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On a question of Mendès France on normal numbers

by

Verónica Becher (Buenos Aires) and
Manfred G. Madritsch (Vandœuvre-lès-Nancy)

1. Introduction and statement of results. In this note we solve a
problem posed by Michel Mendès France asking for an instance of a real
number x such that both x and 1/x are simply normal to a given integer
base b. The problem appeared in the literature in 2008 in [19] and it was
presented to us by Gerhard Larcher.

The continued fraction representation of a positive number and its re-
ciprocal are identical except for a shift one place left or right depending
on whether the number is less than 1 or greater than 1, respectively. That
is, the numbers represented by [a0; a1, a2, . . .] and [0; a0, a1, . . .] are recipro-
cals. This fact allows us to prove the following extension of the problem of
Mendès France.

Theorem 1. There is a number x such that both x and its reciprocal 1/x
are continued fraction normal and absolutely normal. Moreover, they are both
computable, and the first n digits of their continued fraction expansions can
be computed in O(n4) mathematical operations.

We construct x and 1/x by defining incrementally their continued frac-
tion expansions. To ensure that both x and 1/x are continued fraction normal
and absolutely normal we follow the work by Becher and Yuhjtman [3]. The
challenge in the present paper is to handle simultaneously two constructions,
one for x and one for 1/x. These constructions work by defining successive
refinements of appropriate subintervals to achieve, in the limit, in both cases,
continued fraction normality and simple normality to all integer bases. At
each step the choice of digits for the two constructions is done without invok-
ing the digits chosen at previous steps. This explains why the computation
is very efficient.
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2. Two types of normality. We follow the standard notation in this
area. For a detailed account of normal numbers see [12, 8, 6, 2], for symbolic
dynamics see [13, 7] and for a combination of both see [14].

As usual we write N = {1, 2, 3, . . .}. For a finite set S, we denote by #S
its cardinality. Similarly for an infinite set S of real numbers, |S| denotes its
Lebesgue measure. We use Landau’s notation for the asymptotic behaviour
of functions: g(x) = O(f(x)) if there exist constants x0 and c such that for
every x ≥ x0, |g(x)| < c · |f(x)|. We write log for the logarithm to base e.

2.1. Continued fraction normality. For a real number x ∈ [0, 1], the
continued fraction expansion of x is the integer part a0 = ⌊x⌋ together with
a sequence of positive integers a1, a2, . . . such that

x = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an +
1

. . .

;

we write x = [a0; a1, a2, . . .] for short. This expansion can be seen as an
infinite word over the alphabet N. Since normality is an asymptotic property
of the digits, we drop the integer part in what follows and write [a1, a2 . . .]
instead of [a0; a1, a2, . . .].

A way of obtaining the continued fraction expansion is applying the
Gauss map T : [0, 1] → [0, 1] defined by

T (x) =

{
1/x− ⌊1/x⌋ if x ̸= 0,

0 otherwise.

If x = [a1, a2, . . .] then Tn(x) = [an+1, an+2, . . .] and for every n ≥ 1, an =
⌊1/Tn−1(x)⌋. In other words, the Gauss map corresponds to the left shift in
the associated symbolic dynamical system over the alphabet N.

The map T has an invariant ergodic measure, the Gauss measure µ, which
is absolutely continuous with respect to Lebesgue measure (see Dajani and
Kraaikamp [7]). In particular, for every Lebesgue measurable set A, we have

µ(A) =
1

log 2

�

A

1

1 + x
dx.

An interval I in the unit interval is a cylinder set of order n with respect
to the continued fraction expansion, or cf-ary of order n, if there is a finite
continued fraction

[a1, . . . , an]
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such that I is the set of all numbers whose first n digits of their continued
fraction expansion are a1, . . . , an. Thus,

I[a1,...,an] = ([a1, . . . , an], [a1, . . . , an + 1]), or

I[a1,...,an] = ([a1, . . . , an + 1], [a1, . . . , an])

depending on whether n is even or odd, respectively. The set of cf-ary in-
tervals of order n forms a partition of the unit interval into infinitely many
parts of different lengths.

A real number x = [a1, a2, . . .] is continued fraction normal, or cf-normal
for short, if every word of positive integers occurs in its continued fraction
expansion with the asymptotic frequency determined by the Gauss measure.
In other words, x is generic for µ, i.e. for every positive integer k and for
every word v1 . . . vk in Nk, we have

lim
n→∞

1

n
#{j : 1 ≤ j ≤ n, aj = v1, . . . , aj+k−1 = vk} = µ(I[v1,...,vk]).

In order to get a feeling for cf-normality we provide some remarks. Quad-
ratic irrationals are never cf-normal, because their expansions are periodic.
However, nothing is known about algebraic numbers of higher degree. The
number e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .] is not cf-normal because it is the
concatenation of the pattern (1m1), for all even m in increasing order, and
no other odd digit except 1 occurs in the expansion. Nothing else is known
about cf-normality of other transcendental constants. By Birkhoff’s Ergodic
Theorem [4] almost every real in the unit interval is cf-normal and there are
several constructions of cf-normal numbers.

