
R a N D o mN e s s !

Verónica Becher

Universidad de Buenos Aires & CONICET

28th European Summer School in Logic, Language and Information

Bolzano-Bozen, 23 August, 2016

2 / 34

Azar - aléatoire - Zufall - rasgelelik - satunnaisuuden - slumpmässighet - randomness - aleatorietà

Everyone has an intuitive idea about what is randomness, often
associated with “gambling” or “luck”.

Today:

• Is there a mathematical definition of randomness?

• Are there degrees of randomness?

• Examples of randomness?

• Can a computer produce a sequence that is truly random?

• Randomness ♥ Logic, Language and Information

R aNDomN ess ! Verónica Becher

2 / 34

Azar - aléatoire - Zufall - rasgelelik - satunnaisuuden - slumpmässighet - randomness - aleatorietà

Everyone has an intuitive idea about what is randomness, often
associated with “gambling” or “luck”.

Today:

• Is there a mathematical definition of randomness?

• Are there degrees of randomness?

• Examples of randomness?

• Can a computer produce a sequence that is truly random?

• Randomness ♥ Logic, Language and Information

R aNDomN ess ! Verónica Becher

2 / 34

Azar - aléatoire - Zufall - rasgelelik - satunnaisuuden - slumpmässighet - randomness - aleatorietà

Everyone has an intuitive idea about what is randomness, often
associated with “gambling” or “luck”.

Today:

• Is there a mathematical definition of randomness?

• Are there degrees of randomness?

• Examples of randomness?

• Can a computer produce a sequence that is truly random?

• Randomness ♥ Logic, Language and Information

R aNDomN ess ! Verónica Becher

2 / 34

Azar - aléatoire - Zufall - rasgelelik - satunnaisuuden - slumpmässighet - randomness - aleatorietà

Everyone has an intuitive idea about what is randomness, often
associated with “gambling” or “luck”.

Today:

• Is there a mathematical definition of randomness?

• Are there degrees of randomness?

• Examples of randomness?

• Can a computer produce a sequence that is truly random?

• Randomness ♥ Logic, Language and Information

R aNDomN ess ! Verónica Becher

2 / 34

Azar - aléatoire - Zufall - rasgelelik - satunnaisuuden - slumpmässighet - randomness - aleatorietà

Everyone has an intuitive idea about what is randomness, often
associated with “gambling” or “luck”.

Today:

• Is there a mathematical definition of randomness?

• Are there degrees of randomness?

• Examples of randomness?

• Can a computer produce a sequence that is truly random?

• Randomness ♥ Logic, Language and Information

R aNDomN ess ! Verónica Becher

2 / 34

Azar - aléatoire - Zufall - rasgelelik - satunnaisuuden - slumpmässighet - randomness - aleatorietà

Everyone has an intuitive idea about what is randomness, often
associated with “gambling” or “luck”.

Today:

• Is there a mathematical definition of randomness?

• Are there degrees of randomness?

• Examples of randomness?

• Can a computer produce a sequence that is truly random?

• Randomness ♥ Logic, Language and Information

R aNDomN ess ! Verónica Becher

1 / 34

Lady luck is fickle

Think of 0s and 1s.

A sequence is random if it can not be distinguished from independent
tosses of a fair coin.

R aNDomN ess ! Verónica Becher

2 / 34

Lady luck is fickle

Would you believe that these have bee obtained by independent toosses?

11...

%

01001000100001000001000000100000001000000001... %

100101010110001101110100010010101111001001.. X
Heads and tails must occur with the same frequency.
Likewise for any combination of heads and tails.
¡Otherwise we would be able to guess it infinitely many times!

R aNDomN ess ! Verónica Becher

2 / 34

Lady luck is fickle

Would you believe that these have bee obtained by independent toosses?

11... %

01001000100001000001000000100000001000000001... %

100101010110001101110100010010101111001001.. X
Heads and tails must occur with the same frequency.
Likewise for any combination of heads and tails.
¡Otherwise we would be able to guess it infinitely many times!

R aNDomN ess ! Verónica Becher

2 / 34

Lady luck is fickle

Would you believe that these have bee obtained by independent toosses?

11... %

01001000100001000001000000100000001000000001...

%

100101010110001101110100010010101111001001.. X
Heads and tails must occur with the same frequency.
Likewise for any combination of heads and tails.
¡Otherwise we would be able to guess it infinitely many times!

R aNDomN ess ! Verónica Becher

2 / 34

Lady luck is fickle

Would you believe that these have bee obtained by independent toosses?

11... %

01001000100001000001000000100000001000000001... %

100101010110001101110100010010101111001001.. X
Heads and tails must occur with the same frequency.
Likewise for any combination of heads and tails.
¡Otherwise we would be able to guess it infinitely many times!

R aNDomN ess ! Verónica Becher

2 / 34

Lady luck is fickle

Would you believe that these have bee obtained by independent toosses?

11... %

01001000100001000001000000100000001000000001... %

100101010110001101110100010010101111001001..

X
Heads and tails must occur with the same frequency.
Likewise for any combination of heads and tails.
¡Otherwise we would be able to guess it infinitely many times!

R aNDomN ess ! Verónica Becher

2 / 34

Lady luck is fickle

Would you believe that these have bee obtained by independent toosses?

