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Representation of real numbers in integer bases

A base is an integer b greater than or equal to 2.

The expansion of a real number x in base b is a sequence a1a2a3 . . . of
integers from {0, . . . , b− 1} such that

x = bxc+
∑
k≥1

ak
bk

= bxc+ 0.a1a2a3 . . .

and the sequence a1a2a3 . . . does not end with a tail of b− 1.
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Normal numbers

A base is an integer b greater than or equal to 2.

Definition (Borel, 1909)

A real x is simply normal to base b if in the expansion of x in base b,
each digit 0, . . . b− 1 occurs with limiting frequency equal to 1/b.

A real x is normal to base b if x is simply normal to bases b1, b2, b3, . . .

A real x is absolutely normal if x is normal to every base.

Hence, A real x is absolutely normal if it is simply normal to every base.

Theorem (Wall 1949)

A real x is normal to base b if and only if (bkx)k≥0 equidistributes
modulo one for Lebesgue measure.
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Examples and counterexamples

I 0.01010010001000010000 . . . is not simply normal to base 2.

I 0.0101010101010101010 . . . is simply normal to base 2 but not to 4.

I Each number simply normal to base bk is simply normal to base b.

I Each rational number is not simply normal to some base.

I Each number in Cantor middle third set is not simply normal to
base 3

I 0.1234567891011121314 . . . is normal to base 10 (Champernowne, 1933).
It is unknown if it simply normal to bases that are not powers of 10.

I Stoneham number α2,3 =
∑
k≥1

1

3k 23k
is normal to base 2 but not

simply normal to base 6 (Bailey, Borwein, 2012).
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Absolutely normal numbers

Theorem (Borel 1909)

The set of absolutely normal numbers in [0, 1] has Lebesgue measure one.

Problem (Borel 1909)

Give one example. Wanted but still not known: π, e
√

2.

Lebesgue 1917;Siepinski 1917;Turing 1937;Schmidt 1961/2;Levin 1979;. . . Lutz and Mayordomo

2013, 2016. Figueira and Nies 2013: Becher, Heiber and Slaman 2013.

Conjecture (Borel 1951)

All irrational algebraic numbers are absolutely normal.
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Representation of real numbers by continued fractions

The continued fraction expansion of a positive real x is a sequence of
positive integers a1, a2, . . . such that

x = bxc+
1

a1 +
1

a2 +
1

. . . +
1

an +
1

. . .

We write [bxc; a1, a2, . . .] or [a1, a2, . . .] in case 0 < x ≤ 1.
Examples,
e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .],Φ = [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .].
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The convergents pn(x) and qn(x)

Suppose x = [a1, a2, . . .].

Let p−1(x) = q0(x) = 1 and p0(x) = q−1(x) = 0.

And for n ≥ 1,

pn(x) = anpn−1(x) + pn−2(x),

qn(x) = anqn−1(x) + qn−2(x).

Then,

x = [a1, . . . , an] =
pn
qn
.
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Gauss map and the Gauss measure

The Gauss map T is a function from real numbers in [0, 1] to to real
numbers in [0, 1] defined by T (0) = 0 and T (x) = 1/x− b1/xc.

If x = [a1, a2, . . .] then Tn(x) = [an+1, an+2, . . .] and an = b1/Tn−1(x)c

The map T has an invariant ergodic measure, the Gauss measure µ,
which is absolutely continuous with respect to Lebesgue measure.
For a Lebesgue measurable set A,

µA =
1

log 2

∫
A

1

1 + x
dx.

Since Gauss measure is invariant under T , µIv1,...,vk coincides with the
measure of the set of numbers having v1, . . . , vk in some other position.
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Continued fraction normal

Definition

A real number x = [a1, a2, . . .] is continued fraction normal if the limit
frequency of each possible block of integers v1, . . . , vk coincides with the
Gauss measure of the interval Iv1,...,vk , which is the interval formed by all
the numbers whose continued fraction starts with v1, . . . , vk.

Thus, x = [a1, a2, . . .] is continued fraction normal if for each possible
block of integers v1, . . . , vk,

lim
n→∞

1

n
#
{
j : 1 ≤ j ≤ n, aj = v1, . . . , aj+k−1 = vk

}
= µIv1,...,vk

.

In other words, a real x is continued fraction normal if the forward orbit
of x by T is equidistributed with respect to the Gauss measure.



Continued fraction normal

Definition

A real number x = [a1, a2, . . .] is continued fraction normal if the limit
frequency of each possible block of integers v1, . . . , vk coincides with the
Gauss measure of the interval Iv1,...,vk , which is the interval formed by all
the numbers whose continued fraction starts with v1, . . . , vk.

Thus, x = [a1, a2, . . .] is continued fraction normal if for each possible
block of integers v1, . . . , vk,

lim
n→∞

1

n
#
{
j : 1 ≤ j ≤ n, aj = v1, . . . , aj+k−1 = vk

}
= µIv1,...,vk

.

In other words, a real x is continued fraction normal if the forward orbit
of x by T is equidistributed with respect to the Gauss measure.



