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Abstract. In this paper, we use a reduction by Cornaz and Jost from
the graph coloring problem to the maximum stable set problem in order
to characterize new graph classes where the graph coloring problem and
the more general max-coloring problem can be solved in polynomial time.

1 Introduction

A stable set of a graph is a subset of pairwise nonadjacent vertices, and a coloring
of a graph is a partition of its vertices into nonempty stable sets. The maximum
cardinality of a stable set of a graph G is denoted by α(G), and the minimum
number of stable sets in a coloring of G, called the chromatic number of G,
is denoted by χ(G). The graph coloring problem is a basic model for schedul-
ing, frequency assignment, and resource allocation problems. From particular
constraints arising in practical settings, more elaborate models of coloring have
been defined in the literature.

Given a graph G with a nonnegative weight w associated to each vertex v,
the max-coloring problem consists of finding a coloring of G that minimizes the
sum, over all stable sets in the partition, of the maximum weight of a vertex in
the set. It has applications in batch scheduling [1, 2] and buffer minimization [3].

The graph coloring problem is NP-complete in general, but it can be solved
in polynomial time for several classes, being the most prominent the class of
perfect graphs [4]. For a compendium of graph classes and the corresponding
computational complexity of the coloring problem on them, see [5]. Max-coloring
is substantially harder than the graph coloring problem, in particular it is NP-
hard in chordal graphs [1], and so in perfect graphs.

In a recent paper, Cornaz and Jost [6] exhibit a new polynomial-time re-
duction from the graph coloring problem to the maximum stable set problem.
Namely, given a graph G with n vertices and m edges, they construct an auxil-
iary graph T (G) with m̄ vertices such that the set of all stable sets of T (G) is
in one-to-one correspondence with the set of all colorings of G, where m̄ is the
number of edges of the complement graph Ḡ of G.
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In fact, the reduction is more general and applies also to weighted graphs.
They reduce the max-coloring problem to the maximum weighted stable set
problem.

A maximum weighted stable set of G is a set of pairwise nonadjacent vertices
such that the sum of the weights of the vertices in the set is maximum. The max-
imum weighted stable set problem and its unweighted version are NP-complete
in general, and they can be solved in polynomial time for perfect graphs [4] and
in O(n3) in claw-free graphs [7].

A claw is a graph formed by a vertex with three neighbors of degree one.
A hole in a graph G is an induced cycle of length at least five. An antihole is
the complement of a hole. A hole or antihole is odd if it has an odd number of
vertices. Denote by Ck the induced cycle of length k, and by Pk the induced path
of k vertices. If H is a graph, a graph G is called H-free if no induced subgraph
of G is isomorphic to H.

A clique of a graph is a subset of pairwise adjacent vertices. The maximum
cardinality of a clique of G is denoted by ω(G). A graph G is perfect when
χ(H) = ω(H) for every induced subgraph H of G. Equivalently, a graph is
perfect if and only if it contains neither odd holes nor odd antiholes as induced
subgraphs [8].

Given a graph G, denote by V (G) and E(G) the set of vertices and edges of
G, respectively. Let n = |V (G)| and m = |E(G)|. Denote by Ḡ the complement
of G, and by m̄ the number of edges of Ḡ. Denote by L(G) the line graph of G,
that is, the intersection graph of the edges of G.

Let D be a simple digraph with vertex set V (D) and arc set A(D). An arc
with tail u and head v is denoted by uv. The digraph D is called acyclic if it has
no directed cycle. Recall that D is acyclic if and only if there is a total ordering
≺ on its vertex set such that u ≺ v for each arc uv. A pair of arcs of D is called
a simplicial pair of D if they share the tail and their heads are connected by an
arc.

Let D be an acyclic orientation of the complement Ḡ of a graph G. The graph
T (G) is obtained from the line graph of Ḡ by removing all edges between pairs
of edges of Ḡ which are simplicial pairs of arcs in D.

Theorem 1. [6] For any graph G and any acyclic orientation of its complement
Ḡ, there is a one-to-one correspondence between the set of all colorings of G and
the set of all stable sets of T (G). Moreover, α(T (G)) + χ(G) = |V (G)|.

Note that |V (T (G))| = m̄ and |E(T (G))| is equal to the number of edges
of the line graph of Ḡ minus the number of triangles in Ḡ. Therefore, given a
undirected graph G, the number of vertices and edges of T (G) does not depend
on the order of V (G) from which the orientation of D is derived.