2.2. Normality to integer bases. For an integer b ≥ 2 called the base
we denote by Nb = {0, . . . , b − 1} the corresponding set of digits. Every
positive integer n has a unique representation of the form

n = aℓb
ℓ + · · ·+ a1b+ a0

with ai ∈ Nb for 0 ≤ i ≤ ℓ. This representation can be extended to real
numbers x in [0, 1] by

x =
∞∑
i=1

aib
−i

with ai ∈ Nb for i ≥ 1 and ai ̸= b − 1 infinitely often. The latter ensures
that every rational number has a unique representation. As in the case of
continued fraction expansions, there exists a map of the unit interval that
describes the dynamical aspect of the b-ary expansion, namely Sb : [0, 1] →
[0, 1] defined by

Sb(x) = bx− ⌊bx⌋.
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An interval I ⊂ [0, 1] is a cylinder set of order n with respect to the b-ary
expansion, or b-ary of order n for short, if there is a finite word d1 . . . dn
over Nb such that I is the set of real numbers whose first n digits of their
b-ary expansion are d1, . . . , dn. The set of b-ary intervals of order n forms
a partition of the unit interval into finitely many parts of equal length (in
contrast to the infinitely many parts of different lengths in the case of the
continued fraction expansion).

A real x = a1b
−1 + a2b

−2 + · · · ∈ [0, 1[ is simply normal with respect
to base b if every digit occurs in the b-ary expansion of x with the same
asymptotic frequency 1/b. That is, for each v ∈ Nb,

lim
n→∞

#{1 ≤ j ≤ n : aj = v}
n

=
1

b
.

Normality to base b is simple normality to bases b, b2, b3, . . . , for all powers
of b (this definition of normality is equivalent to Borel’s original definition [5],
as proved by Pillai in 1940 [6, Theorem 4.2]). Absolute normality is normality
to every integer base b ≥ 2; hence, simple normality to every integer base
b ≥ 2. Borel showed that almost all real numbers (with respect to Lebesgue
measure) are absolutely normal. This also follows from Birkhoff’s Ergodic
Theorem [4], since Lebesgue measure is ergodic with respect to the map Sb

(see Dajani and Kraaikamp [7]).

3. Lemmas. We use the classical notion of discrepancy, but not on ar-
bitrary intervals. For continued fraction expansions we consider the classical
discrepancy restricted to cf-ary intervals. Similarly, for b-ary expansions we
consider the classical discrepancy restricted to b-ary intervals.

Definition (Discrepancy for continued fraction representation). For a
finite word v = v1 . . . vk over the alphabet N we define the discrepancy of
x = [a1, a2, . . .] with respect to v in the first n positions of the continued
fraction expansion of x by

Dcf-ary
v,n (x) =

∣∣∣∣ 1n#{j : 1 ≤ j ≤ n, aj = v1, . . . , aj+k−1 = vk} − µ(I[v1,...,vk])

∣∣∣∣.
With some notational abuse, if w is a sequence of digits in N, then we

write Dcf-ary
v,n (w) for Dcf-ary

v,n (x), where x is the real number whose continued
fraction expansion is w.

Clearly, a real number x is continued fraction normal if and only if for
every positive integer k, and for every v ∈ Nk,

lim
n→∞

Dcf-ary
v,n (x) = 0.

Definition (Discrepancy for integer base representation). For a real
x =

∑
j≥1 ajb

−j we define the discrepancy of the digit v ∈ Nb among the
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first n digits of the b-ary expansion of x by

Db-ary
v,n (x) =

∣∣∣∣ 1n#{1 ≤ j ≤ n : aj = v} − 1

b

∣∣∣∣,
and we set

Db-ary
n (x) = max

v∈Nb

Db-ary
v,n (x).

Again with abuse of notation, if w is a sequence of digits in Nb, then
we write Db-ary

n (w) for Db-ary
n (x), where x is the real number with b-ary

expansion w.
Clearly, x is simply normal to base b if and only if

lim
n→∞

Db-ary
n (x) = 0.

3.1. Length of continued fraction intervals. We start by considering
the length of different continued fraction intervals. For x = [a1, a2, . . .] we
recursively define the functions pn(x) and qn(x), called the convergents of x,
as follows. We set

p−1(x) = q0(x) = 1 and p0(x) = q−1(x) = 0,

and recursively for n ≥ 1,
pn(x) = anpn−1(x) + pn−2(x), qn(x) = anqn−1(x) + qn−2(x).

On the one hand, for irrational x = [a1, a2, . . .], pn(x)/qn(x) is the nth
approximant to x and converges to x as n → ∞. On the other hand, for ra-
tional x = [a1, . . . , an], we have x = pn(x)/qn(x) and we write q(x) for qn(x).
Observe that for every x, (pn(x))n≥1 and (qn(x))n≥1 are increasing. Further-
more, the length of a cf-ary interval is

|I[a1,...,an]| =
1

qn(qn + qn−1)
.

