
A polynomial-time algorithm for computing absolutely normal
numbers

Verónica Becher Pablo Ariel Heiber Theodore A. Slaman
Universidad de Buenos Aires Universidad de Buenos Aires University of California Berkeley
vbecher@dc.uba.ar pheiber@dc.uba.ar slaman@math.berkeley.edu

May 29, 2013

Abstract

We give an algorithm to compute an absolutely normal number so that the first i
digits in its binary expansion are obtained in time polynomial in i; in fact, just above
quadratic. The algorithm uses combinatorial tools to control divergence from normality.
Speed of computation is achieved at the sacrifice of speed of convergence to normality.

1 Introduction

“Show me an absolutely normal number.” Émile Borel posed this problem over one hundred
years ago, but it still has no satisfactory solution. For example, it is unknown whether π, e or
any irrational algebraic number is absolutely normal. Recall that a real number is absolutely
normal if the digits in its infinite expansion in each base are distributed uniformly. One
solution to the problem would be to give an algorithm and actually compute the digits of an
absolutely normal number, one after the other.

The closest to a solution of this form has been the algorithm by Alan Turing [11, 3],
which is unfeasible: determining the first i digits would require time that is double expo-
nential in i. Another algorithm is the computable reformulation [2] of Wacław Sierpiński’s
construction [10], which also requires double exponential time. Yet another construction of
an absolutely normal number was given by Wolfgang Schmidt [9]. He remarks his number is
“clearly defined,” in fact it is clearly computable, but its time complexity was not analyzed.

Here, we give an algorithm that computes an absolutely normal number in polynomial
time, indeed just above quadratic. Our algorithm is an efficient variant of Turing’s approach
on absolutely normal numbers, and as such, uses combinatorial tools to control divergence
from normality directly. In [1], we report on the implementation of the algorithm and analysis
of its output.

Jack Lutz and Elvira Mayordomo were the first to announce the existence of an absolutely
normal number in polynomial time.: Santiago Figueira and André Nies reported another
proof. See [8] and [6]. In contrast to our algorithm, those arguments analyze polynomial-time
martingales, a device from the theory of algorithmic randomness, and the means to diagonalize
against them.

:Seventh International Conference on Computability, Complexity and Randomness, July 2012, Cambridge,
Great Britain.

1

Our algorithm achieves speed of computation at the cost of slowness of convergence to
normality. We are left with the question of whether the trade-off between rate of computation
and rate of convergence to normal is an inherent aspect of any computation of an absolutely
normal number or an artifact of our construction. There are known limits on the rate of
convergence to normality and there are examples that are nearly optimal [5, Chapter 4].

Question. Is there an absolutely normal number computable in polynomial time having a
nearly optimal rate of convergence to normality?

2 Preliminaries

A base is an integer b greater than or equal to 2, a digit in base b is an element in t0, . . . , b´1u,
and a block in base b is a finite sequence of digits in base b. The length of a block x is |x|, xæ`
is the subblock of the first ` digits of x and xris is the ith digit of x; the same notation applies
when x is an infinite sequence of digits. A digit d occurs in a block x at position i if xris “ d.
The number of occurrences of the digit d in the block x is occpx, dq “ #ti : xris “ du. If x and
u are blocks, xu is the concatenation of x and then u. If ui, for i ď m, are blocks,

ś

iďm ui is
the concatenation of the ui, in increasing order of i. We use µpq to denote Lebesgue measure,
and log to denote logarithm in base 2.

2.1 Base-b representations and b-adic intervals

For each real number R in the unit interval we consider the unique expansion in base b of the
form R “

ř8
i“1 aib

´i, where the integers 0 ď ai ă b, and ai ă b ´ 1 infinitely many times.
This last condition over an ensures a unique representation of every rational number, and
leads us to consider semi-open intervals rp, qq in the real line. We write pRqb to denote the
representation of a real R in base b. We use the phrase b-adic interval to refer to a semi-open
interval I of the form ra{bm, pa` 1q{bmq, for a ă bm. We move freely between b-adic intervals
and base-b representations. If x is a base-b block and it is understood that we are working
in base b, then we let .x denote the rational number whose expansion in base b has exactly
the digits appearing in x. Given the block x, the reals with base-b representations whose
sequences of digits extend x are exactly those belonging to the b-adic interval r.x, .x` b´|x|q,
written in base b. Conversely, every b-adic interval ra{bm, pa`1q{bmq corresponds to a block x
as above, where x is obtained by writing a in base b and then prepending a sufficient number
of zeros to obtain a block of length m.

2.2 Absolute Normality

Among the several equivalent definitions of absolute normality the following is the most
convenient for our algorithm.

Definition 2.1. A real number R is simply normal to base b if each digit d in base b has the
same asymptotic frequency 1{b in the representation of R in base b:

lim
nÑ8

occppRqbæn, dq{n “ 1{b.

R is normal to base b if it is simply normal to the bases bi, for every i ě 1.
R is absolutely normal if it is normal to every integer base b (equivalently, simply normal
to every integer base).

2

Émile Borel not only isolated the notion of normal number; but also proved that almost
every real number is absolutely normal.

Theorem 2.2 (Borel [4]). The set of absolutely normal numbers in the unit interval has
Lebesgue measure one.

