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Low discrepancy sequences failing Poissonian pair correlations

Verónica Becher , Olivier Carton , and
Ignacio Mollo Cunningham

Abstract.M. Levin defined a real number x that satisfies that the sequence
of the fractional parts of (2nx)n≥1 are such that the first N terms have
discrepancy O((logN)2/N), which is the smallest discrepancy known for
this kind of parametric sequences. In this work we show that the fractional
parts of the sequence (2nx)n≥1 fail to have Poissonian pair correlations.
Moreover, we show that all the real numbers x that are variants of Levin’s
number using Pascal triangle matrices are such that the fractional parts
of the sequence (2nx)n≥1 fail to have Poissonian pair correlations.

Mathematics Subject Classification. 68R15, 11K16, 11K38.

Keywords. Distribution modulo 1, Low discrepancy sequences,
Poissonian pair correlations, Borel normal numbers, Pascal triangle
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1. Introduction and statement of results. A sequence (xn)n≥1 of real numbers
in the unit interval is said to have Poissonian pair correlations if for all non-
negative real numbers s,

lim
N→∞

FN (s) = 2s

where

FN (s) =
1
N

#
{

(i, j) : 1 ≤ i �= j ≤ N and ‖xi − xj‖ <
s

N

}

and ‖x‖ is the distance between x and its nearest integer. The function FN (s)
counts the number of pairs (xn, xm) for 1 ≤ m,n ≤ N , m �= n, of points which
are within distance at most s/N of each other, in the sense of distance on the
torus. If limN→∞ F (s) = 2s for all s ≥ 0, then the asymptotic distribution of
the pair correlations of the sequence is Poissonian, and this explains that the
property is referred to as having Poissonian pair correlations. Almost surely a
sequence of independent identically distributed random variables in the unit
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interval has this property. Several particular sequences have been proved to
have the property, for example, (

√
n mod 1)n≥1 [4]. It is known that for almost

all real numbers x (anx mod 1)n≥1 has the property when an is integer valued
and (an)n≥1 is lacunary [11]; also when an = n2 (or a higher polynomial) [10,
14]. However, for specific values such as x =

√
2 and an = n2 it is not known

whether (anx mod 1)n≥1 has Poissonian pair correlations or not.
The property of Poissonian pair correlations implies uniform distribution

modulo 1, this was only recently proved in [1, Theorem 1] and also in [5, Corol-
lary 1.2]. The converse does not always hold. Several uniformly distributed
sequences of the form (bnx mod 1)n≥1 where b is an integer greater than 1
and x is a constant were proved to fail the property of Poissonian pair cor-
relations. Pirsic and Stockinger [9] proved it for Champernowne’s constant
(defined in base b). Larcher and Stockinger [6] proved it for x a Stoneham
number [12] and for every real number x having an expansion which is an
infinite de Bruijn word (see [3,13] for the presentation of these infinite words).
Larcher and Stockinger also show in [7] the failure of the property for other
sequences of the form (anx mod 1)n≥1.

In this paper we show that the sequence (2nλ mod 1)n≥1, where λ is the
real number defined by Levin in [8, Theorem 2], fails to have Poissonian pair
correlations. Levin’s number λ is defined constructively using Pascal triangle
matrices and satisfies that the discrepancy of the first N terms of the sequence
(2nλ mod 1)n≥1 is O((log N)2/N). This is the smallest discrepancy bound
known for sequences of the form (2nx mod 1)n≥1 for some real number x.

We also show that each of the real numbers ρ considered by Becher and
Carton in [2] are such that the sequence (2nρ mod 1)n≥1 fails to have Pois-
sonian pair correlations. These numbers ρ are variants of Levin’s number λ
because they are defined using rotations of Pascal triangle matrices and the
sequence (2nρ mod 1)n≥1 has the same low discrepancy as that obtained by
Levin.

1.1. Levin’s number. We start by defining the number λ given by Levin in [8,
Theorem 2] and further examined in [2]. As usual, we write F2 to denote the
field of two elements. In this work, we freely make the identification between
binary words and vectors on F2. We define recursively a sequence of matrices
on F2:

M0 = (1) and for every d ≥ 0, Md+1 =
(

Md Md

0 Md

)
.

The first elements of this sequence, for example, are:

M0 = (1) M1 =
(

1 1
0 1

)
M2 =

⎛
⎜⎜⎝

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠ .

Let d be a non-negative integer and let e = 2d. The matrix Md ∈ F
e×e
2 is

upper triangular with 1s on the diagonal, hence it is non-singular. Then, if

w0, . . . , w2e−1
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is the enumeration of all vectors of length e in lexicographical order, the se-
quence

Mdw0, . . . ,Mdw2e−1

ranges over all vectors of length e. We obtain the d-th block of λ by concate-
nation of the terms of that sequence:

λd = (Mdw0)(Mdw1) . . . (Mdw2e−1).

