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Everyone has an intuitive idea about what is randomness, often
associated with “gambling” or “luck”.
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Everyone has an intuitive idea about what is randomness, often
associated with “gambling” or “luck”.

Today:
e s there a mathematical definition of randomness?
e Are there degrees of randomness?
e Examples of randomness?
e Can a computer produce a sequence that is truly random?

Randomness ¥ Logic, Language and Information
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Lady luck is fickle

Think of Os and 1s.

A sequence is random if it can not be distinguished from independent
tosses of a fair coin.
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Lady luck is fickle

Would you believe that these have bee obtained by independent toosses?
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Lady luck is fickle

Would you believe that these have bee obtained by independent toosses?
111111111111111111111111111111111111111 111 X
01001000100001000001000000100000001000000001... X
100101010110001101110100010010101111001001..

Heads and tails must occur with the same frequency.

Likewise for any combination of heads and tails.
jOtherwise we would be able to guess it infinitely many times!
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Randomness is impossibility to guess, to predict, to abbreviate....

R a N D 0 mN E S S ! Verénica Becher



3/34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?

By a human being?

R a N D 0 mN E S S ! Verénica Becher



3/34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?

By a human being? Ugh! we can not formalize it.

R a N D 0 mN E S S ! Verénica Becher



3/34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?

By a human being? Ugh! we can not formalize it.

By a universal Turing machine ?

RaNoromN:ss!

Verénica Becher



3/34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?
By a human being? Ugh! we can not formalize it.

By a universal Turing machine ? Yes, it allows formalization and it yields
the purest notion of randomness.

R a N D 0 mN E S S ! Verénica Becher



3/34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?
By a human being? Ugh! we can not formalize it.

By a universal Turing machine ? Yes, it allows formalization and it yields
the purest notion of randomness.

By finite automata? Yes, it allows formalization and it yields
the most basic notion of randomness: normality.

R D 0 E S S ! Verénica Becher



3/34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?
By a human being? Ugh! we can not formalize it.

By a universal Turing machine ? Yes, it allows formalization and it yields
the purest notion of randomness.

By finite automata? Yes, it allows formalization and it yields
the most basic notion of randomness: normality.

And there are intermediate notions.
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Towards a definition of randomness

A sequence is normal if, essentially, its initial segments can only be
described explicitely by a finite automaton .
(Borel’s definition 1909; Schnorr and Stimm 1971; Dai Lathroup Lutz and Mayordomo 2005)

A sequence is random if, essentially, its initial segments can only be
described explicitely by a Turing machine. (Chaitin’s definition 1975)
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Real numbers and sequences

A base is an integer greater than or equal to 2.

For a real number x in the unit interval, the expansion of x in base b is a
sequence ajasag . .. of integers from {0,1,...,b — 1} such that

r = 0.a1az2a3 ...

where x = Z Z—:, and z does not end with a tail of b — 1.
k>1
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Normal numbers, the most basic form of randomness

Definition (Borel, 1909)

A real number x is simply normal to base b if, in the expansion of z in
base b, each digit occurs with limiting frequency equal to 1/b.
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Normal numbers, the most basic form of randomness

Definition (Borel, 1909)

A real number x is simply normal to base b if, in the expansion of z in
base b, each digit occurs with limiting frequency equal to 1/b.

A real number x is normal to base b if, for every positive integer k, every
block of k digits (starting at any position) occurs in the expansion of z in
base b with limiting frequency 1/b".

A real number z is absolutely normal if = is normal to every base.
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Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.
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Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789...
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

. . y —_n! -
Liouville's constant E 10™™ is not normal to any base.
n>1
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Examples of normal numbers?

Theorem (Borel 1909)

Almost all real numbers are absolutely normal.

Problem (Borel 1909)

Give one example of an absolutely normal number.
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Almost all real numbers are absolutely normal.

Problem (Borel 1909)

Give one example of an absolutely normal number.

Are the usual mathematical constants, such as , e, or v/2, absolutely
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Examples of normal numbers?

Theorem (Borel 1909)

Almost all real numbers are absolutely normal.

Problem (Borel 1909)

Give one example of an absolutely normal number.

Are the usual mathematical constants, such as , e, or v/2, absolutely
normal? Or at least simply normal to some base?

