
De Bruijn Sequences with Minimum Discrepancy

Nicolás Álvarez Verónica Becher Mart́ın Mereb Ivo Pajor Carlos Miguel Soto

July 24, 2024

Abstract

The discrepancy of a binary string is the maximum (absolute) difference between
the number of ones and the number of zeroes over all possible substrings of the given
binary string. In this note we determine the minimal discrepancy that a binary de Bruijn
sequence of order n can achieve, which is n. This was an open problem until now. We give
an algorithm that constructs a binary de Bruijn sequence with minimal discrepancy. A
slight modification of this algorithm deals with arbitrary alphabets and yields de Bruijn
sequences of order n with discrepancy at most 1 above the trivial lower bound n.

Contents

1 Statement of Results 2

2 Structure of the Proof of Theorem 1 2

3 De Bruijn Graph and Discrepancy 3

4 Valid Subgraph 3
4.1 Histograms . 3
4.2 Incremented Cycle Register Rule . 4
4.3 Valid Subgraph . 5
4.4 Difference Bounds for Valid Subgraph Paths . 6

5 Our Hamiltonian Cycle 8
5.1 Hamiltonian cycle in the Valid Subgraph . 9
5.2 Discrepancy Bound for the General Case . 10
5.3 Discrepancy Bound for the Binary Case . 10
5.4 Explicit Spanning Tree . 10

6 Our Algorithm 12
6.1 Example Sequences . 13

7 Analysis 14
7.1 Our Algorithm Behavior for an Arbitrary Base . 14
7.2 Conjecture on the Minimum Attainable Discrepancy 14
7.3 Comparison with Other de Bruijn Sequences . 15

8 Code 17

1

1 Statement of Results

A de Bruijn sequence of order n over a b-symbol alphabet is a circular string of length bn such
that every string of length n occurs exactly once in it. The discrepancy of a given string is
a non negative integer that indicates the maximum difference, in any substring, between the
number of occurrences of the most occurring symbol and the least occurring symbol in that
substring. Formally: let Σ be an alphabet and w a string over Σ. Let |w|a denote the number
of occurrences of the symbol a in w. Let S(w) denote the set of all substrings of w where we
interpret w as a circular string. The discrepancy of a string w over alphabet Σ is defined as

discrepancy(w) = max
s∈S(w)

(
max
a∈Σ

|s|a −min
c∈Σ
|s|c
)
.

The maximum and minimum discrepancies attainable by a de Bruijn sequence of order n
are Θ(2n/

√
n) and Θ(n) respectively. This was proved by Gabric and Sawada in [3, Theorem

5.3] and [3, Theorem 2.2].
What is the exact minimum discrepancy that a de Bruijn sequence can achieve? Clearly, in

every alphabet, the discrepancy of a de Bruijn sequence of order n is at least n, because there
must exist a run of n consecutive equal symbols. Here we show that for the binary alphabet
the minimum discrepancy achievable by a de Bruijn sequence of order n is exactly n. We
give an efficient algorithm to compute it. For alphabets with more than two symbols, our
algorithm constructs a de Bruijn sequence of order n with discrepancy at most n + 1.

Theorem 1. There is an algorithm that produces a de Bruijn sequence of order n with
discrepancy n in case the alphabet has two symbols, and with discrepancy at most n + 1 in
case the alphabet has more than two symbols. The algorithm computes in O(n) memory and
it outputs each symbol in O(n) time.

Thus, in the case of the binary alphabet our algorithm yields minimal discrepancy. For
larger alphabets we experimentally found that for some values of n there exists a de Bruijn
sequence of order n with discrepancy n, but not for others.

Gabric and Sawada in [3] ask whether Huang’s [4] algorithm produces binary de Bruijn
sequences with minimum discrepancy. The answer is no, but a variant of it does: our
algorithm is a variant of Huang’s algorithm, twisted to achieve minimum discrepancy. Our
algorithm works for any alphabet, thereby, it solves the problem posed by Gabric and Sawada
of determining whether the discrepancy bounds for the binary alphabet hold for arbitrary
alphabets as well.

2 Structure of the Proof of Theorem 1

The structure of the algorithm and its correctness proof is as follows:

• First, we translate the problem to the language of de Bruijn graphs, using the well
known result that Hamiltonian cycles in the de Bruijn graph correspond to de Bruijn
sequences [2].

• We define a subgraph of the de Bruijn graph, called the valid subgraph, where all arcs
are of a certain form and every path in that graph corresponds to a string with bounded
discrepancy.

2

• We decompose the de Bruijn graph into node-disjoint cycles using the incremented cycle
register rule, as is done by Huang [4]. We prove that these cycles are all contained within
the valid subgraph.

• We choose a way to connect these cycles in a tree-like structure to form a Hamiltonian
cycle, such that the arcs between the cycles are also contained in the valid subgraph.