11... %

01001000100001000001000000100000001000000001... %

100101010110001101110100010010101111001001.. X
Heads and tails must occur with the same frequency.
Likewise for any combination of heads and tails.

¡Otherwise we would be able to guess it infinitely many times!

R aNDomN ess ! Verónica Becher

2 / 34

Lady luck is fickle

Would you believe that these have bee obtained by independent toosses?

11... %

01001000100001000001000000100000001000000001... %

100101010110001101110100010010101111001001.. X
Heads and tails must occur with the same frequency.
Likewise for any combination of heads and tails.
¡Otherwise we would be able to guess it infinitely many times!

R aNDomN ess ! Verónica Becher

3 / 34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?

By a human being? Ugh! we can not formalize it.

By a universal Turing machine ? Yes, it allows formalization and it yields
the purest notion of randomness.

By finite automata? Yes, it allows formalization and it yields
the most basic notion of randomness: normality.

And there are intermediate notions.

R aNDomN ess ! Verónica Becher

3 / 34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?

By a human being?

Ugh! we can not formalize it.

By a universal Turing machine ? Yes, it allows formalization and it yields
the purest notion of randomness.

By finite automata? Yes, it allows formalization and it yields
the most basic notion of randomness: normality.

And there are intermediate notions.

R aNDomN ess ! Verónica Becher

3 / 34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?

By a human being? Ugh! we can not formalize it.

By a universal Turing machine ? Yes, it allows formalization and it yields
the purest notion of randomness.

By finite automata? Yes, it allows formalization and it yields
the most basic notion of randomness: normality.

And there are intermediate notions.

R aNDomN ess ! Verónica Becher

3 / 34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?

By a human being? Ugh! we can not formalize it.

By a universal Turing machine ?

Yes, it allows formalization and it yields
the purest notion of randomness.

By finite automata? Yes, it allows formalization and it yields
the most basic notion of randomness: normality.

And there are intermediate notions.

R aNDomN ess ! Verónica Becher

3 / 34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?

By a human being? Ugh! we can not formalize it.

By a universal Turing machine ? Yes, it allows formalization and it yields
the purest notion of randomness.

By finite automata? Yes, it allows formalization and it yields
the most basic notion of randomness: normality.

And there are intermediate notions.

R aNDomN ess ! Verónica Becher

3 / 34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?

By a human being? Ugh! we can not formalize it.

By a universal Turing machine ? Yes, it allows formalization and it yields
the purest notion of randomness.

By finite automata? Yes, it allows formalization and it yields
the most basic notion of randomness: normality.

And there are intermediate notions.

R aNDomN ess ! Verónica Becher

3 / 34

Randomness is impossibility to guess, to predict, to abbreviate....

By whom?

By a human being? Ugh! we can not formalize it.

By a universal Turing machine ? Yes, it allows formalization and it yields
the purest notion of randomness.

By finite automata? Yes, it allows formalization and it yields
the most basic notion of randomness: normality.

And there are intermediate notions.

R aNDomN ess ! Verónica Becher

4 / 34

Towards a definition of randomness

A sequence is normal if, essentially, its initial segments can only be
described explicitely by a finite automaton .
(Borel’s definition 1909; Schnorr and Stimm 1971; Dai Lathroup Lutz and Mayordomo 2005)

A sequence is random if, essentially, its initial segments can only be
described explicitely by a Turing machine. (Chaitin’s definition 1975)

R aNDomN ess ! Verónica Becher

5 / 34

Real numbers and sequences

A base is an integer greater than or equal to 2.

For a real number x in the unit interval, the expansion of x in base b is a
sequence a1a2a3 . . . of integers from {0, 1, . . . , b− 1} such that

x = 0.a1a2a3 . . .

where x =
∑
k≥1

ak
bk

, and x does not end with a tail of b− 1.

R aNDomN ess ! Verónica Becher

6 / 34

Normal numbers, the most basic form of randomness

Definition (Borel, 1909)

A real number x is simply normal to base b if, in the expansion of x in
base b, each digit occurs with limiting frequency equal to 1/b.

A real number x is normal to base b if, for every positive integer k, every
block of k digits (starting at any position) occurs in the expansion of x in
base b with limiting frequency 1/bk.

A real number x is absolutely normal if x is normal to every base.

R aNDomN ess ! Verónica Becher

6 / 34

Normal numbers, the most basic form of randomness

Definition (Borel, 1909)

A real number x is simply normal to base b if, in the expansion of x in
base b, each digit occurs with limiting frequency equal to 1/b.

A real number x is normal to base b if, for every positive integer k, every
block of k digits (starting at any position) occurs in the expansion of x in
base b with limiting frequency 1/bk.

A real number x is absolutely normal if x is normal to every base.

R aNDomN ess ! Verónica Becher

6 / 34

Normal numbers, the most basic form of randomness

Definition (Borel, 1909)

A real number x is simply normal to base b if, in the expansion of x in
base b, each digit occurs with limiting frequency equal to 1/b.

A real number x is normal to base b if, for every positive integer k, every
block of k digits (starting at any position) occurs in the expansion of x in
base b with limiting frequency 1/bk.

A real number x is absolutely normal if x is normal to every base.