Continued fraction normal

Definition

A real number x = [a1, a2, . . .] is continued fraction normal if the limit
frequency of each possible block of integers v1, . . . , vk coincides with the
Gauss measure of the interval Iv1,...,vk , which is the interval formed by all
the numbers whose continued fraction starts with v1, . . . , vk.

Thus, x = [a1, a2, . . .] is continued fraction normal if for each possible
block of integers v1, . . . , vk,

lim
n→∞

1

n
#
{
j : 1 ≤ j ≤ n, aj = v1, . . . , aj+k−1 = vk

}
= µIv1,...,vk .

In other words, a real x is continued fraction normal if the forward orbit
of x by T is equidistributed with respect to the Gauss measure.



Continued fraction normal

Definition

A real number x = [a1, a2, . . .] is continued fraction normal if the limit
frequency of each possible block of integers v1, . . . , vk coincides with the
Gauss measure of the interval Iv1,...,vk , which is the interval formed by all
the numbers whose continued fraction starts with v1, . . . , vk.

Thus, x = [a1, a2, . . .] is continued fraction normal if for each possible
block of integers v1, . . . , vk,

lim
n→∞

1

n
#
{
j : 1 ≤ j ≤ n, aj = v1, . . . , aj+k−1 = vk

}
= µIv1,...,vk .

In other words, a real x is continued fraction normal if the forward orbit
of x by T is equidistributed with respect to the Gauss measure.



Continued fraction normal

Definition

A real number x = [a1, a2, . . .] is continued fraction normal if the limit
frequency of each possible block of integers v1, . . . , vk coincides with the
Gauss measure of the interval Iv1,...,vk , which is the interval formed by all
the numbers whose continued fraction starts with v1, . . . , vk.

Thus, x = [a1, a2, . . .] is continued fraction normal if for each possible
block of integers v1, . . . , vk,

lim
n→∞

1

n
#
{
j : 1 ≤ j ≤ n, aj = v1, . . . , aj+k−1 = vk

}
= µIv1,...,vk .

In other words, a real x is continued fraction normal if the forward orbit
of x by T is equidistributed with respect to the Gauss measure.



Examples and counterexamples

Quadratic irrationals are not continued fraction normal

√
2 = 1.414 . . . = [1; 2, 2, 2, . . .]
√

3 = 1.732 . . . = [1; 1, 2, 1, 2, 1, 2, . . .]

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .] is not continued fraction normal
because it is the concatenation of the pattern (1m1), for all even m in
increasing order.

Constructions of continued fraction normal given by Postnikov and

Pyatetskii-Shapiro, 1957 and Adler, Keane and Smorodinsky, 1981 and there are newer.
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Absolutely normal and continued fraction normal

An application of Birkhoff ’s Ergodic Theorem yields that almost all reals
(in the sense of Lebesgue measure) are continued fraction normal.

Thus, the set of absolutely normal and continued fraction normal
numbers in the unit interval has also Lebesgue measure 1.

Problem (Folklore; Queffelec 2006: Bugeaud 2012, Problem 10.49)

Give an example of an absolutely normal and continued fraction normal
number.
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Give an example of an absolutely normal and continued fraction normal
number.



Today!

Theorem (Becher and Yuhjtman 2017)

There is an algorithm that computes a number that is absolutely normal
and continued fraction normal. The computation of the first n digits of
the continued fraction expansion performs a number of mathematical
operations that is in O(n4).

Scheerer (2017) gave an algorithm that yields one such number with doubly
exponential computational complexity.
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General construction of a computable real number

Consider a computable sequence of intervals I1, I2, I3 . . . with rational
endpoints, nested, lengths go to 0.

This gives a construction of the unique computable real x in
⋂

i≥1 Ii.
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Fundamental intervals b-ary

An interval I is b-ary for some integer base b if there is a block d1, . . . , dn
of digits in {0, 1, . . . , b− 1} such that I is the set of real numbers whose
first n digits of their b-ary expansion are equal to d1, . . . , dn.(

0.d1, . . . , dn , 0.d1, . . . , dn + b−n
)

If I is b-ary determined by n digits we say it has order n and |I| = b−n.

The set of b-ary intervals determined by n digits in base b is a partition of
the unit interval in bn many parts of equal length.
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Fundamental intervals cf-ary

An interval I is cf-ary if there is [a1, . . . , an] such that the interval I is
equal to the set of all the numbers whose first n digits of their continued
fraction expansion are a1, . . . , an. Thus,

Ia1,...,an = ([a1, . . . , an], [a1, . . . , an + 1]), or

Ia1,...,an = ([a1, . . . , an + 1], [a1, . . . , an])

An interval I is cf-ary of order n if it is some I[a1,...,an].

The length of a cf-ary interval :

|Ia1,...,an | =
1

qn(qn + qn−1)
.

The set of cf-ary intervals determined by n digits also form a partition of
the unit interval, but in infinite parts of different lengths.
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Our construction

We follow the strategy given by Becher, Heiber y Slaman, 2013, to
construct an absolutely normal number in polynomial time.

We define successive refinements of appropriate subintervals to achieve,
in the limit, simple normality to all integer bases and continued fraction
normality.

