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Basic definitions

I A subgraph of a graph G is a graph such that its vertices and
edges are vertices and edges of G , respectively.

I A subgraph of G induced by a subset of vertices of G is the
subgraph containing those vertices and all the edges in G
between them.

I The complement G of a graph G has the same vertex set but
two vertices are adjacent in G if and only if they are
non-adjacent in G .

Example:
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Intersection graphs

I Consider a finite family F of non-empty sets. The intersection
graph of F is obtained by representing each set by a vertex,
two vertices being connected by an edge if and only if the
corresponding sets intersect.

I A circular-arc graph is the intersection graph of a finite family
of arcs in a circle (such a family is called a circular-arc model
of the graph).
Example:

Flavia Bonomo On clique-perfect graphs



Perfect graphs
Clique-perfect graphs

Clique graphs
Partial characterizations by forbidden induced subgraphs

Basic definitions
Definition of perfect graphs

Intersection graphs

I Consider a finite family F of non-empty sets. The intersection
graph of F is obtained by representing each set by a vertex,
two vertices being connected by an edge if and only if the
corresponding sets intersect.

I A circular-arc graph is the intersection graph of a finite family
of arcs in a circle (such a family is called a circular-arc model
of the graph).
Example:

Flavia Bonomo On clique-perfect graphs



Perfect graphs
Clique-perfect graphs

Clique graphs
Partial characterizations by forbidden induced subgraphs

Basic definitions
Definition of perfect graphs

Intersection graphs

I A clique in a graph is a maximal set of pairwise adjacent
vertices.

I The clique graph K (G ) of a graph G is the intersection graph
of its cliques.

Example:

G K(G)
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Basic definitions
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Intersection graphs

I The line graph L(G ) of a graph G is the intersection graph of
its edges.

Example:

G L(G)

I When the graph G has no triangles and no isolated vertices,
then the cliques of G are its edges, and L(G ) = K (G ).
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The Helly property

I A family of sets F is said to satisfy the Helly property if every
subfamily of F , consisting of pairwise intersecting sets, has a
common element.

I A graph is clique-Helly (CH) if its cliques satisfy the Helly
property, and it is hereditary clique-Helly (HCH) if all its
induced subgraphs are clique-Helly.

Examples:
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The Helly property

I Theorem (Prisner, 1993): A graph is hereditary clique-Helly iff
it contains none of the following graphs as an induced
subgraph.

I Note that the edges of a graph satisfy the Helly property iff it
has no triangles.

I We say that those are characterizations by minimal forbidden
induced subgraphs.
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The Helly property
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The Helly property

I A graph is Helly circular-arc (HCA) if it admits a circular-arc
model whose arcs satisfy the Helly property. Helly circular-arc
graphs have polynomial time recognition (Gavril, 1974).

Example:

Flavia Bonomo On clique-perfect graphs



Perfect graphs
Clique-perfect graphs

Clique graphs
Partial characterizations by forbidden induced subgraphs

Basic definitions
Definition of perfect graphs

Qualche dubbio fino a qua ?
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Chromatic number and maximum clique
I Coloring a graph consists of assigning colors to its vertices in

such a way that no two adjacent vertices are given the same
color.

I The minimum number of different colors needed to color a
graph G is called the chromatic number of G and is denoted
by χ(G ).

χ(G) = 3

I In a coloring of G , the vertices of G having the same color
must be pairwise non-adjacent. A set of pairwise non-adjacent
vertices is called a stable set.
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Chromatic number and maximum clique

I The maximum size of a clique of a graph G is called the
clique number of G and is denoted by ω(G ).

ω(G) = 3

I Clearly, in any coloring, the vertices of a clique must receive
different colors. Thus, for every graph G ,

ω(G ) ≤ χ(G )
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Mycielski’s graphs

In 1955, Mycielski defined a family of graphs {Gk}k≥0 such that
ω(Gk) = 2 and χ(Gk) = 2 + k .
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Mycielski’s graphs

But, on the other hand, adding to any graph G a large enough
clique (for example, with |V (G )| vertices), it can be achieved a
graph G ′ such that χ(G ′) = ω(G ′).

So, the equality of the parameters on the graph does not say much
about the structure of the graph itself.
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Perfect graphs

Berge defined perfect graphs in 1961. A graph G as perfect when
χ(H) = ω(H) for every induced subgraph H of G .

Examples:

Flavia Bonomo On clique-perfect graphs



Perfect graphs
Clique-perfect graphs

Clique graphs
Partial characterizations by forbidden induced subgraphs

Basic definitions
Definition of perfect graphs

Holes and antiholes

I A hole Cn is a chordless cycle of length n ≥ 4.

I An antihole is the complement of a hole.

I A hole or antihole is odd if it has an odd number of vertices
(if n is odd).