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.
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Normal to a given base

Theorem (Champernowne, 1933)

0.123456789101112131415161718192021 ... is normal to base 10.

It is unknown if it is normal to bases that are not powers of 10.

Besicovitch 1935; Copeland and Erdos 1946; ... Ugalde 2000; Alvarez, Becher, Ferrari and
Yuhjtman 2016.
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Absolutely normal

Sierpinski 1917, Lebesgue 1917; Turing 1937; Schmidt 1961; M. Levin 1970; ... Lutz and
Mayordomo 2013; Figueira and Nies 2013.

Theorem (Becher, Heiber and Slaman, 2013)

There is an algorithm that computes an absolutely normal number with
just above quadratic time-complexity.
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Absolutely normal

Sierpinski 1917, Lebesgue 1917; Turing 1937; Schmidt 1961; M. Levin 1970; ... Lutz and
Mayordomo 2013; Figueira and Nies 2013.

Theorem (Becher, Heiber and Slaman, 2013)

There is an algorithm that computes an absolutely normal number with
just above quadratic time-complexity.

0.4031290542003809132371428380827059102765116777624189775110896366...

R D 0 E S S ! Verénica Becher



Normal to some bases and not to others

Theorem (Cassels 1959; Schmidt 1961)

Almost all numbers in the Cantor ternary set are normal to base 2.
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Normal to some bases and not to others

Theorem (Cassels 1959; Schmidt 1961)

Almost all numbers in the Cantor ternary set are normal to base 2.

Theorem (Bailey and Borwein 2012)

1
Stoneham number cy 3 = Z Ik o is normal to base 2 but not simply

normal to base 6.
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Normality and finite automata
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Normality and finite automata

A deterministic finite transducer T is defined by (Q, A, 0, o) where

A is the alphabet, @ is a finite set of states with ¢y the starting state,
and §: Q x A — A* x () is a transition function.

Every infinite run is accepting (Blichi acceptance condition).

Running T with input ajasas ... gives T'(aaszas . . .).
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Normality and finite automata

Consider transducer T' = (Q, A, d, qo). If 6(p,a) = (v, q) write p alv, q.

Definition

A sequence x = ajasas - -- is compressible by a finite transducer 7' if and
only if the run in T qg ati ¢ aalvz q2 asfes q3 - -+ satisfies

liminf 122920l

n—oo n

Recall that the a's are symbols and the v's are words, possibly empty.
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Normality and finite automata

Theorem (Schnorr, Stimm 1971; Dai, Lathrop, Lutz, Mayordomo 2004)

A sequence is normal if and only if it is incompressible by every
one-to-one finite transducer .

Huffman 1959 calls them lossless compressors. A direct proof in Becher and Heiber, 2012.
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Normality and finite automata

Theorem (Schnorr, Stimm 1971; Dai, Lathrop, Lutz, Mayordomo 2004)

A sequence is normal if and only if it is incompressible by every
one-to-one finite transducer .

Huffman 1959 calls them lossless compressors. A direct proof in Becher and Heiber, 2012.
Theorem (Becher, Carton, Heiber 2013)

Non-deterministic one-to-one finite transducers, even if augmented with a
counter, can not compress normal sequences.
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Normality and pushdown automata

Question

Can deterministic pushdown transducers compress normal infinite
sequences?
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Normality and pushdown automata

Question

Can deterministic pushdown transducers compress normal infinite
sequences?

Theorem (Boasson, personal communication 2012)

Non-deterministic puhdown transducers can compress normal sequences.

0123456789 9876543210 00 01 02 03 ...98 99 99 98 97...03 02 01 00 000 001 002...
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Pure randomness

A sequence is random if its initial segments can only be described
explicitely by a Turing machine. That is, its initial segments cannot be
compressed with a Turing machine.
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Pure randomness

A sequence is random if its initial segments can only be described
explicitely by a Turing machine. That is, its initial segments cannot be
compressed with a Turing machine.

Formally, a sequence is random if its initial segments have almost
maximal program-size complexity .
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Kolmogorov / program-size complexity

Some long strings can be described using fewer symbols than their
length; this is used in data compression .