2.3 Discrepancy

The simple discrepancy of an initial segment of the base b representation of a real number
R indicates the amount by which the digits in that initial segment vary from their expected
average. Note that Dpu, bq is a number between 0 and 1´ 1{b.

Definition 2.3. Let u be a finite block of digits in base b. The simple discrepancy, Dpu, bq
of u in the base b is the maximum for d P t0, . . . , b´ 1u of | occpu, dq{|u| ´ 1{b |.

Lemma 2.4. A real number R is simply normal in base b if and only if

lim
nÑ8

DppRqbæn, bq “ 0.

Borel’s theorem is underpinned by the fact that for any base almost every sufficiently long
block has small discrepancy relative to that base. We will need an explicit bound for the
number of blocks of a given length having larger discrepancy than a given value. To make the
paper self-contained we include the proof of the next lemma, which gives such a bound. We
follow Hardy and Wright’s classic text [7], but sharpen the value obtained there.

Let the number of blocks of length k in base b where a given digit occurs exactly i times

be pbpk, iq “
ˆ

k
i

˙

pb´ 1qk´i.

Lemma 2.5 ([7], adapted from Theorem 148). Fix a base b and a block length k. For every
real ε such that 6{k ď ε ď 1{b,

ÿ

0ďiďk{b´εk

pbpk, iq and
ÿ

k{b`εkďiďk

pbpk, iq are at most bke´bε
2k{6.

Proof. Observe that for each i such that i ď k{b, pbpk, i ´ 1q ă pbpk, iq holds; and for each i
such that i ą k{b, pbpk, iq ă pbpk, i´1q. The strategy to prove the wanted bounds is to “shift”
the first sum to the right by m “ tεk{2u positions, and the second sum to the left by m ` 1
positions. We start with the first sum. Let a “ k{b´ εk. For each i such that 0 ď i ď a,

pbpk, iq “
pbpk, iq

pbpk, i` 1q
¨
pbpk, i` 1q

pbpk, i` 2q
¨ . . . ¨

pbpk, i`m´ 1q

pbpk, i`mq
¨ pbpk, i`mq.

The largest quotient in the expression above is pbpk,i`m´1q
pbpk,i`mq

. Using the symbolic expression for

pbpk, iq,
pbpk, iq

pbpk, i` 1q
“
pi` 1qpb´ 1q

k ´ i
. Then,

pbpk, iq

pbpk, i` 1q
ď

pbpk, tau`m´ 1q

pbpk, tau`mq
“
ptau`mqpb´ 1q

k ´ tau´m` 1

;Borel’s original definition, given in [4], says that a real number R is normal to base b if each of the numbers
R, bR, b2R, . . . is simply normal to the bases bn, for every n ě 1. Although it seems more demanding, this
last condition is equivalent to requiring that just R be simply normal to the bases bn, for every n ě 1. A proof
can be read in [5].

3

ă
pk{b´ εk{2qpb´ 1q

k ´ k{b` εk{2
“ 1´

εb{2

1´ 1{b` ε{2

ă 1´ ε b{2, pusing ε ď 1{bq

ă e´bε{2.

Since m “ tεk{2u and εk ě 6, e´bεm{2 ď e´bεpεk{2´1q{2 “ e´bε
2k{4`bε{2 ď e´bε

2k{6. We obtain,
pbpk, iq ă e´bε

2k{6 pbpk, i`mq. Since
ř

0ďiďk pbpk, iq “ bk we conclude
ÿ

0ďiďa

pbpk, iq ă e´bε
2k{6

ÿ

0ďiďa

pbpk, i`mq ď bke´bε
2k{6.

To bound the second sum we shift the sum to the left by m` 1 positions. Let z “ rk{b` εks.
For any integer i such that z ´m ă i ď k,

pbpk, iq “
pbpk, iq

pbpk, i´ 1q
¨
pbpk, i´ 1q

pbpk, i´ 2q
¨ . . . ¨

pbpk, i´mq

pbpk, i´m´ 1q
¨ pbpk, i´m´ 1q

where these quotients increase as the indices decrease. So,

pbpk, iq

pbpk, i´ 1q
ď

pbpk, rzs´mq

pbpk, rzs´m´ 1q
“
k ´ rzs`m` 1

przs´mqpb´ 1q

ď
k ´ k{b´ εk{2` 1

pk{b` εk{2qpb´ 1q

ă 1´ εb{3.

To see the last inequality observe that it is equivalent to εb ´ 2{b ´ ε ă 1 ´ 6
εbk , which is

implied by 1 ´ 2{b ă 1 ´ 6
εbk , because εb ď 1 and ε ą 3{k. Therefore,

pbpk, iq

pbpk, i´ 1q
ă e´bε{3.

Then, using m` 1,

pbpk, iq ă e´bεpm`1q{3pbpk, i´m´ 1q ď e´
bε2k
6 pbpk, i´m´ 1q.

From this last inequality and
ÿ

0ďiďk

pbpk, iq “ bk conclude
ÿ

zďiďk

pbpk, iq ă bke´bε
2k{6.

Lemma 2.6. Let t ě 2 be an integer and let ε and δ be between 0 and 1, with ε ď 1{t. Let k
be the least integer greater than the maximum of r6{εs and ´ lnpδ{2tq6{ε2. Then, for all b ď t
and all k1 ě k, the fraction of blocks x of length k1 in base b for which Dpx, bq ą ε is less than
δ.

