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Abstract

The first combinatorial algorithm for the minimum weighted clique cover (mwcc) in
a claw-free perfect graph G due to Hsu and Nemhauser [23] dates back to 1984. It is
essentially a “dual” algorithm as it relies on any algorithm for the maximum weighted
stable set (mwss) problem in claw-free graphs and, taking into account the best known
complexity for the latter problem, its complexity is O(|V (G)|5). More recently, Chud-
novsky and Seymour [7] introduced a composition operation, strip-composition, in order
to define their structural results for claw-free graphs; however, this composition operation
is general and applies to non-claw-free graphs as well. In this paper, we show that a
mwcc of a perfect strip-composed graph, with the basic graphs belonging to a class G,
can be found in polynomial time, provided that the mwcc problem can be solved on G in
polynomial time. For the case of claw-free perfect strip-composed graphs, the algorithm
can be tailored so that it never requires the computation of a mwss on the strips and can
be implemented as to run in O(|V (G)|3) time. Finally, building upon several results from
the literature, we show how to deal with non-strip-composed claw-free perfect graphs, and
therefore compute a mwcc in a general claw-free perfect graph in O(|V (G)|3) time.

Keywords. Claw-free graphs, line graphs, minimum weighted clique cover, perfect
graphs, strip-composed graphs.

1 Introduction.

Given a graph G and a non-negative weight function w defined on the vertices of G, a weighted
clique cover of G is a collection of cliques, with a non-negative weight y(K) assigned to each
clique K in the collection, such that, for each vertex v of G, the sum of the weights of the
cliques containing v in the collection is at least w(v). A minimum weighted clique cover of G
(mwcc) is a clique cover such that the sum of the weights of all the cliques in the collection
is minimum. When all the vertex weights are 1, a (minimum) weighted clique cover is simply
called a (minimum) clique cover.

Observe that a coloring of a graph is a clique cover of its complement. Since coloring
in triangle-free graphs is NP-complete [26], it follows that mwcc is NP-complete already
for graphs with stability number 2. However, things are easier for perfect graphs. First, it
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is known that for a perfect graph G, the weight τw(G) of a mwcc is the same as αw(G),
the weight of a maximum weighted stable set (mwss) of G, that is, a set of pairwise non-
adjacent vertices such that the sum of the weights of the vertices in the set is maximum [25].
Moreover, when w is integral, there always exists an integer optimal solution to the mwcc
problem, as it was originally shown by Fulkerson [12]. Finally, the weight of a mwcc in a
perfect graph can be determined in polynomial time by using Lovász’s theta function [16]. If
one wants to compute also a mwcc of a perfect graph G (and not only the number τw(G)), a
polynomial time algorithm proposed by Grötschel, Lovász and Schrijver in [17] can be used.
This algorithm is not combinatorial and it uses the ϑw(G) function combined with other
techniques; however, for some graph classes, among them particular classes of perfect graphs,
there also exist polynomial time combinatorial algorithms, for the weighted or the unweighted
(mcc) version [15, 18, 20, 22, 34].

This is the case, for instance, for claw-free perfect graphs, where combinatorial algo-
rithms for both the unweighted and the weighted version have been proposed by Hsu and
Nemhauser [21, 23]. To the best of our knowledge, the algorithm for the weighted case –
in this paper, we mainly deal with this, as it is more general – was for more than 30 years
the only available polynomial time combinatorial algorithm to solve mwcc in claw-free per-
fect graphs. (A graph is claw-free if none of its vertices has a stable set of size three in its
neighborhood.) This algorithm is essentially a “dual” algorithm as it relies on any algorithm
for the mwss problem in claw-free graphs (we have, nowadays, several algorithms for this,
see [10, 11, 28, 29, 30, 31, 32]), and, in fact, builds a mwcc by a clever use of linear program-
ming complementarity slackness. The computational complexity of the algorithm by Hsu
and Nemhauser, taking into account the best known complexity for mwss, is O(|V (G)|5).
(We point out that in the paper, we assume that the best known complexity for mwss in a
claw-free graph with n vertices is O(n3) [11]. However, an O(n2 log n) algorithm was recently
announced by Nobili and Sassano [30].) Finally, it is worth noticing that the mcc and mwcc
problems are NP-complete on general claw-free graphs and even for line graphs of triangle-free
graphs: the latter fact follows from hardness of vertex cover in triangle-free graphs [14], since
vertex cover of triangle-free graphs can be reduced to clique cover of their line graphs.

In the last years a lot of efforts have been devoted to a better understanding of the structure
of perfect graphs and of other relevant classes of graphs. Claw-free graphs in particular have
been investigated, with an outstanding series of papers by Chudnovsky and Seymour (for a
survey see [7]). The results by Chudnovsky and Seymour show that claw-free graphs with
stability number greater than three are either fuzzy circular interval graphs (a generalization
of proper circular arc graphs, we do not give the definition, as it is not interesting for this
paper) or strip-composed, i.e., they are suitable composition of some basic graphs (the formal
definition is given in the next section). Exploiting this twofold structure of claw-free graphs
has been the key for several developments for the mwss problem [9, 31, 10, 11] and the
dominating set problem [19]. In particular, in [31] it is shown that a mwss of a (non-
necessarily claw-free) strip-composed graph, with the basic graphs belonging to a class G, can
be found in polynomial time by solving a matching problem, provided that the mwss problem
can be solved on G in polynomial time. Building upon this result, new algorithms for the
mwss problem in claw-free graphs are given in [31] and [10, 11].

