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A Note on Normal Numbers

Although it is known that almost all numbers are normal 1) no

example of a normal number has ever been given . I propose to shew
how normal numbers may be constructed and to prove that almost all
numbers are normal coﬁs’oructively

Consider the R -figure integers in the scale of ¢ ( £ Z).
It X is any sequence of figures in that scale we denote by N(t;(Y'
the number of thesein which y occurs exactly 4. times, Then it can

be pboved without difficulty that

g h A/[[‘/ rl A, R)
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8 E
2s NG R)
L A
where 4(y) * Vv is the lenght of the sequence : it is also
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A Note on Normal Numbers, Alan M. Turing

Written presumably in 1936.
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A Note on Normal Numbers, Alan M. Turing

Written presumably in 1936.
Unpublished until 1992, when included in the Collected Works edited by

J.L.Britton. An editorial note says that the proof of the second theorem
is inadequate and speculates that the theorem could be false.
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A Note on Normal Numbers, Alan M. Turing

Written presumably in 1936.

Unpublished until 1992, when included in the Collected Works edited by
J.L.Britton. An editorial note says that the proof of the second theorem
is inadequate and speculates that the theorem could be false.

Reconstructed, corrected and completed in 2007
Becher, Figueira, Picchi, Theoretical Computer Science 377, 126-138.
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Normality, a form of randomness

Defined by Emile Borel in 1909, 1922:
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Normality, a form of randomness

Defined by Emile Borel in 1909, 1922:
A real number is normal to a given integer base if its expansion in that

base is evenly balanced: every block of digits of the same length occurs
with the same limit frequency.
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Normality, a form of randomness

Defined by Emile Borel in 1909, 1922:

A real number is normal to a given integer base if its expansion in that
base is evenly balanced: every block of digits of the same length occurs
with the same limit frequency.

For instance, if a number is normal to base 2, each of the digits ‘0" and

‘1" occur in the limit, half of the times; each of the blocks ‘00’, ‘01", ‘10’
and ‘11" occur one fourth of the times, and so on.
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Defined by Emile Borel in 1909, 1922:
A real number is normal to a given integer base if its expansion in that

base is evenly balanced: every block of digits of the same length occurs
with the same limit frequency.
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Normality, a form of randomness

Defined by Emile Borel in 1909, 1922:

A real number is normal to a given integer base if its expansion in that
base is evenly balanced: every block of digits of the same length occurs
with the same limit frequency.

A real number that is normal to every integer base is called absolutely
normal, or just normal.
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Counterexamples

0.1010010001000010000010000... not normal to base 2.
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Counterexamples

0.1010010001000010000010000... not normal to base 2.

0.1010101010101010101010101... not normal to base 2.
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Counterexamples

0.1010010001000010000010000... not normal to base 2.
0.1010101010101010101010101... not normal to base 2.

Rationals are not normal (for each g € Q there is a base b such that the
expansion of g ends with all zeros).
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Existence

Theorem (Borel 1909)

The set of normal numbers in the unit interval has Lebesgue measure 1.
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Existence

Theorem (Borel 1909)

The set of normal numbers in the unit interval has Lebesgue measure 1.

Borel asked for an explicit example.
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A Note on Normal Numbers

Although it is known that almost all numbers are normal 1) no
example of a normal number has ever been given ., I propose to shew
how normal numbers may be constructed and to prove that almost all
numbers are normal coﬁstructively

Consider the R -figure integers in tke scale of € ( £%Z2).
L X is any sequence of figures in that scale we denote by N(f;y' “, 7&’)
the number of thesein which y occurs exactly s times, Then it can

be pboved without difficulty that
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where {[y) = ¥ is the lenght of the sequence X : it is also
possible")to prove that
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Turing’s Note on Normal Numbers

Turing's Theorem 1

Borel's theorem on the measure of normal numbers, constructively.
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Turing’s Note on Normal Numbers

Turing's Theorem 1

Borel's theorem on the measure of normal numbers, constructively.

Turing's Theorem 2

An algorithm to construct normal numbers.

Verénica Becher Turing’s Normal Numbers 11/37



Turing’s Note on Normal Numbers

Turing's Theorem 1

Borel's theorem on the measure of normal numbers, constructively.

Turing's Theorem 2

An algorithm to construct normal numbers.

