2
ω), hence �W -hard for Σ˜ 0

2(2
ω).

2. If O ⊆ 2≤ω and 2∗0ω �s−eff
sW O then O is �s−eff

sW -hard for Σ0
2 subsets

of 2ω, hence �sW -hard for Σ˜ 0
2(2

ω).
3. 2∗ is a Σ0

1 subset of 2≤ω which is �s−eff
sW -hard for Σ0

2 subsets of 2ω,
hence �sW -hard for Σ˜ 0

2(2
ω).

4. 2ω is a Π0
1 subset of 2≤ω which is �s−eff

sW -hard for Π0
2 subsets of 2ω,

hence �sW -hard for Π˜ 0
2(2

ω).

Proof. 1. Let X ⊆ 2ω be Σ0
2. Using the classical representation of Π0

2

subsets of 2ω via the quantifier ∃∞ (cf. Rogers [26] Thm. XVIII p.328),
there exists some recursive relation R ⊆ 2∗ such that

α ∈ X ⇔ {i : R(α� i)} is finite
Set G(α)(n) = 1 if R(α � n) holds. Then G : 2ω → 2ω is a computable
map such that G−1(2∗0ω) = X .
2. Suppose 2∗0ω = G−1(O) where G : 2ω → 2≤ω is semicomputable.
If F : 2ω → 2ω and X = F−1(2∗0ω) then X = (G ◦ F)−1(O). Finally,
observe that if F is computable then G◦F : 2ω → 2≤ω is semicomputable.
3. Observe that 2∗0ω = erase−1(2∗) where erase : 2ω → 2≤ω is the
semicomputable function which erases all 0’s.
4. Straightforward from Point 3. a

5.4. Getting semicomputable Wadge hardness: proof of Thm.1.16.
We now prove that conditions (∗) and (∗∗) on a subset of 2≤ω introduced
in Def.1.15 imply �s−eff

sW -hardness for the class of Σ0
2 subsets of 2ω.

Due to Prop.5.8, it is sufficient to prove that 2∗0ω �s−eff
sW O.

Case of condition (∗). Assume O ⊆ 2≤ω satisfies (∗). Let (si)i∈N be a re-
cursive increasing chain of words in O with respect to the prefix ordering
with limit not in O. Let g : 2∗ → 2∗ be such that g(u) = si where i is the
number of 1’s in u. Clearly, g is total recursive and monotone increasing
with respect to the prefix ordering. Set G(α) = limi→∞ g(α � i). Then
G : 2ω → 2≤ω is semicomputable and

α ∈ 2∗0ω ⇒G(α) = si ∈ O where i is the number of 1’s in α

α /∈ 2∗0ω ⇒G(α) = lim
i→∞

si /∈ O

RANDOMNESS IN ∅′ 15

Thus, 2∗0ω = G−1(O) and 2∗0ω �s−eff
sW O.

Case of condition (∗∗). Assume now O ⊆ 2≤ω is Σ0
2(2

≤ω) and satisfies
condition (∗∗) and let u ∈ 2∗ and F : 2∗ → O and G : 2∗ → 2ω \ O be
total computable maps such that, for all v ∈ 2∗, uv is a prefix of F (v)
and G(v). Since O is Σ0

2(2
≤ω), Prop.2.6 insures that 2ω \ O is Π0

2(2
ω).

Use the classical representation of Π0
2 subsets of 2ω via the quantifier ∃∞

(cf. Rogers [26] Thm. XVIII p.328) to get a recursive relation R ⊆ 2∗

such that

α ∈ 2ω \ O ⇔ ∃∞n R(α�n)

Observe that, for every v ∈ u2∗, since G(v) ∈ 2ω \ O, there are infinitely
many prefixes of G(v) in R. Let ϕ : 2∗ × N → 2∗ be such that ϕ(v) is
the least prefix of G(v) which is in R and has length ≥ |v|. Since G is
computable, ϕ is total recursive.
Recall that λ denotes the empty word and, for ξ ∈ 2≤ω, ξ � i is defined
as the prefix of ξ with length min(i, length(ξ)). We define ` : 2∗ → 2∗ as
follows: for i ≥ 1, v ∈ 2∗,

`(λ) = λ `(v1) = ϕ(`(v))
`(0i) = F (λ)� i `(v10i) = F (`(v1))� i

Let L : 2ω → 2≤ω be the map induced by ` : L(α) = limi→∞ `(α � i).
Clearly, L is semicomputable. If α = v0ω where v = λ or v ∈ 2∗1 then
L(α) = F (`(v)) ∈ O. If α contains infinitely many 1’s then L(α) has
infinitely many prefixes in R, hence is not in O. Thus, L−1(O) = 2∗0ω so
that 2∗0ω �s−eff

sW O.
This finishes the proof of Thm.1.16.