In this paper, we provide an analogous of the result in [31] for the mwcc problem. Namely,
we show that a mwcc of a (non-necessarily claw-free) perfect strip-composed graph, with the
basic graphs belonging to a class G, can be found in polynomial time, provided that the mwcc
problem can be solved on G in polynomial time. We point out that while the statement of
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this result goes along the same line as the result in [31], its proof requires new tools and
techniques. We apply this result to strip-composed claw-free perfect graphs, and provide a
O(|V (G)|3)-time algorithm for the mwcc problem that, differently from the O(|V (G)|5)-time
dual algorithm by Hsu and Nemhauser, has both a primal and a primal-dual flavour: on each
basic graph we directly compute a mwcc, while we use a primal-dual (matching) algorithm
for the composition of basic graphs.

We finally deal with the mwcc for the class of claw-free perfect graphs that according
to [31] are not strip decomposable. Exploiting some algorithmic results for clique cutset
decomposition by Tarjan [33] and characterizations of claw-free perfect graphs without clique
cutsets by Chvátal and Sbihi [8] and Maffray and Reed [27], we design an O(|V (G)|3)-time
combinatorial algorithm for this class as well. Altogether we show that for a claw-free perfect
graph G mwcc can be solved in time O(|V (G)|3).

The organization of the paper is as follows. We devote the remaining of this section to
some basic definitions. In Section 2, we recall the mwss algorithm for strip-composed graphs.
In Section 3, we present in detail our main result, the mwcc algorithm for strip-composed
perfect graphs (Theorem 2). We explain why the approach for mwss needs to be adapted
to deal with perfection, and we prove some necessary technical lemmas. In Section 4 we
focus on claw-free perfect graphs. First, in Section 4.1 we show how to apply the mwcc
algorithm of Section 3 to strip-composed claw-free perfect graphs; then in Section 4.2 we deal
with {claw,net}-free perfect graphs that according to [31] are the non-strip decomposable
claw-free (perfect) graphs: in Section 4.2.1 we deal with clique cutset decomposition trees,
and tailor some existing results to the class of {claw,net}-free perfect graphs; in Section 4.2.2
and 4.2.3 we deal with mwcc in peculiar and elementary graphs, that are the atom graphs
of the clique cutset decomposition tree.

An extended abstract of this work was published in [1].

1.1 Basic definitions.

We shall consider finite, simple, loopless, undirected graphs. When dealing with multigraphs,
we will say so explicitly. Let G be a graph. Denote by V (G) its vertex set and by E(G) its
edge set.

The neighborhood of a vertex v is the set N(v) consisting of all the vertices which are
adjacent to v. The closed neighborhood of v is N [v] = N(v) ∪ {v}. A vertex v of G is
universal if N [v] = V (G). Two vertices v and w are twins if N [v] = N [w].

For a subset A of V (G), let NA(v) = N(v) ∩ A. For subsets A and B of V (G), let
NA(B) =

⋃
v∈B NA(v).

For a subset V ′ ⊆ V (G), the j-th neighborhood Nj(V
′) is the set of vertices u ∈ V (G) at

distance j from the set V ′. When V ′ = {v} we will write simply Nj(v) and when j = 1 we
will write just N(V ′) (resp. N(v)).

We will denote by G[V ′] the subgraph of G induced by V ′, and by G \V ′ the subgraph of
G induced by V (G) \ V ′. Two sets U,U ′ ⊂ V (G) are complete (to each other) if every vertex
in U is adjacent to all the vertices in U ′. They are anticomplete (to each other) if no vertex
of U is adjacent to a vertex of U ′.

A claw is a graph formed by a vertex with three neighbors of degree one. An odd hole is
a chordless cycle of odd length at least 5. If H is a graph, a graph G is called H-free if no
induced subgraph of G is isomorphic to H.
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The intersection graph of a family of sets C is the graph with vertex set C, two sets in C
being adjacent if and only if they intersect. The line graph L(G) of a graph or multigraph
G is the intersection graph of its edges. A graph H is a line graph if there is a graph or
multigraph G such that H = L(G) (G is called a root graph of H). Given a multigraph, a
multistar is the set of edges incident to one of its vertices, which is called the center of the
multistar, while a multitriangle is the set of edges of the subgraph induced by three pairwise
adjacent vertices. A matching is a set of pairwise non-incident edges of a graph (two edges
are incident if they share a vertex). Note that the multistars and multitriangles of a graph
G correspond to the cliques of L(G), while the matchings of G correspond to the stable sets
of L(G). Note also that the neighborhood of a vertex in a line graph can be always covered
by two cliques. A graph is quasi-line if the neighborhood of each vertex can be covered by
two cliques. A quasi-line graph is, in particular, claw-free. Moreover, as observed by Hsu and
Nemhauser in [23], a claw-free perfect graph is indeed quasi-line.

Finally, given two sets A and B, we let A4B denote their symmetric difference.