Turing's First Page of the Handwritten Manuscript

His own appraisal of his work.
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Turing's Theorem 1

Theorem 1
We can find a const ctives) funetion ¢ (4, u)of two integral
variables, such that

-~

l‘-c(l'{,uol) £ L:-c[/{, n)

a sl
and b kc(M,u) % i for each A , i
L
g_n_g L—-(M) = A“J. L‘C [/{; ) consists entirely of normal numbers for

esach MK .
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Turing's Theorem 1

There is a computable function c(k, n) of two integer arguments with values
in finite sets of pairs of rational numbers, with the following properties.
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Turing's Theorem 1

There is a computable function c(k, n) of two integer arguments with values
in finite sets of pairs of rational numbers, with the following properties.

For each k and n, let the set of real numbers E (, ) be the union of the
open intervals whose endpoints are the pairs given by c(k, n).
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Turing's Theorem 1

There is a computable function c(k, n) of two integer arguments with values
in finite sets of pairs of rational numbers, with the following properties.

For each k and n, let the set of real numbers E (, ) be the union of the
open intervals whose endpoints are the pairs given by c(k, n).

c(k, n) is such that
> Ec(k,n) is included in Ec(k,n—l) and

» measure of Ec(x ) is greater than 1 —1/k.
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Turing's Theorem 1

There is a computable function c(k, n) of two integer arguments with values
in finite sets of pairs of rational numbers, with the following properties.

For each k and n, let the set of real numbers E (, ) be the union of the
open intervals whose endpoints are the pairs given by c(k, n).

c(k, n) is such that
> Ec(k,n) is included in Ec(k,n—l) and

» measure of Ec(x ) is greater than 1 —1/k.

Finally, for each k, E(k) =, Ec(k,n) has measure exactly 1 —1/k and
it consists entirely of normal numbers.
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Main idea in Turing's Theorem 1: finite approximations

The construction is uniform in the parameter k.
Prune the unit interval, by stages.

Stage 0: E.(x o) is the whole unit interval.

Stage n: E(x,n) results from removing from E (. ,_1) the points
that are not candidates to be normal, according to the
inspection of an initial segment of their expansions.
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Main idea in Turing's Theorem 1: finite approximations

At the end, the construction discards

» all rational numbers, because of their periodic structure
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Main idea in Turing's Theorem 1: finite approximations

At the end, the construction discards

» all rational numbers, because of their periodic structure

» all irrational numbers with an unbalanced expansion
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Main idea in Turing's Theorem 1: finite approximations

At the end, the construction discards

» all rational numbers, because of their periodic structure
» all irrational numbers with an unbalanced expansion

» all normal numbers whose convergence to normality is too slow

E(k) = ﬂ Ec(k,n) consists entirely of normal numbers.
n
Its measure is exactly 1 — 1/k (because £, ,) measures 1 —  + ).
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Main idea in Turing's Theorem 1: finite approximations

Computable functions of the stage n,

initial segment size ....... linear

base ........ ... sublinear

block length ............. sublogarithmic

frequency discrepancy ...  the technically largest converging to 0

Ec(k,n), the set of reals not discarded up to stage n, is the union of
finitely many intervals, tailored to measure 1 — § + .
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Constructive Strong Law of Large Numbers

In most initial segments:

each single digit occurs about the expected number of times
each block of two digits occurs about the expected number of times

each block short-enough occurs about the expected number of times.

Lemma (extends Hardy & Wright 1938)

Fix b, w of length ¢ and N. For any real € such that §; <& < %,

Z number of blocks of length N < pN
_ with exactly i occurrences of w —
=l
N lZ
Verdnica Becher Turing’s Normal Numbers
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Turing's Theorem 2

Theorem 2
infinite

There is a rule whereby given an integer K and euKsequence
of figures 0 and 1 ( the ‘P th figure in the sequence being 4}(’7’) )
we can find a norgal number ot(l{,ﬁ}in the interval (0,1) and in such
a way that for fixed //l these numbers form a set of measure at least
1- R/[/( , and so that tke first n  figures of A¥ determine 01[/4’, 1.9)
to within &~ “ .
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Turing's Theorem 2

There is an algorithm that, given an integer k and an infinite sequence v
of zeros and ones, produces a normal number a(k,v) in the unit interval,
expressed in base two.
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Turing's Theorem 2

There is an algorithm that, given an integer k and an infinite sequence v
of zeros and ones, produces a normal number a(k,v) in the unit interval,
expressed in base two.