R aNDomN ess ! Verónica Becher

7 / 34

Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

Liouville’s constant
∑
n≥1

10−n! is not normal to any base.

R aNDomN ess ! Verónica Becher

7 / 34

Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

Liouville’s constant
∑
n≥1

10−n! is not normal to any base.

R aNDomN ess ! Verónica Becher

7 / 34

Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

Liouville’s constant
∑
n≥1

10−n! is not normal to any base.

R aNDomN ess ! Verónica Becher

7 / 34

Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

Liouville’s constant
∑
n≥1

10−n! is not normal to any base.

R aNDomN ess ! Verónica Becher

7 / 34

Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

Liouville’s constant
∑
n≥1

10−n! is not normal to any base.

R aNDomN ess ! Verónica Becher

8 / 34

Examples of normal numbers?

Theorem (Borel 1909)

Almost all real numbers are absolutely normal.

Problem (Borel 1909)

Give one example of an absolutely normal number.

Are the usual mathematical constants, such as π, e, or
√

2, absolutely
normal? Or at least simply normal to some base?

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.

R aNDomN ess ! Verónica Becher

8 / 34

Examples of normal numbers?

Theorem (Borel 1909)

Almost all real numbers are absolutely normal.

Problem (Borel 1909)

Give one example of an absolutely normal number.

Are the usual mathematical constants, such as π, e, or
√

2, absolutely
normal? Or at least simply normal to some base?

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.

R aNDomN ess ! Verónica Becher

8 / 34

Examples of normal numbers?

Theorem (Borel 1909)

Almost all real numbers are absolutely normal.

Problem (Borel 1909)

Give one example of an absolutely normal number.

Are the usual mathematical constants, such as π, e, or
√

2, absolutely
normal? Or at least simply normal to some base?

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.

R aNDomN ess ! Verónica Becher

9 / 34

Normal to a given base

Theorem (Champernowne, 1933)

0.123456789101112131415161718192021 . . . is normal to base 10.

It is unknown if it is normal to bases that are not powers of 10.

Besicovitch 1935; Copeland and Erdös 1946; . . . Ugalde 2000; Alvarez, Becher, Ferrari and

Yuhjtman 2016.

R aNDomN ess ! Verónica Becher

10 / 34

Absolutely normal

Sierpinski 1917, Lebesgue 1917; Turing 1937; Schmidt 1961; M. Levin 1970; . . . Lutz and

Mayordomo 2013; Figueira and Nies 2013.

Theorem (Becher, Heiber and Slaman, 2013)

There is an algorithm that computes an absolutely normal number with
just above quadratic time-complexity.

0.4031290542003809132371428380827059102765116777624189775110896366...

R aNDomN ess ! Verónica Becher

10 / 34

Absolutely normal

Sierpinski 1917, Lebesgue 1917; Turing 1937; Schmidt 1961; M. Levin 1970; . . . Lutz and

Mayordomo 2013; Figueira and Nies 2013.

Theorem (Becher, Heiber and Slaman, 2013)

There is an algorithm that computes an absolutely normal number with
just above quadratic time-complexity.

0.4031290542003809132371428380827059102765116777624189775110896366...

R aNDomN ess ! Verónica Becher

11 / 34

Normal to some bases and not to others

Theorem (Cassels 1959; Schmidt 1961)

Almost all numbers in the Cantor ternary set are normal to base 2.

Theorem (Bailey and Borwein 2012)

Stoneham number α2,3 =
∑
k≥1

1

3k 23k
is normal to base 2 but not simply

normal to base 6.

R aNDomN ess ! Verónica Becher

11 / 34

Normal to some bases and not to others

Theorem (Cassels 1959; Schmidt 1961)

Almost all numbers in the Cantor ternary set are normal to base 2.

Theorem (Bailey and Borwein 2012)

Stoneham number α2,3 =
∑
k≥1

1

3k 23k
is normal to base 2 but not simply

normal to base 6.

R aNDomN ess ! Verónica Becher

12 / 34

Normality and finite automata

A deterministic finite transducer T is defined by 〈Q,A, δ, q0〉 where
A is the alphabet, Q is a finite set of states with q0 the starting state,
and δ : Q×A→ A∗ ×Q is a transition function.
Every infinite run is accepting (Büchi acceptance condition).

Running T with input a1a2a3 . . . gives T (a1a2a3 . . .).

q0 q10|0
1|1

0|0
1|ε

q0

0 1 1 0 0 1 1 1 0

0

The transducer transforms rows of 1s into a single 1.

R aNDomN ess ! Verónica Becher

12 / 34

Normality and finite automata

A deterministic finite transducer T is defined by 〈Q,A, δ, q0〉 where
A is the alphabet, Q is a finite set of states with q0 the starting state,
and δ : Q×A→ A∗ ×Q is a transition function.
Every infinite run is accepting (Büchi acceptance condition).

Running T with input a1a2a3 . . . gives T (a1a2a3 . . .).

q0 q10|0
1|1

0|0
1|ε

q0

0 1 1 0 0 1 1 1 0

0 1

The transducer transforms rows of 1s into a single 1.