I Odd holes and odd antiholes are not perfect:

I χ(C2k+1) = 3 and ω(C2k+1) = 2

I χ(C2k+1) = k + 1 and ω(C2k+1) = k
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Classes of perfect graphs

I Bipartite graphs: graphs with chromatic number at most 2
(by definition) and their complements (Kőnig 1931).

I Line graphs of bipartite graphs and their complements
(Kőnig 1916 and 1931, resp.).

I Comparability graphs and their complements (Dilworth 1950).

I Chordal graphs: graphs with no holes (Berge 1960)
and their complements (Hajnal & Suranyi 1958).
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Berge conjectures, now theorems

Berge conjectured in 1961 that a graph is perfect iff its
complement is and, moreover, the only minimal imperfect graphs
are odd holes and their complements.

Perfect Graph Theorem (Lóvasz–Fulkerson, 1972)

A graph is perfect iff it its complement is.

Strong Perfect Graph Theorem
(Chudnovsky, Robertson, Seymour and Thomas, 2002)

A graph is perfect iff it neither contains an odd hole nor an odd
antihole as an induced subgraph.
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Partial advances between 1961 and 2002
Asymptotical SPGT (Prömel & Steger 1992): Almost all Berge
graphs are perfect.

Proof for graphs in special classes, some of them defined as F -free,
where F is a graph.

P paw claw K

bull chair W gem dart

diamond

4

4 4
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Partial advances between 1961 and 2002

I Verification of the SPGC for:

I circle graphs (intersection graphs of chords of a circle)
(Buckingham & Golumbic 1984)

I planar graphs (Tucker 1973)
I claw-free graphs (Parthasarathy & Ravindra 1976)
I K4-free graphs (Tucker 1984)
I diamond-free graphs (Tucker 1987)
I bull-free graphs (Chvátal & Sbihi 1987)
I dart-free graphs (Sun 1991)
I chair-free graphs (Sassano 1997)
I square-free graphs (Conforti, Cornuéjols & Vušković 2001)

The proof for square-free graphs has an approach very close to
that of the final proof.
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Stable set and clique cover

I The stability number α(G ) is the cardinality of a maximum
stable set of G . It holds α(G ) = ω(G ).

I A clique cover of a graph G is a subset of cliques covering all
the vertices of G . The clique-covering number θ(G ) is the
cardinality of a minimum clique cover of G . It holds
θ(G ) = χ(G ). So, θ(G ) ≥ α(G ).

I By the PGT, a graph G is perfect if and only if α(H) = θ(H)
for every induced subgraph H of G .
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Qualche dubbio fino a qua ?
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Definition
Relation with perfect graphs

Clique-independent sets and clique-transversals
I A clique-independent set is a collection of pairwise

vertex-disjoint cliques. The clique-independence number
αc(G ) is the size of a maximum clique-independent set of G .

I A clique-transversal of a graph G is a subset of vertices that
meets all the cliques of G . The clique-transversal number
τc(G ) is the size of a minimum clique-transversal of G .

I Disjoint cliques must be covered with different vertices, so

τc(G ) ≥ αc(G )

.
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Definition
Relation with perfect graphs

Highly clique-imperfect graphs
Durán, Lin and Szwarcfiter showed a family of graphs {Gk}k≥2

such that αc(Gk) = 1 and τc(Gk) = k where number of vertices of
Gk grows exponentially.

Later, Lakshmanan S. and Vijayakumar found another family of
graphs {Hk}k≥1 such that αc(Hk) = 2k + 1 and τc(Hk) = 3k + 1
but Hk has only 5k + 2 vertices.

H5
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Clique-perfect graphs

However, adding a universal vertex v to any graph G (a vertex
adjacent to every other vertex), it becomes αc(G ′) = τc(G ′) = 1,
since {v} is a clique-transversal. So the equality in G does not
give much information about the structure of the graph G .

v

A graph G is clique-perfect when αc(H) = τc(H) for every induced
subgraph H of G .
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Clique-perfect graphs

I The terminology “clique-perfect” has been introduced by
Guruswami and Pandu Rangan in 2000, but the equality of
the parameters αc and τc was previously studied by Berge in
the context of balanced hypergraphs.

I The complete list of minimal clique-imperfect graphs is still
not known. Another open question concerning clique-perfect
graphs is the complexity of the recognition problem. (For
perfect graphs there is a polynomial time recognition
algorithm due to Chudnovsky, Cornuéjols, Liu, Seymour and
Vušković).
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Definition
Relation with perfect graphs

First question: is there some relation between
clique-perfect graphs and perfect graphs?

I Odd holes C2k+1, k ≥ 2, are not clique-perfect:
αc(C2k+1) = k and τc(C2k+1) = k + 1.

I Antiholes Cn, n ≥ 5, are clique-perfect if and only if n ≡ 0(3)
(Reed, 2000): τc(Cn) = 3 and αc(Cn) = 2 or 3, being 3 only
if n is divisible by three.