Given a graph G with a nonnegative weight w on its vertex set, denote by
αw(G) the weight of a maximum weighted stable set of G with respect to w,
and by χw(G) the value of an optimum max-coloring of G with respect to w.
For each vertex a of T (G) corresponding to the arc uv of D, define the weight
w̃(a) := w(v). The previous theorem can be generalized to weighted graphs in
the following way.
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Theorem 2. [6] Let G be a graph with a nonnegative weight w on its vertices,
and consider an acyclic orientation of Ḡ given by a non-increasing ordering of
V (G) with respect to w. Then αw̃(T (G)) + χw(G) = w(V (G)).

In this paper, we analyze the transformation T . In particular, we try to find
classes of graphs C such that T (C) is a class of graphs where the maximum
weighted stable set is polynomial-time solvable. In general, we consider T (C) as
the class of graphs T (G) obtained from any acyclic orientation of the complement
of a graph G in C since, for the max-coloring problem, this orientation is given by
the weight function. But one of our main results is the characterization of a class
of graphs C in which, for every graph G in C, there exists an orientation of Ḡ
such that T (G) is claw-free. In that class, the coloring problem is polynomial-time
solvable, by using any available polynomial-time algorithm for maximum stable
set in claw-free graphs. The class obtained is not contained in any previously
known class where the coloring problem is polynomial-time solvable, as far as
we could check in [5]. Moreover, it can be recognized in polynomial time, which
makes the result interesting also from a practical point of view.

2 Main results

We start by analyzing the pre-image of perfect graphs by the transformation T .

Proposition 1. If G has an odd hole as induced subgraph then T (G) has a hole
of length 5 as induced subgraph, and if G has an odd antihole Ck as induced
subgraph then T (G) has an odd hole Ck as induced subgraph.

Corollary 1. If T (G) is a perfect graph then G is a perfect graph. That is,
T−1(perfect graphs) ⊆ perfect graphs.

Note that if G is perfect then T (G) is not necessarily perfect. In particular,
there exists a perfect graph G such that T (G) is not perfect, independently of
the acyclic orientation of its complement. So, from the graph coloring point of
view, the pre-image of perfect graphs by the transformation T leads to a class of
graphs where the problem is already known to be polynomial-time solvable. But
it could be of interest to characterize T−1(perfect graphs) from the max-coloring
point of view.

Our aim now is to characterize T−1(claw-free graphs), in order to describe a
new class in which the max-coloring problem can be solved in polynomial time.

Theorem 3. T (G) is a claw-free graph for every acyclic orientation of Ḡ if and
only if G does not contain P5 or a graph in Fig. 1 as an induced subgraph.

Corollary 2. Given a graph G that does not contain P5 or a graph in Fig. 1 as
an induced subgraph, and a nonnegative weight on its vertices, the max-coloring
problem on G can be solved in O(m̄3).

We can strength this result for coloring by choosing a clever ordering of
the vertices of G in order to obtain an orientation of the graph Ḡ leading to a
claw-free graph T (G), even if we allow to have some induced P5’s in G.
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Fig. 1. Some of the forbidden induced subgraphs for a graph G such that every acyclic
orientation of Ḡ gives rise to a claw-free graph T (G).

Theorem 4. If G does not contain a graph in Fig. 1 as an induced subgraph
and there exists an ordering ≺ of the vertices of G such that for every induced
P5 = v1v2v3v4v5 of G it holds v3 ≺ v1 and v3 ≺ v5, then the graph T (G),
obtained from the acyclic orientation of Ḡ given by that ordering, is a claw-free
graph.

From Theorem 4, one can characterize the following class of graphs in which
the coloring problem can be solved in polynomial time.

Corollary 3. Given a graph G, it can be checked in polynomial time if G does
not contain a graph in Fig. 1 as an induced subgraph and there exists an ordering
≺ of the vertices of G such that for every induced P5 = v1v2v3v4v5 of G it
holds v3 ≺ v1 and v3 ≺ v5. In this case, the coloring problem can be solved in
polynomial time for G. The overall complexity of the algorithm is O(n5 + m̄3).
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Appendix: Figures and proofs

We denote with uv the vertex in V (T (G)) corresponding to the arc uv of D.