R aNDomN ess ! Verónica Becher

12 / 34

Normality and finite automata

A deterministic finite transducer T is defined by 〈Q,A, δ, q0〉 where
A is the alphabet, Q is a finite set of states with q0 the starting state,
and δ : Q×A→ A∗ ×Q is a transition function.
Every infinite run is accepting (Büchi acceptance condition).

Running T with input a1a2a3 . . . gives T (a1a2a3 . . .).

q0 q10|0
1|1

0|0
1|ε

q1

0 1 1 0 0 1 1 1 0

0 1

The transducer transforms rows of 1s into a single 1.

R aNDomN ess ! Verónica Becher

12 / 34

Normality and finite automata

A deterministic finite transducer T is defined by 〈Q,A, δ, q0〉 where
A is the alphabet, Q is a finite set of states with q0 the starting state,
and δ : Q×A→ A∗ ×Q is a transition function.
Every infinite run is accepting (Büchi acceptance condition).

Running T with input a1a2a3 . . . gives T (a1a2a3 . . .).

q0 q10|0
1|1

0|0
1|ε

q1

0 1 1 0 0 1 1 1 0

0 1 0

The transducer transforms rows of 1s into a single 1.

R aNDomN ess ! Verónica Becher

12 / 34

Normality and finite automata

A deterministic finite transducer T is defined by 〈Q,A, δ, q0〉 where
A is the alphabet, Q is a finite set of states with q0 the starting state,
and δ : Q×A→ A∗ ×Q is a transition function.
Every infinite run is accepting (Büchi acceptance condition).

Running T with input a1a2a3 . . . gives T (a1a2a3 . . .).

q0 q10|0
1|1

0|0
1|ε

q0

0 1 1 0 0 1 1 1 0

0 1 0 0

The transducer transforms rows of 1s into a single 1.

R aNDomN ess ! Verónica Becher

12 / 34

Normality and finite automata

A deterministic finite transducer T is defined by 〈Q,A, δ, q0〉 where
A is the alphabet, Q is a finite set of states with q0 the starting state,
and δ : Q×A→ A∗ ×Q is a transition function.
Every infinite run is accepting (Büchi acceptance condition).

Running T with input a1a2a3 . . . gives T (a1a2a3 . . .).

q0 q10|0
1|1

0|0
1|ε

q0

0 1 1 0 0 1 1 1 0

0 1 0 0 1

The transducer transforms rows of 1s into a single 1.

R aNDomN ess ! Verónica Becher

12 / 34

Normality and finite automata

A deterministic finite transducer T is defined by 〈Q,A, δ, q0〉 where
A is the alphabet, Q is a finite set of states with q0 the starting state,
and δ : Q×A→ A∗ ×Q is a transition function.
Every infinite run is accepting (Büchi acceptance condition).

Running T with input a1a2a3 . . . gives T (a1a2a3 . . .).

q0 q10|0
1|1

0|0
1|ε

q1

0 1 1 0 0 1 1 1 0

0 1 0 0 1

The transducer transforms rows of 1s into a single 1.

R aNDomN ess ! Verónica Becher

12 / 34

Normality and finite automata

A deterministic finite transducer T is defined by 〈Q,A, δ, q0〉 where
A is the alphabet, Q is a finite set of states with q0 the starting state,
and δ : Q×A→ A∗ ×Q is a transition function.
Every infinite run is accepting (Büchi acceptance condition).

Running T with input a1a2a3 . . . gives T (a1a2a3 . . .).

q0 q10|0
1|1

0|0
1|ε

q1

0 1 1 0 0 1 1 1 0

0 1 0 0 1

The transducer transforms rows of 1s into a single 1.

R aNDomN ess ! Verónica Becher

12 / 34

Normality and finite automata

A deterministic finite transducer T is defined by 〈Q,A, δ, q0〉 where
A is the alphabet, Q is a finite set of states with q0 the starting state,
and δ : Q×A→ A∗ ×Q is a transition function.
Every infinite run is accepting (Büchi acceptance condition).

Running T with input a1a2a3 . . . gives T (a1a2a3 . . .).

q0 q10|0
1|1

0|0
1|ε

q1

0 1 1 0 0 1 1 1 0

0 1 0 0 1 0

The transducer transforms rows of 1s into a single 1.

R aNDomN ess ! Verónica Becher

13 / 34

Normality and finite automata

Consider transducer T = 〈Q,A, δ, q0〉. If δ(p, a) = 〈v, q〉 write p
a|v−−→ q.

Definition

A sequence x = a1a2a3 · · · is compressible by a finite transducer T if and

only if the run in T q0
a1|v1−−−→ q1

a2|v2−−−→ q2
a3|v3−−−→ q3 · · · satisfies

lim inf
n→∞

|v1v2 · · · vn|
n

< 1.

Recall that the a’s are symbols and the v’s are words, possibly empty.

R aNDomN ess ! Verónica Becher

14 / 34

Normality and finite automata

Theorem (Schnorr, Stimm 1971; Dai, Lathrop, Lutz, Mayordomo 2004)

A sequence is normal if and only if it is incompressible by every
one-to-one finite transducer .

Huffman 1959 calls them lossless compressors. A direct proof in Becher and Heiber, 2012.

Theorem (Becher, Carton, Heiber 2013)

Non-deterministic one-to-one finite transducers, even if augmented with a
counter, can not compress normal sequences.