• Finally, we develop an algorithm to traverse this tree in a depth first manner, completely
traversing all cycles and thus producing a Hamiltonian cycle. Since it is contained within
the valid subgraph, this guarantees that the resulting Hamiltonian cycle has bounded
discrepancy.

3 De Bruijn Graph and Discrepancy

Given an integer n and an alphabet Σ = {0, 1, . . . , k − 1}, where k is a positive integer, the
de Bruijn graph Bn = (Vn, An) is a graph with node set Vn = Σn, the set of all strings of
length n, and an arc (s, t) ∈ An if and only if the suffix of s of length n− 1 equals the prefix
of t of length n − 1. The alphabet is interpreted modulo k. For example, for k = 3 we take
1 + 2 = 0.

Hamiltonian cycles in the de Bruijn graph correspond to de Bruijn sequences: if s0, s1, . . . , sk−1

is a Hamiltonian cycle in Bn, then the sequence

s0[0], s1[0], . . . , sk−1[0]

consisting of the first symbol of each string is a de Bruijn sequence. Thus, each string of
length n appears exactly once in the sequence when viewed cyclically.

Definition (Difference). The discrepancy of a string w is defined as, discrepancy : Σ∗ → Z

discrepancy(w) = max
s∈S(w)

(
max
a∈Σ

|s|a −min
c∈Σ
|s|c
)
.

where the value max
a∈Σ

|s|a −min
c∈Σ
|s|c is the difference of the substring s, denoted D(s).

In order to bound the discrepancy of de Bruijn sequences, we need to bound the difference
of all its substrings. A substring of a de Bruijn sequence is a sequence of the form

si[0], si+1[0], . . . , sj [0]

where si, si+1, . . . , sj is a contiguous subsequence of the Hamiltonian cycle. Therefore, sub-
strings of a de Bruijn sequence correspond to paths in the de Bruijn graph.

4 Valid Subgraph

4.1 Histograms

Let us define a concept that will help us to calculate the difference of a string.

Definition (Histogram). Given a string s ∈ Σ∗ let H(s) : Σ→ Z be defined as H(s)(c) = |s|c.

3

The difference of a histogram is defined as follows.

Definition (Difference of a histogram). The difference D(H) of a histogram H : Σ → Z is
given by

D(H) = max
i,j∈Σ

H(i)−H(j).

As expected, D(H(s)) = D(s). We use the same symbol to denote the difference of a
string and the difference of a histogram. However, the meaning of the symbol will be clear
from the context in which it is used. Another operation that we need on histograms is the
partial sum.

Definition (Partial sum of a histogram). Given H : Σ → Z, define its partial sum P (H) :
Σ→ Z as

P (H)(i) =

i∑
j=0

H(j).

Let K be the constant one histogram. That is, K : Σ → Z such that K(b) = 1 for all
b ∈ Σ. Notice that if we add K to a histogram, the difference is not affected. Therefore, we
can consider the histograms in the quotient space

Σ→ Z
〈K〉

.

4.2 Incremented Cycle Register Rule

Definition (Incremented Cycle Register Rule). Given a positive integer k, we define ICRk :
Σn → Σn as given by

ICRk(s) = s[1]s[2] . . . s[n− 1](s[0] + k).

Then, ICRk(s) is the string consisting of a cyclic rotation of the original s, but where the
last symbol is incremented by k. Unless otherwise specified, ICR = ICR1.

Consider the subgraph of Bn given by (Σn, {(s, ICR(s)) : s ∈ Σn}), which we call the
ICR-subgraph of Bn. Since ICR is a bijective function, the ICR-subgraph consists of a
collection of node-disjoint cycles.

Consider a path s0, s1, . . . , sk in the ICR-subgraph. Can we reconstruct the histogram of
first symbols of these strings knowing only s0 and sk?

Lemma 1. Let s ∈ Σn and let b = s[0] be the first symbol of s, then

P (H(s))− P (H(ICR(s))) ≡ eb mod K,

where eb is the indicator function at b.

Proof. By definition, H(s) − H(ICR(s)) = eb − eb+1. If b + 1 6= 0, then P (eb − eb+1) = eb
and by linearity of P we are done. If b + 1 = 0, then P (eb − eb+1) = eb −K.

Lemma 2. Let s0, . . . , sk be a sequence of strings such that si+1 = ICR(si) for all i. Then
the following equality holds

P (H(s0))− P (H(sk)) ≡
k−1∑
i=0

esi[0] mod K.

Proof. Apply Lemma 1 and use the telescopic sum.

4

4.3 Valid Subgraph

Since the ICR-subgraph of Bn is not enough to build a Hamiltonian cycle, we introduce
another degree of freedom. We consider d : Σn → Σ to be a depth assignment, and for each
s ∈ Σn, ds is its depth.