Lemma 1. For n ∈ N and ai ∈ N for 2 ≤ i ≤ n we have

|I[0;a2,..,an]|/4 ≤ |I[0;1,a2..,an]| ≤ |I[0;a2,..,an]|.
Proof. This is a special case of [3, Lemma 3].
The distribution of log qn obeys in the limit a Gaussian law. This was

first proved by Ibragimov [10]. Then Philipp [18, Satz 3] obtained an er-
ror term of O(n−1/5), which was later improved by Mischyavichyus [16] to
O(n−1/2 log n). Morita [17, Theorem 8.1] obtained the optimal error term
O(n−1/2); a different proof was given by Vallée [20, Théorème 9]. This yields
the following lemma that ensures that there are many disjoint large cf-ary
subintervals of relative order n inside any given interval I.

We write L for Lévy’s constant π2/(12 log 2).
Lemma 2 ([3, Lemma 5]). There are positive constants K, C and a pos-

itive integer N1 such that for any cf-ary interval I and any integer n ≥ N1,
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the Lebesgue measure of the union of the cf-ary subintervals J of I of relative
order n such that

|I|
4
e−2nL−2C ≤ |J | ≤ 2|I|e−2nL+2C

is greater than K|I|/
√
n.

3.2. Length of continued fraction intervals with large discrep-
ancy. The following result on large deviations is essentially from Kifer, Peres
and Weiss [11, Corollary 3.2] but conditioned on the first r terms.

Lemma 3 ([3, Lemma 6]). Let I[a1,...,ar] be a cf-ary interval of order r,
and let v = v1 . . . vk be a word of length k over N. Then for every positive
real δ and every positive integer n,

|{x ∈ I[a1,...,ar] : D
cf-ary
v,n (T rx) > δ}| ≤ 6Me−

δ2n
2M |I[a1...,ar]|,

where
M = M(δ, k) = ⌈k − log(δ2/(2 log 2))⌉.

Recall that T is the Gauss map.

3.3. Discrepancy for continued fraction expansions. If w and u
are words, we write wu for their concatenation. The following lemma de-
scribes the change of discrepancy under concatenation.

Lemma 4 ([3, Lemma 7]). Let v = v1 . . . vk, w = a1 . . . an+k−1 and
u = b1 . . . bs+k−1 be finite words over N. Furthermore, let 0 < ϵ < 1.

(1) If Dcf-ary
v,n (w) < ϵ and Dcf-ary

v,s (u) < ϵ− (k − 1)/s then Dcf-ary
v,n+s(wu) < ϵ.

(2) If Dcf-ary
v,n (w) < ϵ and s/n < ϵ then

(a) for every 1 ≤ ℓ ≤ s, Dcf-ary
v,n+ℓ(wu) < 2ϵ,

(b) Dcf-ary
v,n+s(uw) < 2ϵ.

3.4. Length of b-ary subintervals. For any integer b ≥ 2, every b-ary
interval I of order k is of the form

I =

(
a

bk
,
a+ 1

bk

)
for some positive integer k and an integer a with 0 ≤ a < bk. We write
orderb(I) = k. If I is a union of two consecutive b-ary intervals of the same
order,

I =

(
a

bk
,
a+ 2

bk

)
,

we also write orderb(I) = k. We drop the index b if the base is clear. The
following is a trivial fact about lengths of b-ary subintervals.
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Lemma 5. Let b ≥ 2 and m ∈ N. Every interval I of length less than
b−m is contained in a b-ary interval of order m or in a union of two such
intervals.

3.5. Number of b-ary words with large discrepancy. In the con-
struction we use the following classical bound for the number of blocks of a
given length having larger discrepancy than a given value [9, Theorem 148].

Lemma 6 (Bernstein inequality). Let Ia1,...,ar be a b-ary interval. For
every positive integer n and every real δ such that 6/n ≤ δ ≤ 1/b we have

|{x ∈ Ia1,...,ar : D
b-ary
n (Sr

bx) > δ}| ≤ 2bn+1e−bδ2n/6|Ia1...,ar |.
Recall Sbx = bx− ⌊bx⌋.

3.6. Discrepancy for b-ary expansions. Since there are only finitely
many digits in the b-ary expansion, the bounds for the discrepancy are easier
in that case.

Lemma 7 ([1, Lemma 3.1]). Let u and v be blocks in base b and let ϵ > 0.

(1) If Db-ary
|u| (u) < ϵ and Db-ary

|v| (v) < ϵ, then Db-ary
|uv| (uv) < ϵ.

(2) If Db-ary
|v| (v) < ϵ and |u|/|v| < ϵ, then

(a) for every ℓ ≤ |u|, Db-ary
|v|+ℓ(vu) < 2ϵ,

(b) Db-ary
|v|+|u|(uv) < 2ϵ.

4. Proof of Theorem 1. We split the proof of Theorem 1 into three
parts. First we give the construction of x and y := 1/x − ⌊1/x⌋. Secondly,
we prove that x and 1/x are both continued fraction normal and absolutely
normal. Finally, we show that both numbers are computable and we give an
upper bound of the computational complexity.