R aNDomN ess ! Verónica Becher

14 / 34

Normality and finite automata

Theorem (Schnorr, Stimm 1971; Dai, Lathrop, Lutz, Mayordomo 2004)

A sequence is normal if and only if it is incompressible by every
one-to-one finite transducer .

Huffman 1959 calls them lossless compressors. A direct proof in Becher and Heiber, 2012.

Theorem (Becher, Carton, Heiber 2013)

Non-deterministic one-to-one finite transducers, even if augmented with a
counter, can not compress normal sequences.

R aNDomN ess ! Verónica Becher

15 / 34

Normality and pushdown automata

Question

Can deterministic pushdown transducers compress normal infinite
sequences?

Theorem (Boasson, personal communication 2012)

Non-deterministic puhdown transducers can compress normal sequences.

0123456789 9876543210 00 01 02 03 ...98 99 99 98 97...03 02 01 00 000 001 002...997 998 999

R aNDomN ess ! Verónica Becher

15 / 34

Normality and pushdown automata

Question

Can deterministic pushdown transducers compress normal infinite
sequences?

Theorem (Boasson, personal communication 2012)

Non-deterministic puhdown transducers can compress normal sequences.

0123456789 9876543210 00 01 02 03 ...98 99 99 98 97...03 02 01 00 000 001 002...997 998 999

R aNDomN ess ! Verónica Becher

16 / 34

Pure randomness

A sequence is random if its initial segments can only be described
explicitely by a Turing machine. That is, its initial segments cannot be
compressed with a Turing machine.

Formally, a sequence is random if its initial segments have almost
maximal program-size complexity .

R aNDomN ess ! Verónica Becher

16 / 34

Pure randomness

A sequence is random if its initial segments can only be described
explicitely by a Turing machine. That is, its initial segments cannot be
compressed with a Turing machine.

Formally, a sequence is random if its initial segments have almost
maximal program-size complexity .

R aNDomN ess ! Verónica Becher

16 / 34

Pure randomness

A sequence is random if its initial segments can only be described
explicitely by a Turing machine. That is, its initial segments cannot be
compressed with a Turing machine.

Formally, a sequence is random if its initial segments have almost
maximal program-size complexity .

R aNDomN ess ! Verónica Becher

17 / 34

Kolmogorov / program-size complexity

Some long strings can be described using fewer symbols than their
length; this is used in data compression .

For example, string consisting of 2n many a’s can be encoded as log n
many symbols plus a constant:

input n
i=0;

while (i<2n) {print a; i=i+1;}

R aNDomN ess ! Verónica Becher

18 / 34

Kolmogorov / program-size complexity

Definition (Kolmogorov 1965)

Fix a universal Turing machine U . The Kolmogorov complexity of a
string s is the length of the shortest input in U that outputs s.

For every string s, its Kolmogorov complexity is less than |s|+ constant.

Definition (Chaitin 1975)

Fix a universal Turing machine U with prefix-free domain .
The program-size complexity of a string s, K(s), is the length of the
shortest input in U that outputs s.

For every string s, K(s) ≤ |s|+ 2 log |s|+ constant.

R aNDomN ess ! Verónica Becher

18 / 34

Kolmogorov / program-size complexity

Definition (Kolmogorov 1965)

Fix a universal Turing machine U . The Kolmogorov complexity of a
string s is the length of the shortest input in U that outputs s.

For every string s, its Kolmogorov complexity is less than |s|+ constant.

Definition (Chaitin 1975)

Fix a universal Turing machine U with prefix-free domain .
The program-size complexity of a string s, K(s), is the length of the
shortest input in U that outputs s.

For every string s, K(s) ≤ |s|+ 2 log |s|+ constant.

R aNDomN ess ! Verónica Becher

18 / 34

Kolmogorov / program-size complexity

Definition (Kolmogorov 1965)

Fix a universal Turing machine U . The Kolmogorov complexity of a
string s is the length of the shortest input in U that outputs s.

For every string s, its Kolmogorov complexity is less than |s|+ constant.

Definition (Chaitin 1975)

Fix a universal Turing machine U with prefix-free domain .
The program-size complexity of a string s, K(s), is the length of the
shortest input in U that outputs s.

For every string s, K(s) ≤ |s|+ 2 log |s|+ constant.

R aNDomN ess ! Verónica Becher

19 / 34

The definition of randomness

Definition (Chaitin 1975)

A sequence a1a2a3 . . . is random if ∃c ∀n K(a1a2 . . . an) > n− c.

The definition applies immediately to real numbers (one-to-one
correspondence between reals and their expansions in any given base).

R aNDomN ess ! Verónica Becher

20 / 34

How do we know that the definition is right?

The definition of randomness was accepted when two different
formulations were shown to be equivalent.

This is similar to what happenned with the notion of algorithm in 1930s
with Church-Turing thesis.

R aNDomN ess ! Verónica Becher

20 / 34

How do we know that the definition is right?

The definition of randomness was accepted when two different
formulations were shown to be equivalent.

This is similar to what happenned with the notion of algorithm in 1930s
with Church-Turing thesis.

R aNDomN ess ! Verónica Becher

21 / 34

An equivalent definition of randomness

Definition (Martin-Löf 1965, tests of non-randomness)

A sequence is Martin-Löf random if it passes all computably definable
tests of non-randomness. Since there is a universal tests, it suffices that
to consider just this universal Martin-Löf test.

