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Abstract

A {0, 1}-matrix is balanced if it contains no square submatrix of odd order with ex-
actly two 1’s per row and per column. Balanced matrices lead to ideal formulations
for both set packing and set covering problems. Balanced graphs are those graphs
whose clique-vertex incidence matrix is balanced.

While a forbidden induced subgraph characterization of balanced graphs is known,
there is no such characterization by minimal forbidden induced subgraphs. In this
work we provide minimal forbidden induced subgraph characterizations of balanced
graphs restricted to some graph classes which also lead to polynomial time or even
linear time recognition algorithms within the corresponding subclasses.
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1 Introduction

Balanced matrices are those {0, 1}-matrices not having a square submatrix
of odd order with exactly two 1’s per row and per column. Balanced ma-
trices have remarkable properties studied in polyhedral combinatorics. Most
notably, if A is balanced, then the fractional set packing polytope P (A) =
{x ∈ R

n | Ax ≤ 1, 0 ≤ x ≤ 1} and the fractional set covering polytope
Q(A) = {x ∈ R

n | Ax ≥ 1, 0 ≤ x ≤ 1} are both integral (i.e., all their
extreme points have integer coordinates) [8].

A {0, 1}-matrix A is called perfect if and only if P (A) is integral, and
a graph is perfect if and only if its clique-matrix is perfect [6]. A clique
Q in a graph G = (V, E) is an inclusion-wise maximal subset of pairwise
adjacent vertices. Given an enumeration Q1, . . . , Qk of all cliques of G and
an enumeration v1, . . . , vn of all vertices of G, a clique-matrix of G is the
k × n {0, 1}-matrix A = (aij) such that aij = 1 if and only if vj ∈ Qi. The
clique-matrix of a graph is unique up to permutations of rows and/or columns.

Some years ago, the minimal forbidden induced subgraphs of perfect graphs
were characterized [5], settling affirmatively a conjecture posed more than 40
years before by Berge [2]. The minimal forbidden induced subgraphs of perfect
graphs are the chordless cycles of odd length having at least 5 vertices, called
odd holes C2k+1, and their complements, the odd antiholes C2k+1.

In analogy to perfect graphs, balanced graphs were defined to be those
graphs whose clique-matrix is balanced [7]. Since balanced matrices are also
perfect, the balanced graphs form a subclass of the class of perfect graphs.
Balanced graphs were characterized by means of forbidden induced subgraphs
in [3]. For a graph G = (V, E) and W ⊆ V , let N(W ) =

⋂
w∈W N(w) and use

N(e) as shorthand for N({u, v}) for an edge e = uv. An unbalanced cycle of
G is an odd cycle C = (V ′, E ′) such that, for each edge e ∈ E ′, there exists
a (possibly empty) complete subgraph We of G such that We ⊆ N(e) \ V ′

and N(We) ∩ N(e) ∩ V ′ = ∅. Note that the subsets We and Wf for different
edges e, f ∈ E ′ may overlap. An extended odd sun is a graph G with an
unbalanced cycle C such that V = V ′ ∪

⋃
e∈E′ We and |We| ≤ |N(e) ∩ V ′| for

each edge e of C. The smallest extended odd suns are C5 and the pyramids
shown in Figure 2. Extended odd suns generalize odd suns, and can have a
rather involved structure (cf. [3]).

The characterization of balancedness by forbidden subgraphs is as follows.

Theorem 1.1 ([3]) A graph is balanced if and only if it has no unbalanced
cycle, or, equivalently, if and only if it contains no induced extended odd sun.



However, the above characterization is not by minimal forbidden induced
subgraphs because some extended odd suns contain some other extended odd
suns as proper induced subgraphs, as Figure 1 shows.

Fig. 1. On the left, an extended odd sun that is not minimal. Bold lines correspond
to the edges of a proper induced extended odd sun, depicted on the right.

Thus, the above characterization forbids some subgraphs which are not
essential to forbid. We address the problem to find the minimal forbidden
induced subgraphs, i.e., those graphs that are not balanced but all their proper
induced subgraphs are balanced. We present minimal forbidden induced sub-
graph characterizations of balanced graphs restricted to the classes of P4-tidy
graphs, paw-free graphs, line graphs, and complements of line graphs.

In addition, we address the problem of recognizing balanced graphs within
the studied subclasses of graphs. Perfect graphs can be recognized in polyno-
mial time [4]. Balanced graphs can be recognized in O((|V | + |E|)9) time by
means of the recognition algorithm for balanced matrices due to Zambelli [13].
Our characterizations lead to linear time recognition algorithms for balanced
graphs within the classes P4-tidy, paw-free, or line graphs, and to a O(|V |7)
recognition algorithm if the input graph is the complement of a line graph.

2 Characterizing and recognizing some balanced graphs

To formulate the characterizations, some further definitions are required. We
say that a graph G is F -free if G contains no induced F . Some such graphs F

are depicted in Figure 2. The join of G1 = (V1, E1) and G2 = (V2, E2) (where
V1 ∩V2 = ∅) is the graph G1 + G2 = (V1 ∪ V2, E1 ∪E2 ∪{uv | u ∈ V1, v ∈ V2}).

A graph G is clique-Helly if every nonempty subfamily of pairwise inter-
secting cliques of G has a common vertex. The pyramids in Figure 2 are
examples of graphs that are not clique-Helly. As any graph with a universal
vertex is clique-Helly, a clique-Helly graph may contain any induced subgraph.
Instead, a graph is hereditary clique-Helly [11] if all its induced subgraphs are
clique-Helly. Prisner [11] showed that a graph is hereditary clique-Helly if and
only if its clique-matrix contains no 3 × 3 submatrix with exactly two 1’s per
row and per column or, equivalently, if and only if it is pyramid-free. This is
of interest to us, as every balanced graph is hereditary clique-Helly by [1].



Fig. 2. Some small graphs

2.1 P4-tidy Graphs

A graph G = (V, E) is P4-tidy if for every vertex set A inducing a P4 in G

there is at most one vertex v ∈ V \ A such that G[A ∪ {v}] contains at least
two induced P4’s. A P4-tidy graph is perfect iff it is C5-free (note that perfect
P4-tidy graphs are called P4-lite and contain all P4-free graphs, see [9]).

Theorem 2.1 For a P4-tidy graph G, the following statements are equivalent:

(i) G is balanced.

(ii) G is perfect and hereditary clique-Helly.

(iii) G contains no induced C5, 3-sun, 2-pyramid, or 3-pyramid.

This characterization and the special structure of the modular decomposition
tree of P4-tidy graphs by [9] yield an O(|V |+ |E|) time algorithm for deciding
whether a P4-tidy graph G = (V, E) is balanced or not.

2.2 Paw-free Graphs

We now provide a minimal forbidden induced subgraph characterization of
balanced graphs restricted to paw-free graphs.

Theorem 2.2 For a paw-free graph G, the following are equivalent:

(i) G is balanced.

(ii) G is perfect and hereditary clique-Helly.

(iii) G has no odd holes and contains no induced 3-pyramid.

(iv) Each connected component of G is either bipartite or is the join of a
complete bipartite and a complete graph.

This characterization implies a linear time algorithm to decide whether a given
paw-free graph G is balanced as condition (iv) can be tested in linear time.



2.3 Line Graphs

Consider a graph R, then its line graph L(R) is obtained by taking one vertex
for each edge of R and joining two vertices in L(R) if the corresponding edges
are adjacent in R. Perfect line graphs were characterized by Trotter [12].
We prove structural characterizations of those line graphs that are balanced,
including a characterization by minimal forbidden induced subgraphs.

Theorem 2.3 Let G be a line graph and let R be a graph such that G = L(R).
Then, the following assertions are equivalent:

(i) G is balanced.

(ii) G is perfect and hereditary clique-Helly.

(iii) G has no odd holes and no induced 3-sun, 1-pyramid, or 3-pyramid.

(iv) R has no odd cycles of length at least 5 and no partial net, kite, or K4.

(v) If U is the set of vertices of R of degree 2 whose two neighbors are adjacent
and E ′ is the set of edges of R whose both endpoints are the neighbors of
one vertex in U , then R −U is bipartite and every edge of R −U that is
a member of E ′ belongs to no cycle of R − U .

It is possible to derive from assertion (v) a linear time algorithm to decide in
O(|V | + |E|) time whether a given line graph G = (V, E) is balanced or not.

2.4 Complements of Line Graphs

While the class of perfect graphs is self-complementary [10], the class of bal-
anced graphs is not self-complementary; e.g., the net is balanced, but the 3-sun
is not. We characterize those complements of line graphs that are balanced,
including a characterization by minimal forbidden induced subgraphs.

Theorem 2.4 Let G be the complement of a line graph and let R be a graph
such that G = L(R). Then, the following assertions are equivalent:

(i) G is balanced.

(ii) A clique-matrix of G has no square submatrix of order 3, 5, or 7 with
exactly two 1’s per row and per column.

(iii) G contains no induced 3-sun, 2-pyramid, 3-pyramid, C5, C7, U7, or V7.

(iv) R contains no partial bipartite claw, P3∪P5, 3P3, C5, C7, 6-pan, or braid.

The theorem above yields a O(|V |7) time algorithm for deciding whether the
complement G = (V, E) of a line graph is balanced or not. It would be
interesting to find an asymptotically faster algorithm.
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[4] M. Chudnovsky, G. P. Cornuéjols, X. Liu, P. D. Seymour, and K. Vušković.
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