Proof of Proposition 1. If G has Ck as induced subgraph, then Ḡ has Ck as
induced subgraph, and no pair of edges of it is a simplicial pair of arcs in D. So
T (G) has Ck as induced subgraph. In particular, for k = 5, if G has C5 = C5 as
induced subgraph, then T (G) has C5 as induced subgraph.

Let H be a subgraph of G inducing an odd hole with vertex set V (H) =
{v1, . . . , vk}, where k ≥ 7 and v1 is the smallest vertex of H in the vertex or-
dering defining the orientation of D. Then, vertices {v1v5, v1v4, v4v6, v3v6, v3v5}
induce a hole of length 5 in T (G). �

Fig. 2. The complement Ḡ of a perfect graph G such that T (G) is not perfect, inde-
pendently of the orientation of Ḡ.

Theorem 3 follows from this two propositions.

Proposition 2. If T (G) is a claw-free graph then α(G) ≤ 4.

Proof. Proposition 2 Suppose that α(G) ≥ 5. Then Ḡ contains a clique of size 5,
namely {v1, v2, v3, v4, v5}. Suppose without loss of generality that, in the vertex
ordering of Ḡ inducing the acyclic orientation of D, it holds v1 ≺ v2 ≺ v3 ≺ v4 ≺
v5. Then, vertices {v1v2, v2v3, v2v4, v2v5} induce a claw in T (G). �

Fig. 3. G′.
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Proposition 3. T (G) is a claw-free graph for every acyclic orientation of Ḡ if
and only if G does not contain a spanning subgraph of G′ (Fig. 3) as an induced
subgraph.

Proof. Suppose first that G contains a spanning subgraph H of G′ as induced
subgraph. Let us consider an ordering of the vertices of Ḡ such that v1 ≺ v2 ≺
v3 ≺ v4 ≺ v5, and let D be the digraph obtained from that ordering. Then
v3v4 and v3v5 are a simplicial pair of D, so they are nonadjacent in T (G). Be-
sides, v2v3 does not form a simplicial pair of D with neither v1v2, v3v4 nor
v3v5, independently of which edges were removed from G′ to obtain H. So,
{v2v3, v1v2, v3v4, v3v5} induces a claw in T (G).
Conversely, suppose that T (G) contains an induced claw, for some ordering of
the vertices of Ḡ. Let ab, cd, ef and gh be the edges of Ḡ inducing the claw on
T (G), where cd, ef and gh form a stable set on T (G) and ab is adjacent to all
of them. We will split the proof into two cases: cd, ef and gh share the same
endpoint of ab (wlog, c = e = g = a), or two of them share an endpoint with
ab and the third one shares the other endpoint with ab (wlog, c = e = a and
g = b). In the first case, each pair of edges in {cd, ef, gh} is a simplicial pair,
so d, f and h form a triangle in Ḡ, and {b, a, d, f, h} induces on G a subgraph
of G′. In the second case, {cd, ef} is a simplicial pair, so d and f are adjacent
in Ḡ, and a ≺ d, f . If h is different from d and f , then {h, b, a, d, f} induces on
G a subgraph of G′. So, suppose wlog that h = d. In that case, gh(= bd) and
cd(= ad) should form a simplicial pair, but this is impossible because a ≺ d, and
this completes the proof of the proposition. �

Proof of Theorem 4. Let G be a graph and consider an ordering ≺ of its
vertices. Suppose, by the way of contradiction, that T (G) is not a claw-free
graph. Then, by Proposition 3, G contains either a graph in Fig. 1 or a P5

H = v1v2v3v4v5 as induced subgraph. Since G does not contain a graph in
Fig. 1 as an induced subgraph, then the claw in T (G) is formed by the edges of
H̄. It is easy to check that they induce a claw in T (G) if and only if the either
v1 ≺ v3 or v5 ≺ v3. �

Proof of Corollary 3. It can be checked in O(n5) time that G does not contain
a graph in Fig. 1 as an induced subgraph. Also in O(n5) time it can be builded
a digraph D′ with vertex set V (G) and an oriented arc for each pair of vertices
x, y such that there is an induced P5 in G such that x is the middle vertex and y

is an end vertex of it. Finally, it can be checked in linear time if D′ is acyclic, and
in that case it can be given in linear time a suitable ordering for V (G). Finally,
the algorithm to solve the coloring problem consists on building the graph T (G)
with respect to that order and, by Theorem 1, solving the stable set problem on
it. By Theorem 4, T (G) is a claw-free graph and so, the stable set problem can
be solved in O(m̄3) time [7]. �


