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Graph coloring

Coloring a graph consists of giving a “color” (usually a number) to
each vertex in such a way that adjacent vertices receive different
colors.

Formally, a coloring of a graph G = (V ,E ) is a function
f : V → N such that f (v) 6= f (w) if v is adjacent to w .
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k-coloring

Given a graph G = (V ,E ), a k-coloring of G is a coloring f for
which f (v) ≤ k for every v ∈ V (there are only k available colors).

A graph G is k-colorable if there is a k-coloring of G .

k=3 k=3
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List-coloring

Given a graph G = (V ,E ) and a finite list L(v) ⊆ N of colors for
each vertex v ∈ V , G is list-colorable if there is a coloring f for
which f (v) ∈ L(v) for each v ∈ V (Vizing, 1976).
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µ-coloring

Given a graph G = (V ,E ) and a function µ : V → N, a µ-coloring
of G is a coloring f for which f (v) ≤ µ(v) for each v ∈ V .

A graph G is µ-colorable if there is a µ-coloring of G .
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k-coloring, list-coloring, µ-coloring

The µ-coloring problem lies between k-coloring and list-coloring.

I A trivial reduction from k-coloring to µ-coloring can be done
defining µ(v) = k for every v .

I The reduction from µ-coloring to list-coloring can be done
defining L(v) = {1, . . . ,min{µ(v), |V (G )|}}.

We show in this work that the betweenness is strict, that is, there
is a class of graphs (bipartite graphs) for which µ-coloring is
NP-complete while coloring is in P, and there is another class of
graphs (cographs) for which list-coloring is NP-complete while
µ-coloring is in P.
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Applications

A typical application of coloring and list-coloring is the assignment
of resources to users with temporal restrictions (two users cannot
use the same resource at the same time).

I A problem in which all the users can use all the resources can
be modelled as a k-coloring problem, where k is the number
of resources and the graph represents the compatibility
between users.

I A problem in which each user can use some of the resources
can be modelled as a list-coloring problem.

I A problem in which the resources have an order (best to
worst) and each user can use any resource “good enough” for
him can be modelled as a µ-coloring problem.

Flavia Bonomo, Mariano Cecowski Between coloring and list-coloring: µ-coloring



k-coloring, list-coloring, µ-coloring
Perfection

Complexity issues
Bounds on the number of colors

Summary

Definitions
Relations
Applications

Applications

A typical application of coloring and list-coloring is the assignment
of resources to users with temporal restrictions (two users cannot
use the same resource at the same time).

I A problem in which all the users can use all the resources can
be modelled as a k-coloring problem, where k is the number
of resources and the graph represents the compatibility
between users.

I A problem in which each user can use some of the resources
can be modelled as a list-coloring problem.

I A problem in which the resources have an order (best to
worst) and each user can use any resource “good enough” for
him can be modelled as a µ-coloring problem.

Flavia Bonomo, Mariano Cecowski Between coloring and list-coloring: µ-coloring



k-coloring, list-coloring, µ-coloring
Perfection

Complexity issues
Bounds on the number of colors

Summary

Definitions
Relations
Applications

Applications

A typical application of coloring and list-coloring is the assignment
of resources to users with temporal restrictions (two users cannot
use the same resource at the same time).

I A problem in which all the users can use all the resources can
be modelled as a k-coloring problem, where k is the number
of resources and the graph represents the compatibility
between users.

I A problem in which each user can use some of the resources
can be modelled as a list-coloring problem.

I A problem in which the resources have an order (best to
worst) and each user can use any resource “good enough” for
him can be modelled as a µ-coloring problem.

Flavia Bonomo, Mariano Cecowski Between coloring and list-coloring: µ-coloring



k-coloring, list-coloring, µ-coloring
Perfection

Complexity issues
Bounds on the number of colors

Summary

Perfect graphs
M-perfect graphs

Perfect graphs

I The chromatic number of a graph G is the minimum k such
that G is k-colorable, and is denoted by χ(G ).

I A complete of G is a subset of vertices pairwise adjacent. A
clique is a complete not properly contained in any other.

I It is easy to see that χ(G ) is at least the cardinality of a
maximum clique of G , denoted by ω(G ).

I A graph G is perfect (Berge, 1960) when χ(H) = ω(H) for
every induced subgraph H of G .
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Perfect graphs

Perfect graphs have very nice properties:

I They are a self-complementary class of graphs (Lovász, 1972).

I The k-coloring problem is solvable in polynomial time for
perfect graphs (Grötschel, Lovász and Schrijver, 1981).