Levin’s constant λ is defined as the infinite concatenation

λ = λ0λ1λ2 . . .

The expansion of λ in base 2 starts as follows (the spaces are just for conve-
nience):

01︸︷︷︸
λ0

00 11 10 01︸ ︷︷ ︸
λ1

0000 1111 1010 0101 1100 0011 0110 1001 1000 0111 0010 1101 0100 1011 1110 0001︸ ︷︷ ︸
λ2

00000000 11111111 . . .︸ ︷︷ ︸
λ3

Now we introduce a family L of constants which have similar properties to
those of λ. Let σ be the rotation that takes a word and moves its last letter
at the beginning: that is, σ(a1 . . . an) = ana1 . . . an−1. We are going to use
σ to define a family of matrices obtained by selectively rotating some of the
columns of Md.

As before, assume d is a non-negative integer and let e = 2d. We say that
a tuple ν = (n1, . . . , ne) of non-negative integers is suitable if

ne = 0 and ni+1 ≤ ni ≤ ni+1 + 1 for each 1 ≤ i ≤ e − 1.

Let C1, . . . Ce denote the columns of Md, and let σn denote the composition
of the rotation σ with itself n times. Then, define

Mν
d = (σn1 (C1) , . . . , σne (Ce)) .

For example, by taking d = 2 we have 8 different possible matrices, one for
every choice of ν:

M
(0,0,0,0)
2 M

(1,0,0,0)
2 M

(1,1,0,0)
2 M

(2,1,0,0)
2⎛

⎜⎜⎝
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 1 1
1 1 0 1
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 1 1
1 1 0 1
0 1 1 1
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 1 1
0 1 0 1
1 1 1 1
0 0 0 1

⎞
⎟⎟⎠

M
(1,1,1,0)
2 M

(2,1,1,0)
2 M

(2,2,1,0)
2 M

(3,2,1,0)
2⎛

⎜⎜⎝
0 0 0 1
1 1 1 1
0 1 0 1
0 0 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 1
0 1 1 1
1 1 0 1
0 0 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 1
0 0 1 1
1 1 0 1
0 1 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1

⎞
⎟⎟⎠

As before, we let e = 2d and w0, . . . , w2e−1 be the increasingly ordered
sequence of all vectors in F

e
2. We say that a word is an e-affine necklace if it can

be written as the concatenation (Mw′
0)(Mw′

1) . . . (Mw′
2e−1) for some z ∈ F

e
2

and a suitable tuple ν with M = Mν
d and w′

i = wi + z for 0 ≤ i ≤ 2e − 1.
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Finally, we define L to be the set of all binary words that can be written
as an infinite concatenation ρ0ρ1ρ2 . . . where every ρd is a 2d-affine necklace.
Note that λ ∈ L, by taking ν = (0, . . . , 0) everywhere.

The rest of this note is devoted to proving the following result:

Theorem 1. For all ρ ∈ L, the sequence of fractional parts of (2nρ)n≥1 does
not have Poissonian pair correlations.

2. Lemmas. First we prove some necessary results. We present in an alter-
nating manner results about Md and its corresponding generalizations to the
family of matrices Mν

d .

Lemma 1. For all d, Md is triangular and all entries in its diagonal are ones.
In particular, Md is non singular.

Proof. This is easily proven with induction. M0 = (1) satisfies the lemma, and

if Md satisfies it, then Md+1 =
(

Md Md

0 Md

)
satisfies it too. �

Lemma 2. For all non-negative d and for every suitable tuple ν, Mν
d is non-

singular.

Proof. This fact is proven in [2, Lemma 4]. �

Lemma 3. For all d and for all even n, Mdwn and Mdwn+1 are complementary
vectors. That is, the i-th coordinate of Mdwn equals zero if and only if the i-th
coordinate of Mdwn+1 equals one.

Proof. The sequence w0, w2, . . . w2e−1 is lexicographically ordered and hence
the last entry of wn is zero whenever n is even. Therefore, wn+1 only differs
from wn in the last entry

Mdwn+1 = Mdwn + Md

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ = (Mdwn) +

⎛
⎜⎜⎜⎝

1
...
1
1

⎞
⎟⎟⎟⎠ .

�

To simplify notation, from now on we write z for the complementary vector
of z. Note that Lemma 3 implies that λd can be written as a concatenation of
words of the form ww.

Lemma 4. For all non-negative d, for all even n, and for every suitable tuple
ν, the vectors Mν

d wn and Mν
d wn+1 are complementary.