4.1. The construction of x and y := 1/x − ⌊1/x⌋. For each, we
follow the construction of a continued fraction normal and absolutely normal
number of Becher and Yuhjtman [3], which in turn is based on the work [1] on
absolutely normal numbers. For a similar construction for a normal number
with respect to all Pisot bases see Madritsch, Scheerer and Tichy [15].

The constructions of x and y run simultaneously. To control continued
fraction normality we use cf-ary intervals and to control normality in each
integer base b we use b-ary intervals. For this we define a t-brick and a
refinement of a t-brick.

Definition (t-brick). For an integer t ≥ 2, a t-brick is a tuple (σcf , σ2,
. . . , σt) as follows:

– the interval σcf is cf-ary,
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– for each b = 2, . . . , t, σb is either a b-ary interval or the union of two
consecutive b-ary intervals of the same order,

– for each b = 2, . . . , t,

σcf ⊆ σb, |σcf | ≥
|σb|

4 · 16e4Cb
,

where C is the constant determined in Lemma 2.

Definition (Refinement of a t-brick). A t-brick σ⃗ = (σcf , σ2, . . . , σt) is
refined by a t′-brick τ⃗ = (τcf , τ2, . . . , τt′) if

– t′ = t or t′ = t+ 1,
– τcf ⊆ σcf ,
– for b = 2, . . . , t, τb ⊆ σb.

The refinement is said to have discrepancy less than ϵ if

– the new cf-word w corresponding to the inclusion τcf ⊆ σcf is such that
for every word v of t digits ≤ t, Dcf-ary

v,|w| (w) < ϵ− (t− 1)/|w|,
– for each b = 2, . . . , t the new word w in base b corresponding to the

inclusion τb ⊆ σb has simple discrepancy Db-ary
|w| (w) less than ϵ.

Notice that if t′ > t the definition of a refinement of a t-brick gives no
condition on τt′ .

Iteratively we define two sequences of refinements of t-bricks

σ⃗1, σ⃗2, . . . , Σ⃗1, Σ⃗2, . . .

for non-decreasing values of t. The intersection of all the intervals in the first
sequence defines the number x, whereas the intersection of all the intervals
in the second sequence defines y.

Before starting with the actual construction we provide a lemma ensuring
that the sequence of refinements of t-bricks exists.

4.1.1. The refinement lemma

Lemma 8. Let t ≥ 2 be an integer, let ϵ be a positive real less than 1/t
and let t′ be t or t+ 1. There is an integer function n0 = n0(t, ϵ) such that
for every n ≥ n0 there are positive integers ℓ1, . . . , ℓn satisfying the following:

(1) for any pair of t-bricks (σcf , σ2, . . . , σt) and (Σcf , Σ2, . . . , Σt) there are
refinements (τcf , τ2, . . . , τt′) and (Tcf , T2, . . . , Tt′), both with discrepancy
less than ϵ,

(2) if σcf = [1, a2, . . . , aN ] and Σcf = [a2, . . . , aN ] then

τcf = [1, a2, . . . , aN , ℓ1, . . . , ℓn] and Tcf = [a2, . . . , aN , ℓ1, . . . , ℓn].

Proof. First, we assume that t′ = t.
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Length of τcf and Tcf . For a cf-interval α and a positive integer n consider
the finite set In(α) of cf-ary subintervals A of α of relative order n such that

(1) 1
4e

−2nL−2C ≤ |A|/|α| ≤ 2e−2nL+2C .

Let K,C,N1 be the constants provided by Lemma 2. Then, if n ≥ N1,
|
⋃

A∈In(α)A|
|α|

≥ K√
n
.

For each n, consider the sets In(σcf) and In(Σcf). Note that by our choice
of σcf and Σcf these sets have the same cardinality and there is a one-to-
one correspondence between the elements by adding the digit 1 to those
in In(Σcf). At the end of the proof we will determine a value n0 for n and
we will choose τcf in In(σcf) and Tcf in In(Σcf) such that

1
4e

−2n0L−2C |σcf | ≤ |τcf | ≤ 2e−2n0L+2C |σcf |,
1
4e

−2n0L−2C |σcf | ≤ |Tcf | ≤ 2e−2n0L+2C |Σcf |.
And by Lemma 1 we have

|Tcf |/4 ≤ |τcf | ≤ |Tcf |.

Length of τb and Tb. For each b = 2, . . . , t we set

mb = orderb(Tb) = orderb(τb).

By the definition of a t-brick we have

(2) |Tcf | ≤ b−mb .

We choose mb as the largest integer such that

2e−2nL+2C |Σcf | ≤ b−mb .

Thus
b−mb−1 < 2e−2nL+2C |Σcf |.