Proof. Consider the case of a base b less than or equal to t and suppose that d is a digit in
base b. By Lemma 2.5, the number of blocks x of length k such that | occpx, dq{|x| ´ 1{b | is
greater than ε is bounded by 2bke´bε

2k{6. Thus, the number of blocks x of length k such that
Dpx, bq ą ε is bounded by 2bk`1e´bε

2k{6. To have this constitute a fraction of no more than δ
of all the bk sequences, it is sufficient that δ ą 2be´ε

2k{6. This is implied by k ą ´ lnpδ{2bq6{ε2.
Since δ is less than or equal to 1, if b ď t is a base then ´ lnpδ{2tq ě ´ lnpδ{2bq, and hence

k ě ´ lnpδ{2bq6{ε2. But, then for any k1 ą k, the number of blocks x of length k1 such that
Dpx, bq ą ε is a fraction of no more than δ of all the bk1 sequences, as required.

4

3 The Algorithm

3.1 Simple Normality in a Single Base

First, we discuss the ingredients for ensuring that a constructed real number X be simply
normal to a single base b. We will employ these means later for several bases simultaneously.

We consider a sequence of b-adic intervals pIiqiě1 by recursion on i such that for each i,
the Ii`1 is a subset of Ii, and such that limiÑ8 µpIiq “ 0. The real number X determined by
the algorithm will be the unique element of

Ş

iě1 Ii, i.e. the limit of the left endpoints of these
intervals. We let xi be the block in base b such that Ii is the b-adic interval r.xi, .xi ` b´|xi|q.
We let ui`1 be the block such that xiui`1 “ xi`1, i.e. xi`1 is the concatenation of xi followed
by ui`1. Thus, for any k ď i, xi “ xk

ś

jPrk`1,is uj and X is equal to .xk
ś

jPrk`1,8q uj .
We will be working toward ensuring that simple discrepancy decreases as we consider

longer initial segments in the base-b expansion of X. We do so by choosing ui`1 so that
Dpui`1, bq is smaller than a self-imposed threshold εi`1, where the function i ÞÑ εi is mono-
tonically decreasing. Then, for any k and any i` 1 sufficiently large relative to k, xi`1 is the
concatenation of xk with

ś

jďi`1 uj , a long string of discrepancy less than εj . It follows that
Dpxi, bq is not much larger than εj .

We need to determine the appropriate length of ui`1. By allowing |ui`1| be sufficiently
large, it is ensured that there will be some block ui`1 such that Dpui`1, bq ă εi`1. By allowing
|ui`1| be sufficiently small in comparison to |xi|, it is ensured that for each ` less than or equal
to |ui`1|, Dpxi`1æp|xi| ` `q, bq is not much larger than Dpxi, bq, i.e. the variations of simple
discrepancy within prefixes of ui`1 will introduce only small variations of simple discrepancy
within prefixes of xi`1. Our task is to arrange for limiÑ8 εi “ 0 while maintaining the
appropriate proportions in length between xi and ui`1.

Lemma 3.1. Suppose that x and u are blocks in base b. If ε P p0, 1q, Dpx, bq ă ε and
|u|{|x| ă ε, then for every ` less than or equal to |u|,

D
`

pxuqæp|x| ` `q, b
˘

ă 2ε.

Proof. Let ` be fixed as above and let d be a digit in base b.

occ
`

pxuqæp|x| ` `q, d
˘

|x| ` `
ě

occpx, dq

|x| ` |u|

ą
p1{b´ εq|x|

|x| ` |u|
, by assumption on Dpx, bq

ą 1{b´ ε´ p1{bq
|u|

|x| ` |u|
, by elementary means

ą 1{b´ 2ε, since ε ą |u|{|x|.

Therefore, if ε ą |u|{|x|, then for each ` ď |u|,

1{b´
occppxuqæp|x| ` `q, dq

|x| ` `
ă 2ε.

That
occ ppxuqæp|x| ` `q, dq

|x| ` `
´ 1{b ă 2ε can be verified similarly, which is sufficient to prove

the lemma.

5

Note that if u1 and u2 are blocks in base b such that Dpu1, bq ă ε and Dpu2, bq ă ε,
then Dpu1u2, bq ă ε. By applying this observation and Lemma 3.1, we obtain the following
corollary by induction.

Corollary 3.2. Take as given blocks x and ui in base b, for i ď m. Suppose ε satisfies the
following conditions.

1. Dpx, bq ă ε.

2. For each i ď m, Dpui, bq ă ε.

3. For each i ď m, |ui|{|x
ś

jăi uj | ă ε.

Then for every ` less than or equal to |
ś

iďm ui|, D

˜

px
ź

iďm

uiqæp|x| ` `q, b

¸

ă 2ε.

The next lemma is essentially a special case of Lemma 3.1, with the roles of x and u
reversed. We will apply it to analyze the effect of iteratively appending blocks of small
discrepancy to an initial one.

Lemma 3.3. Suppose that x and u are base b blocks. If ε is given so that Dpu, bq ă ε and
|x|{|u| ă ε, then Dpxu, bq ă 2ε.