For example, string consisting of 2" many a's can be encoded as logn
many symbols plus a constant:

input n

i=0;

while (i<2") {print a; i=i+1;}
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Kolmogorov / program-size complexity

Definition (Kolmogorov 1965)

Fix a universal Turing machine U. The Kolmogorov complexity of a
string s is the length of the shortest input in U that outputs s.
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Kolmogorov / program-size complexity

Definition (Kolmogorov 1965)
Fix a universal Turing machine U. The Kolmogorov complexity of a
string s is the length of the shortest input in U that outputs s.

For every string s, its Kolmogorov complexity is less than |s| + constant.
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Kolmogorov / program-size complexity

Definition (Kolmogorov 1965)

Fix a universal Turing machine U. The Kolmogorov complexity of a
string s is the length of the shortest input in U that outputs s.

For every string s, its Kolmogorov complexity is less than |s| + constant.

Definition (Chaitin 1975)

Fix a universal Turing machine U with prefix-free domain .
The program-size complexity of a string s, K(s), is the length of the
shortest input in U that outputs s.

For every string s, K(s) < |s| + 2log |s| + constant.
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The definition of randomness

Definition (Chaitin 1975)

A sequence ajasas . .. is random if 3¢ Vn K(ajasz...a,) >n—c.

The definition applies immediately to real numbers (one-to-one
correspondence between reals and their expansions in any given base).
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How do we know that the definition is right?
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How do we know that the definition is right?

The definition of randomness was accepted when two different
formulations were shown to be equivalent.

This is similar to what happenned with the notion of algorithm in 1930s
with Church-Turing thesis.
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An equivalent definition of randomness

Definition (Martin-Léf 1965, tests of non—randomness)

A sequence is Martin-Lof random if it passes all computably definable
tests of non-randomness. Since there is a universal tests, it suffices that
to consider just this universal Martin-Lof test.
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An equivalent definition of randomness

Definition (Martin-Léf 1965, tests of non—randomness)

A sequence is Martin-Lof random if it passes all computably definable
tests of non-randomness. Since there is a universal tests, it suffices that
to consider just this universal Martin-Lof test.

Technically, a sequence is Martin-Lof random if it belongs to no
computably definable null set. Since there is a universal computably
definable null set, it suffices to consider this one.

Theorem (Schnorr 1975)

A sequence is random for Chaitin’s definition if and only if it does not
belong to the universal Martin-Lof null set.
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Examples of random sequences
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Examples of random sequences

Have you ever experienced that your computer locked up (froze)?
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Examples of random sequences

Have you ever experienced that your computer locked up (froze)?

End Program - Untitled - Notepad ;' x|

@ This program is rot responding.

To return to Windows and check the status of the
program, click C.

IF pou chaose to end the program immediately. you will lose.
any unsaved data. To end the program now. click End
Now.

EndNow
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Theorem (Chaitin 1975)

The probability that a universal Turing machine with prefix-free domain halts,
Q= Z 27l js random.
U (p)halts

Simliarly, probabilities of other computer behaviours called €2 numbers

(Becher,Chaitin 2001,2003; Becher,Grigorieff 2005,2009, Becher,Figueira,Grigorieff,Miller 2006;
Barmpalias 2016)
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Questions and answers about random sequences

*
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Questions and answers about random sequences
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Questions and answers about random sequences

Are random sequences normal?
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Questions and answers about random sequences
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Questions and answers about random sequences

*
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Questions and answers about random sequences

“Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.”

John Von Neumann (1951). Various techniques used in connection with random digits.
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“Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.”

John Von Neumann (1951). Various techniques used in connection with random digits.
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Randomness £ Computers

Random number generators (pseudo randomness)
USA National Institute of Standards and Technology
http://csrc.nist.gov/groups/ST/toolkit/rng/
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Randomness £ Computers

Random number generators (pseudo randomness)
USA National Institute of Standards and Technology
http://csrc.nist.gov/groups/ST/toolkit/rng/

http://www.random.org/
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Randomness ¥ Logic
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Randomness ¥ Logic

The Berry's paradox
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Randomness ¥ Logic

The Berry's paradox

Give the smallest positive integer not definable in fewer than thirteen words.
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Randomness ¥ Logic

The Berry's paradox

Give the smallest positive integer not definable in fewer than thirteen words.
The above sentence has twelve.
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Randomness ¥ Logic

The Berry's paradox

Give the smallest positive integer not definable in fewer than thirteen words.
The above sentence has twelve.