Technically, a sequence is Martin-Löf random if it belongs to no
computably definable null set. Since there is a universal computably
definable null set, it suffices to consider this one.

Theorem (Schnorr 1975)

A sequence is random for Chaitin’s definition if and only if it does not
belong to the universal Martin-Löf null set.

R aNDomN ess ! Verónica Becher

21 / 34

An equivalent definition of randomness

Definition (Martin-Löf 1965, tests of non-randomness)

A sequence is Martin-Löf random if it passes all computably definable
tests of non-randomness. Since there is a universal tests, it suffices that
to consider just this universal Martin-Löf test.

Technically, a sequence is Martin-Löf random if it belongs to no
computably definable null set. Since there is a universal computably
definable null set, it suffices to consider this one.

Theorem (Schnorr 1975)

A sequence is random for Chaitin’s definition if and only if it does not
belong to the universal Martin-Löf null set.

R aNDomN ess ! Verónica Becher

21 / 34

An equivalent definition of randomness

Definition (Martin-Löf 1965, tests of non-randomness)

A sequence is Martin-Löf random if it passes all computably definable
tests of non-randomness. Since there is a universal tests, it suffices that
to consider just this universal Martin-Löf test.

Technically, a sequence is Martin-Löf random if it belongs to no
computably definable null set. Since there is a universal computably
definable null set, it suffices to consider this one.

Theorem (Schnorr 1975)

A sequence is random for Chaitin’s definition if and only if it does not
belong to the universal Martin-Löf null set.

R aNDomN ess ! Verónica Becher

22 / 34

Examples of random sequences

Have you ever experienced that your computer locked up (froze)?

R aNDomN ess ! Verónica Becher

22 / 34

Examples of random sequences

Have you ever experienced that your computer locked up (froze)?

R aNDomN ess ! Verónica Becher

22 / 34

Examples of random sequences

Have you ever experienced that your computer locked up (froze)?

R aNDomN ess ! Verónica Becher

23 / 34

Ω-numbers

Theorem (Chaitin 1975)

The probability that a universal Turing machine with prefix-free domain halts,

Ω =
∑

U(p)halts

2−|p| is random.

Simliarly, probabilities of other computer behaviours called Ω numbers
(Becher,Chaitin 2001,2003; Becher,Grigorieff 2005,2009, Becher,Figueira,Grigorieff,Miller 2006;
Barmpalias 2016)

R aNDomN ess ! Verónica Becher

24 / 34

Questions and answers about random sequences

Are almost all sequences random?

Yes. By definition, the set of random sequences is the whole set minus
the effectively defined universal null set. Then, with probability 1 an ar-
bitrary sequence belongs to the set of random sequences.

R aNDomN ess ! Verónica Becher

24 / 34

Questions and answers about random sequences

Are almost all sequences random?

Yes. By definition, the set of random sequences is the whole set minus
the effectively defined universal null set. Then, with probability 1 an ar-
bitrary sequence belongs to the set of random sequences.

R aNDomN ess ! Verónica Becher

25 / 34

Questions and answers about random sequences

Are random sequences normal?

Yes. Incompressibility by a Turing machine imples incompressibility by a
finite automaton.

Yes. Another proof: The set of non-normal sequences is properly in-
cluded in a computably definable null set.

R aNDomN ess ! Verónica Becher

25 / 34

Questions and answers about random sequences

Are random sequences normal?

Yes. Incompressibility by a Turing machine imples incompressibility by a
finite automaton.

Yes. Another proof: The set of non-normal sequences is properly in-
cluded in a computably definable null set.

R aNDomN ess ! Verónica Becher

25 / 34

Questions and answers about random sequences

Are random sequences normal?

Yes. Incompressibility by a Turing machine imples incompressibility by a
finite automaton.

Yes. Another proof: The set of non-normal sequences is properly in-
cluded in a computably definable null set.

R aNDomN ess ! Verónica Becher

26 / 34

Questions and answers about random sequences

Is the spell of good luck (or bad luck) necessarily short?

Yes (“Nothing lasts forever. . . ”).

Proof: Think of 0s and 1s. Suppose a random sequence starts a1a2...an.
If there is a run of 0’s longer than log n, then a1a2...an is compressible.
Randomness ensures that this will happen only finitely many times.

R aNDomN ess ! Verónica Becher

26 / 34

Questions and answers about random sequences

Is the spell of good luck (or bad luck) necessarily short?

Yes (“Nothing lasts forever. . . ”).

Proof: Think of 0s and 1s. Suppose a random sequence starts a1a2...an.
If there is a run of 0’s longer than log n, then a1a2...an is compressible.
Randomness ensures that this will happen only finitely many times.

R aNDomN ess ! Verónica Becher

27 / 34

Questions and answers about random sequences

Can a computer output a random sequence?

“Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.”

John Von Neumann (1951). Various techniques used in connection with random digits.

Proof: Every computable sequences is dramatically compressible by a
Turing machine! An initial segment of length n can be compressed to
2 log n+constant. Hence, computable sequences are not random.

