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Finite-state independence

The concept of independence appears in several areas:

Arithmetic: multiplicative independence
Linear Algebra: linearly independent vectors
Probability Theory: independent random variables
Shannon’s Information Theory: no mutual information for random variables
Algorithmic Information Theory: independent random infinite words

Automata Theory: finite-state independent words
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Intuitive idea

Two words are independent if one does not help to compress the other
using any finite automata.

Formalized with compression ratio and conditional compression ratio.
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Deterministic automata one input, one output

Q

Input tape

Output tape

a1a2a3a4a5a6a7

b1 b2 b3 b4 b5 b6 b7

Let A be a deterministic finite automata with one input and one output, such
that x 7→ A(x) is one-to-one. The run of A with input x, starting at q0 is

q0
α1|v1−−−→ q1

α2|v2−−−→ q2
α3|v3−−−→ · · ·

αi ∈ A ∪ {ε}, α1α2 . . . = x and vi ∈ A∗. The compression ratio of x

ρA(x) = lim inf
n→∞

|v1v2 · · · vn|
|α1 . . . αn|

ρ(x) = inf {ρA(x) : A is deterministic and one-to-one}
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Deterministic automata with two inputs, one output

Q

Input tape

Second input or Oracle tape

Output tape

a1a2a3a4a5a6a7

a′1a
′
2a
′
3a
′
4a
′
5a
′
6a
′
7

b1 b2 b3 b4 b5 b6 b7

Let A be a deterministic finite automata with two inputs and one output such
that for each fixed y, x 7→ A(x, y) is one-to-one.

Consider the run of A for inputs x, y

p0
α1,γ1|v1−−−−−→ p1

α2,γ2|v2−−−−−→ p2 · · ·

where αi, γi in A ∪ {ε}, α1α2 . . . = x and γ1γ2 . . . = y, vi ∈ A∗.
The conditional compression ratio of x given y

ρA(x/y) = lim inf
n→∞

|v1v2 · · · vn|
|α1 . . . αn|.

ρ(x/y) = inf {ρA(x/y) : A is deterministic and one-to-one}

Notice that it does not depend on the number of symbols read from y.
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The definition of independence

Two words x and y are independent if

ρ(x) = ρ(x/y) > 0 and ρ(y) = ρ(y/x) > 0.

Then, y does not help to compress x and x does not help to compress y.

Theorem (Becher and Carton 2016)

The set {(x, y) : x and y are independent} has Lebesgue measure 1.
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The definition of independence

. . . mais il n’est guère vraisemblable qu’un tel définition joue
jamais un rôle en mathématiques, car il faudrait pour cela qu’on
lui découvre une propriété particulière autre que sa définition.

Émile Borel, La définition en mathématiques,
Les grands courants de la pensée mathématique,
Cahiers du Sud, Paris 1948
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Normal words

Normality is the most basic form of randomness, given by Borel in 1909.

Let A be an alphabet. An infinite word x is normal if all blocks of
symbols of the same length occur in x with the same limiting frequency.

Not normal: 01010101010101010101010101010101010101010101010 . . .
Champernowne’s example: 012345678910111213141516171819202 . . .

Theorem (Schnor, Stimm 1972; Dai,Lothrup,Lutz,Mayordomo 2004; Heiber,Becher 2012)

An infinite word x is normal if and only if it is incompressible by
one-to-one finite automata.
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Shuffling

A shuffler is a deterministic finite automaton with two inputs and one

output, whose transitions are of the form p
a,ε|a−−−→ q or p

ε,a|a−−−→ q
(for each state p, all outgoing transitions are of the same type).

The simplest shuffler computes the join:

q0 q1

0, ε|0
1, ε|1

ε, 0|0
ε, 1|1

x = 0011010001...

y = 0100011000...

00011010001101000010...

Input words

Output word
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A shuffler

q0 q10, ε|0

1, ε|1

ε, 1|1

ε, 0|0

Input 0011010001 · · ·
Oracle 01000110001 · · · ,

Output 001011000101100010001 · · ·

It alternates blocks of 0s followed by a 1, from each word.
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Shuffling

Theorem (Alvarez, Becher, Carton 2016)

Two normal words x and y are independent if and only if, for every
shuffler S, the result S(x, y) is also normal.
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Selecting

A selector is a deterministic finite automaton with two inputs and one
output, whose transitions are of the form, for any two symbols a, b ∈ A,

p
a,ε|a−−−→ q or p

a,ε|ε−−−→ q or p
ε,b|ε−−−→ q.

(all outgoing transitions from a given state are of the same type).

q0 q1 q2

ε, 0|ε ε, 1|ε

0, ε|ε
1, ε|ε

0, ε|0
1, ε|1

It selects symbols from x at positions where there is a 1 in y.
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Selecting

Theorem (Alvarez, Becher, Carton 2016)

Two normal words x and y are independent if and only if for any
selector S, the result S(x, y) is also normal.

Agafonov, 1968, proved that selection by any finite automaton preserves
normality.
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Construction of independent normal words

Theorem (Alvarez, Becher, Carton 2016)

For every alphabet A, there is an algorithm that computes a pair of
independent normal words.
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Open problems

Construct independent normal words in polynomial time.

Given a normal word y, construct x independent of y.
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Open problems

Consider the combinatorial definition of normality: A real x is normal if
and only if every block of digits of the same size appears with the same
frequency. Characterize independence in terms of combinatorics.

Consider the characterization of normaliy in terms of u.d: A real x is
normal to base b if and only if the sequence (bnx)n≥0 is u.d. modulo 1.
Characterize independence as uniform distribution modulo 1.
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Future Work

Develop the notion of independence for finite sets.

Develop the notion of independence of normality for shift spaces.

The End
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