Definition (Valid Subgraph). Given a depth assignment d : Σn → Σ, an arc (s, t) in the de
Bruijn graph Bn is called valid if, for b = s[0] and c = t[n− 1],

• b + 1 = c and ds = dt, or

• b + 1 = dt and c = ds

The set of valid arcs in Bn form the valid subgraph.

In Figure 1 there is an example of a valid subgraph.

(a) Valid subgraph. The dashed lines are the non-
valid edges and the lines with arrows are the valid
edges that don’t belong to any ICR cycle. Solid
colored lines are the ICR cycles.

(b) Hamiltonian cycle subgraph of the valid sub-
graph. Solid lines form the Hamiltonian cycle.

Figure 1: An example of a valid subgraph for |Σ| = 3 and n = 3 where the ICR cycle of 000
is assigned depth 1 and the other two ICR cycles are assigned depth 2.

Lemma 3. Given a depth assignment d : Σn → Σ, and s, t ∈ Σn such that (s, t) is a valid
arc in the de Bruijn graph then:

es[0] ≡ P (H(s) + eds)− P (H(t) + edt) mod K.

Proof. Let b = s[0] and c = t[n− 1]. Observe that for any valid arc:

eb − ec + eds − edt = eb − eb+1.

Now,

P (H(s) + eds)− P (H(t) + edt) ≡ P (H(s)−H(t) + eds − edt) mod K

≡ P (eb − ec + eds − edt) mod K

≡ P (eb − eb+1) mod K

≡ eb ≡ es[0] mod K.

5

If the depth assignment is constant in the cycles produced by the ICR rule, then the
ICR-subgraph is a subgraph of the valid subgraph. If we have any path in the valid subgraph,
then a telescoping equality holds.

Lemma 4. Let d : Σn → Σ be a depth assignment and let s0, . . . , sk be a path in the valid
subgraph, then

k−1∑
i=0

esi[0] ≡ P
(
H(s0) + eds0

)
− P

(
H(sk) + edsk

)
mod K.

The histogram of the sequence of first symbols in a path in the valid subgraph on Bn

depends only on the initial and final string. Observe that in the formula for Lemma 4, the
histogram ignores the first symbol of the last string (the summation only goes up to k − 1).
This is not a problem for our application: Suppose that, for every pair of strings s, t ∈ Σn we
manage to prove a bound

D (P (H(s) + eds)− P (H(t) + edt)) ≤ F, F ∈ N

Then, every de Bruijn sequence that arises from a Hamiltonian cycle s0, . . . , sk in the valid sub-
graph, has discrepancy-bound F . Indeed, if we consider the substring si[0], si+1[0] . . . , sj [0],
then we can bound

D(H(si[0], si+1[0] . . . , sj [0]))

by applying Lemma 4 on the path si, si+1, . . . , sj , sj+1 with an extra past-the-end element.

4.4 Difference Bounds for Valid Subgraph Paths

We start by ignoring the depths.

Lemma 5 (Difference of partial sums of histograms). If s, t ∈ Σn then

D(P (H(s)−H(t))) ≤ n.

Proof. The histogram H(s) can be written as a sum over all symbols of s,

H(s) =
n−1∑
i=0

es[i].

Similarly,

H(t) =
n−1∑
i=0

et[i].

Therefore,

P (H(s)−H(t)) =

n−1∑
i=0

P (es[i] − et[i]).

Notice that P (es[i]− et[i]) has a difference of at most 1 because its values are either all 0s and
1s, or all 0s and −1s. Therefore, due to subadditivity we have the desired bound.

6

Lemma 6 (Difference of partial sums of histograms with shared symbol). If s, t ∈ Σn and
there exists a symbol that appears in both strings, then

D(P (H(s)−H(t))) ≤ n− 1.

Proof. In the proof of Lemma 5 we obtained that when s, t ∈ Σn,

P (H(s)−H(t)) =
n−1∑
i=0

P (es[i] − et[i]).

Since the histograms do not depend on the order of the symbols, we can assume without loss
of generality that s[0] = t[0], and therefore the first summand of the sum vanishes, so the
remaining n− 1 can contribute at most 1 difference each.

Now we consider difference of partial sums but including depths.

Lemma 7. If s, t ∈ Σn are strings and d : Σn → Σ is a depth assignment, then

D (P (H(s) + eds)− P (H(t) + edt)) ≤ n + 1.

Proof. The formula follows from Lemma 5 using subadditivity of D, linearity of P and the
fact that D(P (eds − edt)) ≤ 1.

Lemma 8. If s, t ∈ Σn are strings and d : Σn → Σ is a depth assignment, such that

• ds = dt, or

• s and t share at least one symbol

Then
D (P (H(s) + eds)− P (H(t) + edt)) ≤ n.