2 The mwss problem on strip-composed graphs.

Chudnovsky and Seymour [7] introduced a composition operation in order to define their
structural results for claw-free graphs. This composition operation is general and applies to
non-claw-free graphs as well.

A strip H = (G,A) is a graphG (not necessarily connected) with a multi-familyA of either
one or two designated non-empty cliques of G. The cliques in A are called the extremities of
H, and H is said a 1-strip if |A| = 1, and a 2-strip if |A| = 2. Let G = (G1,A1), . . . , (Gk,Ak)
be a family of k vertex disjoint strips, and let P be a partition of the multi-set of the cliques
in A1 ∪ . . . ∪ Ak. The composition of the k strips with respect to P is the graph G that is
obtained from the union of G1, . . . , Gk, by making adjacent vertices of A ∈ Ai and B ∈ Aj

(i, j not necessarily different) if and only if A and B are in the same class of the partition
P. In this case we also say that (G,P), where G = {(Gj ,Aj), j ∈ 1, . . . , k}, defines a strip
decomposition of G.

We say that a graph G is strip-composed if G is a composition of some set of strips with
respect to some partition P. Each class of the partition of the extremities P defines a clique
of the composed graph, that is called a partition-clique. We denote the extremities of the
strip Hi by Ai = {Ai

1, A
i
2} if Hi is a 2-strip and by Ai = {Ai

1} if Hi is a 1-strip. We often
abuse notations, and when we refer to a vertex of a strip (or to a stable set of a strip etc.)
we indeed consider a vertex (or a stable set etc.) of the graph in the strip.

The composition operation preserves some graph properties. Given a 2-strip (G, {A1, A2}),
the graph G+ is obtained from G by adding two vertices a1, a2 such that N(aj) = Aj , for
j = 1, 2; for a 1-strip (G, {A1}) the graph G+ is obtained from G by adding a vertex a1
such that N(a1) = A1. A strip (G,A) is said to be claw-free/quasi-line/line if the graph
G+ is claw-free/quasi-line/line. The composition of claw-free/quasi-line/line strips is a claw-
free/quasi-line/line graph (see e.g. [10]).

Suppose we are given a strip-composed graph G and its strip decomposition (G,P). In [31]
it is shown how to exploit this decomposition in order to solve the mwss on G.

Theorem 1 [31] Let G be the class of graphs which are the composition of strips Hi =
(Gi,Ai) i = 1, . . . , k with respect to a partition P, such that each of the strips belongs to
a class C. Suppose also that there exists a function p such that for each Gi ∈ C we can
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compute a mwss in time O(p(|V (Gi)|)). Then the mwss problem on G ∈ G can be solved
in time O(

∑k
i=1 p(|V (Gi)|) + match(|V (G)|)), where match(n) is the time required to solve

the matching problem on a graph with n vertices. If p is a polynomial, then the mwss can be
solved on the class G in polynomial time.

In order to prove their theorem [31], the authors replace every strip Hi with a suitable
simpler gadget strip Ti, that is a single vertex for each 1-strip and a triangle for each 2-
strip (in this second case the extremities are two different edges of the triangle). Then
they define a weight function on the vertices of those simpler strips; for every strip Hi with
extremities Ai

1 and Ai
2 this function depends on the values αw(Gi), αw(Gi \Ai

1), αw(Gi \Ai
2)

and αw(Gi \ (Ai
1 ∪ Ai

2)). Thus, if one can compute a mwss of Gi in polynomial time, then
one can compute the weight function of the simpler strips in polynomial time.

They define a suitable partition P̃ of the extremities of the gadget strips. In this way they
obtain a graph G̃ which is the strip-composition of the strips Ti, i = 1, . . . , k, with respect to
the partition P̃, and, since the strips are line strips, this graph is line. Moreover, from the
construction of the simpler strips and of the weights, it is easy to translate a mwss of G̃ into
a mwss of G. Finally, as G̃ is a line graph, they can find a mwss of G̃ by building the root
graph of G̃ and computing a maximum weighted matching in this graph.

3 The mwcc problem on strip-composed perfect graphs.

Suppose we are given a perfect graph G that is the composition of strips H1 = (G1,A1), . . . ,
Hk = (Gk,Ak) with respect to a partition P, and a non-negative weight function w on V (G).
In this section we will show how to exploit the decomposition in order to solve the mwcc
on G. We will follow the approach outlined in the previous section for the mwss and will
compute a mwcc of G in three steps:

Step 1. We replace each strip Hi by a simple gadget strip H̃i = (G̃i, Ãi), define a suitable
weight function w̃ on the vertices of G̃ and compose the strips H̃i with respect to a
suitable partition of the multi-set

⋃
i=1..k Ãi so as to obtain a graph G̃ that is line and

perfect. Note that, in order to define w̃ and the right H̃i, we need to find some mwcc
(or mwss) on Gi. The following will then hold: τw(G) = τw̃(G̃) +

∑k
i=1 δ

i
1, where

δi1 = αw(Gi \Ai
1) for 1-strips and δi1 = αw(Gi \ (Ai

1 ∪Ai
2)) for 2-strips.

Step 2. Following [35], we find a mwcc ỹ of G̃, with respect to weights w̃, by running a
primal-dual algorithm for the maximum weighted matching [13] on the root graph of G̃.

Step 3. We reconstruct a mwcc of G with respect to the weight function w from ỹ, which
is a mwcc of G̃ with respect to the weight function w̃. This step is indeed made of
two substeps: first, we need to “translate” each (maximal) clique of G̃ into a clique of
G as to translate ỹ itself into a partial weighted clique cover y of G with value τw̃(G̃);
then, for each strip Hi, we have to “complete” y with a suitable weighted clique cover of
value δi1: that will be done by finding for Gi a mwcc with respect to a suitable weight
function wi defined on the vertices of Gi.

While this algorithm goes along the same lines of the one in [31] for the mwss, things
are more involved here and Steps 1 and 3 pose some challenges: Step 1 we cannot use the
gadget strips defined in the previous section for the mwss, as the graph G̃ might be imperfect:
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this will lead us to define four different new gadgets, with different parity properties, that
are such that G̃ is odd hole free and line, thus perfect [35]; Step 3 there is not always a
direct correspondence between cliques of G̃ and cliques of G. Moreover, for some 2-strips
Hi = (Gi,Ai), in order to complete y we will need to compute a mwcc of some auxiliary
graphs associated to the strip, rather than to the strip itself: the graph Gi

• that is obtained
from Gi by adding a new vertex x complete to both Ai

1 and Ai
2 and the graph Gi

= that is the
graph obtained from Gi by making Ai

1 complete to Ai
2.

In spite of these difficulties, we will be able to prove the following:

Theorem 2 Let G be the class of perfect graphs which are the composition of strips Hi =
(Gi,Ai) i = 1, . . . , k with respect to a partition P, such that each of the strips belongs to a
class C. Suppose also that there exists a function p such that for each strip Hi = (Gi,Ai) in
C we can compute in time O(p(|V (Gi)|)) a mwcc of Gi, a mwcc of Gi

• and a mwcc of Gi
=.

Then the mwcc problem on G ∈ G can be solved in time O(
∑k

i=1 p(|V (Gi)|)+match(|V (G)|)),
where match(n) is the time required to solve the matching problem on a graph with n vertices.
If p is a polynomial, then the mwcc can be solved on the class G in polynomial time.

We later provide a slightly technical improvement for Theorem 2, as we will characterize
in which cases we indeed need to compute mwcc-s for Gi

• and Gi
=. We devote the remaining

of this section to provide more details and a proof.

3.1 The gadget strips.

We first deal with the gadget strips (that in this section we simply call gadgets) that will
compose the graph G̃ and establish the relation between τw(G) and τw̃(G̃). We make a heavy
use of duality between the mwcc and the mwss problem: the fact that for every induced
subgraph J of G, αw(J) = τw(J), is due to the perfection of G. We use this relation to easily
prove the correctness of the weight function defined on the vertices of each gadget.

To design the gadgets, we delve into three cases: (i) Hi = (Gi,Ai) is a 1-strip; (ii) Hi =
(Gi,Ai) is a 2-strip with the extremities in the same class of the partition P; (iii)Hi = (Gi,Ai)
is a 2-strip with the extremities in different classes of the partition.

(i) − (ii) In these cases, the gadget will be a single vertex (see Figure 1). In particular
we define the 1-strip H̃0

i = (T i
0, Ãi

0), where the graph T i
0 consists of a single vertex ci, and

Ãi
0 = {{ci}}. For case (i), we let δi1 = αw(Gi \ Ai

1) and define w̃(ci) = αw(Gi) − δi1. For
case (ii), we let δi1 = αw(Gi \ (Ai

1 ∪ Ai
2)) and define w̃(ci) = max{αw(Gi \ Ai

1), αw(Gi \
Ai

2), αw(Gi \ (Ai
14Ai

2))}− δi1. Finally, when we replace Hi by H̃0
i , we define a new partition

P ′ := (P \ {P}) ∪ {(P \ Ai) ∪ Ãi
0}, where P ∈ P was the set containing Ai. We get the

following lemma, whose proof is postponed to the Appendix, as it goes along the same lines
as the proof of Theorem 1 in [31]:

Lemma 3 Let G be the composition of strips H1 = (G1,A1), . . . ,Hk = (Gk,Ak) with respect
to a partition P, and let w be a non-negative weight function defined on the vertices of G.
Suppose that H1 is either a 1-strip or a 2-strip with the extremities in the same class of the
partition P. Let G′ be the composition of strips H̃0

1 = (T 1
0 ,A1

0), H2 = (G2,A2), . . . ,Hk =
(Gk,Ak) with respect to the partition P ′. Let w′ be the weight function defined on the vertices
of G′ as w′(v) = w(v) for v ∈

⋃
i=2..k V (Gi), and w′(c1) = w̃(c1). Then αw(G) = αw′(G

′)+δ11.
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Figure 1: The strips H̃0
i , H̃

1
i , H̃

2
i , H̃

3
i , possibly associated with the strip Hi.

(iii) Let us now consider a 2-strip Hi = (Gi,Ai) with the extremities in different classes of
the partition P. We want again to introduce a gadget H̃i = (G̃i, Ãi) and a weight function w̃
on the vertices of G̃i in such a way that, when we replace Hi by H̃i and define a new suitable
partition, the difference between the weights of the mwss of the original graph and the mwss
of the new graph is δi1, where this time δi1 = αw(Gi \ (Ai

1 ∪Ai
2)).

This is satisfied by the gadget strip defined in [31] for replacing 2-strips, but for that
strip, a triangle with vertices {a, b, c} and extremities {a, b} and {b, c}, there is both an even
and an odd length path between vertices of the extremities (respectively, the path of length
0 made of vertex b, and the path of length 1 a − c). It follows that by using that gadget
we would easily introduce odd holes in the resulting graph G̃ and therefore lose perfection!
This is indeed the first technical challenge we have to face for implementing the algorithm we
sketched above: define new suitable gadgets that take into account the parity of the strips.
Before doing that, we need some additional definitions.

Let U,W ⊆ V (G). We call a path P = v1, . . . , vk (k ≥ 1) a U–W path if P is chordless,
v1 ∈ U , vk ∈ W , and vi /∈ U ∪W for 2 ≤ i ≤ k − 1. A 2-strip Hi = (Gi,A1 = {Ai

1, A
i
2}) will

be called non-connected if there is no Ai
1–A

i
2 path, and connected otherwise. We say that a

connected 2-strip Hi is even (resp. odd) if every Ai
1–A

i
2 path has even (resp. odd) length. If

a connected 2-strip has both even and odd length Ai
1–A

i
2 paths, then we say that Hi is an

even-odd strip. We call an odd or even-odd strip Hi odd-short if every odd Ai
1–A

i
2 path has

length one, and we call an even or even-odd strip Hi even-short if every even Ai
1–A

i
2 path has

length zero. [3], Hi is an odd strip if and only if Ai
1 and Ai

2 are an odd pair of cliques in Gi.)

We introduce three different 2-strip gadgets: a non-connected strip, an odd strip that is
also odd-short, and an even strip that is also even-short (see Figure 1):
(a) H̃1

i = (T i
1, Ãi

1) such that V (T i
1) = {ui1, ui2}, E(T i

1) = ∅, Ãi
1 = {Ãi

1, Ã
i
2} and Ãi

1 = {ui1},
Ãi

2 = {ui2}. The new weight function w̃ gives the following weights to the vertices of T i
1:

w̃(ui1) = αw(Gi \Ai
2)− δi1, w̃(ui2) = αw(Gi \Ai

1)− δi1.
(b) H̃2

i = (T i
2, Ãi

2) such that V (T i
2) = {ui1, ui2, ui3}, E(T i

2) = {ui1ui2, ui2ui3}, Ãi
2 = {Ãi

1, Ã
i
2} and

Ãi
1 = {ui1, ui2}, Ãi

2 = {ui3}. The new weight function w̃ gives the following weights to
the vertices of T i

2: w̃(ui1) = αw(Gi) − αw(Gi \ Ai
1), w̃(ui2) = αw(Gi \ Ai

2) − δi1, w̃(ui3) =
αw(Gi \Ai

1)− δi1.
(c) H̃3

i = (T i
3, Ãi

3) such that V (T i
3) = {ui1, ui2, ui3}, E(T i

3) = {ui1ui2, ui2ui3}, Ãi
3 = {Ãi

1, Ã
i
2} and

Ãi
1 = {ui1, ui2}, Ãi

2 = {ui2, ui3}. The new weight function w̃ gives the following weights to
the vertices of T i

3: w̃(ui1) = αw(Gi\Ai
2)−δi1, w̃(ui2) = αw(Gi)−δi1, w̃(ui3) = αw(Gi\Ai

1)−δi1.
We are now ready to state which gadget strip among H̃1

i , H̃2
i and H̃3

i should be used to
replace Hi. Note that we will not evaluate the parity of Hi, but rather investigate the sign of
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a certain inequality, that is indeed related to the parity of the strips (see Lemma 6):

Scheme 4 The strip Hi will be replaced by:

(c1) H̃1
i , if αw(Gi \Ai

1) + αw(Gi \Ai
2) = αw(Gi) + δi1;

(c2) H̃2
i , if αw(Gi \Ai

1) + αw(Gi \Ai
2) > αw(Gi) + δi1;

(c3) H̃3
i , if αw(Gi \Ai

1) + αw(Gi \Ai
2) < αw(Gi) + δi1.

We are now ready to state a lemma that is the analogous of Lemma 3 for 2-strips, however,
in this case, δi1 = αw(Gi \ (Ai

1 ∪ Ai
2)). Note that, whichever is the gadget strip H̃j

i we use to
replace Hi, we define a new partition P ′ := P \ {P1, P2} ∪ {(P1 \ {Ai

1}) ∪ {Ãi
1}, (P2 \ {Ai

2}) ∪
{Ãi

2}}, where P1, P2 ∈ P : Ai
1 ∈ P1, A

i
2 ∈ P2. The proof is again postponed to the Appendix:

Lemma 5 Let G be the composition of strips H1 = (G1,A1), . . . ,Hk = (Gk,Ak) with respect
to a partition P, and let w be a non-negative weight function defined on the vertices of
G. Suppose that H1 is a 2-strip with the extremities in different classes of the partition P
and replace it by the strip H̃j

1 , for some j ∈ {1, 2, 3}, as discussed above. Let G′ be the

composition of strips H̃j
1 = (T 1

j ,A1
j ), H2 = (G2,A2), . . . ,Hk = (Gk,Ak) with respect to the

partition P ′. Let w′ be the weight function defined on the vertices of G′ as w′(v) = w(v) for
v ∈

⋃
i=2..k V (Gi), and w′(v) = w̃(v) for v ∈ V (T 1

j ). Then αw(G) = αw′(G
′) + δ11.