Proof. The last coordinate of ν is zero by definition. Therefore, the last column
of Mν

d is the same as the last column of Md; that is, it is the vector of ones.
The same argument used to prove Lemma 3 applies. �

We say that a vector is even if its last entry is 0. Hence, when n is even,
wn is an even vector.

Author's personal copy
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Lemma 5. Let d be a non-negative integer and e = 2d. The subspace of all even
vectors of length e,

P = {v ∈ F
e
2 | ve = 0}

is invariant under Md. Furthermore, Mdwn is an even vector if and only if
wn is an even vector.

Proof. By Lemma 1, Md is upper triangular and its diagonal is comprised by
ones. This implies that all of its columns except the last are even vectors.
Therefore, the only way to obtain an odd vector via the computation Mdw is
that w itself is odd. �

Lemma 6. Let d be a non-negative integer and e = 2d. Depending on ν, there
are two distinct possibilities:
(1) The subspace of even vectors P is invariant under Mν

d . In this case, w is
an even vector if and only if Mν

d w is an even vector.
(2) The subspace P is in bijection with the subspace {(v1, . . . , ve) ∈ F

e
2 | v1 =

0} via Mν
d . In this case, w is an even vector if and only if Mν

d w has a
zero in its first coordinate.

Proof. Take ν = (n1, . . . ne) such that ne = 0 and ni+1 ≤ ni ≤ ni+1 + 1 for
all 1 ≤ i ≤ e − 1. Combining ni ≤ ni+1 + 1 for i = e − 1 and ne = 0 gives that
ne−1 is either zero or one. We consider both possibilities separately: the case
ne−1 = 0 will yield (1) and the case ne−1 = 1 will yield (2).

First, suppose that ne−1 equals one. Then, all entries of ν before it must
be greater than one. That means that, when building Mν

d from Md, all of its
columns except the last are rotated at least one position. Fix an index i such
that 1 ≤ i ≤ e − 1, and consider c the i-th column of the matrix Md. We show
that the first element of σni(c) is zero.

By Lemma 1, we know that Md is triangular. That means that the elements
ci+1, . . . , ce are necessarily zeros. But the first element of σni(c) is ce−ni+1; and
from the inequality ni ≤ e− i it follows that e−ni +1 is greater or equal than
i + 1. Therefore, the first element of σni(c) is zero.

Because i is any index between 1 and e − 1, it follows that the first e − 1
columns of Mν

d have a zero as their first coordinate. If w is an even vector, Mdw
is a linear combination of vectors which start with zero, and therefore Mdw
also starts with a zero. Conversely, if w begins with a one, then Mdw must be
an odd vector, because it’s a linear combination of elements that start with a
zero and the last column of Mν

d , which is the vector of ones. We conclude that
w is an even vector if and only if Mν

d w starts with a zero.
The case where ne−1 equals zero is analogous, and we give an outline of the

proof. First, prove that the first e − 1 columns of Mν
d are even vectors. Then,

Mν
d w is even if and only if w is even. �

3. Proof of the main theorem. We first prove the theorem for λ and at the
end we explain how to generalize the result to each number in the family L.
For any given non-negative d, we set e = 2d and show that for an appropriate
choice of increasing N which depends on d and e, FN (2) diverges. For this

Author's personal copy



174 V. Becher et al. Arch. Math.

. . . . . .0 1

Mdwn Mdwn+1

a
az

Figure 1. An occurrence of a

we show that some selected patterns have too many occurrences in λd. More
precisely, we count occurrences of binary words of length d + e,

a = a1a2 . . . ad+e

such that

a1 . . . ad = ae+1 . . . ae+d.

The reason for this choice comes from Lemma 3 and it will soon become clear.
We need some terminology. Given a word a as above and an occurrence of a
in λd,

(1) let k be the number of zeros in ad . . . ae;
(2) let n be the index such that the a occurs in Mdwn;
(3) let z be the position in a that matches with the e-th (that is the last)

symbol of Mdwn (Fig. 1).

We require n to be an even number and z to be in the range d ≤ z ≤ e. The
latter is to prevent the word a from spanning over more than two words, and
the former is to ensure that a match for the first d letters automatically yields
a match for the last d letters (a combination of Lemma 3 and the hypothesis
over a). In addition, by Lemma 5 we know that Mdwn is an even word, and
therefore az must be zero.