Proof. In the case where ds = dt, the term P (eds)− P (edt) vanishes and contributes 0 to the
total difference, so the difference-bound of n for the non-depth terms applies.

In the case where s and t share a symbol, the n−1 bound on the non-depth terms applies,
with at most an extra unit of difference from the P (eds)− P (edt) term.

The results above lead us to the following two theorems.

Theorem 2. If there exists a depth assignment d : Σn → Σ such that the valid subgraph of
Bn has a Hamiltonian cycle, then such a cycle corresponds to a de Bruijn sequence of order n
with discrepancy at most n + 1.

Theorem 3. If there exists a depth assignment d : Σn → Σ such that

• every pair of strings with different depth share a symbol, and

• the valid subgraph of Bn has a Hamiltonian cycle,

then that cycle corresponds to a de Bruijn sequence of order n with discrepancy at most n.

For |Σ| = 2, the first condition in Theorem 3 is satisfied if and only if the string with all
zeros and the string with all ones are assigned the same depth.

7

5 Our Hamiltonian Cycle

Since ICR1 : Σn → Σn is a bijective function, it partitions the space Σn into cycles. Let N
be the set of cycles given by the ICR1 rule. We use this set to build a de Bruijn sequence by
joining these cycles to obtain a Hamiltonian cycle.

Definition (Orbit of a node). We define orbit : Σn → P(Σn) as

orbit(s) = {s, ICR(s), ICR2(s), . . . }.

Alternatively, it can be defined as the equivalence class of the relation defined by:

R(s, t) ⇐⇒ t = ICRk(s) for some k ∈ Z.

Definition (Cycle Graph). We define a directed graph G with node-set N and an arc (U ,V)
between cycles U ,V ∈ N if, and only if, there exists an s ∈ U such that ICR0(s) ∈ V.

Let us assume that there exists a directed tree T rooted at R ∈ N that spans G (the tree
is directed from the root to the leaves). The next section proves the existence of T. The tree
T defines a parent relationship parent : N \ {R} → N.

Definition (Representative). Let U ∈ N \ {R}. The representative s of U is any (fixed)
node s ∈ U such that ICR−1

0 (s) ∈ parent(U) and s[n− 1] ≡ d mod |Σ|, where d is the depth
of U in the tree. We write rep(U) = s, and also rep(u) = s for any u ∈ U . The set of
representatives of all cycles is denoted with Reps.

Observe that for all s ∈ Reps, ICR−1
0 (s) ∈ parent(orbit(s)). Let us define the following

rule:

R(s) =

ICR0(s) if ICR0(s) ∈ Reps

ICR2(s) if ICR1(s) ∈ Reps

ICR1(s) otherwise.

Lemma 9. R is a function.

Proof. We have to show that there is no s ∈ Σn such that ICR0(s), ICR1(s) ∈ Reps. We
only need to prove the case |Σ| > 2, because for |Σ| = 2, ICR0 and ICR2 coincide.

Suppose ICR0(s), ICR1(s) ∈ Reps. Then, by definition, orbit(s) = orbit(ICR1(s)).
And, since ICR0(s) ∈ Reps, necessarily orbit(s) is the parent of orbit(ICR0(s)). This
implies that the depth of orbit(ICR0(s)) is one more than the depth of orbit(ICR1(s)). On
the other hand, the last symbol of ICR1(s) is one more than the last symbol of ICR0(s), and
by definition they match the depths of their respective orbits modulo |Σ|. Since |Σ| > 2, this
is a contradiction.

Let us prove the following lemmas about this rule.

Lemma 10 (Bijectivity). The function R is bijective.

Proof. Suppose R(s) = R(t), then necessarily the maximal proper suffixes of s and t coincide.
It is easy to see that if the rule applied to s and t is the same, then s = t, because all ICRk

are injective. Then, we have three cases without symmetries:

8

• R(s) = ICR0(s) = ICR1(t) = R(t): Since R(s) = ICR0(s), then R(t) = R(s) ∈ Reps.
But this is impossible because R(t) = ICR1(t).

• R(s) = ICR0(s) = ICR2(t) = R(t): we can see that ICR1(ICR−1
0 (ICR1(t))) =

ICR2(t) for all t. Then, ICR−1
0 (ICR1(t)) = ICR−1

1 (ICR0(s)), let’s call this string u.
Now, we know that ICR0(s), ICR1(t) ∈ Reps so ICR0(u), ICR1(u) ∈ Reps. If |Σ| > 2
this is impossible, as shown in Lemma 9.

• R(s) = ICR1(s) = ICR2(t) = R(t): this means that ICR1(t) ∈ Reps, but this is
impossible because ICR0(s) = ICR1(t) and then ICR0(s) ∈ Reps.

Lemma 11 (Transitivity). The bijection R is transitive. That is, for any s, t ∈ Σn there
exists an integer k such that Rk(s) = t.