3.2 Simple Normality in Multiple Bases

We turn to working simultaneously with bases b P t2, . . . , tu in the context of stage i of a
construction by recursion. Instead of one interval Ii, we will work with a nested sequence of
intervals, Ii,2 Ą Ii,3 Ą . . . Ii,t, such that each Ii,b is b-adic. Lemma 3.4 shows that the lengths
of these intervals need not shrink too quickly.

Lemma 3.4. For any interval I and any base b, there is a b-adic subinterval Ib such that
µpIbq ě µpIq {p2bq .

Proof. Let m be least such that 1{bm is less than µpIq, i.e. m “ r´ logbpµpIqqs. Note that
1{bm is greater than or equal to µpIq {b, since 1{bm´1 ě µpIq. If there is a b-adic interval of
length 1{bm strictly contained in I, then let Ib be such an interval, and note that Ib has length
greater than or equal to µpIq {b. Otherwise, there must be an a such that a{bm is in I and
neither pa ´ 1q{bm nor pa ` 1q{bm belongs to I. Thus, 2{bm is greater than µpIq. However,
since 1{bm ă µpIq and b is greater than or equal to 2, 2{bm`1 is less than µpIq. So, at least
one of the two intervals

“

ba´1
bm`1 ,

ba
bm`1

˘

or
“

ba
bm`1 ,

ba`1
bm`1

˘

must be contained in I. Let Ib be such.
Then, the length of Ib is 1

bm`1 “ 1
2b

2
bm ą µpIq {p2bq. In either case, the length of Ib is greater

than µpIq {p2bq.

Definition 3.5. A t-sequence is a nested sequence of intervals, ~I “ pI2, . . . , Itq, such that
I2 is dyadic and for each base b ě 2, Ib`1 is a pb ` 1q-adic subinterval of Ib such that
µpIb`1q ě µpIbq {2pb ` 1q. We let xbp~Iq be the block in base b such that .xbp~Iq is the
representation of the left endpoint of Ib in base b.

We can iteratively apply Lemma 3.4 for the following corollary.

Corollary 3.6. For every dyadic interval I2 and integer t ě 2 there is a t-sequence ~I starting
with I2.

6

In Corollary 3.6, we establish the existence of t-sequences. In Section 4, see especially
Lemma 4.1, we analyze the number of operations needed to compute them.

If ~I is a t-sequence, then for any b ď t and any real X P It, X has xbp~Iq as an initial
segment of its representation in base b. If, further, ~I 1 “ pI 12, . . . I 1t1q is a t

1-sequence with t ď t1

such that I 12 Ă It and X P I 1t1 , then for each b less than or equal to t, ~I 1 specifies how to
extend xbp~Iq to a longer initial segment xbp~I 1q of the base b representation of X. As opposed
to arbitrary nested sequences, in t-sequences there is a function of t that gives a lower bound
of the ratio between the measures of It and I2. That is, µpItq is at least µpI2q {p2t t!q.

3.3 Construction by Recursion

Our construction of the real X is by recursion and written in terms of two given functions,
i ÞÑ ti and i ÞÑ εi. The first determines the number of bases to be considered at stage i
and the second determines a rational number upper bound on the allowed discrepancies of
the blocks of new digits added to the representations of X in those bases. In stage i` 1, we
will have a ti-sequence ~Ii “ pIi,2, Ii,3, . . . , Ii,tiq given from the previous stage, with associated
blocks xbp~Iiq, for b ď ti.

Definition 3.7. Following Definition 3.5, for b ď ti, let xi`1,b be xbp~Ii`1q, the base b

representation of the left-endpoint of Ii`1,b, and let ui`1,b be ubp~Ii`1q, i.e. xi`1,b “ xi,bui`1,b.

Algorithm 3.8. Assume given computable functions i ÞÑ ti and i ÞÑ εi such that ti and 1{εi
are non-decreasing in i and unbounded, with εi ď 1{ti. Let δi`1 be the upper bound of the
fraction of blocks in base b for b ď ti, of the length considered at stage i ` 1, that can be
discarded,

δi`1 “
1

8 ti

1

2ti`ti`1ti!ti`1!
.

Let ki`1 be the length for the block in base ti to be added at stage i` 1,

ki`1 “ maxpr6{εi`1s ,
P

´ lnpδi`1{p2tiqq6{ε
2
i`1

T

q ` 1.

Initialization. Start with ~I0 “ ppI0,2qq, with I0,2 “ r0, 1q.

Recursion step i` 1. Determine the ti`1-sequence ~Ii`1 for stage i` 1 as follows.

1. Let L be a dyadic subinterval of Ii,ti such that µpLq ě µpIi,tiq {4.

2. For each dyadic subinterval J2 of L of measure 2´rlog tiski`1µpLq, let ~J “ pJ2, J3, . . . , Jti`1q

be a ti`1-sequence for J2.

3. Let ~Ii`1 be the leftmost of the ti`1-sequences ~J considered above such that for each
b ď ti, Dpubp ~Jq, bq ď εi`1.

We let X be the unique real in the intersection of the intervals in the sequences ~Ii. Expressed
in base b, X “ limiÑ8 .xi,b. Expressed in terms of representations, pXqb “

ś

iă8 ui,b.

