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Representation of real numbers

A base is an integer b greater than or equal to 2.

The expansion of a real number x in base b is a sequence a1a2a3 . . . of integers
from {0, 1, . . . , b− 1} such that

x = bxc+
∑
k≥1

ak
bk

= bxc+ 0.a1a2a3 . . .

and the sequence a1a2a3 . . . does not end with a tail of b− 1.
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Normal numbers

Normality is the most basic form of randomness for real numbers.
It was defined by Émile Borel in 1909.
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Normal numbers

Definition (Borel, 1909)

A real x is simply normal to base b if in the expansion of x in base b, each digit
0, . . . , b− 1 occurs with limiting frequency equal to 1/b.

A real x is normal to base b if x is simply normal to bases b1, b2, b3, . . .

A real x is absolutely normal if x is normal to every base. Hence, a real x is
absolutely normal if it is simply normal to all bases b.

Equivalently, x is normal to base b if every block of digits occurs in the expansion of x in base b

with limiting frequency equal to 1/bk, where k is the block length.
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Examples and counterexamples

I 0.010010001000010000 . . . is not simply normal to base 2.

I 0.01010101010101010101 . . . is simply normal to base 2 but not to base 4.

I Each number that is simply normal to base bk is simply normal to base b.

I Each rational number is not simply normal to some base.

I Each number in the Cantor middle third set is not simply normal to base 3.

I 0.123456789101112131415 . . . is normal to base 10 (Champernowne, 1933).

It is unknown if it simply normal to bases that are not powers of 10.

I Stoneham number α2,3 =
∑
k≥1

1

3k 23k
is normal to base 2 but not simply

normal to base 6 (Bailey, Borwein, 2012).
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Absolutely normal numbers

Theorem (Borel 1909)

The set of absolutely normal numbers in the unit interval has Lebesgue
measure one.

He asked for one example.
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Absolutely normal numbers

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.
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Absolutely normal, non-computable constructions
Bulletin de la Société Mathématique de France (1917) 45:127–132; 132–144
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Computable absolutely normal

Definition (Turing 1936)

A real number x is computable if there is a program that produces the
expansion of x in some base.

Theorem (Turing 1937?)

There is a computable absolutely normal number.

Turing’s algorithm has exponential time complexity: to produce the n-th digit
in the expansion of x in base 2 it performs a number of operations that is
exponential in n.

Corrected and completed in Becher, Figueira and Picchi, 2007.
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Alan Turing, A note on normal numbers, 1937? Collected Works, Pure Mathematics, J.L.Britton

ed.1992. 117-119. Notes of editor J.L. Britton, 263-265. North Holland, 1992.
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Letter exchange between Turing and Hardy (AMT/D/5)

                        June 1
Dear Turing,

I have just came across your letter (March 28) which I seem to 
have put aside for reflection and forgotten.

I have a vague recollection that Borel says in one of his books 
that Lebesgue had shown him a construction. 
Try Leçons sur la théorie de la croissance (including the 
appendices), or the productivity book (written under his 
direction by a lot of people, but including one volume on 
arithmetical prosy, by himself).

Also I seem to remember vaguely that when Champernowne 
was doing his stuff I had a hunt, but could not find nothing 
satisfactory anywhere. 

Now, of course, when I do write, I do so from London, where I 
have no books to refer to. But if I put it off till my return, I may 
forget again.  

Sorry to be so unsatisfactory. But my 'feeling' is that Lebesgue 
made a proof which never got published.

Yours sincerely,
                                               G.H. Hardy
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General construction of a computable real number

Consider a computable sequence of intervals I1, I2, I3 . . . with rational
endpoints, nested, lengths go to 0.

This gives a construction of the unique computable real x in
⋂
i≥1 Ii.

Turing uses dyadic intervals. To determine I1, I2, I3 . . . his strategy is to
“follow the measure”. The computed number is the trace of left/right choices.
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Computing absolutely normal numbers

Suppose x is a real and a1a2 . . . is its expansion of x in base b.

Then, x is simply normal to base b if for each d ∈ {0, . . . , b− 1},

lim
n→∞

∣∣∣∣ |a1 . . . an|dn
− 1

b

∣∣∣∣ = 0

Equivalenlty,

∀ε ∃n0 ∀n ≥ n0

∣∣∣∣ |a1 . . . an|dn
− 1

b

∣∣∣∣ < ε.

A real x is absolutely normal if it is simply normal to all bases b.
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Computing absolutely normal numbers

Let n be the step number.

tn increasing in n, is the maximum base to look at step n.
Nn is the number of digits in each expansion to look at step n.
εn is the tolerated difference at step n.

Bad(n) =

tn⋃
b=2

b−1⋃
d=0

Nn⋃
n=n0(b)

{
x ∈ (0, 1) :

∣∣∣∣ |a1 . . . an|dn
− 1

b

∣∣∣∣ ≥ εn}

Bad(n) is a union of finitely many intervals with rational endpoints.
The set ⋃

n≥1

Bad(n)

includes all non normal numbers. It can be proved that it has small measure.
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Computing absolutely normal numbers

Define I0, I1, I2 . . . such that |In| = 2−n.