Proof. Since R is a bijection, it partitions Σn into disjoint R-cycles. Suppose there is an
ICR-cycle U ∈ N such that U is not completely contained in any R-cycle. That means
U contains two nodes belonging to different R-cycles. In particular, there are two strings
s, t ∈ U such that s and ICR1(s) belong to different R-cycles and, also, t and ICR1(t) belong
to different R-cycles. Thus, without loss of generality, we can assume that ICR1(s) /∈ Reps
(since U ∩Reps has size at most one), and also that U is the deepest node in the tree that
intersects two different R-cycles.

Clearly, R(s) 6= ICR1(s), otherwise s and ICR1(s) would belong to the same R-cycle.
Since ICR1(s) /∈ Reps, the remaining possibility (from the definition of R) is that ICR0(s) ∈
Reps. From the definition of Reps, we get that the orbit of ICR0(s) is a child of the orbit
of s. From the definition of R, we get that

R(ICR−1
1 (ICR0(s))) = ICR2(ICR−1

1 (ICR0(s))) = ICR1(s),

and therefore ICR−1
1 (ICR0(s)) and ICR1(s) belong to the same R-cycle. But ICR0(s)

belongs to the same R-cycle as s, so the orbit of ICR0(s) also contains two different R-cycles,
which contradicts the assumption that U is the deepest.

Now assume that there are two adjacent orbits U ,V ∈ N in the tree that are contained in
different R-cycles. Without loss of generality, let us assume that V is the child of U and let
s = rep(V). Since s ∈ Reps, we know that R(ICR−1

0 (s)) = s and that ICR−1
0 (s) is in the

parent orbit of s (namely, U). This is a contradiction, because we assumed that U and V do
not belong to the same R-cycle.

As R is a bijective and transitive function, and it also satisfies the property that the
arc (s,R(s)) is in the de Bruijn graph, we can construct a Hamiltonian cycle by taking an
arbitrary node as the start, let us call it s, and then repeatedly applying the function R until
we arrive to s again.

5.1 Hamiltonian cycle in the Valid Subgraph

Now that we have proved that R generates a Hamiltonian cycle in the de Bruijn graph, let
us prove that all of its arcs are in the valid subgraph. To construct the valid graph we need
to define a depth assignment.

9

Definition (Depth Assignment). For a fixed tree of ICR-cycles, we define

d : Σn → Σ d(s) = p + 1,

where p is the depth of the orbit of s in the tree, modulo |Σ|.

The resulting valid subgraph for the case where the parent of every cycle U ∈ N \ {R} is
R is given in Figure 1, and the unique Hamiltonian path in the subgraph is shown.

Lemma 12. The arc (s,R(s)) is valid.

Proof. Let b be the first symbol of s and c be the last symbol of R(s). We need to consider
the three cases in the definition of R(s):

• Case ICR0(s) ∈ Reps: In this case R(s) = ICR0(s) and therefore c = b and c =
dR(s) − 1. Also, by definition of Reps, the orbit of R(s) is a child of the orbit of s, so
we have ds + 1 = dR(s). Putting these together we get that b + 1 = dR(s) and c = ds, so
the arc is valid.

• Case ICR1(s) ∈ Reps: In this case R(s) = ICR2(s) and therefore c = b+ 2, and given
that ICR1(s) ∈ Reps, b + 1 = ds − 1. Since ICR2(s) = ICR1(ICR−1

0 (ICR1(s))), the
orbit of ICR2(s) is the parent of the orbit of s, and thus dR(s) = ds − 1. Putting these
together we get b + 1 = dR(s) and c = ds, so the arc is valid.

• Remaining case: We have R(s) = ICR1(s), so c = b + 1 and ds = dR(s), so the arc is
once again valid.

5.2 Discrepancy Bound for the General Case

Due to Theorem 2, we have that the de Bruijn sequence associated with R has discrepancy
at most n + 1.

5.3 Discrepancy Bound for the Binary Case

For the binary case, we use Theorem 3: since the strings 0n and 1n belong to the same orbit,
they are assigned the same depth value and therefore the hypotheses of the theorem hold and
we have that the de Bruijn sequence associated with R has discrepancy at most n.

5.4 Explicit Spanning Tree

To complete the proof, we have to show a directed spanning tree T of G and choose the
representatives for each orbit. To do this we define the following:

Definition (Difference Array). Given s ∈ Σn, we define its difference array ∆(s) ∈ Σn,

∆(s)[i] =

{
s[i− 1]− s[i] if 0 < i < n

s[n− 1]− s[0]− 1 if i = 0.

The extra −1 in the i = 0 case ensures the following property:

Lemma 13. Let s ∈ Σn, then ∆(ICR1(s)) = ICR0(∆(s)).