To show that X is well-defined, we just need to verify that at each stage i ` 1 there is
ti`1-sequence ~Ii`1.

To prove that at each stage i ` 1 there is ~Ii`1, we compare the measures of two sets.
Let S be the union of the set of intervals Jti`1 over the 2rlog tiski`1-many ti`1-sequences

7

~J “ pJ2, . . . , Jti`1q. By Lemma 3.4, µpLq ě µpIi,tiq {4, and for each ~J , µ
`

Jti`1

˘

ě 1
2ti`1 ti`1!

µpJ2q.

Observe that the possibilities for J2 form a partition of L. Hence, µpSq ě 1
2ti`1 ti`1!

µpLq .

Combining inequalities, µpSq ě 1

2titi!

1

4

1

2ti`1ti`1!
µpIi,2q . Let N be the subset of S defined

as the union of the set of intervals Jti`1 which occur in ti`1-sequences which are not suitable.
A ti`1-sequence ~J is not suitable if for some b ď ti, Dpubp ~Jq, bq ą εi`1. By construction, u2p ~Jq
has length rlog tiski`1 and for each b ď ti, ubp ~Jq has length greater than or equal to ki`1.
Each ~J considered at stage i` 1 is such that for every b ď ti each interval Jb is a subinterval
of Ii,b. According to Lemma 2.6 and by the choice of ki`1, for each b ď ti, the subset of
Ii,b consisting of reals with base b representations .xi,bubp ~Jq for which Dpubp ~Jq, bq ą εi`1 has
measure less than δi`1 µpIi,bq, and hence less than δi`1µpIi,2q. Hence, µpN q ă ti δi`1 µpIi,2q .

By the choice of δi`1, µpN q ă
1

4 2titi! 2ti`1ti`1!
µpIi,2q. Then, µpN q ă µpSq. Since S is a

superset of N , this proves that at stage i` 1 there is a suitable ti`1-sequence ~Ii`1.

3.4 Absolute Normality

We give sufficient conditions on the functions i ÞÑ εi and i ÞÑ ti to ensure absolute normality.

Theorem 3.9. Suppose that the functions i ÞÑ ti and i ÞÑ εi are monotonic and such that
limiÑ8 ti “ 8 and limiÑ8 εi “ 0. Further, suppose that for each i and for each b ď ti,
|ui`1,b|{|xi,b| ă εi`1. Then, the real X constructed in terms of these functions is absolutely
normal.

Proof. Let b be an integer greater than or equal to 2 and let ε P p0, 1q. Choose s so that
b is less than ts and 4εs is less than ε. During stages i ` 1 after s, we ensure of the
constructed real X that the base b representation of X is obtained by appending blocks
ui`1,b to xi,b for which Dpui`1,b, bq ă εs. Thus, for any n, Dp

ś

săi`1ďn ui`1,b, bq ă εs. Fix
s1 so that |xs,b|{ps1 ´ |xs,b|q ă εs. By noting that we add at least one new digit in the
base b representation of X during every stage after s and applying Lemma 3.4, we have that
Dpxs,b

ś

săi`1ďs1
ui`1,b, bq is less than 2εs. Then, Corollary 3.2 applies to conclude that for

every `,
DpXæ|xs,b

ź

săi`1ďs1

ui`1,b| ` `, bq ă 2 ¨ 2εs ă ε.

By Lemma 2.4, this is sufficient to prove the theorem.

4 Implementation and Time Complexity

We consider the time complexity of the algorithm to be the number of elementary operations
required to output the first i digits, where an elementary operation takes a fixed amount of
time. We will also count the number of mathematical operations performed by the algorithm,
where mathematical operations include addition, subtraction, comparison, multiplication,
division and logarithm. We use the big O notation standard in computer science, which
illustrates the asymptotic behavior of a given function. A function gpxq is Ophpxqq when there
are constants x0 and c such that for every x ě x0, gpxq ă c hpxq.

Algorithm 3.8 depends on two given monotonic functions i ÞÑ ti and i ÞÑ εi, By controlling
the rates at which ti and εi approach their limits, we can control the number of operations

8

required to run the construction. Thus, the count of the performed operations up to step i
is given as a product of two factors, one that depends only on ti and εi which can be made
arbitrarily small, and the other that does not, which is the significant factor.

We will say that a number is small if it can be bounded by a function of ti and εi`1.
By the virtue of the algorithm all values are polynomial in the inverse of the measure of
the smallest interval I being considered, so they can be represented by Op´ logµpIqq digits.
Expensive mathematical operations are multiplications and divisions having both operands
non-small. Non-expensive mathematical operations are operations having at least one small
operand and also all additions, subtractions and comparisons. Expensive operations require
Opp´ logµpIqq2q elementary operations, whilst for the non-expensive Opgpxqp´ logµpIqqq ele-
mentary operations suffice, where g is some increasing function and x is small.

We represent b-adic intervals as tuples of four integers xa, b,m, py such that the represented
intervals are ra{bm, pa`1q{bmq and p “ bm. The last terms p are kept just for efficiency of com-
putation. For a b1-adic interval I1 “ xa1, b1,m1, p1y and a b2-adic interval I2 “ xa2, b2,m2, p2y
we define leftpI1, I2q “ a1 p2 and rightpI1, I2q “ a2 p1.