We fix k and count all possible occurrences in λd of every possible word a.
There are exactly

2d−1

(
e − d + 1

k

)

words a with k zeros in ad . . . ae. For every one of them, we have a choice of k
different z, because we know that az must be zero. We claim that each of those
choices for z correspond to an actual occurrence of a in λd. Let us suppose
that the binary word a, whose length is d + e, starts in Mdwn and continues
in Mdwn+1. Then, it must hold that, for some z (Fig. 2),

a1 . . . az = (Mdwn)e−z+1 . . . (Mdwn)e

and

az+1 . . . ae = (Mdwn+1)1 . . . (Mdwn+1)e−z.

So, Lemma 3 allows us to conclude that

Author's personal copy
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. . . . . .

Mdwn Mdwn+1

a

Figure 2. Given an a and a choice of z, it is possible to find
an unique position within λd where the word a occurs with
alignment z

Mdwn = az+1 . . . aea1 . . . az.

By Lemma 1, we know that there exists some wn that satisfies this equation
and by Lemma 5, n must be an even number. Therefore, given a choice of z,
there is an occurrence of a. We conclude that for every choice of k, and for
every word a ∈ {0, 1}e+d with k zeros in ad . . . ae, we have exactly k occurrences
within λd.

We now prove that the sequence of fractional parts of (2nλ)n≥1 does not
have Poissonian pair correlations. Take s = 2 and N = 2d+e+1. We prove that
limd→∞ FN (s) = ∞. In order to do that, we note that two different occurrences
of the same word a ∈ {0, 1}e+d correspond to two different suffixes of λ that
share its first e + d digits.

We write {x} to denote x − 	x
, the fractional expansion of x. If a has two
different occurrences within λ at positions i and j, then

‖{
2iλ

} − {
2jλ

} ‖ = ‖0.a1 . . . ae+dλi+d+e+1 . . . − 0.a1 . . . ae+dλj+d+e+1 . . . ‖
≤ |0.a1 . . . ae+dλi+d+e+1 . . . − 0.a1 . . . ae+dλj+d+e+1 . . . |
< 2−(e+d)

=
s

N
.

Therefore, if i and j are both no greater than N , the pairs (i, j) and (j, i)
count for FN (s). For indices i and j of λ which correspond to elements of λd

this is the case:

|λ0 . . . λd| =
d∑

i=0

|λi| =
d∑

i=0

2i22
i

=
d∑

i=0

2i+2i < 22
d+d+1 = N.

We are now able to give a lower bound for FN (s). To do this, we count all
possible pairs of occurrences of every word a satisfying the condition a1 . . . ad =
ae+1 . . . ae+d in λd. Recall that a word a with k zeros in the middle has exactly
k occurrences in λd, so by summing over k we get:

FN (2) ≥ 1
N

e−d+1∑
k=0

2
(

2d−1

(
e − d + 1

k

)(
k

2

))
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=
1

2e+1

e−d+1∑
k=0

(
e − d + 1

k

)(
k

2

)

=
1

2e+1

(
e − d + 1

2

)
2e−d+1−2

=
1
8e

(e − d + 1)(e − d).

In the third step, we applied the identity
n∑

k=0

(
n

k

)(
k

2

)
= 2n−2

(
n

2

)

with n = (e − d + 1). Thus,

FN (2) ≥ (e − d + 1)(e − d)
8e

and the last expression diverges as d → ∞ because e is squared in the numera-
tor but linear in the denominator and d is insignificant with respect to e. This
concludes the proof that the sequence of the fractional parts of (2nλ)n≥1 does
not have Poissonian pair correlations.

We now explain how to extend the proof for any given constant in L. Take
ρ ∈ L. Then ρ can be written as a concatenation

ρ = ρ0ρ1ρ2 . . .

where each ρd is a 2d-affine necklace. That means that for every d, there exists
a suitable tuple ν such that

ρd = (Mν
d w0)(Mν

d w1) . . . (Mν
d w2e−1).

We take s = 2 and Nd = 2e+d+1 and we prove that the sequence FNd
(s)

diverges as d → ∞. As we did for λ, it is possible to give a lower bound for
FNd

(s) by counting occurrences within ρd of words of length e + d.
Fix a non-negative integer d. By Lemma 6, there are two possibilities:

either Mν
d maps the subspace of even vectors P to itself or it maps it to the set

of vectors beginning with zero. In the first case, we can replicate essentially
verbatim the procedure we followed for λ to get a lower bound for FNd

(s). In
the second case, we have to slightly alter the argument: z is redefined to be the
index of a such that az matches the first letter of (Mν

d wn+1), and k is redefined
to be the number of ones in ad+1 . . . ae+1. Despite these modifications, we reach
the same lower bound for FNd

(s). Since it diverges as d → ∞ we conclude that
the sequence of the fractional parts of (2nρ)n≥1 does not have Poissonian pair
correlations.
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