10

Proof. Consider the bidirectional infinite sequence

ci = ICRi(s)[0], i ∈ Z.

By the definition of ICR, we have that ci+n = ci + 1. Now consider the following associated
(infinite) sequence

di = ci−1 − ci, i ∈ Z.

Since ci+n = ci + 1, we have that d is cyclic modulo n. Also, due to the definition of ∆ we
have that

∆(s) = d0d1 . . . dn−1 and ∆(ICR(s)) = d1d2 . . . dn.

Since dn = d0, the desired result follows.

Lemma 13 implies that for each U ∈ N, its elements have the same difference array modulo
rotations. By convention, we say that ∆(U) is the lexicographically minimal rotation of ∆(s)
for any s ∈ U . It is easy to see that the converse is also true: for any s, t ∈ Σn, if ∆(s)
and ∆(t) are equal modulo rotations, then orbit(s) = orbit(t). Indeed, consider the string
u = ICRk

1(s). We can vary k such that ∆(u) = ∆(t), and then the strings u and t only differ
by an added constant, so they must belong to the same orbit.

Also, from the definition of ∆, we have the following identity

n−1∑
i=0

∆(s)[i] = −1,

which follows from the fact that every symbol of s cancels out in the sum, except the constant
factor −1 in the first position of ∆(s). Again, the converse is also true. If we have any string
t ∈ Σn such that

n−1∑
i=0

t[i] = −1,

then there exists a s ∈ Σn that satisfies ∆(s) = t, which is unique modulo added constants.
To see this, we can choose s[0] arbitrarily, then once s[i] has been determined, the value of
s[i + 1] follows directly from the equation

∆(s)[i + 1] = t[i + 1].

The only equation that remains to be satisfied is ∆(s)[0] = t[0]. However, ∆(s) and t coincide
in n− 1 places and they have the same sum, −1, so they must be identical.

Equipped with the concept of difference array, we can define the tree T as follows.

Definition (Explicit Tree T). The root of the tree is the orbit of 0n and we call it R. For
each orbit U ∈ N \ R, we define its parent V ∈ N as follows:

let i be the first non-negative integer such that ∆(U)[i] 6= 0. Consider the array A obtained
from decrementing the i-th symbol of ∆(U) and incrementing the (i + 1)-th symbol. V is the
only orbit such that ∆(V) equals A modulo rotations.

Figure 2 gives an example of an Explicit Tree T.

Lemma 14. The Explicit Tree T is a spanning tree of G.

11

Figure 2: Explicit Tree for the case n = 3, |Σ| = 3.

Proof. The existence of i follows from the fact that the sum of elements of the difference array
is −1, so it cannot consist solely of zeros. In fact, i ≤ n − 2; otherwise in ∆(U) there would
be n − 1 zeros and, necessarily, the remaining symbol would be −1, which is the difference
array of R.

To prove that the parent relationship has no cycles, note that A is lexicographically smaller
than ∆(U), so we have that

∆(V) ≤ A < ∆(U)

and this ensures that there are no cycles.

Let us see that for every node U ∈ N \ R, the pair (V,U) is an arc of G when V is the
parent of U as defined in the definition of the Explicit Tree. It suffices to find an s ∈ U
such that ICR−1

0 (s) ∈ V, which can also serve as a representative of U . Let i be the first
non-negative integer such that ∆(U)[i] 6= 0, and consider the array k = ICRi+1

0 (∆(U)). That
is, the array ∆(U) rotated such that the first non-zero element moves to the last position.
Let s ∈ Σn be a string with ∆(s) = k. We can choose the added constant of s as necessary
to satisfy the last-symbol constraint in the definition of representative.

We want to show that ICR−1
0 (s) ∈ V. To do this, let us prove that ∆(ICR1(ICR−1

0 (s)))
is a rotation of A, this will imply that ICR1(ICR−1

0 (s)) ∈ V and since it is in the same orbit
as ICR−1

0 (s), it would mean that the latter is also in V.
Observe that ICR1(ICR−1

0 (s)) is the same as s but with the last symbol increased by
one. The effect that increasing the last symbol of s has on ∆(s) is that of decreasing the
last symbol and increasing the first symbol. Since ∆(s) = ICRi+1

0 (∆(U)), we have that
∆(ICR1(ICR−1

0 (s))) is the same as ICRi+1
0 (∆(U)) but the last symbol decreased and the

first one increased, which is precisely the same as ICRi+1
0 (A). This concludes the proof.

6 Our Algorithm

The algorithm constructs a de Bruijn sequence of order n in the alphabet Σ.
Recall that we defined the transition rule R as follows,

R(s) =

ICR0(s) if ICR0(s) ∈ Reps

ICR2(s) if ICR1(s) ∈ Reps

ICR1(s) otherwise.