Remark 5.9. Conditions (∗) and (∗∗) are independent. In fact, any
boolean combination of these conditions is true for some set O as shown
by the following examples.
(∗) ∧ (∗∗). Let O = 2∗.
(∗) ∧ ¬(∗∗). O = ((00)∗(11)∗)∗ fails the density condition. Another ex-
ample is O = 2≤ω \ {α}, for a recursive α ∈ 2ω, which fails the codensity
condition.
¬(∗) ∧ (∗∗). Let O = 2∗0ω, which fails (∗) because it contains no finite
strings.
¬(∗) ∧ ¬(∗∗). Let O ⊂ 2∗ be any finite set or u2≤ω, for some u ∈ 2∗.

§6. Proofs of randomness theorems and their corollaries. As
said in §1, we shall use a monotone machine universal by prefix adjunction
such as that of Def.4.10 and the associated partial recursive map U :
2∗ → 2∗, self-delimiting semicomputable map U./ : 2∗ → 2≤ω and total
semicomputable map U∞ : 2ω → 2≤ω (Def. 4.7). We shall also admit ∅(n)

as oracle and consider the map U∅(n)
: 2∗ → 2∗ which is partial recursive

in ∅(n) and universal by prefix adjunction.
6.1. Proof pattern of Thm.1.1, 1.9, 1.10, 1.11. Proofs of these

theorems all have the same pattern which we now describe as the proof
of a general abstract result.

Theorem 6.1. Let V : S → T be either U : 2∗ → 2∗ or U./ : 2∗ → 2≤ω

or U∞ : 2ω → 2≤ω and let O ⊆ T and n ∈ N. For X ⊆ S, we let
C(X) = X in case S = 2ω and C(X) = X2ω in case S = 2∗.

16 VERÓNICA BECHER AND SERGE GRIGORIEFF

If V −1(O) is Σ0
n+1(S) and there exists a partial self-delimiting (in case

S = 2∗) or total (in case S = 2ω) semicomputable map F : S → T such
that C(F−1(O)) = C(domain(U∅(n))) then µ(C(V −1(O))) is random in
∅(n).

Proof. Using the assumption of universality by prefix adjunction of
V , there exists σ ∈ 2∗ such that F (ξ) = V (σξ) for all ξ ∈ S (and
domain(F) = {ξ ∈ S : σξ ∈ domain(V)} in case S = 2∗). In partic-
ular, V −1(O) ∩ σS = σF−1(O). Hence, we get the partition of sets

V −1(O) = (V −1(O) ∩ σS) ∪ (V −1(O)) \ σS)
= (σF−1(O)) ∪ (V −1(O)) \ σS)

C(V −1(O)) = σC(F−1(O)) ∪ C((V −1(O)) \ σS)

C(V −1(O)) = σC(domain(U∅(n))) ∪ C((V −1(O)) \ σS)

and that of the associated measures

µ(C(V −1(O))) = 2−|σ|µ(C(domain(U∅(n)))) + µ(C(V −1(O) \ σS))

= 2−|σ|Ω∅(n)
+ µ(C(V −1(O) \ σS))

The Σ0
n+1(S) character of V −1(O) insures that of V −1(O) \ σS. Which,

in turn, insures the Σ0
n+1(2

ω) character of C(V −1(O) \ σS), hence that
its measure is left c.e. in ∅(n). Since domain(U∅(n)

) is Σ0
n+1, the real

2−|σ|Ω∅(n)
is also left c.e. in ∅(n). Chaitin’s Thm.1.1 relativized to oracle

∅(n) insures that µ(C(domain(U∅(n)
))) = Ω∅(n)

is random in ∅(n), hence
also its product by the dyadic rational 2−|σ|. Finally, Cor.3.7 insures that
µ(C(V −1(O))) is random in ∅(n). a

6.2. Proof of Chaitin’s Thm.1.1. We apply Thm.6.1 with n = 0
and U : 2∗ → 2∗ as V : S → T . Since O 6= ∅, we can consider some fixed
a ∈ O. We let F : 2∗ → 2∗ be the partial self-delimiting semicomputable
map defined on domain(U) which, on this domain, is constant with value
a. Clearly, F−1(O) = domain(U). Also, since O is Σ0

1(2
∗) so is V −1(O).