Initial step: I0 = (0, 1)

Inductive step n: Divide In−1 in two halves, I left
n−1 and I right

n−1.

If I left
n−1 \Bad(n) is “big enough” let In = I left

n−1

Otherwise let In = I right
n−1

The computed real number x is the trace of the left/right choice at each step.

x ∈
⋂
n≥0

In and x 6∈
⋃
n≥1

Bad(n)

Then x is absolutely normal.
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Computable absolutely normal numbers

Theorem (Lutz, Mayordomo 2013; Figueira, Nies 2013; Becher, Heiber, Slaman 2013)

There is a polynomial-time algorithm to compute an absolutely normal number.

Output of algorithm Becher, Heiber and Slaman, 2013 programmed by Martin Epszteyn.

0.4031290542003809132371428380827059102765116777624189775110896366...

Lutz and Mayordomo (2016) gave an algorithm with nearly linear time.
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Speed of convergence to normality

Normality is a property that holds in the limit. How fast can it be?

Speed of convergence to normality is formalized in the theory of uniform
distribution modulo 1.

Theorem (Wall 1949)

A real x is normal to base b if and only if (bkx)k≥0 is uniformly distributed
modulo one for Lebesgue measure.
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Normality as uniform distribution modulo 1

For a sequence (xk)k≥1 of real numbers in the unit interval the discrepancy of
its first N terms is

DN ((xk)k≥1) = sup
0≤u<v≤1

∣∣∣∣#{k : 1 ≤ k ≤ N and u ≤ xk < v}
N

− (v − u)
∣∣∣∣ .

A sequence (xk)k≥1 of real numbers in the unit interval is uniformly distributed if

lim
N→∞

DN ((xk)k≥1) = 0

Schmidt (1974) showed that for every (xk)k≥1 there are infinitely many N such that

DN ((xk)k≥1) ≥
logN

100N
.

Some Van der Corput sequences achieve this discrepancy bound.
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The discrepancy estimate of normal numbers

Thus, a real x is normal to base b if and only if (bkx)k≥1 is u.d. modulo 1.
Hence, writing {x} = x− bxc, a real x is normal to base b if and only if

lim
N→∞

DN ({bkx}k≥0) = 0.
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The discrepancy estimate of almost all normal numbers

Theorem (Gál and Gál 1964; Philipp 1975, Fukuyama 2008)

Let θ be a real greater that 1.
For almost all reals x, there is N0(θ) such that for all greater N ,

DN ({θkx}k≥0) < Cθ

√
log logN√

N
,

and this bound is sharp.

In case θ is an integer greater than or equal to 2,

Cθ =


√
84/9, if θ = 2√
2(θ + 1)/(θ − 1)/2, if θ is odd√
2(θ + 1)θ(θ − 2)/(θ − 1)3/2, if θ ≥ 4 is even.
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An instance with discrepancy below the average

Theorem (Aistleitner, Becher, Scheerer and Slaman 2017)

There is an algorithm to compute a real x such that for each integer b ≥ 2
there is N0(b) such that for every N ≥ N0(b),

DN ({bkx}k≥0) <
Cb√
N
.

For the constant Cb we can take 3433 b.

The algorithm computes the first n digits of the expansion of x in base 2 after
exponential in n mathematical operations.

It was not known that such an instance existed.
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Normal numbers and their discrepancy estimate

For just one base b Levin 1999 constructed a real x such that

DN ({bkx}k≥0) is O

(
log2(N)

N

)
.
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Open questions

I Asked by Korobov (1955): For a fixed integer b ≥ 2, what is the
function ψ(N) with maximal speed of decrease to zero such that there is
a real number x for which

DN ({bkx}k≥0) = O (ψ(N)) as N →∞?

I Asked by Bugeaud (2017): Is there a number x satisfying the minimal
discrepancy estimate for normality not only in one fixed base, but in all
bases at the same time?

I Is it possible to construct one instance in polynomial time?

I Are there Martin-Löf random with minimal asymptotic DN ({bkx}k≥0)?
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Normality to different bases

Almost all numbers in Cantor ternary set are normal to base 2.

Two integers are multiplicatively dependent if one is a rational power of the other.
Not perfect powers {2, 3, 5, 6, 7, 10, 11, . . .} are pairwise mutually independent.

Theorem (Cassels 1959; Schmidt 1961/1962; Becher, Slaman 2013)

For any subset S of the multiplicative dependence classes, there is a real x
which is normal to the bases in S and not simply normal to the bases in the
complement of S. Furthermore, the real x is computable from S.
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Simple normality to different bases

For each fixed base b,

If x is simply normal to bm and `|m then x is simply normal to b`.

If x is simply normal to infinitely many powers of b then x is simply normal to
all powers of b.

Verónica Becher Computing absolutely normal numbers 24 / 33



Simple normality to different bases

For each fixed base b,

If x is simply normal to bm and `|m then x is simply normal to b`.

If x is simply normal to infinitely many powers of b then x is simply normal to
all powers of b.

Verónica Becher Computing absolutely normal numbers 24 / 33



Simple normality to different bases

For each fixed base b,

If x is simply normal to bm and `|m then x is simply normal to b`.

If x is simply normal to infinitely many powers of b then x is simply normal to
all powers of b.

Verónica Becher Computing absolutely normal numbers 24 / 33



Simple normality to different bases

Theorem (Becher, Bugeaud, Slaman 2013)

Let f be any function from the multiplicative dependence classes to their
subsets such that

I for each b, if bkm ∈ f(b) then bk ∈ f(b)
I if f(b) is infinite then f(b) = {bk : k ≥ 1}.

Then, there is a real x which is simply normal to exactly the bases specified by f .
Furthermore, the real x is computable from the function f .

The theorem gives a complete characterization (necessary and sufficient conditions).

Verónica Becher Computing absolutely normal numbers 25 / 33



Absolutely normal and continued fraction normal

For a real number x in the unit interval, the continued fraction expansion of x
is a sequence of positive integers a1, a2, . . ., such that

x = bxc+
1

a1 +
1

a2 +
1

. . . +
1

an +
1

. . .

we write [bxc; a1, a2, . . .], or simply, [a1, a2, . . .] in case x is in the unit interval.
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Absolutely normal and continued fraction normal

The Gauss map T is a function from real numbers in the unit interval to real
numbers in the unit interval defined by

T (0) = 0 and T (x) =
1

x
−
⌊
1

x

⌋
.

If [a1, a2, . . .] denotes the continued fraction expansion of x, then
Tn(x) = [an+1, an+2, . . .] and an = b1/Tn−1(x)c, for n ≥ 1.

The map T possesses an invariant ergodic measure, the Gauss measure µ,
which is absolutely continuous with respect to Lebesgue measure; for a
Lebesgue measurable set A,

µ(A) =
1

log 2

∫
A

1

1 + x
dx.

where log denotes the logarithm in base e.
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Absolutely normal and continued fraction normal

Definition
A real number is continued fraction normal if every block of integers occurs in
the continued fraction expansion with the asymptotic frequency determined by
the Gauss measure.

An application of Birkhoff’s Ergodic Theorem yields that almost all reals (in
the sense of Lebesgue measure) are continued fraction normal.

Examples: Postnikov and Pyatetskii, 1957; Adler, Keane and Smorodinsky,
1981; Vandehey, 2017.

The continued fraction of e is [2; 1, 2, 1, 1, 4, 1, 1, 6, . . .]. It is the concatenation
of the pattern (1m1), for all even m in increasing order, hence not continued
fraction normal.
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Absolutely normal and continued fraction normal

Theorem (Scheerer 2016; Becher and Yuhjtman 2017)

There is an algorithm that computes a number that is absolutely normal and
continued fraction normal.

Exponential time algorithm, Scheerer (2016);
Polynomial time O(n4), Becher and Yuhjtman (2017).
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Normality together with other properties

A real x is normal to base b if and only if (bkx)k≥0 is u.d. modulo 1 for
Lebesgue measure.

Belief
Typical elements of well-structured sets, with respect to appropriate measures,
are absolutely normal, unless the set displays an obvious obstruction.

For non-zero dimensional sets, Hochman and Shmerkin (2015) give geometrical
conditions on a measure µ so that µ-almost all numbers are normal to a given
base.
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Measures whose Fourier transform decays quickly

A real x is normal to base b iff (bkx)k≥1 is u.d. modulo 1 iff (Weyl’s criterion)
for every non-zero integer t,

lim
n→∞

1

n

n−1∑
k=0

e2πitb
kx = 0.

Lemma (application of Davenport, Erdős, LeVeque’s Theorem, 1963)

Let µ be a measure whose Fourier transform decays quickly, let I be an interval
and let b a base. If for every non-zero integer t,

∑
n≥1

1

n

∫
I

∣∣∣∣∣ 1n
n−1∑
k=0

e2πitb
kx

∣∣∣∣∣
2

dµ(x) <∞

then for µ-almost all x in interval I are normal to base b.
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Absolutely normal Liouville numbers

Kaufman (1981) defined for each a greater than 2, a measure on Jarńık’s
fractal for a whose Fourier transform decays quickly.

Bluhm (2000) defined a measure such that it is supported by the Liouville
numbers and its Fourier transform decays quickly.

Theorem (Bugeaud 2002)

There is an absolutely normal Liouville number.

Theorem (Becher, Heiber, Slaman 2014)

There is a computable absolutely normal Liouville number.
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Summary

I There are nice examples of numbers that have been proved to be normal
to one given base.

I All examples of absolutely normal numbers have the form of
constructions. In some cases, fast computation.

I Problem: consider discrepancy DN ({bkx}k≥0).
Currently: fast computation at the expense of large discrepancy.

I Some constructions for normality together with null properties.

Tool : measure whose Fourier transform decays quickly, effectivized.

I Some constructions for normality together with almost-everywhere
properties. Tool: Large deviations, with all constants.

I Main open problem: normality together with pseudo-randomness.

The End
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