For the algorithm to run in O(n) space, we cannot maintain the tree in memory. Instead,
we use the definition of the Explicit Tree T and we give an efficient procedure to compute
membership to the set Reps. This has two parts:

12

Algorithm 1: CorrectDifferenceArray

Data: s ∈ Σn

Result:
True if s has the correct difference array to be a representative, False otherwise
d← ∆(s)
if d[n− 1] = 0 then

return False
end
i← n− 1
while i > 0 and d[i− 1] = 0 do

i← i− 1
end
if i = 0 then

return False
end
d2 ← ICRi

0(d)
return d2 is its lexicographically minimal rotation

Algorithm 2: Transition

Data: s ∈ Σn, depth ∈ Σ
Result: A Pair (s′, depth′) that corresponds to the next node in the path
if CorrectDifferenceArray(ICR0(s)) and ICR0(s)[n− 1] = depth + 1 then

return ICR0(s), depth + 1
end
if CorrectDifferenceArray(ICR1(s)) and ICR1(s)[n− 1] = depth then

return ICR2(s), depth− 1
end
return ICR1(s), depth

• The difference array of the string must be of the correct form. That is, it should be the
lexicographically minimal rotation, shifted so that the first non-zero element is at the
end. To be a representative, s also must not be in the root orbit, which we can also
check with the difference array.

• The last symbol of the string must be equal to the depth of the orbit modulo |Σ|.

The first part is implemented in Algorithm 1. The second part is implemented together
with the transition function in Algorithm 2. Note that both functions have linear complexity
in both time and memory. To determine whether d2 is the lexicographically minimal rotation
we can use Booth’s algorithm [1], for example.

6.1 Example Sequences

In Table 1 and Figure 3 (left) we display the output of our algorithm.

13

|Σ| n Resulting Sequence

2 2 1100

2 3 11101000

2 4 1111001011010000

2 5 11111000101011001001101110100000

2 6 1111110001001100111011000010110101001010111001000110111101000000

3 2 112102200

3 3 111212020101221002110222000

4 2 1121320310223300

4 3 1112123230201312023130301012213320021132203310321003110222333000

Table 1: Example sequences produced by our algorithm.

7 Analysis

7.1 Our Algorithm Behavior for an Arbitrary Base

For base |Σ| = 2, we know our algorithm produces de Bruijn sequences of discrepancy
exactly n, because that is both the upper bound and the trivial lower bound. For the case
n = 1, we also know our algorithm produces a sequence of discrepancy exactly n, because
all de Bruijn sequences for n = 1 have discrepancy n. Therefore, in both of these cases our
algorithm is optimal.

However, for the case |Σ| > 2 and n > 1, it is still unknown whether the minimum
attainable discrepancy is n or n + 1. Our algorithm produces a de Bruijn sequence with
discrepancy exactly n+1 (there is a proof, not included in this paper, that shows our method
does not achieve discrepancy equal to n).

7.2 Conjecture on the Minimum Attainable Discrepancy

|Σ|n 1 2 3 4 5 6 7

2 n n n n n n n

3 n n+1 n n

4 n n+1 n

5 n n

6 n n

7 n n

8 n n

Table 2: Each cell has the minimum discrepancy attainable for a de Bruijn sequence with the
corresponding parameters. The cases that could not be computed are blank.

To compare the behaviour of the algorithm with the actual minimum discrepancy attain-
able, we made an exhaustive search for the smallest discrepancy that can be obtained with
certain parameters of n and |Σ|, to decide whether our algorithm was optimal or not. The
results we obtained can be seen in Table 2. The experimentation is heavily limited due to the
doubly exponential nature of the search.

14

n Our Algorithm Huang Random Weight-range

10 10 12 50 131

11 11 13 71 257

12 12 15 101 468

13 13 16 143 930

14 14 18 203 1723

15 15 19 288 3439

16 16 21 407 6443

17 17 22 575 12878

18 18 24 815 24319

19 19 25 1157 48629

20 20 27 1634 92388

21 21 28 2311 184766

22 22 30 3264 352727

23 23 31 4565 705443

24 24 33 6252 1352090

25 25 35 9192 2704168

26 26 36 13074 5200313

27 27 38 17933 10400613

28 28 40 22672 20058314

29 29 41 34591 40116614

30 30 43 57357 77558775

Table 3: Discrepancy attained by various algorithms for binary de Bruijn sequences. The
data for Huang, Random and Weight-range is taken from [3].

Based on the experimental results and given that the de Bruijn graph gets more inter-
connected with increasing n and |Σ|, one can expect that achieving a low-discrepancy de
Bruijn sequence becomes easier as these parameters increase. We put forward the following
conjecture.

Conjecture 1. The minimal discrepancy of a de Bruijn sequence of order n and alphabet Σ
is n, with the exception of the cases n = 2 with |Σ| = 3 and n = 2 with |Σ| = 4.