R aNDomN ess ! Verónica Becher

27 / 34

Questions and answers about random sequences

Can a computer output a random sequence?

“Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.”

John Von Neumann (1951). Various techniques used in connection with random digits.

Proof: Every computable sequences is dramatically compressible by a
Turing machine! An initial segment of length n can be compressed to
2 log n+constant. Hence, computable sequences are not random.

R aNDomN ess ! Verónica Becher

27 / 34

Questions and answers about random sequences

Can a computer output a random sequence?

“Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.”

John Von Neumann (1951). Various techniques used in connection with random digits.

Proof: Every computable sequences is dramatically compressible by a
Turing machine! An initial segment of length n can be compressed to
2 log n+constant. Hence, computable sequences are not random.

R aNDomN ess ! Verónica Becher

28 / 34

Randomness Computers

Random number generators (pseudo randomness)
USA National Institute of Standards and Technology
http://csrc.nist.gov/groups/ST/toolkit/rng/

http://www.random.org/

R aNDomN ess ! Verónica Becher

28 / 34

Randomness Computers

Random number generators (pseudo randomness)
USA National Institute of Standards and Technology
http://csrc.nist.gov/groups/ST/toolkit/rng/

http://www.random.org/

R aNDomN ess ! Verónica Becher

28 / 34

Randomness Computers

Random number generators (pseudo randomness)
USA National Institute of Standards and Technology
http://csrc.nist.gov/groups/ST/toolkit/rng/

http://www.random.org/

R aNDomN ess ! Verónica Becher

29 / 34

Randomness ♥ Logic

The Berry’s paradox

Give the smallest positive integer not definable in fewer than thirteen words.
The above sentence has twelve.

G.G.Berry 1867–1928, librarian at Oxford’s Bodleian library.

G.Boolos (1989) built on a formalized version of Berry’s paradox to prove Gödel’s Incompleteness

Theorem formalizing the expression ”m is the first number not definable in less than k symbols”.

X.Caicedo (1993), La paradoja de Berry revisitada, o la indefinibilidad de la definibilidad y las

limitaciones de los formalismos Lecturas Matemáticas 14: 37-48.

R aNDomN ess ! Verónica Becher

29 / 34

Randomness ♥ Logic

The Berry’s paradox

Give the smallest positive integer not definable in fewer than thirteen words.
The above sentence has twelve.

G.G.Berry 1867–1928, librarian at Oxford’s Bodleian library.

G.Boolos (1989) built on a formalized version of Berry’s paradox to prove Gödel’s Incompleteness

Theorem formalizing the expression ”m is the first number not definable in less than k symbols”.

X.Caicedo (1993), La paradoja de Berry revisitada, o la indefinibilidad de la definibilidad y las

limitaciones de los formalismos Lecturas Matemáticas 14: 37-48.

R aNDomN ess ! Verónica Becher

29 / 34

Randomness ♥ Logic

The Berry’s paradox

Give the smallest positive integer not definable in fewer than thirteen words.

The above sentence has twelve.

G.G.Berry 1867–1928, librarian at Oxford’s Bodleian library.

G.Boolos (1989) built on a formalized version of Berry’s paradox to prove Gödel’s Incompleteness

Theorem formalizing the expression ”m is the first number not definable in less than k symbols”.

X.Caicedo (1993), La paradoja de Berry revisitada, o la indefinibilidad de la definibilidad y las

limitaciones de los formalismos Lecturas Matemáticas 14: 37-48.

R aNDomN ess ! Verónica Becher

29 / 34

Randomness ♥ Logic

The Berry’s paradox

Give the smallest positive integer not definable in fewer than thirteen words.
The above sentence has twelve.

G.G.Berry 1867–1928, librarian at Oxford’s Bodleian library.

G.Boolos (1989) built on a formalized version of Berry’s paradox to prove Gödel’s Incompleteness

Theorem formalizing the expression ”m is the first number not definable in less than k symbols”.

X.Caicedo (1993), La paradoja de Berry revisitada, o la indefinibilidad de la definibilidad y las

limitaciones de los formalismos Lecturas Matemáticas 14: 37-48.

R aNDomN ess ! Verónica Becher

29 / 34

Randomness ♥ Logic

The Berry’s paradox

Give the smallest positive integer not definable in fewer than thirteen words.
The above sentence has twelve.

G.G.Berry 1867–1928, librarian at Oxford’s Bodleian library.

G.Boolos (1989) built on a formalized version of Berry’s paradox to prove Gödel’s Incompleteness

Theorem formalizing the expression ”m is the first number not definable in less than k symbols”.

X.Caicedo (1993), La paradoja de Berry revisitada, o la indefinibilidad de la definibilidad y las

limitaciones de los formalismos Lecturas Matemáticas 14: 37-48.

R aNDomN ess ! Verónica Becher

30 / 34

Berry’s paradox

Though the formal analogue does not lead to a logical contradiction,
it yields a proof that Kolmogorov complexity K is not computable.

A. Kitaoka, 2003

R aNDomN ess ! Verónica Becher

31 / 34

Randomness ♥ Logic

Theorem

Let U be a universal Turing machine. The function
K(s) = min{|t| : U(t) = s} is not computable.