Using the left inequality in (1) we obtain

(3) b−mb−1 < 2e−2nL+2C |Σcf | = 8e4C 1
4e

−2nL−2C |Σcf | ≤ 8e4C |I|.
For every i ∈ In(σcf) and for the corresponding I ∈ In(Σcf) we have

|I|/4 ≤ |i| ≤ |I|
and from (3) we obtain

(4) b−mb−1 < 4 · 8e4C |i|.
Then, for each i ∈ In(σcf) and for the corresponding I ∈ In(Σcf) we deter-
mine τ ib and T I

b as the b-ary intervals of order mb or the union of two consecu-
tive b-ary intervals of order mb that contain i and I respectively (Lemma 5)
with the same choice for τ ib and T I

b . Thus, either |τ ib | = |T I
b | = b−mb or
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|τ ib | = |T I
b | = 2b−mb . Putting together (2)–(4) we obtain

(5)
1

2 · 8e4Cb
≤ |I|

|T I
b |

≤ 4|i|
|τ ib |

.

We give bounds on the number of digits we add in the b-ary expansion.
For this we write

nb = order(Tb)− order(Σb).

Since
|Σcf | ≤ |Σb| ≤ |Σcf |2 · 8e4Cb

and by Lemma 5, Σb consists of one or two b-ary intervals,

order(Σb) = − logb(|Σb|) or order(Σb) = − logb(|Σb|/2),
we have

logb(|Σcf |/2) ≤ − order(Σb) ≤ logb(|Σcf |8e4Cb).
And since

2e−2nL+2C |Σcf | ≤ b−mb ≤ b · 2e−2nL+2C |Σcf |
we have

logb(2e
−2nL+2C |Σcf |) ≤ − order(Tb) = −mb ≤ logb(b · 2e−2nL+2C |Σcf |).

For the number nb of digits we add to the b-ary expansion, we obtain

2nL logb e− logb(4be
2C) ≤ order(Tb)− order(Σb) = nb

≤ 2nL logb e+ logb(4e
2Cb).

Thus,

(6) 2n
L

log b
− 2C

log b
− 3 ≤ nb ≤ 2n

L

log b
+

2C

log b
+ 3.

Bad zones. We must pick one interval i in In(σcf) and one interval I in
In(Σcf) in a zone of low discrepancy. This is possible because the measure
of the zones of large discrepancy decreases at an exponential rate in n, while
the measure of In(σcf) and In(Σcf) decreases only as K/

√
n. For each n let

B0
b,σb,mb,ϵ

and B0
b,Σb,mb,ϵ

be the sets of reals in the b-ary subintervals of σb and Σb respectively of
order mb with b-discrepancy greater than ϵ. And let

Bb,σb,mb,ϵ and Bb,Σb,mb,ϵ

be the union of B0
b,σb,mb,ϵ

and B0
b,Σb,mb,ϵ

with those numbers lying in a
b-ary interval of the same order that is a neighbour to one in B0

b,σb,mb,ϵ

and B0
b,Σb,mb,ϵ

respectively.
Recall that mb is the order of τb and Tb, which we reach by adding nb

digits to the intervals σb and Σb, respectively. To define τb we need to add
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nb digits avoiding b-discrepancy greater than ϵ. Thus, using the conditions
6/nb ≤ ϵ ≤ 1/b, Lemma 6 provides the estimate

|Bb,σb,mb,ϵ|
|σb|

=
|Bb,Σb,mb,ϵ|

|Σb|
≤ 6be−bϵ2nb/6.

Notice that the factor 6 comes from considering the b-ary intervals in B
which are those in B0 together with their neighbour b-ary intervals to the
left and to the right. By (5),

|σb| ≤ 4|σcf | · 2 · 8e4Cb, |Σb| ≤ |Σcf | · 2 · 8e4Cb
and from (6) we know

nb ≥ 2n
L

log b
− 2C

log b
− 3.

We obtain
|Bb,σb,mb,ϵ|

|σcf |
≤

4|Bb,Σb,mb,ϵ|
|Σcf |

≤ A(b)e−bϵ2Ln/(3 log b),

where
A(b) = 384e4cb2e

bϵ2( C
3 log b

+ 1
2
)
.

Consider the bad zones with respect to the continued fraction expansion.
For each n, let

B̃t,Σcf ,n,ϵ and B̃t,σcf ,n,ϵ

be the set of reals x in the respective cf-ary subintervals of Σcf and σcf of
relative order n such that for some word of length t of digits less than or
equal to t the cf-discrepancy of x is greater than ϵ− (t− 1)/n.

With the condition 2(t− 1)/ϵ ≤ n, it suffices to consider cf-discrepancies
greater than ϵ/2. Then Lemma 3 gives the estimate

|B̃t,Σcf ,n,ϵ|
|Σcf |

=
|B̃t,σcf ,n,ϵ|

|σcf |
≤ tt6Me−

(ϵ/2)2n
2M ,

where

M =

⌈
t− log

(
(ϵ/2)2

2 log 2

)⌉
.

Find n0 large enough. We choose n0 such that the measure of the union
of the bad zones of σcf and Σcf as well as the bad zones of σb and Σb for
b = 2, . . . , t is small enough so that we can find an interval in In(σcf) and
an interval in In(Σcf) outside the bad zones and defined by appending the
same n0 cf-digits to the cf-expansion of Σcf and σcf .