G.G.Berry 1867-1928, librarian at Oxford's Bodleian library.

G.Boolos (1989) built on a formalized version of Berry's paradox to prove Godel's Incompleteness

Theorem formalizing the expression "m is the first number not definable in less than k symbols”.

X.Caicedo (1993), La paradoja de Berry revisitada, o la indefinibilidad de la definibilidad y las

limitaciones de los formalismos Lecturas Matematicas 14: 37-48.
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Berry's paradox

Though the formal analogue does not lead to a logical contradiction,
it yields a proof that Kolmogorov complexity K is not computable.

A. Kitaoka, 2003 "Rotating snakes"

frcular snakes appear to mT 'spontancously’
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Randomness ¥ Logic

Theorem

Let U be a universal Turing machine. The function
K(s) =min{|t| : U(t) = s} is not computable.
Proof. Assume K is computable. Consider the following program:

int main(){
int K(String s){ ....}
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Randomness ¥ Logic

Theorem
Let U be a universal Turing machine. The function
K(s) =min{|t| : U(t) = s} is not computable.
Proof. Assume K is computable. Consider the following program:
int main(){
int K(String s){ ....}
const C = 10000; /= greater than or equal to this program lengthx*/
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Randomness ¥ Logic

Theorem

Let U be a universal Turing machine. The function

K(s) =min{|t| : U(t) = s} is not computable.

Proof. Assume K is computable. Consider the following program:

int main(){
int K(String s){ ....}
const C = 10000; /= greater than or equal to this program lengthx*/
String s=empty word;
while (K(s) < C) s= next(s);
print s;
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Randomness ¥ Logic

Theorem

Let U be a universal Turing machine. The function

K(s) =min{|t| : U(t) = s} is not computable.

Proof. Assume K is computable. Consider the following program:

int main(){
int K(String s){ ....}
const C = 10000; /= greater than or equal to this program lengthx*/
String s=empty word;
while (K(s) < C) s= next(s);
print s;
}
According to the execution K (output) > C.
However,
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Randomness ¥ Logic

Theorem

Let U be a universal Turing machine. The function

K(s) =min{|t| : U(t) = s} is not computable.

Proof. Assume K is computable. Consider the following program:

int main(){
int K(String s){ ....}
const C = 10000; /= greater than or equal to this program lengthx*/
String s=empty word;
while (K(s) < C) s= next(s);
print s;
)
According to the execution K (output) > C.
However, K (output) < |int main(){...}| < C.
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Randomness ¥ Logic

Theorem

Let U be a universal Turing machine. The function

K(s) =min{|t| : U(t) = s} is not computable.

Proof. Assume K is computable. Consider the following program:

int main(){
int K(String s){ ....}
const C = 10000; /= greater than or equal to this program lengthx*/
String s=empty word;
while (K(s) < C) s= next(s);
print s;
}
According to the execution K (output) > C.
However, K (output) < |int main(){...}| < C.
Contradiction.
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Randomness ¥ Information
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Randomness ¥ Information
Program-size complexity is formally identical to Shannon’s Information Theory
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Randomness ¥ Information

Definition (Shannon 1948)

Given a probability P of a discrete random variable X, the entropy
X)=> Plz=X)(-log Pz = X))).

Definition (Chaitin 1975)

Fix a universal Turing U machine with prefix-free domain.

K(s) =minf[t|: U(t) = s}, P(s)= > 27"

t:U(t)=s

Theorem (Chaitin 1975)
For every string s, K(s) ~ [—log P(s)].
Thus, entropy is essentially expected program-size complexity :

Z P(s)(—log P(s Z P(s
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Randomness ¥ Language
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Randomness ¥ Language

A sequence is random (relative to some computing power) if, essentially,
the only way to describe it is explicitely.
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Randomness ¥ Language

A sequence is random (relative to some computing power) if, essentially,
the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can describe
its initial segments in the language , according to the computing power.
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Randomness ¥ Language

A sequence is random (relative to some computing power) if, essentially,
the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can describe
its initial segments in the language , according to the computing power.

Thus, randomness is a matter of language.

R a N D 0 mN E S S ! Verénica Becher



Randomness ¥ Language

A sequence is random (relative to some computing power) if, essentially,
the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can describe
its initial segments in the language , according to the computing power.

Thus, randomness is a matter of language.

The End
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