The next lemma bounds the needed operations to find a b-adic subinterval of a given
interval. It is intended that the given values be previously computed data; the proof revisits
the existential result given in Lemma 3.4.

Lemma 4.1. Suppose we are given two bases b1 and b2 and two b1-adic intervals J1 and I1,
We are also given a b2-adic interval I2 such that J1 Ď I2 Ď I1, and the integers `I “ leftpI1, I2q
and rI “ rightpI1, I2q. Suppose we want to compute a b2-adic subinterval J2 of J1 such that
µpJ2q ě µpJ1q {p2b2q, and also compute the integers `J “ leftpJ1, J2q and rJ “ rightpJ1, J2q.
The result can be obtained by two alternative computations, one takes Opp´ logµpJ1qq

2q ele-
mentary operations; the other takes Opgpb1, b2,´ logpµpJ1q {µpI1qqqp´ logµpJ1qqq elementary
operations, where g is some increasing function. In either case, Opgpb1, b2,´ logpµpJ1q {µpI1qqqq
mathematical operations suffice.

Proof. For s “ 1, 2, let Is be given by xes, bs, ns, qsy and Js be given by xas, bs,ms, psy. Notice
that µpIsq “ 1{qs “ 1{bns

s and µpJsq “ 1{ps “ 1{bms
s . Within this proof, small values are

those that can be bounded by the factor gpb1, b2,´ logpµpJ1q {µpI1qqq. In particular, later in
the proof it becomes clear that for each s, ms ´ ns and as ´ es are small.

First we give a computation that usesOpgpb1, b2,´ logpµpJ1q {µpI1qqqq non-expensive math-
ematical operations. We start calculating the small values bms´ns

s . Using iterated squaring it
takes Oplogpms´nsqq multiplications, requiring Oplog b2pms´nsq

s q = Opp´ logpµpJsq {µpIsqqq
2q

elementary operations, in total. Notice that µpJ2q {µpI2q ą µpJ1q {p2b2µpI1qq and so

Op´ logpµpJ2q {µpI2qqq Ď Op´ logpµpJ1q {µpI1qqq.

We need to find a2, m2, p2, `J and rJ , such that:
p1q a1{b

m1
1 ď a2{b

m2
2 and pa2 ` 1q{bm2

2 ď pa1 ` 1q{bm1
1

p2q 1{bm1
1 ď 2b2{b

m2
2

p3q p2 “ bm2
2

p4q `J “ leftpJ1, J2q “ a1 p2 and rJ “ rightpJ1, J2q “ a2 p1.

Since J2 Ď I2, n2 ď m2. From µpJ2q ě µpJ1q {p2b2q and µpI2q ď µpI1q we can con-
clude that µpJ2q ě pµpI2q {p2b2qqpµpJ1q {µpI1qq. Application of ´ logb2 to both sides yields
m2 ď n2 ` pm1 ´ n1q logb2 b1 ` 2. So there are at most pm1 ´ n1q logb2 b1 ` 2 possible

9

values for m2, and we can iterate through each of them. From J2 Ď I2 we also infer that
e2b

m2´n2
2 ď a2 ď pe2 ` 1qbm2´n2

2 ´ 1, which means that there are bm2´n2
2 possible values for

a2 and we can iterate through each of them. Since the number of iterations required to try
the possibilities for both m2 and a2 are small numbers, they can be bounded by choosing g
appropriately. To compute the starting and ending values in such iterations we only need a
small number of non-expensive mathematical operations, and to change between consecutive
values we need only addition. We then check for each pair if all requirements are met. Since
Lemma 3.4 ensures thatm2 and a2 exist, the described procedure will eventually find a suitable
pair meeting the requirements.

For a given pair a2 and m2, we can compute p2 by p2 “ q2b
m2´n2
2 with a single non-

expensive mathematical operation. To calculate rJ first notice that
rJ “ a2p1 “ a2b

m1
1

“ pa2 ´ e2qq1b
m1´n1
1 ` e2q1b

m1´n1
1

“ q1pa2 ´ e2qb
m1´n1
1 ` rIb

m1´n1
1 .

Since as´es is small, rJ can be obtained from the last expression using only a constant number
of non-expensive mathematical operations, because all factors are small except the first one of
each term. The calculation of `J is similar. At this point, `J , rJ and p2 meet the requirements
by their construction. To check the requirements for a2 and m2, notice that requirement (1)
is equivalent to 0 ď rightpJ1, J2q ´ leftpJ1, J2q ď p2 ´ p1 and requirement (2) is equivalent to
p2 ď 2b2p1, and both can be checked with a constant number of non-expensive mathematical
operations, given that we already calculated `J “ leftpJ1, J2q and rJ “ rightpJ1, J2q.

An alternative way of computing can be achieved by replacing the iteration through
possible values of a2 andm2 by their direct computation using the given bounds and rounding.
This entails a constant number of expensive mathematical operations.

The next lemma counts the steps in one complete stage of our algorithm. As in the
previous lemma, it is intended that the given values be previously computed data. We count
all operations except the computation of ti`1, εi`1 and ki`1, which is postponed until the
subsequent theorem.