C5 C7 C9
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Relation with perfect graphs

Relation with perfect graphs

So the classes overlap and we have the following scheme of
relation between perfect graphs and clique-perfect graphs:

C 6k±1

C 6k±2 C 6k
C 6k+3

perfect clique-perfect

Flavia Bonomo On clique-perfect graphs



Perfect graphs
Clique-perfect graphs

Clique graphs
Partial characterizations by forbidden induced subgraphs

Definition
Relation with perfect graphs

Triangle-free graphs

For triangle-free graphs (without isolated vertices) the cliques are
the edges, so a maximum clique-independent set is a maximum
matching, and a minimum clique-transversal is a minimum vertex
cover.

Since odd holes are not clique-perfect, a clique-perfect triangle-free
graph must be bipartite.

So, by Kőnig’s theorem and analyzing the case with isolated
vertices, every bipartite graph G satisfies τc(G ) = αc(G ).
Moreover, since every induced subgraph of a bipartite graph is also
bipartite, it follows that a triangle-free graph is clique-perfect iff it
is bipartite.

Thus, within the class of triangle-free graphs, a graph is
clique-perfect iff it is perfect.
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cover.

Since odd holes are not clique-perfect, a clique-perfect triangle-free
graph must be bipartite.

So, by Kőnig’s theorem and analyzing the case with isolated
vertices, every bipartite graph G satisfies τc(G ) = αc(G ).
Moreover, since every induced subgraph of a bipartite graph is also
bipartite, it follows that a triangle-free graph is clique-perfect iff it
is bipartite.

Thus, within the class of triangle-free graphs, a graph is
clique-perfect iff it is perfect.
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Families of clique-perfect graphs
I Complements of acyclic graphs.
I Comparability graphs (Balachandran, Nagavamsi & Pandu

Rangan 1996).
I Dually chordal graphs (Branstädt, Chepoi & Dragan 1997).
I {gem,W4}-free graphs such that every odd cycle has a short

chord.
I Distance-hereditary graphs (Lee & Chang 2006).
I Balanced graphs. A graph is balanced if its vertex-clique

incidence matrix is balanced.

short chord

v1 v2 v3

M1 1 1 0
M2 0 1 1
M3 1 0 1
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Families of clique-imperfect graphs

I Odd holes.

I Antiholes of length not divisible by three.

I Odd suns.

I Odd generalized suns (they generalize odd suns and odd
holes).

I Graphs S1
k and S2

k , k ≥ 2.

I Graphs Q6k+3, k ≥ 0.
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Odd suns

An r -sun is a chordal graph with a cycle of length r and r vertices,
each one of them is adjacent to the endpoints of an edge of the
cycle.

3-sun 5-sun

Odd suns are not clique-perfect: they have, as odd holes,
αc((2k + 1)-sun) = k and τc((2k + 1)-sun) = k + 1.
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Odd generalized suns
A family of graphs generalizing both odd holes and odd suns are
odd generalized suns. An edge in a cycle is non-proper if it forms a
triangle with some vertex of the cycle. An odd generalized sun is
formed by an odd cycle and a vertex for each non-proper edge,
adjacent only to its endpoints.

3-sun 5-sun
5-generalized
sun (viking)

7-generalized
sun

9-generalized
sun

They have αc((2k + 1)-gen. sun) = k and τc((2k + 1)-gen.
sun) ≥ k + 1.

Flavia Bonomo On clique-perfect graphs



Perfect graphs
Clique-perfect graphs

Clique graphs
Partial characterizations by forbidden induced subgraphs

Definition
Relation with perfect graphs

Odd generalized suns

With the above definition, odd generalized suns are not necessarily
minimal, and it is still an open question the characterization of
minimal odd generalized suns and minimally clique-imperfect odd
generalized suns.
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Graphs S1
k and S2

k , k ≥ 2

The families of graphs S1
k and S2

k , k ≥ 2, are defined based on a
cycle of 2k + 1 vertices, as it can be seen in the figure, where
dotted lines replace any odd induced path of length at least one.

1
kS

2
kS

They have αc(S i
k) = k and τc(S i

k) = k + 1, for i = 1, 2.
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Graphs Q6k+3, k ≥ 0

The family of graphs Qn was defined by Szwarcfiter, Lucchesi and
P. de Mello, 1998. For odd values of n, αc(Qn) = 1 and
τc(Qn) = 2 (they are exactly the graphs minimally clique-complete
without a universal vertex).

Q3 Q5 Q7 Q9

But only the graphs Qn with n odd and divisible by three are
minimally clique-imperfect, the other ones contain clique-imperfect
antiholes.
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Partial advances on a forbidden induced subgraph characterization

In the second part of the talk we will see partial characterizations,
within the classes:

I Chordal graphs

I Diamond-free graphs

I Paw-free graphs

I P4-sparse graphs

I {gem,W4,bull}-free graphs

I Line graphs

I Complements of line graphs of bipartite graphs

I HCH claw-free graphs

I Helly circular-arc graphs
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Qualche dubbio fino a qua ?
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Parameters in the clique graph

I If we look at the clique graph, it holds the following relation:

I αc(G ) = α(K (G )).