We now deal with perfection. We want also G′ to be odd hole free, so that, when we
have eventually replaced each strip, the resulting graph G̃ is odd hole free and line, thus
perfect [35]. Note that in order to show that G′ is odd hole free, it is enough to show that
H̃j

i has no even paths if Hi has none, and H̃j
i has no odd paths if Hi has none. However, the

only gadget strip with even paths is H̃3
i while the only gadget strip with odd paths is H̃2

i :
therefore we need to show that we use H̃3

i only if the strip is even or even-odd and that we
use H̃2

i only if the strip is odd or even-odd. Following Scheme 4, it will be enough to show
that we do not use H̃3

i when Hi is odd or non-connected and analogously we do not use H̃2
i

when Hi is even or non-connected. That immediately follows from the next lemma, which
shows that the fact that the relation αw(G1 \ A1

1) + αw(G1 \ A1
2) R αw(G1) + δ11 is satisfied

with =, >, or < is strictly related to connection and parity of H1 = (G1,A1).

Lemma 6 Let H1 = (G1,A1) be a 2-strip. Then:
(a) if H1 is non-connected, then αw(G1 \A1

1) +αw(G1 \A1
2) = αw(G1) +αw(G1 \ (A1

1 ∪A1
2));

(b) if H1 is odd and G1 perfect, then αw(G1\A1
1)+αw(G1\A1

2) ≥ αw(G1)+αw(G1\(A1
1∪A1

2));
(c) if H1 is even and G1 perfect, then αw(G1\A1

1)+αw(G1\A1
2) ≤ αw(G1)+αw(G1\(A1

1∪A1
2)).

Proof. The proof requires a crucial result on the structure of perfect graphs. An odd
antihole is the complement of an odd hole. The Strong Perfect Graph Theorem, claiming
that a graph is perfect if and only if it contains neither odd holes nor odd antiholes as
induced subgraphs, was conjectured by Berge in the sixties and proved forty years later by
Chudnovsky, Robertson, Seymour, and Thomas [5].

In the proof, we let δ11 = αw(G1 \ (A1
1 ∪A1

2)). (a) Let G1
1 be the connected component of

G1 that contains A1
1, and let G1

2 = G1 \ V (G1
1). Since H1 is a non-connected strip, then A1

2 is
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contained in G1
2. The following equalities are straightforward, and imply the lemma.

αw(G1) = αw(G1
1) + αw(G1

2)

αw(G1 \A1
2) = αw(G1

1) + αw(G1
2 \A1

2)

αw(G1 \A1
1) = αw(G1

1 \A1
1) + αw(G1

2)

δ11 = αw(G1
1 \A1

1) + αw(G1
2 \A1

2)

(b) Let G∗ be the graph obtained in the following way: add to G1 a vertex v1 complete to A1
1,

a vertex v2 complete to A1
2, with v1 adjacent to v2. As H1 is odd, A1

1 ∩ A1
2 = ∅. Besides, as

G1 is perfect, G∗ is perfect. Indeed, no odd hole or odd antihole contains a simplicial vertex
(a vertex whose neighborhood is a clique). So, any possible odd hole or antihole in G∗ should
contain both v1 and v2. On the one hand, if there is an odd hole containing v1 and v2, then
there is an even A1

1–A
1
2 path, a contradiction. On the other hand, any pair of vertices in an

odd antihole of length at least 7 has a common neighbor, a contradiction because A1
1∩A1

2 = ∅.
We want to extend w to v1 and v2. In order to do that, we choose a, b ≥ 0 and such that
a+αw(G1 \A1

1) = b+αw(G1 \A1
2) > αw(G1): that is always possible. Then we let w(v1) = a

and w(v2) = b. A stable set in G∗ can either take v1 and then no vertex of A1
1, or it can take

v2 and then no vertex of A1
2 or it can miss both v1 and v2. Then for our choice of the weights

of v1 and v2 we have that αw(G∗) = a+ αw(G1 \A1
1) = b+ αw(G1 \A1

2).
Let y be a mwcc of G∗ with respect to w and denote with τw(G∗) its value; let h1 be the

value given by y to the clique {v1} ∪ A1
1, h3 be the value given by y to the clique {v2} ∪ A1

2,
and let h2 be the value given by y to the clique {v1, v2}. Now we define a new weight function
w′ on V (G1): w′(v) = w(v) for every v ∈ V (G1) \ (A1

1 ∪ A1
2), w

′(v) = w(v) − h1 for every
v ∈ A1

1, w
′(v) = w(v)− h3 for every v ∈ A1

2. Denote with τw′(G
1) the value of a mwcc of G1

with respect to w′, then τw(G∗) = h1 + h2 + h3 + τw′(G
1) by the optimality of y for G∗ and

the definition of h1, h2, h3.
As G∗ is perfect we know that the maximum weight stable set problem and the minimum

weighted clique cover on G∗ are dual problems and so every vertex v belonging to a mwss
of G∗ is covered exactly by a mwcc of G∗, that is

∑
C∈K(G∗):v∈K y(K) = w(v), where K(G∗)

is the set of maximal cliques of G∗. In particular, for our choice of a and b, both v1 and
v2 belong to mwss of G∗, so we have that h1 + h2 = a and h2 + h3 = b. Moreover, again
by duality, αw(G∗) = τw(G∗), and we obtain h1 + h2 + h3 + τw′(G

1) = a + αw(G1 \ A1
1),

that is h3 + τw′(G
1) = αw(G1 \ A1

1), and h1 + h2 + h3 + τw′(G
1) = b + αw(G1 \ A1

2), that is
h1 + τw′(G

1) = αw(G1 \A1
2). But again by duality and by the perfection of G1 we can rewrite

those two equations as (i) h3 + αw′(G
1) = αw(G1 \A1

1) and (ii) h1 + αw′(G
1) = αw(G1 \A1

2).
As A1

1 and A1
2 are cliques we can easily deduce the inequality αw(G1) ≤ αw′(G

1) +h1 +h3
and by definition of the weight function w′, it follows that δ11 ≤ αw′(G

1); summing up these
inequalities we obtain αw(G1)+δ11 ≤ 2αw′(G

1)+h1+h3, then using (i) and (ii) αw(G1)+δ11 ≤
αw(G1 \A1

1) + αw(G1 \A1
2).

(c) We build the following auxiliary strip H∗ = (G∗,A∗): G∗ is obtained from G1 by adding
a vertex v complete to A1

1, and A∗ = {{v}, A1
2}. We observe that by construction and the

hypothesis on H1, H
∗ is an odd strip and G∗ is perfect (adding a simplicial vertex preserves

perfection). We extend the weight function of G1 to v, putting w(v) = a, where a > αw(G1).
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From the choice of a we have the following equalities:

αw(G∗ \ {v}) = αw(G1)

αw(G∗ \ ({v} ∪A1
2)) = αw(G1 \A1

2)

αw(G∗) = max{a+ αw(G1 \A1
1), αw(G1)} = a+ αw(G1 \A1

1)

αw(G∗ \A1
2) = max{a+ δ11 , αw(G1 \A1

2)} = a+ δ11

By Lemma 6 (b), the following inequality holds αw(G∗ \{v}) +αw(G∗ \A1
2) ≥ αw(G∗ \ ({v}∪

A1
2)) + αw(G∗), that is, αw(G1) + a + δ11 ≥ αw(G1 \ A1

2) + a + αw(G1 \ A1
1) and therefore

αw(G1) + δ11 ≥ αw(G1 \A1
2) + αw(G1 \A1

1). 2

Lemma 6 was present in the preliminary version of this paper [1], and a very similar result
was independently proved for 2-joins by Trotignon and Vušković in [34]. 2-Joins and compo-
sitions of strips are very close concepts but neither are exactly the same nor one generalizes
the other. Thus, for the sake of completeness, we keep the statement in terms of strips and
its proof.

3.2 Finding a mwcc in G̃.

Suppose that G is the composition of the strips H1, H2, . . . ,Hk with respect to a partition
P and suppose that G is perfect. We also assume that we know for each strip the values
of maximum weighted stable sets αw(Gi), αw(Gi \ Ai

2), αw(Gi \ Ai
1) and αw(Gi \ (Ai

1 ∪ Ai
2))

or, analogously (given perfection), the values of the minimum weighted clique covers τw(Gi),
τw(Gi \ Ai

2), τw(Gi \ Ai
1) and τw(Gi \ (Ai

1 ∪ Ai
2)). We replace each strip Hi that is either

a 1-strip or a 2-strip with the extremities in the same class of the partition P by H̃0
i , and

the other 2-strip in agreement with Scheme 4 by the suitable gadget among H̃1
i , H̃

2
i and H̃3

i .

We end up with a graph G̃, that is the composition of H̃j1
1 , H̃

j2
2 , . . . , H̃

jk
k with respect to a

suitable partition P ′, and with a weight function w̃ on the vertices of G̃ that is such that
αw(G) = αw̃(G̃) +

∑k
i=1 δ

i
1. Moreover, as we now shortly discuss, G̃ is perfect. Recall in fact

that G is perfect, and therefore odd hole free. Following Lemma 6, we replaced each 2-strip
by a 2-strip (gadget) with the same parity and connection properties: it follows that G̃ is
odd hole free too. Moreover, since H̃0

i , H̃
1
i , H̃

2
i , H̃

3
i are line strips, also G̃ is line; since a graph

that is odd hole free and line is perfect [35], it follows that G̃ is perfect. Finally, since both
G and G̃ are perfect, it follows by duality that τw(G) = τw̃(G̃) +

∑k
i=1 δ

i
1.