Thus, the conditions of Thm.6.1 hold, so that µ(C(V −1(O))) = Ω[O] is
random.

6.3. Proof of Thm.1.9 (plain randomness). We shall use Thm.7.4
which does not rely on results of this §. Let O = Y 2≤ω where Y ⊆ 2∗ is
Σ0

1 and O 6= 2≤ω, ∅, i.e. λ /∈ Y and Y 6= ∅. We apply Thm.6.1 with n = 0
and U∞ : 2ω → 2≤ω as V : S → T . Let u be any word in Y . Necessarily,
u 6= λ. We let F : 2ω → 2≤ω be the total semicomputable map such
that F (α) = λ if U does not halt on any finite prefix of α and F (α) = u
otherwise. Clearly, F−1(O) = domain(U)2ω. Also, since Y is Σ0

1(2
∗),

Thm.7.4 (line 1a of Table 1) insures that V −1(O) = U−1
∞ (Y 2≤ω) is Σ0

1(2
ω).

Thus, the conditions of Thm.6.1 hold, so that µ(V −1(O)) = µ(U−1
∞ (O))

is random.
6.4. Proof of 1st main theorem: Thm.1.10 (randomness in ∅′).
6.4.1. Harmless overshoot reducibility. We introduce a convenient tool

related to “harmless overshoot” (cf. §6.4.2).

Definition 6.2. Let X, Y ⊆ 2∗ be prefix-free. We say that X is “harm-
less overshoot” reducible to Y , written X �HOS Y , if the following condi-
tions hold:

RANDOMNESS IN ∅′ 17

i. Y ⊆ X2∗, i.e. any word y ∈ Y extends some word in x ∈ X,
ii. X2ω = Y 2ω.

Harmless overshoot reducibility can also be expressed as follows.

Proposition 6.3. X �HOS Y if and only if

Y =
⋃

x∈X

xSx

where, for each x ∈ X, Sx ⊂ 2∗ is finite maximal prefix-free.

Proof. ⇒. For each x ∈ X, let Sx be the set of u’s such that xu ∈ Y .
Since Y is prefix-free so are the Sx’s. From condition i of Def.6.2 we
know that every y ∈ Y has a prefix in x ∈ X, hence y ∈ xSx. Thus,
Y =

⋃
x∈X xSx and Y 2ω =

⋃
x∈X xSx2ω. Using condition ii, we get

X2ω =
⋃

x∈X x(Sx2ω), whence, for each x ∈ X, x2ω = xSx2ω, i.e. 2ω =
Sx2ω. Finally, Prop.2.1 insures that Sx is finite maximal prefix-free.
⇐. Clearly, Y ⊆ X2∗ and Y 2ω =

⋃
x∈X x(Sx2ω). Now, Prop.2.1 yields

Sx2ω = 2ω, whence Y 2ω = X2ω. a
6.4.2. Simulation in the limit and harmless overshoot. Chaitin, [10])

1976, introduces the simulation in the limit technique that tells how to
perform a simulation of a computation relative to an oracle, via an infinite
computation in a machine that lacks the oracle. The technique requires
that the oracle be recursively enumerable. The simulated computation is
run in increasing number of steps, using a fake oracle: at step t a question
to the oracle is answered “no” unless the question is found to be true in at
most t steps. As the number of steps t goes to infinity any finite number
of questions will eventually be answered correctly by the fake oracle.
We apply this technique to simulate a computation on U∅′ as concerns the
input and work tapes, but not that of the output tape. Now, in spite of the
fact that, in the limit, the fake oracle realizes its mistakes and provides
the correct answers, the simulation may already have read beyond the
input. This happens because the domain of the function being simulated,
that is domain(U∅′), is not recursively enumerable, so the simulation may
not know where the input actually ends until it gets the correct oracle
answers. In the meantime, extra symbols from the input tape may have
been read. However, since we are just interested in discovering, in the
limit, whether a computation on U∅′ actually halts, the actual value of
those extra bits turns out to be irrelevant. Chaitin [10] called this feature
harmless overshoot.