7.3 Comparison with Other de Bruijn Sequences

In Table 3 we compare the discrepancy obtained with our algorithm in a binary alphabet
with that obtained in previously-described algorithms in the literature:

• Huang’s algorithm [4] which attained the previously smallest known discrepancy.

• A uniformly random de Bruijn sequence.

• The Weight-range construction [3], which is proven to have the asymptotically maximum
discrepancy possible.

15

Figure 3: Graphical representation for the binary sequences of order n = 14 produced by
our algorithm (left), a de Bruijn sequence chosen uniformly at random (center) and the de
Bruijn sequence with asymptotically maximum discrepancy in [3] (right). The symbols of the
sequence are displayed in row-major order. Zero is white, one is black.

16

8 Code

We include a full C++ implementation of the proposed algorithm.

#include <vector>

#include <algorithm>

#include <iostream>

using namespace std;

// n is the order of the de Bruijn string

int n;

// base is the size of the alphabet

int base;

// Checks if s is its lexicographically minimal

// rotation in O(n). Modified Duval.

// Implementation from:

// https://stackoverflow.com/a/73966629

bool min_lex(const vector<int> &s) {

for(int i=0, j=1; j < 2*n; j++) {

int a = s[i%n], b = s[j%n];

if(b < a) return false;

else if(a < b) i = 0;

else i++;

}

return true;

}

// The difference array of s, defined as

// res[i] = s[i-1] - s[i]

// with the convention that s[-1] = s[n-1]-1

// this ensures ICR induces cyclic shift of

// difference array

vector<int> diff_array(const vector<int> &s) {

vector<int> res(n);

for(int i = 0; i < n; i++) {

res[i] = s[(i-1+n)%n] - s[i] - (i==0);

res[i] = (res[i] + base) % base;

}

return res;

}

// Incremented Cyclic Register rule

vector<int> icr(const vector<int> &s, int k) {

vector<int> t = s;

rotate(t.begin(), t.begin() + 1, t.end());

t.back() = (t.back() + int(k))%base;

return t;

}

// Checks if s is in Reps.

// This is true iff the difference array of s

// is positioned such that the lexicographically

// minimal rotation ends its first run of zeros

// at the last element.

// This ensures that applying ICR_0^-1 to s

// decreases the first element after the run.

bool reps(const vector<int> &s, int depth) {

auto da = diff_array(s);

if(da.back() == 0) return false;

int i = n-1;

while(i != 0 && da[i-1] == 0) i--;

if(i == 0) return false;

rotate(da.begin(), da.begin()+i, da.end());

if(!min_lex(da)) return false;

return (depth-s.back()) % base == 0;

}

// Generate the full de Bruijn sequence,

// with the transition function defined by

// P(s) = ICR_0(s) if ICR_0(s) is in Reps

// ICR_2(s) if ICR_1(s) is in Reps

// ICR_1(s) otherwise

vector<int> generate() {

vector<int> result;

vector<int> s(n, 0);

int depth = 0;

do {

auto a = icr(s, 0);

auto b = icr(s, 1);

auto c = icr(s, 2);

if(reps(a, depth+1)) s = a, depth++;

else if(reps(b, depth)) s = c, depth--;

else s = b;

result.push_back(s.back());

} while(s != vector<int>(n, int(0)));

return result;

}

int main() {

cout << "enter n and base: " << flush;

cin >> n >> base;

auto result = generate();

for(int i : result) cout << i;

cout << endl;

}

17

References

[1] Kellogg S. Booth. Lexicographically least circular substrings. Information Processing
Letters, 10(4):240–242, 1980.

[2] Nicolaas G. de Bruijn. A combinatorial problem. Nederl. Akad. Wetensch., Proc., 49:758–
764 = Indagationes Math. 8, 461–467 (1946), 1946.

[3] Daniel Gabric and Joe Sawada. Investigating the discrepancy property of de bruijn
sequences. Discrete Mathematics, 345(4):112780, 2022.

[4] Yue Jiang Huang. A new algorithm for the generation of binary de Bruijn sequences.
Journal of Algorithms, 11(1):44–51, 1990.

Nicolás Álvarez
ICC CONICET Argentina - nico.alvarez@gmail.com

Verónica Becher
Departamento de Computación, Facultad de Ciencias Exactas y Naturales & ICC
Universidad de Buenos Aires & CONICET Argentina- vbecher@dc.uba.ar

Mart́ın Mereb
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales & IMAS
Universidad de Buenos Aires & CONICET Argentina- mmereb@gmail.com

Ivo Pajor
Departamento de Computación, Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires & Argentina- pajorivo@gmail.com

Carlos Miguel Soto

Departamento de Computación, Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires & Argentina- miguelsotocarlos@gmail.com

18