I τc(G ) ≥ θ(K (G )), and, if G is clique-Helly, τc(G ) = θ(K (G )).

G K(G)

I So, in general αc(G ) = α(K (G )) ≤ θ(K (G )) ≤ τc(G ).
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I If we look at the clique graph, it holds the following relation:

I αc(G ) = α(K (G )).

I τc(G ) ≥ θ(K (G )), and, if G is clique-Helly, τc(G ) = θ(K (G )).

G K(G)

I So, in general αc(G ) = α(K (G )) ≤ θ(K (G )) ≤ τc(G ).

Flavia Bonomo On clique-perfect graphs



Perfect graphs
Clique-perfect graphs

Clique graphs
Partial characterizations by forbidden induced subgraphs

K-perfect graphs
Hereditary K-perfect graphs
Clique subgraphs
Integer programming formulations

K-perfect graphs

I A graph G is K-perfect when K (G ) is perfect.

I If a graph G is clique-Helly and K-perfect, then
αc(G ) = α(K (G )) = θ(K (G )) = τc(G ).

Corollary

If a class of graphs is hereditary on induced subgraphs, clique-Helly
and K-perfect, then the class is clique-perfect.
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K-perfect graphs
In general, it is not true that a clique-Helly graph is K-perfect iff it
is clique-perfect.

The problem is the following:

I Given an induced subgraph H of G , nos necessarily K (H) is
an induced subgraph of K (G ).

I Not every induced subgraph of K (G ) is the clique graph of an
induced subgraph of G .
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Hereditary K-perfect graphs
The first item leads to defining hereditary K-perfect graphs as the
graphs G such that every induced subgraph H of G is K-perfect.

Now, it holds:

Property

If G is a HCH and hereditary K-perfect graph, then G is
clique-perfect.

The converse is not true.
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Hereditary K-perfect graphs

I For every n ≥ 4, K (Cn) = Cn. So, a hereditary K-perfect
graph cannot contain odd holes, since they are not K-perfect.

I On the other hand, it holds that K (Cn) contains an induced
C5 for n ≥ 5, n different from 6, 7, 9, 12. But C6 is hereditary
K-perfect, K (C7) = C7, and both K (C9) and K (C12) contain
an induced C9.

I So, hereditary K-perfect graphs are perfect.
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I On the other hand, it holds that K (Cn) contains an induced
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Relation between the three classes

Hereditary K-perfect

Clique-perfect

Perfect
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Clique subgraphs

The fact that “not every induced subgraph of K (G ) is the clique
graph of an induced subgraph of G” leads to the definition of
clique subgraphs.

A subgraph H of G is a clique subgraph of G if all the cliques of H
are also cliques of G .

Example: The second and third subgraphs are clique subgraphs
(the third is not an induced subgraph).
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Clique subgraphs
Now, we have that if H is a clique subgraph of G , then K (H) is an
induced subgraph of K (G ).

But, yet not every induced subgraph of K (G ) is the clique graph of
a clique subgraph of G .
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Clique subgraphs

Theorem (Prisner, 1993)

G is HCH iff for every family M1, . . . ,Mk of cliques of G , the
subgraph of G formed by the vertices and edges of M1, . . . ,Mk is a
clique subgraph of G and its cliques are exactly M1, . . . ,Mk .

Corollary

If G is HCH, every induced subgraph of K (G ) is the clique graph
of a clique subgraph of G .
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c-Clique-perfect graphs

A graph G is c-clique-perfect if τc(H) = αc(H) for every clique
subgraph H of G .

Theorem

If G is HCH, then G is K-perfect if and only if G is c-clique-perfect.

Proof. If G is clique-Helly, then every clique subgraph of G is clique-Helly.
⇒) Let H be a clique subgraph of G . Then K (H) is an induced subgraph
of K (G ). Since H is clique-Helly, τc(H) = θ(K (H)) and since K (G ) is
perfect, τc(H) = θ(K (H)) = α(K (H)) = αc(H).
⇐) Let U be an induced subgraph of K (G ). Since G is HCH, let H be a
clique subgraph of G such that K (H) = U. Since H is clique-Helly,
τc(H) = θ(U) and since G is c-clique-perfect, then θ(U) = τc(H) =
αc(H) = α(U). 2
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Qualche dubbio fino a qua ?
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Clique matrix

I The clique matrix AG of a graph G has a row for each clique
of G and a column for each vertex of G . AG (i , j) = 1 if vertex
j belongs to clique i and 0 otherwise.

Example:

1 1 0 0 0 0 1
1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
1 0 0 0 0 1 1 C7

_
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Derived graph and characterization of clique matrices

I We can regard a vector in {0, 1}n as the characteristic vector
of a subset of {1, . . . , n}.