Proof. Assume K is computable. Consider the following program:

int main(){
int K(String s){}

const C = 10000; /* greater than or equal to this program length*/

String s=empty word;

while (K(s) ≤ C) s= next(s);

print s;

}
According to the execution K(output) > C.
However, K(output) ≤ |int main(){...}| ≤ C.
Contradiction.

R aNDomN ess ! Verónica Becher

31 / 34

Randomness ♥ Logic

Theorem

Let U be a universal Turing machine. The function
K(s) = min{|t| : U(t) = s} is not computable.

Proof. Assume K is computable. Consider the following program:

int main(){
int K(String s){}
const C = 10000; /* greater than or equal to this program length*/

String s=empty word;

while (K(s) ≤ C) s= next(s);

print s;

}
According to the execution K(output) > C.
However, K(output) ≤ |int main(){...}| ≤ C.
Contradiction.

R aNDomN ess ! Verónica Becher

31 / 34

Randomness ♥ Logic

Theorem

Let U be a universal Turing machine. The function
K(s) = min{|t| : U(t) = s} is not computable.

Proof. Assume K is computable. Consider the following program:

int main(){
int K(String s){}
const C = 10000; /* greater than or equal to this program length*/

String s=empty word;

while (K(s) ≤ C) s= next(s);

print s;

}
According to the execution K(output) > C.
However, K(output) ≤ |int main(){...}| ≤ C.
Contradiction.

R aNDomN ess ! Verónica Becher

31 / 34

Randomness ♥ Logic

Theorem

Let U be a universal Turing machine. The function
K(s) = min{|t| : U(t) = s} is not computable.

Proof. Assume K is computable. Consider the following program:

int main(){
int K(String s){}
const C = 10000; /* greater than or equal to this program length*/

String s=empty word;

while (K(s) ≤ C) s= next(s);

print s;

}
According to the execution K(output) > C.
However,

K(output) ≤ |int main(){...}| ≤ C.
Contradiction.

R aNDomN ess ! Verónica Becher

31 / 34

Randomness ♥ Logic

Theorem

Let U be a universal Turing machine. The function
K(s) = min{|t| : U(t) = s} is not computable.

Proof. Assume K is computable. Consider the following program:

int main(){
int K(String s){}
const C = 10000; /* greater than or equal to this program length*/

String s=empty word;

while (K(s) ≤ C) s= next(s);

print s;

}
According to the execution K(output) > C.
However, K(output) ≤ |int main(){...}| ≤ C.

Contradiction.

R aNDomN ess ! Verónica Becher

31 / 34

Randomness ♥ Logic

Theorem

Let U be a universal Turing machine. The function
K(s) = min{|t| : U(t) = s} is not computable.

Proof. Assume K is computable. Consider the following program:

int main(){
int K(String s){}
const C = 10000; /* greater than or equal to this program length*/

String s=empty word;

while (K(s) ≤ C) s= next(s);

print s;

}
According to the execution K(output) > C.
However, K(output) ≤ |int main(){...}| ≤ C.
Contradiction.

R aNDomN ess ! Verónica Becher

32 / 34

Randomness ♥ Information

Program-size complexity is formally identical to Shannon’s Information Theory

R aNDomN ess ! Verónica Becher

32 / 34

Randomness ♥ Information
Program-size complexity is formally identical to Shannon’s Information Theory

R aNDomN ess ! Verónica Becher

33 / 34

Randomness ♥ Information

Definition (Shannon 1948)

Given a probability P of a discrete random variable X, the entropy

H(X) =
∑
x

P (x = X)(− logP (x = X))).

Definition (Chaitin 1975)

Fix a universal Turing U machine with prefix-free domain.

K(s) = min{|t| : U(t) = s}, P (s) =
∑

t:U(t)=s

2−|t|.

Theorem (Chaitin 1975)

For every string s, K(s) ' d− logP (s)e.
Thus, entropy is essentially expected program-size complexity :∑

s

P (s)(− logP (s)) '
∑
s

P (s)K(s).

R aNDomN ess ! Verónica Becher

34 / 34

Randomness ♥ Language

A sequence is random (relative to some computing power) if, essentially,
the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can describe
its initial segments in the language , according to the computing power.

Thus, randomness is a matter of language.

The End

R aNDomN ess ! Verónica Becher

34 / 34

Randomness ♥ Language

A sequence is random (relative to some computing power) if, essentially,
the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can describe
its initial segments in the language , according to the computing power.

Thus, randomness is a matter of language.

The End

R aNDomN ess ! Verónica Becher

34 / 34

Randomness ♥ Language

A sequence is random (relative to some computing power) if, essentially,
the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can describe
its initial segments in the language , according to the computing power.

Thus, randomness is a matter of language.

The End

R aNDomN ess ! Verónica Becher

34 / 34

Randomness ♥ Language

A sequence is random (relative to some computing power) if, essentially,
the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can describe
its initial segments in the language , according to the computing power.

Thus, randomness is a matter of language.

The End

R aNDomN ess ! Verónica Becher

34 / 34

Randomness ♥ Language

A sequence is random (relative to some computing power) if, essentially,
the only way to describe it is explicitely.

Therefore, randomness of a given sequence is about how we can describe
its initial segments in the language , according to the computing power.

Thus, randomness is a matter of language.

The End

R aNDomN ess ! Verónica Becher

