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azar - aléatoire - Zufall - rasgelelik - satunnaisuuden - slumpmässighet - randomness - aleatorietà

Everyone has an intuitive idea about what is randomness, often
associated with “gambling” or “luck”.

1. Is there a mathematical definition of randomness?

2. Are there levels of randomness?

3. Examples of randomness?

4. Can a computer produce a sequence that is truly random?
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Lady luck is fickle

Think of 0s and 1s.

A sequence is random if it can not be distinguished from independent
tosses of a fair coin.
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Lady luck is fickle

Would you believe that these have bee obtained by independent toosses?

111111111111111111111111111111111111111111... %

01001000100001000001000000100000001000000001... %

100101010110001101110100010010101111001001.. X
Heads and tails must occur with the same frequency.
Likewise for any combination of heads and tails.
Otherwise we would be able to guess it infinitely many times!
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Monkeys and typewritters

Émile Borel. La mécanique statique et l’irréversibilité.
Journal de Physique Théorique et Appliquée, 1913, 3 (1), pp.189-196.

[. . . ] Concevons quon ait dressé un million de singes à frapper au
hasard sur les touches d’une machine à écrire et que, sous la
surveillance de contremâıtres illettrés, ces singes dactylographes
travaillent avec ardeur dix heures par jour avec un million de
machines à écrire de types variés. Les contre-maitres illettrés
rassembleraient les feuilles noircies et les relieraient en volumes. Et
au bout d’un an, ces volumes se trouveraient renfermer la copie
exacte des livres de toute nature et de toutes langues conservés dans
les plus riches bibliothéques du monde.
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Randomness is impossibility to guess, to predict, to abbreviate....

By whom?

By a human being? Ugh! we can not formalize it.

By a universal Turing machine ? It yields the purest notion of
randomness.

By finite state automata? It yields the most basic notion of randomness:
normality.

And there are intermediate notions.
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Automata, different abilities

I Finite state atomata
I Stack automata
I Turing machines
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Towards a mathematical definition of randomness

A sequence is random (for the class of automata C) when, essentially, the
only way to describe the sequence (using an utomata in the class C) is
explicitely.
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A base is an integer greater than or equal to 2. For a real number x in
the unit interval, the expansion of x in base b is a sequence a1a2a3 . . . of
integers from {0, 1, . . . , b− 1} such that

x =
∑
k≥1

ak
bk

= 0.a1a2a3 . . .
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Normal numbers, the most basic form of randomness

Definition (Borel, 1909)

A real number x is simply normal to base b if, in the expansion of x in
base b, each digit occurs with limiting frequency equal to 1/b.

A real number x is normal to base b if, for every positive integer k, every
block of k digits (starting at any position) occurs in the expansion of x in
base b with limiting frequency 1/bk.

A real number x is absolutely normal if x is normal to every base.
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Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

Liouville’s constant
∑
n≥1

10−n! is not normal to base 10.

R aN Dom ! Verónica Becher



11 / 35

Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

Liouville’s constant
∑
n≥1

10−n! is not normal to base 10.

R aN Dom ! Verónica Becher



11 / 35

Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

Liouville’s constant
∑
n≥1

10−n! is not normal to base 10.

R aN Dom ! Verónica Becher



11 / 35

Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

Liouville’s constant
∑
n≥1

10−n! is not normal to base 10.

R aN Dom ! Verónica Becher



11 / 35

Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

Liouville’s constant
∑
n≥1

10−n! is not normal to base 10.

R aN Dom ! Verónica Becher



12 / 35

Examples of normal numbers?

Theorem (Borel 1909)

Almost all real numbers are absolutely normal.

Problem (Borel 1909)

Give one example of an absolutely normal number.

Are the usual mathematical constants, such as π, e, or
√

2, absolutely
normal? Or at least simply normal to some base?

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.
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Normal to a given base

Theorem (Champernowne, 1933)

0.123456789101112131415161718192021 . . . is normal to base 10.

It is unknown if it is normal to bases that are not powers of 10.

base 2 base 6 base 10
Plots of the first 250000 digits of Champernowne’s number.

Besicovitch 1935; Copeland and Erdös 1946; Levin 1999;. . . Ugalde 2000; Alvarez, Becher, Ferrari

and Yuhjtman 2016.
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Absolutely normal

Sierpinski 1917, Lebesgue 1917; Turing 1937; Schmidt 1961; M. Levin 1970; . . . Lutz and

Mayordomo 2013,2020; Figueira and Nies 2013, 2020, Becher, Heiber and Slaman 2013.

Theorem

There is an algorithm that computes an absolutely normal number with
just above linear time-complexity.
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Normal to some bases and not to others

Theorem (Cassels 1959; Schmidt 1961)

Almost all numbers in the Cantor ternary set are normal to base 2.
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Normal to one base, but not to another

Theorem (Stoneham, 1973,Bailey and Borwein 2012)

α2,3 =
∑
k≥1

1

3k 23k

is normal to base 2 but not simply normal to base 6.

base 2 base 6 base 10
Plots of the first 250000 digits of Stoneham number α2,3.R aN Dom ! Verónica Becher
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Normality and finite automata

A deterministic finite transducer T is defined by 〈Q,A, δ, q0〉 where
A is the alphabet, Q is a finite set of states with q0 the starting state,
and δ : Q×A→ Q×A∗ is a determinitic transition function.

Every infinite run is accepting (Büchi acceptance condition).

For the result of running T with input a1a2a3 . . . we write T (a1a2a3 . . .).
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Normality and finite automata

Consider transducer T = 〈Q,A, δ, q0〉. If δ(p, a) = 〈v, q〉 write p
a|v−−→ q.

A sequence x = a1a2a3 · · · is compressible by a finite transducer T if and
only if the run in T

q0
a1|v1−−−→ q1

a2|v2−−−→ q2
a3|v3−−−→ q3 · · ·

satisfies

lim inf
n→∞

|v1v2 · · · vn|
n

< 1.
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Normality and finite automata

Theorem (Schnorr, Stimm 1971; Dai, Lathrop, Lutz, Mayordomo 2004)

A sequence is normal if and only if it is incompressible by every
one-to-one finite transducer .

Huffman 1959 calls them lossless compressors. A direct proof in Becher and Heiber, 2012.

Theorem (Becher, Carton, Heiber 2013)

Non-deterministic one-to-one finite transducers can not compress normal
sequences.
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Normality and pushdown automata

Question

Can deterministic pushdown transducers compress normal infinite
sequences?

Theorem (Boasson, personal communication 2012)

Non-deterministic puhdown transducers can compress normal sequences.

0123456789 9876543210 00 01 02 03 ...98 99 99 98 97...03 02 01 00 000 001 002...997 998 999
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Normality preservation and finite automata

Let a1a2a3 · · · be an infinite sequence. Consider the infinite sequence
obtained by selection of some elements

a1 a2 a3 a4 a5 a6 a7 a8 a9 . . .

Theorem (Agafonov 1968)

Prefix selection by a regular set of finite sequences preserves normality.

Theorem (Becher, Carton and Heiber 2013)

Suffix selection by a regular set of infinite sequences preserves normality.

Theorem (Becher, Carton and Heiber 2013)

Two sided selectors do not preserve normality.

Theorem (Merkle and Reimann 2006)

Neither deterministic one-counter sets nor linear sets preserve normality
(these are the sets recognized by pushdown finite automata with a unary
stack and by one-turn pushdown finite automata, respectively)
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Kamae and Weiss (1975) gave a full characterization of the forms of
selection that preserve normality.

Problem

What forms of insertion transform normality to base b to normality to
base (b+ 1)?

How transform a sequence normal over alphabet A into one normal to
alphabet A ∪ {σ}, such that the first is a subsequence of the second.
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Normality together with other properties

Theorem (Becher, Bugeaud, Slaman 2013)

Let S be any computable set of positive integers, closed by multiplicative
dependence and such that, if bkm ∈ S then bk is in S, and if there are
infinitely many k such that bk ∈ S then for every bm ∈ S, for every m.
Then, there is a real x which is simply normal to exactly the bases
specified by S. Furthermore, the real x is computable from S.

Theorem (after Bugeaud 2002, Becher, Heiber and Slaman 2014)

There is a computable absolutely normal Louville number.

Proof by defining a measure whose Fourier tanform decays quickly.

Theorem (Becher and Madritsch 2021 )

There is a computable real x such that x and 1/x are absolutely normal
and continued fraction normal.

Proof by constructing their continued fraction expansion.
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Normal numbers and Descriptive set theory

Asked first by Kechris 1994.

Theorem (Ki and Linton 1994)

The set of real numbers that are normal to any fixed base is Π0
3-complete.

Theorem (Becher, Heiber, Slaman 2014)

The set of real numbers that are absolutely normal is Π0
3-complete.
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Descriptive set theory

The set of bases to which a real number can be normal is not tied to any
arithmetical properties other than multiplicative dependence.

Theorem ( Becher and Slaman 2014)

The set of real numbers that are normal to some base is Σ0
4-complete in

the effective Borel Hierachy on subsets of real numbers.

Achim Ditzen conjectured it in 1994

Theorem (Airey, Jackson and Mance, 2016 )

Let Nb be the set of real numbers which are normal to a given base b.
The set of real numbers that are normal to base b and preserve normality
to base b under addition,

{x : x ∈ Nb and ∀y ∈ Nb (x+ y ∈ Nb)} ,

is Π0
3-complete.
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Pure randomness

A sequence is purely random if,essentially, its initial segments can only be
described explicitely by a Turing machine, thus, requiring each one a
different program.

That is, its initial segments cannot be compressed with a Turing
machine. Formally, a sequence is random if its initial segments have
almost maximal program-size complexity (Chaitin 1975).
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An equivalent definition of randomness

Definition (Martin-Löf 1965, tests of non-randomness)

A sequence is Martin-Löf random if it passes all computably definable
tests of non-randomness. Since there is a universal tests, it suffices that
to consider just this universal Martin-Löf test.

Technically, a sequence is Martin-Löf random if it belongs to no
computably definable null set. Since there is a universal computably
definable null set, it suffices to consider this one.

Theorem (Schnorr 1975)

A sequence is random for Chaitin’s definition if and only if it does not
belong to the universal Martin-Löf null set.

R aN Dom ! Verónica Becher



28 / 35

An equivalent definition of randomness

Definition (Martin-Löf 1965, tests of non-randomness)
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computably definable null set. Since there is a universal computably
definable null set, it suffices to consider this one.

Theorem (Schnorr 1975)

A sequence is random for Chaitin’s definition if and only if it does not
belong to the universal Martin-Löf null set.
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Can a computer produce a purely random sequence?

No
“Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.”

John von Neumann, 1951 (cita Knuth, The Art of Computing Programming)

Every computable sequence is dramatically compressible by a Turing
machine. There is a program that outputs each of its symbols, one after
the other one. Thus, each initial segment of length n can be obtained
with 2 log n+constant. it is very compressible.
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Examples of random sequences

Have you ever experienced that your computer locked up (froze)?
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Ω-numbers

Theorem (Chaitin 1975)

The probability that a universal Turing machine with prefix-free domain halts,

Ω =
∑

U(p)halts

2−|p| is random.

Similarly, probabilities of other computer behaviours called Ω numbers
(Becher,Chaitin 2001,2003; Becher,Grigorieff 2005,2009, Becher,Figueira,Grigorieff,Miller 2006;
Barmpalias 2016)

R aN Dom ! Verónica Becher



32 / 35

More than 50 years with results program-size complexity (Kolmogorov
complexity), computability theory, algorithmic information theory.

R aN Dom ! Verónica Becher



33 / 35

Randomness and Birkhoff’s ergodic theorem

Theorem (Franklin,Greenberg, Miller,Ng 2012 - Bienvenu,Day,Hoyrup,Mezhirov,Shen 2012)

Let (X,µ) be a computable probability space and let T : X → X be a
computable ergodic map. A point x ∈ X is random if and only if for
every effectively closed subset U of X,

lim
N→∞

1

N

N−1∑
n=0

χU (Tn(x)) = µ(U).
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Randomness u.d. mod 1

A sequence of reals (xn)n≥1 in the unit intevarl is u.d., if for every
subinterval [a, b) of the unit interval,

lim
N→∞

1

N

N∑
n=1

χ[a,b)(xn) = b− a

A sequence (xn)n≥1 of reals in the unit interval is Σ0
1-u.d. if for every Σ0

1

set A ⊆ [0, 1],

lim
N→∞

1

N

N∑
n=1

χA(xn) = µA,

Joint work with Serge Grigorieff based on Koksma Metric Theorem.
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Randomness as u.d. mod 1

Theorem (Franklin,Greenberg,Miller,Ng 2012 - Bienvenu,Day,Hoyrup,Mezhirov,Shen 2012)

A real x is random if and only if (2nx)n≥1 is Σ0
1-u.d. mod 1.

Proof using of effective Birkhoff’s ergodic theorem

Theorem (Wall 1949)

A real x is normal to base b if and only if (bnx)n≥1 is u.d. mod 1.
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