In order to write down the first n digits of «(k, ) the algorithm requires
at most the first n digits of v.
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Turing's Theorem 2

There is an algorithm that, given an integer k and an infinite sequence v
of zeros and ones, produces a normal number a(k,v) in the unit interval,
expressed in base two.

In order to write down the first n digits of «(k, ) the algorithm requires
at most the first n digits of v.

For a fixed k these numbers «(k, /) form a set of measure at
least 1 — 2/k.
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The idea in Theorem 2: “follow the measure”

It works by steps.
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The idea in Theorem 2: “follow the measure”

It works by steps.

Start with the unit interval.
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The idea in Theorem 2: “follow the measure”

It works by steps.
Start with the unit interval.

At each step, divide the current interval in two halves, and choose the
half that includes normal numbers in large-enough measure.

YEL
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The idea in Theorem 2: “follow the measure”

It works by steps.
Start with the unit interval.

At each step, divide the current interval in two halves, and choose the
half that includes normal numbers in large-enough measure.

If both halves do, use the current bit of the oracle to decide
(this will happen infinitely often)

The output a(k, ) is the trace of the left/right selection at each step.
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Algorithm

With each integer 4 we agsociate an interval of the form

My “1,,“1-‘ whose intersection with ,,[7 is of positive measure ,
LT e 1}
end given /m we obtain M - as follows, Put

[ Bta 20 el')
a
. C(/”{A) .lklk 21411 J ayptm
= [ 4 +1  m, 21
Lg(/{lh}./') { Faa ) '—% ): /S;./k.
z ~&u

=2
and let . be the smallest i for which either &, . < K ~2
I i

4 7 . £
or bh,m< ey “ or both ah/h‘>/’fL}{1»u;l and bh,hi'> I/ltﬁ““‘ 41)

There exists such an V‘ for & and 61‘ decrease either to O
( /

or to some positive number, In tle oase where Q“ V.. < A ,2 . we
BLt o - m, 41 s e a K but b { K-

= ka , and in the third case we pu'b Ll 2‘“,‘

~dea

we put m*lf').
or M‘“l = 2;,1 +7 eaccording as Lg(k)' 0 or 1. For each &1 the
My Mo 1

) includes normal numbers in positive measure.

interval (—Z—‘" =
The intersection of thESe intervals contains only one numbers

which must be normal.
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Correctness of the algorithm

> Invariant: I, N E(k) has positive measure.
» Threshold: M(k, n) is a lower bound of ji(Ec(x,n) N ) verifying
M(k7 n) - M(ka n— ]-)/2 - (,UEc(k,n) - NEc(k,n+1))/2~

> Output: a(k,n) =, I, with explicit convergence to normality.
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Turing’s normal numbers

By taking particular instances of the input sequence v the set of numbers
that can be output has measure at least 1 — 2/k.

When v is computable (Turing puts all zeros), the algorithm yields a
computable normal number.

The algorithm can be adapted to intercalate the bits of v at fixed
positions of the output sequence.

Theorem (Figueira PhD Thesis 2006)

There is a normal number in each Turing degree.
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Computational Complexity of Turing's algorithm

The number of operations to produce a next digit in the output

> simple-exponentially many (literal reading)

> double-exponentially many (our reconstruction)
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Turing's First Page of the Handwritten Manuscript

Not transcribed.

His own appraisal of his work.
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Turing's First Page of the Handwritten Manuscript

“No example of a normal number has ever been given.”

Turing cites Champernowne’s 0.123456789101112131415...
as an example of a normal number in base ten.

“It may also be natural that an example of a normal number be

demonstrated as such and written down. This note cannot, therefore,
be considered as providing convenient examples of normal numbers” //
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Turing's First Page of the Handwritten Manuscript

“No example of a normal number has ever been given.”

Turing cites Champernowne’s 0.123456789101112131415...
as an example of a normal number in base ten.

“It may also be natural that an example of a normal number be
demonstrated as such and written down. This note cannot, therefore,

be considered as providing convenient examples of normal numbers” //

He was aware of the algorithm's computational complexity.
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Turing's First Page of the Handwritten Manuscript

“No example of a normal number has ever been given.”

Turing cites Champernowne’s 0.123456789101112131415...
as an example of a normal number in base ten.

“It may also be natural that an example of a normal number be
demonstrated as such and written down. This note cannot, therefore,

be considered as providing convenient examples of normal numbers” //
He was aware of the algorithm's computational complexity.