6.4.3. Proof of Thm.1.10. We now apply simulation in the limit and
harmless overshoot to construct the partial self-delimiting semicomputable
map F : 2∗ → 2≤ω needed to use Thm.6.1.

Lemma 6.4. Suppose O ⊆ 2≤ω contains some finite string or some in-
finite recursive sequence. Then there exists a partial self-delimiting semi-
computable map F : 2∗ → 2≤ω such that

i. domain(U∅′) �HOS domain(F)
ii. F is constant on its domain and has value in O.

Proof. Following Prop.4.8, we shall relate a partial self-delimiting
semicomputable map M./ : 2∗ → 2≤ω (resp. M : 2∗ → 2∗) to the re-
striction of M∞ to the set of α such that the computation of M∞ on

18 VERÓNICA BECHER AND SERGE GRIGORIEFF

input α reads only finitely many symbols of α (resp. and halts).
1. Let ξ be some fixed finite string or infinite sequence in O. We de-
fine F : 2∗ → 2≤ω as the M./ map associated to a Turing machine M
with infinite inputs and possibly infinite computations which performs
the simulation in the limit of U∅′ as described below:

quota := 1 (number of steps of U∅′ to be simulated)
If ξ is a finite string then outputs ξ.
do forever
1. If ξ is an infinite sequence then output the quota-th symbol of ξ.
2. Simulate U∅′ (on the given infinite input) for at most quota com-

putation steps. For each question to the oracle of whether U(q)
halts, simulate U(q) and take as an answer whether it halts in
at most quota steps.

3. If U∅′ did not halt, or if an oracle answer was found to be mis-
taken (i.e., it changed from its previous value, from “no” to
“yes”), or more questions were asked, then move the input head.

4. Else do not move it.
5. quota := quota + 1

end do

Thus, for each value of quota, M does two kinds of simulation.
First, it simulates steps 0,1,2, . . . of the computation of U∅′ (on the given
infinite input), up to quota or some halting step of the simulation of U∅′ .
Second, M simulates steps 0,1,2, . . . of the computation of U for every
input for which a question to the oracle was raised, up to quota or some
halting step of U on this input.
2. Clearly, the output is always ξ, hence always in O. It remains to prove
the stated �HOS reducibility.
3. Suppose M reads only a finite part q of its input α ∈ 2ω. Then there
exists a finite prefix p of q such that the simulation of U∅′ on input p halts
and the fake oracle used for that simulation is never found mistaken in the
remaining infinite part of the computation (where the input head does not
move). Thus, p is indeed in domain(U∅′). Which proves domain(M./) ⊆
domain(U∅′)2∗.
4. Suppose p ∈ domain(U∅′). Then U∅′ on input p halts in finitely many
steps, say N steps, at which it can perform only finitely many oracle
questions. Let us call Q the set of programs that are consulted to the
oracle. Every q ∈ Q such that U(q) ↓, halts in some finite number of
steps. Let T be the maximum number of steps required by the halting
programs of Q. For values of quota less than T , the simulation of some
oracle questions may be wrong, but for every value of quota ≥ T , they
will necessarily be correct.
Let α be any sequence in 2ω and consider the computation of M on input
pα. Whatever be α, the amount of bits read by the computation of M on
input pα will never exceed max(T,N) (harmless overshoot) and will, of
course, be at least |p|. Let Sp be the set of d ∈ 2∗ such that on some input
pα, M reads exactly the prefix pd of α. Since every α ∈ 2ω extends some
d ∈ sp, Prop.2.1 insures that Sp is finite maximal prefix-free. Together

RANDOMNESS IN ∅′ 19

with the inclusion proved in 3, this proves

domain(M./) =
⋃

p∈domain(U∅′)

pSp

Using Prop.6.3, we get domain(U∅′) �HOS domain(M./). a
6.4.4. Proof of Thm.1.10 randomness in ∅′. Lemma 6.4 gives a partial

self-delimited semicomputable map F : 2∗ → 2≤ω such that domain(U∅′)2ω =
domain(F)2ω and domain(F) = F−1(O). Prop.4.9 insures that domain(F),
hence also F−1(O) is Σ0

2. Thus, letting V : S → T be U./ : 2∗ → 2≤ω

and n = 1, the conditions of Thm.6.1 hold, yielding the conclusion of
Thm.1.10.