We let n0 be the least integer n such that for each b = 2, . . . , t,

A(b)e−bϵ2Ln/(3 log b) <
1

8

K

t
√
n
, 6Mtte−

(ϵ/2)2n
2M <

1

8

K

t
√
n
,

where the factor 1/8 ensures that
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(1) less than 1/8 of the measure of In(σcf) is covered with bad zones with
respect to the continued fraction expansion of σcf ;

(2) less than 1/8 of the measure of In(σcf) is covered with the projection
of the bad zones with respect to the corresponding continued fraction
expansion of Σcf ;

(3) less than 1/8 of the measure of In(σcf) is covered with bad zones with
respect to the b-ary expansion inside σcf and inside Σcf ;

(4) at least 5/8 of the measure of In(σcf) is free of bad zones;
(5) the above four points also hold on interchanging σcf with Σcf .

In turn, this ensures the existence of n digits ℓ1, . . . , ℓn such that

• if σcf = [1, a2, . . . , aN ] and Σcf = [a2, . . . , aN ] then

τcf = [1, a2, . . . , aN , ℓ1, . . . , ℓn] and Tcf = [a2, . . . , aN , ℓ1, . . . , ℓn],

• τcf ∈ In(σcf), Tcf ∈ In(Σcf),
• τcf and Tcf are not in bad zones.

So, we need to find solutions to
√
n e−rn ≤ γ

for certain values of r and γ. Since x < ex/2 for every x > 0, we have
√
n e−rn/2 ≤ 1

r
rne−rn/2 <

1

r
ern/2−rn/2 =

1

r
.

Thus, we need n such that
e−rn/2 ≤ γr

for each of the needed values r and γ. Hence, n has to be as large as

−(2/r) log(γr)

for each of the needed values r and γ. Letting

r(1) = ϵ2/(8M) and γ(1) = K/(6Mtt+1)

and for b = 2, . . . , t,

r(b) = bϵ2L/(3 log b) and γ(b) = K/(t A(b)),

taking

n = max {−(2/r(b)) log(γ(b)r(b)) : 2 ≤ b ≤ t} ∪
{
6

ϵ
,
2(t− 1)

ϵ
,N1

}
(recall that N1 is the constant already fixed at the beginning of this proof,
provided by Lemma 2) completes the proof in case t′ = t.

The case t′ = t+1 follows easily by taking first t-bricks τ⃗ = (τcf , τ2, . . . , τt)

and T⃗ = (Tcf , T2, . . . , Tt) refining σ⃗ and Σ⃗ respectively with discrepancy
less than ϵ. Since the refinement requires no discrepancy condition on τt+1

or Tt+1, we only need to take (t+1)-ary intervals τt+1 and Tt+1 of order mt+1,
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or a union of two consecutive such intervals so that |τt+1| = |Tt+1|, τcf ⊆ τt+1,
Tcf ⊆ Tt+1 where mt+1 is maximal such that |Tcf | ≤ (t+ 1)−mt+1 . Applying
Lemma 5 and using |τcf | ≤ |Tcf | we obtain

|τcf | ≥
|τt+1|

2(t+ 1)
and |Tcf | ≥

|Tt+1|
2(t+ 1)

.

This ensures that T⃗ = (Tcf , T2, . . . , Tt+1) and τ⃗ = (τcf , τ2, . . . , τt+1) are
(t+ 1)-bricks.

4.1.2. The iterative construction. For simplicity, we fix x in the interval
(1/2, 1) so that the integer part of x is 0, the first digit in the continued
fraction expansion of x is 1, and 1/x is in (1, 2). Since ⌊1/x⌋ = 1 and y :=
x− ⌊1/x⌋, it follows that y ∈ (0, 1).

We define a sequence of nested intervals for x and another sequence
of nested intervals for y. The construction is done step-by-step. At each
step, the subintervals for x and y to be in are chosen independently of the
subintervals chosen in previous steps. These are the largest that avoid the
bad zones, which means that they are the largest that avoid cf-ary and b-ary
intervals corresponding to words with large discrepancy.

We set the largest integer base t, the discrepancy value ϵ and the relative
order n of the new cf-ary interval as functions of s. In particular, we define,
for every positive integer s,

t(s) = max(2, ⌊ 5
√
log s⌋), ϵ(s) = 1/t(s).

Clearly t(s) is non-decreasing unbounded and ϵ(s) is non-increasing and goes
to zero. Consider the function n0(ϵ(s), t(s)) given by Lemma 8 below and
notice that n0(ϵ(s), t(s)) = O(t(s)4 log(t(s))). Let nstart be the minimum
positive integer such that for every positive s,

⌊log s⌋+ nstart ≥ n0(ϵ(s), t(s)),

and define
n0(s) = ⌊log s⌋+ nstart.

The following is unchanged in all steps s of the construction for σ⃗s =
(σcf , σ2, . . . , σt(s)) and Σ⃗s = (Σcf , Σ2, . . . , Σt(s)):

|Σcf |/4 ≤ |σcf | ≤ |Σcf |,

and for each b = 2, . . . , t(s),

|σb| = |Σb|,
σcf ⊆ σb, |σcf | ≥ |σb|/(4 · 16e4Cb),
Σcf ⊆ Σb, |Σcf | ≥ |Σb|/(16e4Cb).
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Initial step, s = 1:

σ⃗1 = (σcf , σ2) with σ2 = σcf = (1/2, 1) = I[0;1],

Σ⃗1 = (Σcf , Σ2) with Σ2 = Σcf = (0, 1) = I[0;].