I So, we will say that two vectors a, b ∈ {0, 1}n intersect if, for
some 1 ≤ i ≤ n, ai = bi = 1.

(1 0 0 1 1) ∩ (0 1 0 1 1) = (0 0 0 1 1)

I We will say also that a vector a is included in another b if for
every 1 ≤ i ≤ n, ai ≤ bi .

(1 0 0 1 0) ⊆ (1 0 1 1 0)

I Finally, a family of vectors will satisfy the Helly property iff
their associated sets do.

I In this context, the derived graph GA of a matrix A, is the
intersection graph of its columns.
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Derived graph and characterization of clique matrices
Example:

v1 v2 v3

1 1 0
0 1 1
1 0 1

v4

0
0
1 v1

v2 v3

v4

v1 v2 v3

1 1 1
1 0 1

v4

0
1

Note that GAG
= G . The converse is not always true.

Theorem (Gilmore, 1960)

A 0-1 matrix A is the clique matrix of its derived graph iff:

1. A has no zero columns.

2. A has no included rows.

3. The columns of A satisfy the Helly property.
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Integer programming formulations

Based on the clique matrix of the graph, AG ∈ {0, 1}k×n, the four
parameters α, θ, αc and τc can be formulated as integer
programming problems.

α(G ) = max 1 · x
s.t.

AGx ≤ 1
x ∈ {0, 1}n

τc(G ) = min 1 · x
s.t.

AGx ≥ 1
x ∈ {0, 1}n

θ(G ) = min 1 · y
s.t.

AT
G y ≥ 1

y ∈ {0, 1}k

αc(G ) = max 1 · y
s.t.

AT
G y ≤ 1

y ∈ {0, 1}k
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Perfect matrices

A 0-1 matrix is perfect if the convex hull of the set
{x ∈ {0, 1}n : AGx ≤ 1} is the set
{x ∈ Rn : AGx ≤ 1, 0 ≤ x ≤ 1}.

Theorem (Chvátal 1975)

A 0-1 matrix with no zero columns nor included rows is perfect if
and only if it is the clique matrix of a perfect graph.
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Perfect matrices

I As a corollary, the maximum stable set problem of a perfect
graph can be computed by linear programming.

I There is an algorithm of Tsukiyama, Idle, Ariyoshi and
Shirakawa, that computes the clique matrix of a graph in
O(nmk), where n, m and k are the number of vertices, edges
and cliques of the graph, respectively.

I But the difficulty is that a perfect graph can have
exponentially many cliques, so it does not lead directly to a
polynomial time algorithm for maximum stable set on perfect
graphs.

I Nevertheless, Grötschel, Lovász and Schrijver proved in 1981
the existence of polynomial time algorithms for α, ω, θ and χ
on perfect graphs.
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Clique matrices of subgraphs and the clique graph
I If H is an induced subgraph of G , then AH can be obtained

from AG by selecting the columns corresponding to the
vertices of H and then deleting the included rows.

I If H is a clique subgraph of G and G is HCH, then AH can be
obtained from AG by selecting the rows corresponding to the
cliques of H and then deleting the zero columns.

I If G is CH, then AK(G) can be obtained from AT
G by deleting

the included rows.

Example:

C7

_

1 1 0 0 0 0 1
1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
1 0 0 0 0 1 1 
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Clique matrices of subgraphs and the clique graph
I If H is an induced subgraph of G , then AH can be obtained

from AG by selecting the columns corresponding to the
vertices of H and then deleting the included rows.

I If H is a clique subgraph of G and G is HCH, then AH can be
obtained from AG by selecting the rows corresponding to the
cliques of H and then deleting the zero columns.

I If G is CH, then AK(G) can be obtained from AT
G by deleting

the included rows.

Example:

1 1 0 0 0 0 1
1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
1 0 0 0 0 1 1 C7

_
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Matrix characterization of clique-Helly K-perfect graphs

As a corollary of the last statement and Chvátal’s theorem, we
have the following:

Corollary

A clique-Helly graph G is K -perfect if and only if AT
G is a perfect

matrix.
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Balanced matrices

I A 0-1 matrix is balanced if it does not contain an odd square
submatrix with exactly two 1’s per row and per column.

I A graph is balanced iff its clique matrix is balanced.

Example:

1 1 0 0 0 0 1
1 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
1 0 0 0 0 1 1 C7

_
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Balanced graphs

I Balanced matrices are perfect matrices (Fulkerson, Hoffman &
Oppenheim 1974), so balanced graphs are perfect graphs.

I Balanced graphs are HCH (Prisner 1993).

I Moreover, if A is balanced then AT and every submatrix of A
are balanced, so balanced graphs are K-perfect and they are
an hereditary class.

I In conclusion, balanced graphs live in the intersection between
perfect, clique-perfect and hereditary K-perfect graphs and,
besides, they are HCH.
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Relation between the classes

Hereditary K-perfect

Clique-perfect

Perfect
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Balanced graphs

I For being HCH, balanced graphs have polynomially many
cliques (Prisner 1993).

I Using the algorithm of Tsukiyama, Idle, Ariyoshi and
Shirakawa, the clique matrix of a balanced graph can be
computed in polynomial time. In particular, ω can be
computed in polynomial time, and so χ = ω since balanced
graphs are perfect.

I Moreover, by the integrality of all the corresponding
polyhedra, α, θ, αc and τc can be computed in polynomial
time for balanced graphs.

I Besides, balanced matrices (and so balanced graphs) can be
recognized in polynomial time (Conforti, Cornuéjols & Rao
1999, and Zambelli 2005).
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Qualche dubbio fino a qua ?
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Chordal graphs

A graph is chordal when every cycle of length at least four has a
chord. Chordal graphs have polynomial time recognition (Rose,
Tarjan and Lueker, 1976).

Theorem (Lehel and Tuza, 1986)

Let G be a chordal graph. Then the following are equivalent:

1. G does not contain odd suns.

2. G is balanced.

3. G is clique-perfect.

The recognition of clique-perfect chordal graphs can be reduced to
the recognition of balanced graphs, which is solvable in polynomial
time.
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Chordal graphs

Chordal graphs    perfect graphs

Balanced = Clique-perfect

Her
ed

ita
ry K

-perfect
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Operations preserving clique-perfectness

Twin vertices: Two vertices v and w are twins in G if
N[v ] = N[w ], or, equivalently, if they belong to exactly the
same cliques of G .

Example:

If v and w are twins in G , then G is clique-perfect if and only
if G − v is. Moreover, αc(G ) = αc(G − v) and
τc(G ) = τc(G − v).
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Operations preserving clique-perfectness

Disjoint union: Let G = (V ,E ) and G ′ = (V ′,E ′) with
V ∩ V ′ = ∅. Then the disjoint union G ∪ G ′ is the graph with
vertex set V ∪ V ′ and edge set E ∪ E ′.

Example:

G G’

Under these conditions, G ∪ G ′ is clique-perfect if and only if
G and G ′ are. Moreover, αc(G ∪ G ′) = αc(G ) + αc(G ′) and
τc(G ∪ G ′) = τc(G ) + τc(G ′).

Every graph is the disjoint union of its connected components.

Flavia Bonomo On clique-perfect graphs



Partial characterizations by forbidden induced subgraphs

Operations preserving clique-perfectness

Join: Let G = (V ,E ) and G ′ = (V ′,E ′) with V ∩ V ′ = ∅.
Then the join G ∨ G ′ is the graph with vertex set V ∪ V ′ and
edge set E ∪ E ′ ∪ V × V ′, that is, G ∨ G ′ = G ∪ G ′.

Example:

G G’

Under these conditions, G ∨ G ′ is clique-perfect if and only if
G and G ′ are. Moreover, αc(G ∨ G ′) = min{αc(G ), αc(G ′)}
and τc(G ∨ G ′) = min{τc(G ), τc(G ′)}.
G is anticonnected if G is connected. Otherwise, it is the join
of its anticomponents (the subgraphs of G induced by the
vertices of the connected components of G ).
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Operations preserving clique-perfectness

Join: Let G = (V ,E ) and G ′ = (V ′,E ′) with V ∩ V ′ = ∅.
Then the join G ∨ G ′ is the graph with vertex set V ∪ V ′ and
edge set E ∪ E ′ ∪ V × V ′, that is, G ∨ G ′ = G ∪ G ′.

Example:

G G’

Under these conditions, G ∨ G ′ is clique-perfect if and only if
G and G ′ are. Moreover, αc(G ∨ G ′) = min{αc(G ), αc(G ′)}
and τc(G ∨ G ′) = min{τc(G ), τc(G ′)}.
G is anticonnected if G is connected. Otherwise, it is the join
of its anticomponents (the subgraphs of G induced by the
vertices of the connected components of G ).
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Cographs

A cograph is a P4-free graph, that is, a graph with no four vertices
inducing P4.

Theorem (Corneil, Lerchs and Stewart Burlingham, 1981)

Let G be a cograph. Then G is either trivial (it has only one
vertex) or the disjoint union or the join of smaller cographs.

So, by induction and based on the properties stated previously
about disjoint union and join, it can be proved that all the
cographs are clique-perfect.
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P4-sparse graphs
A spider is a graph whose vertex set can be partitioned into three
sets S , C and R, where S = {s1, . . . , sk} (k ≥ 2) is a stable set;
C = {c1, . . . , ck} is a complete set; si is adjacent to cj if and only
if i = j (a thin spider), or si is adjacent to cj if and only if i 6= j (a
thick spider); R can be empty but if not, then R is complete to C
and anticomplete to S .

Note that if G is a thin spider, then αc(G ) = τc(G ) = k (C is a
clique-transversal an the legs are a clique-independent set).
Note also that a thick spider (that is not thin, so k ≥ 3) contains
an induced 3-sun.
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P4-sparse graphs

Def: Every set of five vertices contains at most one induced P4.

Theorem (Hoàng, 1985)

Let G be a P4-sparse graph. Then G satisfies one of this
statements:

G is trivial

G is the disjoint union of smaller P4-sparse graphs

G is the join of smaller P4-sparse graphs

G is a spider (S ,C ,R), and R induces a P4-sparse graph.

Theorem

The only minimally clique-imperfect P4-sparse graph is the 3-sun.
So, if G is P4-sparse, it is clique-perfect if and only if it does not
contain 3-sun as an induced subgraph.
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P4-sparse graphs

Def: Every set of five vertices contains at most one induced P4.

Theorem (Hoàng, 1985)

Let G be a P4-sparse graph. Then G satisfies one of this
statements:

G is trivial

G is the disjoint union of smaller P4-sparse graphs

G is the join of smaller P4-sparse graphs

G is a spider (S ,C ,R), and R induces a P4-sparse graph.

Theorem

The only minimally clique-imperfect P4-sparse graph is the 3-sun.
So, if G is P4-sparse, it is clique-perfect if and only if it does not
contain 3-sun as an induced subgraph.
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P4-sparse graphs

P -sparse graphs    perfect graphs

    
     

         
    Clique-perfect
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Paw-free graphs

A paw-free graph is a graph with no four vertices inducing a paw.

Looking at the complement of a paw, it can be easily proved that
if a paw-free graph is not anticonnected, then its anticomponents
are stable sets.

It is also not difficult to prove that if a paw-free graph is connected
and anticonnected, it contains no triangles. So, if it contains no
odd-holes, then it is bipartite.

Then, the only minimally clique-imperfect paw-free graphs are the
odd holes.
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Paw-free graphs

We have then the following characterization, since odd antiholes of
length at least 7 have induced paws.

Theorem

Let G be a paw-free graph. Then the following are equivalent:

1. G does not contain odd holes.

2. G is perfect.

3. G is clique-perfect.
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Paw-free graphs

For the K-perfectness, every bipartite graph is K-perfect, because if
G is bipartite, then K (G ) = L(G ) and line graphs of bipartite
graphs are perfect.

A non-anticonnected graph having an anticomponent of size less
than three is also K-perfect:

if G has an anticomponent of size one {v}, then v is a
universal vertex, so K (G ) is complete.

if G has an anticomponent of size two {v ,w}, then every
clique of G contains either v or w . The cliques containing v
form a complete in K (G ), and so the cliques containing w .
Therefore, K (G ) is the complement of a bipartite graph, thus
perfect.
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Paw-free graphs

It can be seen that the join of three stable sets of size three is not
K-perfect. So, we obtain this characterization.

Theorem

Let G be a paw-free graph. Then G is hereditary K-perfect iff each
connected component H satisfies one of these conditions:

1. H is bipartite.

2. H is not anticonnected and at most two anticomponents of H
have more than two vertices.

Theorem

The minimally K-imperfect paw-free graphs are odd holes and 3K3.
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Paw-free graphs

Paw-free graphs

    
     

     Clique-perfect=perfect

Here
ditary K-perfect

Flavia Bonomo On clique-perfect graphs



Partial characterizations by forbidden induced subgraphs

Diamond-free graphs

diamond

Theorem

Let G be a diamond-free graph. Then the following are equivalent:

1. G contains no odd generalized sun.

2. G is clique-perfect.

3. G is hereditary K-perfect.

Diamond-free odd generalized suns are odd generalized suns
without non-proper edges. In this case, the characterization is not
formulated by minimal subgraphs yet.
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Sketch of proof

Theorem

Let G be a diamond-free graph. Then the following are equivalent:

1. G contains no odd generalized sun.

2. G is clique-perfect.

3. G is hereditary K-perfect.

We prove 1⇔ 3, and then the equivalence with 2 holds one way, because
odd generalized suns are not clique perfect, and on the other way, by
using that diamond-free graphs are hereditary clique-Helly.

Since K(diamond-free)=diamond-free, K (G ) cannot contain odd
antiholes of length at least 7. Suppose K (G ) contains an odd hole.
Consider the cliques M1, . . . ,M2k+1 of G inducing that odd hole. Taking
vi in Mi ∩Mi+1 we have an odd cycle in G . It is easy to prove that if
there is a non-proper edge in that cycle, then there is a diamond. So,
that cycle induces an odd generalized sun with no improper edges.
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{gem,W4,bull}-free graphs

gem W4 bull

Theorem

Let G be a {gem,W4,bull}-free graph. Then the following are
equivalent:

1. G contains no odd holes.

2. G is perfect.

3. G is clique-perfect.

4. G is hereditary K-perfect.

In this case the proof is also based on the K-perfectness, but the
arguments are more involved.
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Line graphs

Let H be a graph. Its line graph L(H) is the intersection graph of
the edges of H. A graph G is a line graph if there exists a graph H
such that G = L(H). Line graphs have polynomial time
recognition (Lehot, 1974).