6.5. Proof of 2d main theorem: Thm.1.11 (randomness in ∅′).
Let V : S → T be U∞ : 2ω → 2≤ω and n = 1. Since domain(U∅′)
is Σ0

2(2
∗), we see that domain(U∅′)2ω is Σ0

2(2
ω). Using the hypothesis

that O is semicomputable Wadge hard for Σ0
2 subsets of 2ω, there ex-

ists a total semicomputable map F : 2ω → 2≤ω such that F−1(O) =
domain(U∅′)2ω. Thus, the conditions of Thm.6.1 hold, yielding the con-
clusion of Thm.1.11.

§7. Proof of corollaries. In order to apply the main theorems, we
have to bound the syntactical complexity of U−1

./ (O) and U−1
∞ (O).

7.1. Finite unions of prefix-free sets: the bounded chain con-
dition. The following notion leads to low syntactical complexity for some
interesting classes of subsets of 2≤ω.

Definition 7.1. A set X ⊆ 2∗ satisfies the k-bounded chain condition,
in short X is k-bdd-chain, if every monotone strictly increasing chain in
X (with respect to the prefix ordering) has at most k elements.
X satisfies the bounded chain condition, in short X is bdd-chain, if it
satisfies the k-bounded chain condition for some k.

Proposition 7.2.
1. A set X ⊆ 2∗ satisfies the k-bounded chain condition if and only if it
is the union of at most k many prefix-free sets.
2. If X is recursive then these prefix-free sets can be taken recursive.
3. If X is r.e. then these prefix-free sets can be taken r.e. (in other words,
if an r.e. set is the union of k prefix-free sets then it is the union of k
r.e. prefix-free sets).

Proof. All ⇐ implications are trivial. Let’s prove the ⇒ ones.
1. Define inductively subsets Xi ⊆ X as follows: X0 = min(X), Xi+1 =
min({u ∈ X : ∃v ∈ Xi v ≺ u}). It is easy to check that if X is k-bdd-
chain and then X = X0 ∪ . . . Xk−1.
2. In case X is recursive, so are the Xi’s.
3. For the case X is r.e., the construction needs to be modified. Arguing
by induction, it suffices to partition any k-bdd-chain set X (with k ≥ 2),
into two r.e. sets Y and Z such that Y is prefix-free and Z is k − 1-bdd-
chain.
Suppose X = range(θ) where θ : N → N is total recursive. We construct
Y and Z by stages: Y =

⋃
t∈N Yt and Z =

⋃
t∈N Zt where

- Y0 ⊆ Y1 ⊆ Y2 ⊆ . . . and Z0 ⊆ Z1 ⊆ Z2 ⊆ . . . ,

20 VERÓNICA BECHER AND SERGE GRIGORIEFF

Table 1
O X, Y ⊆ 2∗ U−1

./ (O) U−1
∞ (O)

1a Y 2≤ω Y Σ0
1 , Σ0

1 ∧Π0
1 Σ0

1

1b X X Σ0
1 prefix-free Σ0

1 ∧Π0
1 Σ0

1 ∧Π0
1

2a {u, uv} u, v ∈ 2∗, v 6= λ bool(Σ0
1) bool(Σ0

1)
2b X ∪ Y 2≤ω X, Y Σ0

1 and X bdd-chain bool(Σ0
1) bool(Σ0

1)
3a X X Σ0

1 Σ0
2 Σ0

2

3b X X Π0
1 Σ0

2 Σ0
2

3c Y 2≤ω Y Π0
1 Σ0

2 Σ0
2

3d X ∪ Y 2≤ω X, Y Σ0
2 Σ0

2 Σ0
2

4a 2≤ω \ (X ∪ Y 2≤ω) X, Y Σ0
1 Π0

2 Π0
2

4b 2≤ω \ (X ∪ Y 2≤ω) X, Y Σ0
2 Π0

2 Π0
2

4c O ⊆ 2ω is Π0
2(2

ω) Π0
2 Π0

2

4d X ∪ Y 2≤ω ∪ Z X, Y Σ0
1, X bdd-chain Π0

2 Π0
2

and Z ⊆ 2ω is Π0
2

5a O is Σ0
2(2

≤ω) bool(Σ0
2) bool(Σ0

2)
5b O is Π0

2(2
≤ω) bool(Σ0

2) bool(Σ0
2)

(for the definition of bdd-chain see Def.7.1)

- Yt is finite prefix-free,
- Zt is finite k − 1-bdd-chain,
- Yt ∩ Zt = ∅.
- Y0 = {θ(0)} and Z0 = ∅
- Yt+1 ∪ Zt+1 = Yt ∪ Zt ∪ {θ(t + 1)}

The inductive construction puts θ(t + 1) in Yt+1 if Yt ∪ {θ(t + 1)} is still
prefix-free. Else, θ(t + 1) is put in Zt+1.
It is clear that Y and Z are r.e. and that Yt is always prefix-free. Let’s
prove by induction on t that Zt satisfies the k−1-bounded chain condition.
The case t = 0 is trivial. Suppose v1 ≺ ... ≺ vk were a chain of elements
in Zt+1. Let vk = θ(s) with s ≤ t. The fact that, at stage s + 1, the
element vk has been put in Zs+1 and not in Ys+1, means that there exists
u ∈ Ys such that u and vk are prefix comparable.
If vk ≺ u then v1, ..., vk, u is a k + 1 chain in X, a contradiction.
If u ≺ vk then u can be inserted inside the chain v1, ..., vk to make a k +1
chain v1, ..., vi−1, u, vi, ..., u. Again, a contradiction.
This proves that Z satisfies the k − 1-chain condition. a

7.2. Syntactical complexity of U−1
./ (O) and U−1

∞ (O). For given
sets O ⊆ 2≤ω we study the complexity of the sets U−1

./ (O) ⊆ 2∗ and
U−1
∞ (O) ⊆ 2ω. As expected, they are always at least as complex as O in

their respective spaces.

Remark 7.3. Clearly, U−1
./ (O)2ω ⊆ U−1

∞ (O). In fact, U−1
./ (O)2ω is the

subset of sequences α ∈ U−1
∞ (O) such that U reads only a finite part of α

during its possibly infinite computation.

Theorem 7.4. Table 1 summarizes the syntactical complexity of U−1
./ (O)

and U−1
∞ (O) for O in some particular classes. For each complexity (up

to the second level) it also gives the simplest and hardest possible O’s.

Note 7.5. The optimal character of the results in Table 1 can be shown
using Wadge hard sets for semicomputable reductions, cf. [3].

RANDOMNESS IN ∅′ 21

Proof. Let out : 2∗ × N → 2∗ be the total recursive map such that
out(p, t) is the current output at computation step t of the universal
machine U on input p, no matter if U has halted or overread p (the
problem of self-delimitation of p is to be considered separately). Observe
that out is monotone increasing in its second argument with respect to
the prefix ordering. Also, in case of an infinite input α, at step t at most t
symbols have been read, so that the current output is exactly out(α� t, t).
Recall that domain(U./) ⊆ 2∗ has complexity Σ0

1 ∧Π0
1 (cf. Prop.4.9).

We now consider the different cases from Table 1 and express U−1
./ (O)

and U−1
∞ (O) by formulas having the stated syntactical complexities.

Table line 1a. Suppose Y ⊆ 2∗ is Σ0
1. Then,

p ∈ U./
−1(Y 2≤ω) ⇔ p ∈ domain(U./) ∧ ∃y ∈ Y ∃t y � out(p, t)

α ∈ U∞
−1(Y 2≤ω) ⇔ ∃y ∈ Y ∃t y � out(α� t, t)

Table line 1b. Suppose X ⊆ 2∗ is Σ0
1 prefix-free. Then

p ∈ U./
−1(X) ⇔ ∃t out(p, t) ∈ X ∧ ∀t ∀x ∈ X ¬(x ≺ out(p, t))

α ∈ U∞
−1(X) ⇔ ∃t out(α� t, t) ∈ X ∧ ∀t ∀x ∈ X ¬(x ≺ out(α� t, t))

Table line 2a–b. It clearly suffices to prove 2b. Using Prop.7.2, we have
X = X1 ∪ . . . Xk for some k, where the Xi’s are r.e. prefix-free. Apply
Table lines 1a, 1b to the Xi’s and Y 2≤ω.