Lemma 4.2. Assume we are given i, ti, εi`1 and ti`1. Then, there is computable function
hpt, εq, increasing in t and 1{ε, such that stage i ` 1 of Algorithm 3.8 can be completed in
Ophpti`1, εi`1qq mathematical operations. Let n be the minimum number of digits that are
sufficient to represent each of the endpoints of the intervals of ~Ii. In case ti`1 “ ti´1 stage
i`1 requires Ophpti`1, εi`1q nq elementary operations; otherwise it requires Ophpti`1, εi`1q n2q
elementary operations.

Proof. We will count the operations needed to run all the steps of stage i`1. Assume first that
ti`1 “ ti´1. Then, all bases considered in stage i`1 were also considered in stages i and i´1.
Lemma 4.1 applies to count the operations needed to find subintervals. In each application
of the lemma, the values of I1, I2, `I and rI in the hypothesis are carried forward from the
computation in the previous stage. Then, ´ logpµpJ1q {µpI1qq is bounded by rlog tiski`1 and
hence is a small value. Since Op´ logµpJ1qq “ Opnq, finding a subinterval requires at most
Opgpti`1, εi`1qq mathematical operations or Opgpti`1, εiq nq elementary operations.

We write h with a subindex to indicate a function of ti`1 and εi`1. Let ho be such that
each non-expensive mathematical operation in this procedure uses at most Ophoq elementary
operations and each expensive mathematical operation uses

at most Opho nq. The computation can be organized in the following steps.

10

‚ Compute rlogptiqs, δi`1 and ki`1. This takes a constant number of non-expensive
mathematical operations or Ophoq elementary operations.
‚ Compute a dyadic subinterval L of Ii,ti such that µpLq ě µpIi,tiq{4. This takesOpgpti`1, εi`1qq

mathematical operations or Opgpti`1, εi`1q nq elementary operations.
‚ In increasing order of left endpoint, consider the dyadic subintervals J2 of L:

1. For each possible J2, we determine a ti`1-sequence ~J starting with J2. This takes
Opti`1 gpti, εi`1qq mathematical operations or Oph1 gpti, εi`1q nq elementary operations.

2. For each b ď ti, compute the base-b representation of the left endpoint ubp ~Jq of ~Jb. This
requires Op|ubp ~Jq|q non-expensive mathematical operations, because each operation has
at least one operand is a base and hence depends only on ti, and |ubp ~Jq| ď rlog tiski`1 also
depends only on ti. Therefore, this takes Oph2q mathematical operations or Oph2 hoq
elementary operations.

3. Calculate thresholds for the number of occurrences of each digit to checkDpubp ~Jq, bq ď εi`1.
Such thresholds are of the form p1{b` εi`1q|ubp ~Jq| and therefore can be calculated with
a constant number of non-expensive mathematical operations for each base. Hence,
Optiq “ Oph3q non-expensive mathematical operations or Oph3 hoq elementary opera-
tions in total.

4. The counting of occurrences and the comparison against the threshold operate only on
small values (bounded by maxpti, |ubp ~Jq|q). This step takes Op|ubp ~Jq| maxpti, |ubp ~Jq|qq
non-expensive mathematical operations for each base. In total, this is

Opti |ubp ~Jq| maxpti, |ubp ~Jq|qq “ Oph4q

mathematical operations or Oph4 hoq elementary operations.

The search stops upon finding a suitable ti`1-sequence, before exhausting the 2rlog tiski`1 many
intervals J2. This requires at most h˚ “ 2rlog tiski`1 iterations. We can complete the proof for
the case ti`1 “ ti´1 by setting h “ h˚ ph1 g ` h2 ` h3 ` h4q ho.

If ti`1 ą ti´1, then it is possible that for some uses of Lemma 4.1 we do not have any
previously computed data. In this case we set the intervals in the hypothesis of the lemma
as I1 “ I2 “ r0, 1q and `I “ rI “ 0, making ´ logpµpJsq {µpIsqq “ ´ logpµpJsqq “ Opnq
for s “ 1, 2, and thus requiring Opg n2q elementary operations for each application of the
alternative computation in Lemma 4.1. This requires Oph˚ h1 g n2q elementary operations
more than in the previous case. Using the same h as before, this case entail at most Oph n2q
elementary operations.

Theorem 4.3. Suppose f is a computable non-decreasing unbounded function. Algorithm
3.8 computes an absolutely normal number X such that, for any base b, it outputs the first i
digits in the base b representation of X after performing Opfpiq iq mathematical operations or
Opfpiq i2q elementary operations.

Proof. We will define functions i ÞÑ ti and i ÞÑ εi simultaneously with running an implemen-
tation of Algorithm 3.8. Let t1 “ 2 and ε1 “ 1{2 Assume k1 “ 1 and fp1q is known data,
having a value greater than hp2, 1q, for the h as in Lemma 4.2

For the recursion stage i` 1, assume that ti “ v and εi “ 1{v are given, with v ě 2, and
that ~Ii is the result of the construction as determined by the first i many values of t and ε

11

with associated blocks xi,b. If the number of stage i ` 1 is a power of 2, we execute i many
elementary operations in the computation of the initial values of f , obtaining the values of f
on the numbers less than or equal to some integer m. Notice that 1 ď m ď i. Define δ by