Theorem

Let G be a line graph. Then the following are equivalent:

1. G contains no odd holes.

2. G is perfect.

3. G is hereditary K-perfect.

The proof is based on the structure of graphs whose line graph is
perfect (several results by Trotter, de Werra and Maffray), and
uses some of the operations preserving perfection or K-perfection.
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Line graphs

For clique-perfection, we have this characterization.

Theorem

Let G be a line graph. Then the following are equivalent:

1. no induced subgraph of G is and odd hole, or a 3-sun.

2. G is clique-perfect.

The proof is by induction, using as a base case when the graph is
hereditary clique-Helly, because there we can use the K-perfection.
Otherwise, we look how the other pyramids can appear and
decompose the graph reducing the problem to smaller cases.
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Claw-free hereditary clique-Helly graphs

claw

Theorem (Chudnovsky and Seymour 2005)

Let G be a claw-free graph. Then either G ∈ S0 ∪ · · · ∪ S6, or G
admits twins, or a non-dominating W-join, or a coherent W-join, or
a 0-join, or a 1-join, or a generalized 2-join, or a hex-join, or G is
antiprismatic.
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Claw-free hereditary clique-Helly graphs

The characterization obtained for HCH claw-free graphs is the
following:

Theorem

Let G be a hereditary clique-Helly claw-free graph. Then the
following are equivalent:

1. no induced subgraph of G is an odd hole, or C7.

2. G is clique-perfect.

3. G is perfect.

4. G is hereditary K-perfect.
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Sketch of proof

Theorem

Let G be a hereditary clique-Helly claw-free graph. Then the following
are equivalent:

1. no induced subgraph of G is an odd hole, or C7.

2. G is clique-perfect.

3. G is perfect.

4. G is hereditary K-perfect.

The main part of the proof is 1⇔ 4. The proof is by induction, based on
the claw-free graphs decomposition theorem of Chudnovsky and
Seymour. We prove it for the basic classes, and then we do induction
using that if G in non-basic then it admits a decomposition. For some of
the decompositions (1-join, 2-join) the idea is that these decompositions
lead to some decompositions of the clique graph preserving perfection.
Some other cases are more complicated, and require “brute force” to find
the way of using induction.
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Helly circular-arc graphs
Recall that a graph G is HCA if there exists a family of arcs of a
circle verifying the Helly property and such that G is the
intersection graph of this family.

Theorem

Let G be a Helly circular-arc graph. Then the following are
equivalent:

1. G does not contain any of the graphs in the figure, where the
dotted lines replace an induced path of length at least one.

2. G is clique-perfect.

3-sun C7 odd holes viking
1
kS

2
kS2-viking
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Sketch of proof

Theorem

Let G be a Helly circular-arc graph. Then the following are equivalent:

1. G does not contain any of the graphs in the figure, where the
dotted lines replace an induced path of length at least one.

2. G is clique-perfect.

To prove 1⇒ 2, we show that Helly circular-arc graphs which do not
contain the graphs of the figure as induced subgraphs are K-perfect. This
is the hardest part of the proof, and the idea is to “bring back” to G the
odd holes and odd antiholes of K (G ). The remaining part is based in the
fact that Helly circular-arc graphs that are not HCH have αc = τc or they
are clique-complete without a universal vertex, and then we use a
characterization of clique-complete graphs by Szwarcfiter, Lucchesi and
P. de Mello, 1998.
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Recognition algorithm
Input: A HCA graph G ; Output: TRUE if G is clique-perfect and FALSE if G is not.

1. Check if G contains a 3-sun. Case yes, return FALSE.

2. Check for odd holes and C7: check if G is perfect. Case not, return FALSE.

3. Check for vikings and 2-vikings:

for every 7-tuple... if
return FALSE

else...
is G’ perfect?

G G G’ G

for every 7-tuple... if
return FALSE

else...
is G’ perfect?

G G’

4. Check for S1
k and S2

k :

for every 8-tuple... if
return FALSE

else...
is G’ perfect?

G G G’ G G G’

for every 10-tuple... if
return FALSE

else...
is G’ perfect?

5. If no forbidden subgraph is found, return TRUE.
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Summary

Class Forbidden induced subgraphs

Chordal odd suns
P4-sparse 3-sun
Paw-free odd holes

Diamond-free odd generalized suns
{gem,W4,bull}-free odd holes

Line graphs odd holes, 3-sun

HCH claw-free odd holes, C7

HCA 3-sun, odd holes, C7,
vikings, 2-vikings, S1

k , S2
k
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