Table line 3a–d. It clearly suffices to prove 3d. Suppose O = X ∪ Y 2≤ω

where X, Y ⊆ 2∗ are Σ0
2. Then

p ∈ U−1
./ (O)⇔ p ∈ domain(U./)

∧ (U./(p) is in X or extends an element of Y)
⇔ p ∈ domain(U./)
∧ [∃y ∃t (y ∈ Y ∧ y � out(p, t))
∨ ∃t (out(p, t) ∈ X ∧ ∀t′ > t out(p, t) = out(p, t′))]

α ∈ U−1
∞ (O) can be expressed similarly: forget the first condition about

the domain and replace p by α� t.

Table lines 4a, 4b. Direct corollaries of Table line 3d.

Table line 4c. Suppose O ⊆ 2ω is defined as follows:
α ∈ O ⇔ ∀i ∃j ≥ i R(i, j, α�j)

where R is recursive. Then

p ∈ U−1
./ (O)⇔ p ∈ domain(U./)

∧ ∀i ∃j ≥ i ∃t ∃u (out(p, t) = u ∧ |u| = j ∧R(i, j, u))
α ∈ U−1

∞ (O)⇔∀i ∃j ≥ i ∃t ∃u (out(α� t, t) = u ∧ |u| = j ∧R(i, j, u))

Table line 4d. Apply Table lines 2b, 4c to X ∪ Y 2≤ω and Z.

Table line 5a. Using Prop.2.5, let O =
⋃

i∈N 2≤ω \ (Xi ∪ Yi2≤ω) where

22 VERÓNICA BECHER AND SERGE GRIGORIEFF

X, Y ⊆ N× 2∗ are r.e. Then,

p ∈ U−1
./ (O)⇔ p ∈ domain(U./)

∧(U./(p) is finite in O or infinite in O)
⇔ p ∈ domain(U./) ∧
{[∃i∃t∀t′ > t(out(p, t) = out(p, t′) ∧ out(p, t) 6∈ Xi ∪ Yi2∗)]
∨[(∀t∃t′ > t out(p, t) ≺ out(p, t′))

∧ ∃i∀y∀t(y ∈ Yi ⇒ ¬(y � out(p, t)))]}

α ∈ U−1
∞ (O) can be expressed similarly: forget the first condition about

the domain and replace p by α� t. a

7.3. Proof of Corollaries 1.17, 1.19, 1.20 and Prop.1.12.
Corollary 1.17 : use line 3d of Table 1 (Thm.7.4) and Thm.1.10. Corol-
laries 1.19, 1.20 : use lines 3d, 4d of Table 1 and Thm.1.11. For the
particular case Z = 2ω \2∗0ω stated in Cor.1.20, use Prop.5.8. Prop.1.12
: line 2b of Table 1 insures that U−1

∞ (O) is ∆0
2 and Prop.3.3 insures that

µ(U−1
∞ (O)) is computable in ∅′, hence not random in ∅′.

§8. Acknowledgements. The authors thank Max Dickmann for stim-
ulating discussions and an anonymous referee for judicious advice, point-
ing some incorrections and bringing to their attention the contents of
Prop.1.7.

REFERENCES

[1] V. Becher and G. Chaitin, Another example of higher order randomness,
Fund. Inform., vol. 51 (2002), no. 4, pp. 325–338.

[2] V. Becher, G. Chaitin, and S. Daicz, A highly random number, Proceedings
of the third discrete mathematics and theoretical computer science conference
(dmtcs’01) (C.S. Calude, M.J. Dineen, and S. Sburlan, editors), Springer-Verlag, 2001,
pp. 55–68.

[3] V. Becher and S. Grigorieff., Random reals and possibly infinite computa-
tions. part II: Higher order randomness, In preparation.

[4] , Wadge semireducibility with lower semicontinuous maps into 2≤ω, In
preparation.

[5] , Recursion and topology on 2≤ω for possibly infinite computations, The-
oret. Comput. Sci., vol. 322 (2004), pp. 85–136.

[6] L. Boasson and M. Nivat., Adherences of languages, J. Comput. System
Sci., vol. 20 (1980), pp. 285–309.

[7] C. Calude, Information and randomness, Springer, 1994.
[8] C.S. Calude, P.H. Hertling, and B. Khoussainov Y. Wang, Recursively

enumerable reals and Chaitin Ω numbers, STACS 98 (Paris, 1998), Lecture Notes
in Computer Science, no. 1373, Springer-Verlag, 1998, pp. 596–606.