I They have been characterized by minimal forbidden subgraphs
(Chudnovsky, Robertson, Seymour and Thomas, 2002).

I They can be recognized in polynomial time (Chudnovsky,
Cornuéjols, Liu, Seymour and Vušković, 2003).
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M-perfect graphs

An alternative definition for perfect graphs is the following: “G is
perfect when for every induced subgraph H of G and for every k,
H is k-colorable if and only if every clique of H is k-colorable”.

Analogously, we define M-perfect graphs as follows: a graph G is
M-perfect when for every induced subgraph H of G and for every
function µ : V → N, H is µ-colorable if and only if every clique of
H is µ-colorable.

M-perfect graphs are also perfect, because perfection is equivalent
to M-perfection with µ restricted to constant functions.

In order to characterize M-perfect graphs, we need some results on
µ-colorings and cliques.

Flavia Bonomo, Mariano Cecowski Between coloring and list-coloring: µ-coloring



k-coloring, list-coloring, µ-coloring
Perfection

Complexity issues
Bounds on the number of colors

Summary

Perfect graphs
M-perfect graphs

M-perfect graphs

An alternative definition for perfect graphs is the following: “G is
perfect when for every induced subgraph H of G and for every k,
H is k-colorable if and only if every clique of H is k-colorable”.

Analogously, we define M-perfect graphs as follows: a graph G is
M-perfect when for every induced subgraph H of G and for every
function µ : V → N, H is µ-colorable if and only if every clique of
H is µ-colorable.

M-perfect graphs are also perfect, because perfection is equivalent
to M-perfection with µ restricted to constant functions.

In order to characterize M-perfect graphs, we need some results on
µ-colorings and cliques.

Flavia Bonomo, Mariano Cecowski Between coloring and list-coloring: µ-coloring



k-coloring, list-coloring, µ-coloring
Perfection

Complexity issues
Bounds on the number of colors

Summary

Perfect graphs
M-perfect graphs

M-perfect graphs

An alternative definition for perfect graphs is the following: “G is
perfect when for every induced subgraph H of G and for every k,
H is k-colorable if and only if every clique of H is k-colorable”.

Analogously, we define M-perfect graphs as follows: a graph G is
M-perfect when for every induced subgraph H of G and for every
function µ : V → N, H is µ-colorable if and only if every clique of
H is µ-colorable.

M-perfect graphs are also perfect, because perfection is equivalent
to M-perfection with µ restricted to constant functions.

In order to characterize M-perfect graphs, we need some results on
µ-colorings and cliques.

Flavia Bonomo, Mariano Cecowski Between coloring and list-coloring: µ-coloring



k-coloring, list-coloring, µ-coloring
Perfection

Complexity issues
Bounds on the number of colors

Summary

Perfect graphs
M-perfect graphs

M-perfect graphs

An alternative definition for perfect graphs is the following: “G is
perfect when for every induced subgraph H of G and for every k,
H is k-colorable if and only if every clique of H is k-colorable”.

Analogously, we define M-perfect graphs as follows: a graph G is
M-perfect when for every induced subgraph H of G and for every
function µ : V → N, H is µ-colorable if and only if every clique of
H is µ-colorable.

M-perfect graphs are also perfect, because perfection is equivalent
to M-perfection with µ restricted to constant functions.

In order to characterize M-perfect graphs, we need some results on
µ-colorings and cliques.

Flavia Bonomo, Mariano Cecowski Between coloring and list-coloring: µ-coloring



k-coloring, list-coloring, µ-coloring
Perfection

Complexity issues
Bounds on the number of colors

Summary

Perfect graphs
M-perfect graphs

Minimal colorings on cographs

I We say that a coloring f is minimal when for every vertex v ,
and every color i < f (v), v has a neighbor wi with color
f (wi ) = i . Every k-coloring or µ-coloring can be transformed
into a minimal one.

I A cograph is a P4-free graph (a graph with no induced P4).

Theorem 1

Let G be a cograph and x a vertex of G . Let f be a minimal
coloring of G − x . If f cannot be extended to G coloring x with a
color at most T then there is a complete in the neighborhood of x
of size T using all the colors between 1 and T .
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Characterization

Theorem 2

If G is a graph, the following are equivalent:

1. G is a cograph

2. G is M-perfect

3. for every function µ : V → N, G is µ-colorable if and only if
every clique of G is µ-colorable.