// “but rather, to counter [...] that the existence proof of normal numbers

provides no example of them. The arguments in the note, in fact,
follow the existence proof fairly closely.”

Verénica Becher Turing’s Normal Numbers 27 /37



Turing's First Page of the Handwritten Manuscript

“No example of a normal number has ever been given.”

Turing cites Champernowne’s 0.123456789101112131415...
as an example of a normal number in base ten.

“It may also be natural that an example of a normal number be
demonstrated as such and written down. This note cannot, therefore,

be considered as providing convenient examples of normal numbers” //
He was aware of the algorithm's computational complexity.

// “but rather, to counter [...] that the existence proof of normal numbers

provides no example of them. The arguments in the note, in fact,
follow the existence proof fairly closely.”
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Letter exchange between Turing and Hardy (AMT/D/5)
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G.H. Hardy was right but he missed the novelty

Henri Lebesgue in 1909
Waclaw Sierpinski in 1916

independently, each gave a non-finitary based construction:

Bulletin de la Société Mathématique de France 45:127-132 and 132-144, 1917

Verdnica Becher Turing’s Normal Numbers



Turing’s Note on Normal Numbers

A story of unrecognized scientific priority

Proved the existence of computable normal numbers.
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Turing’s Note on Normal Numbers

A story of unrecognized scientific priority

Proved the existence of computable normal numbers.

Gave a better answer to Borel's question: an algorithm!
(unfortunately exponential)
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Turing’s Note on Normal Numbers

A story of unrecognized scientific priority

Proved the existence of computable normal numbers.

Gave a better answer to Borel's question: an algorithm!
(unfortunately exponential)

Started effective mathematics: concepts specified by finitely definable
approximations could be made computational.
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Turing’s Note on Normal Numbers

A story of unrecognized scientific priority

Proved the existence of computable normal numbers.

Gave a better answer to Borel's question: an algorithm!
(unfortunately exponential)

Started effective mathematics: concepts specified by finitely definable
approximations could be made computational.

In particular, Turing pioneered the theory of algorithmic randomness.
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Turing’s Normal Numbers: Towards Randomness

A real is random if it exhibits the almost-everywhere behavior of all reals.
A random real must pass every test of these properties; for instance,
its expansion must be evenly balanced.
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Turing’s Normal Numbers: Towards Randomness
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Turing’s Normal Numbers: Towards Randomness

Definition (Martin-Lof 1966)

A test for randomness is a uniformly computably enumerable sequence of
sets of intervals with rational endpoints whose measure is upper-bounded
by a computable function and converges to zero.

A real number is random if it is covered by no such test.
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Turing’s Normal Numbers: Towards Randomness

Definition (Martin-Lof 1966)

A test for randomness is a uniformly computably enumerable sequence of
sets of intervals with rational endpoints whose measure is upper-bounded
by a computable function and converges to zero.

A real number is random if it is covered by no such test.

Corollary (Randomness Implies Normality)

The sequence ((0,1) \ E(k))k>0 is a ML-test.
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Surprise
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Absolutely normal numbers in just above quadratic time

Theorem (Becher, Heiber, Slaman 2013)

Suppose f : N — N is a computable non-decreasing unbounded function.
There is an algorithm to compute an absolutely normal number x such
that, for any base b, the algorithm outputs the first n digits in of its
expansion after O(f(n) n?) elementary operations.

Lutz, Mayordomo 2013 and also Figueira, Nies 2013 have another
argument for an absolutely normal number in polynomial time, based on
polynomial-time martingales.
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The output of our algorithm in base 10

Programmed by Martin Epszteyn
0.4031290542003809132371428380827059102765116777624189775110896366...

First 250000 digits output by the algorithm  First 250000 digits of Champernowne
Plotted in 500x500 pixeles, 10 colors Plotted in 500x500 pixeles, 10 colors

Algorithm with parameters t; = (3 x log(i)) + 3; €; = 1/t; Initial values t; = 3; 1 = 1.

First extension in base 2 is of length k = 405. Then k increases only when necessary.

Vel ing’s Normal Numbers 34/37
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The output of our algorithm in each base
:::j A o %ﬁﬁé?g - .00 'll
r“? iy el K small s max 16 s r\ﬂ\
oo k% v‘«\"\“'

i

500000

Left:

12408

150406 2406 25040¢

Verénica Becher

L
500000 10408 156408

Discrepancy for powers of 2, normalized by expected frequency.
Right: Discrepancy for prime digits, normalized by expected frequency.
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