[9] G. Chaitin, A theory of program size formally identical to information theory,
J. ACM, vol. 22 (1975), pp. 329–340, Available on Chaitin’s home page.

[10] , Algorithmic entropy of sets, Computers and Math. with Applic.,
vol. 2 (1976), pp. 233–245, Available on Chaitin’s home page.

[11] , Algorithmic information theory, 1st ed., Cambridge University
Press, 1987.

[12] R. Downey, Some computability-theoretical aspects of reals and randomness,
(2000), Notes from lectures given at the University Notre Dame. Available at MSCS,
University of Wellington, NZ.

RANDOMNESS IN ∅′ 23

[13] R. Downey and D. Hirschfeldt, Algorithmic randomness and complex-
ity, Springer, 2005, To appear. Preliminary version, November 30th 2004, available on
Downey’s home page.

[14] R. Downey, D. Hirschfeldt, and A. Nies, Randomness, computability and
density, SIAM J. on Computing., vol. 31 (2002), pp. 1169–1183, Extended abstract
in Proc. STACS 2001, LNCS 2010.

[15] R. Downey and G.L. Laforte, Presentations of computably enumerable reals,
Theoretical Computer Science, vol. 284 (2002), no. 2, pp. 539–555.

[16] T. Head, The adherences of languages as topological spaces, Automata and
infinite words (M. Nivat and D. Perrin, editors), Lecture Notes in Computer Science,
vol. 192, 1985, pp. 147–163.

[17] , The topological structure of adherence of regular languages, RAIRO,
Theoretical Informatics and Applications, vol. 20 (1986), pp. 31–41.

[18] A.S. Kechris, Classical descriptive set theory, Springer, 1995.
[19] L. Levin, On the notion of random sequence, Soviet Math. Dokl., vol. 14

(1973), no. 5, pp. 1413–1416.
[20] M. Li and P. Vitanyi, An introduction to kolmogorov complexity and its

applications, Springer, 1997 (2d edition).
[21] P. Martin-Löf, The definition of random sequences, Information and Con-

trol, vol. 9 (1966), pp. 602–619.
[22] J. Miller, Personal communication.
[23] Y.N. Moschovakis, Descriptive set theory, North Holland, 1980.
[24] An.A. Muchnik, Personal communication.
[25] P. Odifreddi, Classical recursion theory, vol. 125, North-Holland, 1989.
[26] H. Rogers, Theory of recursive functions and effective computability,

McGraw-Hill, 1967.
[27] G.E. Sacks, Degrees of unsolvability, Annals of mathematical studies,

Princeton University Press, 1966.
[28] C.P. Schnorr, Process complexity and effective random tests, J. Comput.

System Sci., vol. 7 (1973), pp. 376–388.
[29] , A survey of the theory of random sequences, Basic problems in

methodology and linguistics (R. E. Buttsand J. Hintikka, editor), D. Reidel, 1977,
pp. 193–210.

[30] R. Soare, Recursion theory and dedekind cuts, Trans. Amer. Math. Soc.,
vol. 140 (1969), pp. 271–294.

[31] R.M. Solovay, Draft of a paper (or a series of papers) on Chaitin’s work,
(1975), Unpublished manuscript, IBM Research Center, NY.

[32] , On random R.E. sets, Non-classical Logics, Model theory and
Computability (A.I. Arruda, N.C.A. da Costa, and R. Chuaqui, editors), North-
Holland, 1977, pp. 283–307.

[33] A. Turing, On computable numbers, with an application to the Entschei-
dungsproblem., Proceedings of the London Mathematical Society, 2nd series,
vol. 42 (1936.), pp. 230–265, Correction, Ibid, 43:544–546, 1937.

[34] W.W. Wadge, Degrees of complexity of subsets of the baire space, Notices
Amer. Math. Soc., (1972), pp. A–714.

[35] , Degrees of complexity of subsets of the baire space, Ph.D. thesis, Uni-
versity of Berkeley, 1984.

DEPARTAMENTO DE COMPUTACIÓN, FCEYN

UNIVERSIDAD DE BUENOS AIRES

ARGENTINA

E-mail : vbecher@dc.uba.ar

LIAFA, UNIVERSITÉ PARIS 7

2, PL. JUSSIEU 75251 PARIS CEDEX 05

FRANCE

E-mail : seg@liafa.jussieu.fr