Iterative step, s > 1: Assume we already have two bricks

σ⃗s−1 = (σcf , σ2, . . . , σt(s−1)) and Σ⃗s−1 = (Σcf , Σ2, . . . , Σt(s−1)).

We choose σ⃗s = (τcf , τ2, . . . , τt(s)) and Σ⃗s = (Tcf , T2, . . . , Tt(s)) such that if
σcf = [a1, . . . , aN ] and Σcf = [a2, . . . , aN ] then

τcf = [a2, . . . , aN , aN+1, . . . , aN+n0(s)],

Tcf = [a1, . . . , aN , aN+1, . . . , aN+n0(s)]

are the leftmost cf-subintervals of σcf and Σcf of relative order n0(s) en-
suring that σ⃗s refines σ⃗s−1 and Σ⃗s refines Σ⃗s−1, both with discrepancy
less than ϵ(s).

4.2. Correctness of the construction. The existence of the sequences
σ⃗1, σ⃗2, . . . and Σ⃗1, Σ⃗2, . . . is guaranteed by Lemma 8. Let x and y be defined
by the intersection of all the intervals in the respective sequences.

4.2.1. x and 1/x are continued fraction normal. The construction en-
sures that, removing the first digit in the continued fraction expansion of x,
the continued fractions of x and y are identical. Since y = 1/x − ⌊1/x⌋ =
1/x− 1, to show that x and 1/x are continued fraction normal it suffices to
show that x and y are continued fraction normal.

Let v = v1 . . . vm be a word of length m over N and let ϵ̃ > 0. Choose s0
so that m ≤ t(s0), max {v1, . . . , vm} ≤ t(s0) and ϵ(s0) ≤ ϵ̃/4. At each step
s after s0, the continued fraction expansions of x and y are constructed by
appending a word us such that |us| = n0(s) and

Dcf-ary
v,|us|(us) < ϵ(s)− t(s− 1)− 1

|us|
< ϵ(s)− m− 1

|us|
.

By Lemma 4(1) applied several times, for every s ≥ s0 we obtain

Dcf-ary
v,|us0 ...us|(us0us0+1 . . . us) < ϵ(s0).

By Lemma 4(2b) there is s1 sufficiently large such that for every s ≥ s1,

Dcf-ary
v,|u1...us|(u1 . . . us) < 2ϵ(s0).

Since n0(s) grows logarithmically, the inequality

n0(s) ≤ 2ϵ(s0)
s−1∑
j=1

n0(j)
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holds from a certain point on. Hence, by Lemma 4(2a), for every s sufficiently
large and every ℓ such that |u1 . . . us−1| < ℓ ≤ |u1 . . . us|,

Dcf-ary
v,ℓ (u1 . . . us) < 4ϵ(s0) < ϵ̃.

It follows that x and y are continued fraction normal.

4.2.2. x and 1/x are absolutely normal. Absolute normality follows by
showing simple normality to all integer bases ≥ 2. We prove that x is simply
normal to all integer bases b ≥ 2; the case of y is similar. Since 1/x =
⌊1/x⌋+ y = 1+ y, we conclude that 1/x is also simply normal to all integer
bases b ≥ 2.

Fix b ≥ 2 and let ϵ̃ > 0. We choose s0 such that t(s0) ≥ b and ϵ(s0) ≤ ϵ̃/4.
At each step s after s0 the expansion of x in base b was constructed by
appending blocks us such that Db-ary

|us| (us) < ϵ(s0). Thus, by Lemma 7(1), for
any s > s0,

Db-ary
|us0 ...us|(us0 . . . us) < ϵ(s0).

Applying Lemma 7(2a), we obtain s1 such that for any s > s1,

Db-ary
|u1...us|(u1 . . . us) < 2ϵ(s0).

Let nb(j) be the relative order of the b-interval of σ⃗j with respect to the
b-interval of σ⃗j−1. The inequalities

2n0(j)
L

log b
− 2C

log b
− 3 ≤ nb(j) ≤ 2n0(j)

L

log b
+

2C

log b
+ 3,

provided by (6) in the proof of Lemma 8, tell us that nb(j) grows logarith-
mically. Then, for s sufficiently large,

nb(s) ≤ 2ϵ(s0)
s−1∑
j=1

nb(j).

By Lemma 7(2b) we conclude that for s sufficiently large and |u1 . . . us−1| ≤
ℓ ≤ |u1 . . . us|,

Db-ary
ℓ (u1 . . . us) < 4ϵ(s0) < ϵ̃.

Thus x is simply normal to base b, for every b ≥ 2.

4.3. x and 1/x are efficiently computable. A real number is com-
putable if, for some integer b ≥ 2, there is an algorithm that produces
the consecutive digits of its b-ary expansion. In addition to Lévy’s constant
L = π2/(12 log 2), our construction of x and y depends on three constants,
K, C and N1 indicated in Lemma 2. Since these three constants can be
taken to be integers (and they need not be minimal), there is an algorithm
that, for any given integer b ≥ 2, produces the b-ary expansion of x and 1/x.
Therefore, x and 1/x are computable.
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The computational complexity of our construction is exactly that in [3,
Section 3.3]. We follow that analysis verbatim. We count mathematical op-
erations and do not count how many elementary operations are implied by
each of them, meaning that we neglect the computational cost of performing
arithmetical operations with arbitrary precision.

At the beginning of step s the current t-bricks are
σ⃗s−1 = (σcf , σ2, . . . , σt(s−1)) and Σ⃗s−1 = (Σcf , σ2, . . . , σt(s−1)).

We assume that at step s the construction has direct access to the left
endpoint of each of σcf , Σcf , σb and Σb for b = 2, . . . , t(s−1), as well as their
lengths. The construction divides σcf and Σcf into

⌊4e2n(s)L+2c⌋+ 1

equal intervals. In order to find the demanded t-bricks inside σcf and in-
side Σcf we have to inspect, in the worst case, all the candidate endpoints.
Since n(s) = ⌊log s⌋ + nstart, the total number T of candidate endpoints in
each of σcf and Σcf is

⌊4e2(⌊log s⌋+nstartL+2c⌋.
Thus, the number T of endpoints is O(s2L). We need to compute n(s) digits
of the continued fraction expansion of each candidate endpoint in σcf and in
Σcf and determine if its discrepancy is suitable and if the interval length is
suitable. Define

N(s) =
s∑

i=1

n(i).

Let zcf = [1, a1, . . . , aN(s−1)] and Zcf = [a1, . . . , aN(s−1)] be the left endpoints
of σcf and Σcf respectively. Furthermore let zb and Zb be the left endpoints
of σb and Σb respectively, for b = 2, . . . , t(s− 1). For j = 0, . . . , T − 1, let fj
be the positive integers such that fj = |σcf |j/T .

We write each candidate endpoint ej and Ej , for j = 0, . . . , T − 1, as

ej = zcf + fj and Ej = Zcf + fj .

Then the continued fraction expansion of ej is [1, a1, . . . , aN(s−1)] concate-
nated with the continued fraction expansion of fj . Similarly, the continued
fraction expansion of Ej is [a1, . . . , aN(s−1)] concatenated with the continued
fraction expansion of fj . We only need n(s) digits of the continued fraction
expansion of fj , which we may obtain by running the Euclidean algorithm
on pairs of integers u, v such that u/v = fj for n(s) iterations. This requires
O(n(s)) mathematical operations.

Let Icf(σcf) and Icf(Σcf) be the cf-ary subintervals of σcf and Σcf respec-
tively of relative order n(s). For each of these, the computation of its length
requires computing the convergents qN(s−1)+1, . . . , qN(s−1)+n(s). For each in-
terval, checking that the length is suitable requires O(n(s)) mathematical
operations.
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Now we write each endpoint ej and Ej , for j = 0, . . . , T − 1, as
ej = (zcf − zb) + zb + fj and Ej = (Zcf − Zb) + Zb + fj .

Then the b-ary expansion of ej consists of the b-ary expansion of zb concate-
nated with the b-ary expansion of (zcf − zb) + fj , and similarly for the b-ary
expansion of Ej . By the proof of Lemma 8, for each base b, we just need
nb digits of this expansion and nb is O(n(s)). The conversion of the rational
values (zcf − zb)+ fj and (Zcf −Zb)+ fj to base b can be done in a constant
number of operations.

Finally, we need to check if the discrepancy of each of the t blocks wit-
nessed by ej and Ej is less than ϵ(s). This can be done by a number of
comparisons that is linear in the length of the block plus a constant number
of operations, hence in O(n(s)) operations.

We conclude that at step s in the worst case the number of required
mathematical operations to choose σ⃗s and Σ⃗s is

O(T (n(s) + n(s) + t(s) · constant + t(s)n(s))).

Since T = O(s2L), n(s) = O(log(s)), and t(s) = O(log1/5(s)), the total
number of mathematical operations at step s is

O(s2L log6/5(s)).

After the first k steps the number of digits of the continued fraction
expansions of x and y obtained is respectively N(k)+1 and N(k), which are
both greater than k. The number of mathematical operations performed by
the construction is of the order of

k∑
s=1

s2L log6/5(s) ≤ k2L+1 log6/5(k),

and this last expression is O(k4). This completes the proof of Theorem 1.
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Abstract (will appear on the journal’s web site only)
In 2008 or earlier, Michel Mendès France asked for an instance of a real

number x such that both x and 1/x are simply normal to a given integer
base b. We give a positive answer to this question by constructing a number x
such that both x and its reciprocal 1/x are continued fraction normal as well
as normal to all integer bases greater than or equal to 2. Moreover, x and 1/x
are computable, the first n digits of their continued fraction expansion can
be obtained in O(n4) mathematical operations.
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