At each step,

I choose digits without looking at the digits we put in previuos steps.

I choose enough many digits to make progress on normality
(to avoid oscilations they should not be too many).
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Two results on large deviations

1. Bernstein’s inequality, 1920s, (or Hardy and Wright 1930s) to bound
the measure of the sets of numbers whose expansion in a given
integer base starts with k digits with too many or too few
occurrences of some digit.

2. Kifer, Peres and Weiss, 2001, to bound the measure of the sets of
numbers whose continued fractions start with k integers with too
many or too few occurrences of some block integers.



t-bricks

Definition

For an integer t ≥ 2, a t-brick is a t-uple (σcf, σ2, . . . , σt) as follows

- the interval σcf is cf-ary;

- for every d = 2, . . . , t, σd is d-ary interval or the union of two
consecutive d-ary intervals of the same order;

- for every d = 2, . . . , t, σcf ⊂ σd and |σcf|/|σd| is larger than
constant/d;
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How to deal with the main difficulty

The main difficulty is to control the length of these subintervals because,
for any fixed positive integer n, there are intervals of the form Ia1,...,an

that are arbitrarily small.

We use that the distribution of the logarithm of the length of intervals of
the form Ia1,...,an

is asymptotically Gaussian.

This happens because the distribution of the logarithm of the
convergents of finite continued fractions is asymptotically Gaussian.

I Proved by Ibragimov, 1961

I Philipp, 1967, obtained an error term of O(n−1/5)

I Improved by Mischyavichyus, 1987, to O(n−1/2 log n)

I Morita 1994 obtained the optimal error term of order O(n−1/2)

I Vallée 1997, with a different proof, optimal error term O(n−1/2)
and obtained expresion for the needed constants.
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The distribution of log qn obeys in the limit a Gaussian law

We write L for Lévy’s constant π2/(12 log 2).

Lemma (Morita 1994 (Theorem 8.1) Vallée 1997 (Théoreme 9))

There is K0 and n0 such that for every n ≥ n0,∣∣∣∣Pr
[
x ∈ (0, 1) : −y ≤ log qn(x)− nL

σ
√
n

≤ y
]
− 1√

2π

∫ y

−y
e−z

2/2dz

∣∣∣∣ < K0√
n
,

where σ is a positive absolute constant.

Problem

Give the values, or at least approximate, K0 and n0.
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Optimal central limit theorem and explicit constants

Vallée, 1997 (also Flajolet and Vallée, 1998) obtained an expression for σ
using the generalised transfer operators Ls for s > 1 over a suitable
space of functions, also known as the Ruelle-Mayer operator,

defined by

Ls[f ](z) =

∞∑
n=1

(
1

n+ z

)s

f

(
1

n+ z

)
.

These operators Ls have a simple dominant positive eigenvalue λ(s).

The expression for σ uses the dominant eigenvalue of L2,

σ2 = λ′′(2)− λ′(2)2

where λ′ and λ′′ denote the derivative and second derivative of λ and

λ′(2) = −π2/(12 log 2) is Levy’s constant with negative sign.

λ′′(2) is the variance of the law of continuants, known as Hensley’s constant.

Our use of σ occurs just in the next Lemma and we do not require its
exact value; any upper bound suffices.
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We control the length of cf-intervals

Lemma

There are positive constants K, c and a positive integer n1 such that for
any cf-ary interval I and any integer n ≥ n1, the Lebesgue measure of
the union of the cf-ary subintervals J of I of relative order n such that

|I|
4
e−2nL−2c ≤ |J | ≤ 2|I|e−2nL+2c

is greater than K|I|/
√
n.



Computational complexity

At step s

1. the choice of the t-brick (σcf, σ2, . . . , σt) does not depend on the actual
digits put at previous steps.

2. the relative order n(s) of σcf is logaritmic in s. Similarly, for σd,
d = 2, . . . t.

3. the maximum integer t and maximum block size is sublogarithmic in s.

4. approximation to normality with tolerance ε = 1/t.

5. divide σ
(s−1)
cf in b4 e2n(s)L+2cc+ 1 equal intervals Icf.

Notice that every

interval contained in σ
(s−1)
cf of length 1

4
e−2n(s) L−2c|σ(s−1)

cf | will have an
interior in one of these intervals Icf. Check each endpoint !
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Open problems

Problem

Give n0 and K in Vallée’s Central Limit theorem that establishes
Gaussian distribution of log qn.



Open problems

In the ternary Cantor set with probability 1 a number is normal to base 2.
(Tool: measure whose Fourier transform on the fractal decays quickly)

Theorem (David Simmons and Barak Weiss 2016, Theorem 8.9 )

In the ternary Cantor set with probability 1 a number is continued
fraction normal.

David Simmons and Barak Weiss, 2016
Random walks on homogeneous spaces and Diophantine approximation on fractals

http://www.math.tau.ac.il/~barakw/papers/master_for_arxiv.pdf

Problem

Give another proof of Simmons and Weiss’s theorem.

http://www.math.tau.ac.il/~barakw/papers/master_for_arxiv.pdf
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