It follows from this equivalence that M-perfect graphs are a
self-complementary class of graphs (G is M-perfect iff G is) and
can be recognized in linear time (Corneil, Perl and Stewart, 1984).
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Sketch of proof

Theorem 2

If G is a graph, the following are equivalent:

1. G is a cograph

2. G is M-perfect

3. for every function µ : V → N, G is µ-colorable if and only if every
clique of G is µ-colorable.

(3 ⇔ 2) It is not difficult to prove.
(2 ⇒ 1) Define µ as in the figure. Clearly, every clique is µ-colorable, but
the whole graph is not.

12 21
(1 ⇒ 2) This proof is strongly based on Theorem 1.
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Complexity issues: cographs

The greedy coloring algorithm consists of successively color the
vertices with the least possible color in a given order.

Theorem 4

The greedy coloring algorithm applied to the vertices in
non-decreasing order of µ gives a µ-coloring for a cograph, when it
is µ-colorable.

A little improvement in the greedy algorithm allows us to find a
non µ-colorable clique when the graph is not µ-colorable.

Jansen and Scheffler (1997) proved that list-coloring is
NP-complete for cographs, hence µ-coloring is “easier” than
list-coloring, unless P=NP.
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Complexity issues: cographs

A nice corollary of this, is the following known fact (Chvátal, 1984).

Corollary

The greedy coloring algorithm gives an optimal coloring for
cographs, independently of the order of the vertices.
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Complexity issues: bipartite graphs

Hujter and Tuza (1993) proved that list-coloring is NP-complete
for bipartite graphs. The same holds for µ-coloring.

Theorem 4

The µ-coloring problem is NP-complete for bipartite graphs.

Coloring is trivially in P for bipartite graphs, hence µ-coloring is
“harder” than coloring, unless P=NP.
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Sketch of proof

Theorem 4

µ-coloring is NP-complete for bipartite graphs.

The reduction is from bipartite list-coloring.
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Bounds on the number of colors: cographs

As a corollary of Theorem 3, we have the following result.

Corollary

Let G be a cograph, and let µ be a function such that G is
µ-colorable. Then G can be µ-colored using at most the first
χ(G ) colors.

This does not happen for bipartite graphs, even for trees. But we
can prove some upper bounds.
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Bounds on the number of colors: trees

Theorem 5

Let T be a tree, and let µ be a function such that T is
µ-colorable. Then T can be µ-colored using at most the first
log2(|V (T )|) + 1 colors.

There is a family {Tn}n∈N of trees and {µn}n∈N of functions such that
Tn requires n colors to be µn-colored, and it has 2n−1 vertices.

T1 T2 T3 T4
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Bounds on the number of colors: bipartite graphs

Theorem 6

Let B be a bipartite graph, and let µ be a function such that B is
µ-colorable. Then B can be µ-colored using at most the first
(|V (B)|+2)

2 colors.

There is a family {Bn}n∈N of bipartite graphs and {µn}n∈N of functions
such that Bn requires n colors to be µn-colored, and it has 2n− 2 vertices
(if n ≥ 2).
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Bounds on the number of colors: bipartite graphs

Theorem 6

Let B be a bipartite graph, and let µ be a function such that B is
µ-colorable. Then B can be µ-colored using at most the first
(|V (B)|+2)

2 colors.

There is a family {Bn}n∈N of bipartite graphs and {µn}n∈N of functions
such that Bn requires n colors to be µn-colored, and it has 2n− 2 vertices
(if n ≥ 2).

1 1 1 12

2 3

4

1 1

2

3

2

4

1 1

2

3

2

3

5
B1 B2 B3 B4 B5

Flavia Bonomo, Mariano Cecowski Between coloring and list-coloring: µ-coloring



k-coloring, list-coloring, µ-coloring
Perfection

Complexity issues
Bounds on the number of colors

Summary

Summary

I A new problem of coloring is defined, µ-coloring, lying between
k-coloring and list-coloring.

I It is proved that this betweenness is strict, unless P=NP.

I The concept of perfection is translated to µ-colorings, giving a new
characterization of cographs in terms of M-perfection.

I It is shown that M-perfect graphs share some nice properties with
perfect graphs: a graph is M-perfect if and only if its complement is
M-perfect, they have polynomial time recognition, they have a
simple characterization by forbidden subgraphs, and the µ-coloring
problem can be solved polynomially on M-perfect graphs, as the
k-coloring problem can be solved polynomially on perfect graphs.

I Bounds on the maximum number of colors needed to µ-coloring a
graph are shown for trees, bipartite graphs and cographs.
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