δ “
1

8 ti

1

2ti`v`1 ti!pv ` 1q!
,

which would be the value of δi`1 if we were to define ti`1 “ v`1. Let kpε, δ, tq be the function
defined by the calculation of k as given in Lemma 2.6. Finally, we execute i many elementary
operations in the computations of the functions kp1{pv`1q, δ, v`1q and hpv`1, 1{pv`1qq. If
we obtain values for these functions within the allotted number of operations and they satisfy
the inequalities hpv ` 1, 1{pv ` 1qq ă fpmq and, for each b ď ti,

rlogpv ` 1qskp1{pv ` 1q, δ, v ` 1q ` r´ logpδqs

|xi,b|
ă

1

v ` 1
,

then define ti`1 “ v`1 and εi`1 “ 1{pv`1q. Otherwise, let ti`1 “ ti “ v and εi`1 “ εi “ 1{v.
We then complete stage i` 1 of the construction and thereby complete the recursion step in
the definitions of the functions t and ε.

Clearly, i ÞÑ ti and i ÞÑ εi are computable, i ÞÑ ti is non-decreasing, and i ÞÑ εi is
non-increasing. Applying the assumptions on f , limiÑ8 ti`1 “ 8 and limiÑ8 εi`1 “ 0.
Further, in the construction determined by these functions, if during stage j ` 1 the value of
εj`1 is lowered from 1{pv ´ 1q to 1{v, then for each b ď tj ,

rlogpv ` 1qskp1{v, δj`1, v ` 1q ` r´ logpδj`1qs

|xj,b|
ă

1

v
.

For every subsequent stage i` 1 during which εi`1 “ 1{v and for every b ď v ` 1,

|ui`1,b| ď rlogpv ` 1qskp1{pv ` 1q, δj`1, v ` 1q ` r´ logpδj`1qs

and |xi`1,b| ě |xj,b|, so |ui`1,b|{|xi,b| is less than or equal to 1{pv ` 1q. Thus, the construction
satisfies the hypotheses of Theorem 3.9 and thereby produces an absolutely normal number.

All mentioned mathematical operations are non-expensive, because the only non-small
operands in them are of the form |xi,b| and all those appear on independent calculations. The
computations of the values of t and ε during stage i`1 add only Opiq elementary operations to
the construction itself. Since that calculation is only done when the stage number is a power of
two, in total this adds Opiq extra elementary operations. Since f is non-decreasing, for every
i, if ti`1 “ v` 1 then hpv` 1, 1{pv` 1qq ă fpi` 1q. From the way ti is defined, ti`1 ą ti´1 in
at most Oplog iq stages; therefore, using Lemma 4.2 the total number of required elementary
operations is Opi fpi` 1q iq`

řlog i
j“1 fp2

j ` 1q 2j
2
q “ Opfpi` 1q i2q. Since each stage produces

at least one extra digit in every base considered, i stages are enough to produce the first i
digits in any of those bases.

Acknowledgements. Joos Heintz raised the problem of finding a polynomial time algorithm
to produce absolutely normal numbers more than ten years ago, and since then he has consis-
tently encouraged V. Becher to work on it. Becher’s research was supported by CONICET and
Agencia Nacional de Promoción Científica y Tecnológica, Argentina. Slaman’s research was
partially supported by the National Science Foundation, USA, under Grant No. DMS-1001551
and by the Simons Foundation. This work was done while the authors participated in the
Buenos Aires Semester in Computability, Complexity and Randomness, 2013.

12

References

[1] Verónica Becher, Martin Epszteyn, Pablo Ariel Heiber and Theodore A. Slaman. Efficiently
computing an absolutely normal number, In preparation, 2013.

[2] Verónica Becher, Santiago Figueira. An example of a computable absolutely normal
number. Theoretical Computer Science 270:947–958, 2002.

[3] Verónica Becher, Santiago Figueira, Rafael Picchi. Turing’s unpublished algorithm for
normal numbers. Theoretical Computer Science 377:126–138, 2007.

[4] Émile Borel. Les probabilités d’enombrables et leurs applications arithmétiques. Supple-
mento di Rendiconti del Circolo Matematico di Palermo, 27:247–271, 1909.

[5] Yann Bugeaud. Distribution modulo one and diophantine approximation. Cambridge
Tracts in Mathematics (193). Cambridge University Press, 2012.

[6] Santiago Figuiera and André Nies. Feasible analysis and randomness, Preprint, 2013.

[7] G. H. Hardy and E. M.Wright. An introduction to the theory of numbers. Oxford University
Press, Oxford, sixth edition, 2008.

[8] Elvira Mayordomo. Construction of an absolutely normal real number in polynomial time.
Preprint, 2013.

[9] Wolfgang M. Schmidt. Über die Normalität von Zahlen zu verschiedenen Basen. Acta
Arithmetica, 7:299–309, 1961/1962.

[10] Wacław Sierpiński. Démonstration élémentaire du théorème de M. Borel sur les nombres
absolument normaux et détermination effective d’un tel nombre. Bulletin de la Société
Mathématique de France 45:127–132, 1917.

[11] Alan Turing. A note on normal numbers. In J.L.Britton, editor Collected Works of A.M.
Turing: Pure Mathematics. North Holland, Amsterdam, 117–119, with notes of the editor
in 263–265, 1992.

13