Let H be a multigraph that is a root of G̃. Following [35], we may find a mwcc ỹ of G̃,
with respect to the weight w̃, by running a primal-dual algorithm for the maximum weighted
matching [13] on H: this is because each maximal clique of G̃ corresponds to either a multistar
of H or to a multitriangle of H. While every multitriangle of H corresponds to a maximal
clique of G̃, a multistar of H corresponds to a maximal clique of G̃ if and only if it is not
contained in a multitriangle. Without loss of generality, we my also assume that the weight
given by ỹ is non-zero only for maximal cliques of G̃.

3.3 From a mwcc of G̃ to a mwcc of G.

We are left with “translating” ỹ, which is a mwcc of G̃, with respect to weights w̃, into a
mwcc of G, with respect to weights w. As we already discussed, this step is indeed made of
two substeps: first, we need to translate each (maximal) clique of G̃ into a clique of G as to
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translate ỹ itself into a partial weighted clique cover y of G with value τw̃(G̃); then, for each
strip Hi, we have to complete y with a suitable weighted clique cover of value δi1.

However, already for the first substep, there is a catch: unfortunately there are some
maximal cliques of G̃ that do not correspond to any clique of G. Dealing with this problem,
which once again does not show up for the mwss in [31], will require some work. We start
with detailing the structure of G̃ and H.

3.3.1 The structure of G̃ and H.

We first show how to build H. Krausz [24] proved the following:

Lemma 7 [24] A graph J(W,F ) is the line graph of a multigraph if and only if there exists
a family of cliques Q such that every edge in F is covered by a clique from the family Q, and
moreover every vertex in W belongs to exactly two cliques from the family Q.

In fact, as soon as we are given a family Q satisfying Lemma 7 with respect to G̃, we may
build H as follows: each clique K ∈ Q corresponds to a vertex vK of H, and two vertices
vK1 and vK2 of H are connected by |K1 ∩ K2| (parallel) edges. In order to build Q, and
therefore H, we start from the set of partition cliques defined by P ′. Note that each vertex
of G̃ belongs to exactly one partition clique, but for each vertex ui2 from each strip H̃3

i , as
such a vertex belongs to exactly two partition cliques. Also note that each edge of G̃ is
covered by a partition clique, but for each edge ui2u

i
3 from each strip H̃2

i . Therefore, in order
to “complete” Q, we consider, besides the partition cliques, the following set of completion
cliques of G̃: a clique {v} for each vertex v from each strip H̃0

i or H̃1
i ; a clique {v} for each

vertex v ≡ ui1 from each strip H̃2
i ; a clique {v} for each vertex v ∈ {ui1, ui3} from each strip

H̃3
i ; a clique {ui2, ui3} from each strip H̃2

i . It is easy to see that the union of the partition and
the completion cliques satisfies Lemma 7. The next remark summarizes the structure of H.

Remark 1 Suppose that P = {P1, . . . , Pr}. Then H is composed by:

• a set of vertices {x1, . . . , xr}, each xi corresponding to the class Pi of P;

• a vertex zij and an edge zijxj, for each strip Hi such that we use H̃0
i in the composition

and such that Ai
1 ∈ Pj (the edge corresponds to the vertex ci of T i

0);

• vertices zij and zi` and edges zijxj and zi`x`, for each strip Hi such that we use H̃1
i in the

composition and such that Ai
1 ∈ Pj and Ai

2 ∈ P` (the edges zijxj and zi`x` correspond to

the vertices ui1 and ui2 of T i
1, respectively);

• a vertex zij and an edge zijxj, for each strip Hi such that we use H̃2
i in the composition

and such that Ai
1 ∈ Pj (the edge corresponds to the vertex ui1 of T i

2);

• a vertex yij,` and edges yij,`xj and yij,`x`, for each strip Hi such that we use H̃2
i in the

composition and such that Ai
1 ∈ Pj and Ai

2 ∈ P` (the edges yij,`xj and yij,`x` correspond

to the vertices ui2 and ui3 of T i
2, respectively);

• vertices zij and zi` and edges zijxj and zi`x`, for each strip Hi such that we use H̃3
i in the

composition and such that Ai
1 ∈ Pj and Ai

2 ∈ P` (the edges zijxj and zi`x` correspond to

the vertices ui1 and ui3 of T i
3, respectively);
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• an edge xjx`, for each strip Hi such that we use H̃3
i in the composition, where Ai

1 ∈ Pj

and Ai
2 ∈ P` (this edge corresponds to the vertex ui2 of T i

3).

3.3.2 The maximal cliques of G̃.

We now analyze the maximal cliques of G̃. It is easy to see that each maximal clique of G̃
belongs to one of the following three classes:

Partition cliques Each partition clique is maximal, and such cliques correspond to multistars
of H and, more important, to cliques of G.

3-Classes cliques Another class of maximal cliques of G̃ are those“ induced” by three (differ-
ent) classes Pj , P`, Pk ∈ P` such that there exist H̃3

a , H̃
3
b , H̃

3
c with the extremities of H̃3

a

in Pj and P`, the extremities of H̃3
b in P` and Pk, the extremities of H̃3

c in Pk and Pj :
these cliques correspond to multitriangles of H induced by vertices xj , x`, xk, and we
show in the following that they also correspond to cliques of G.

Fake cliques The last class of maximal cliques of G̃ are those arising from the clique {ui2, ui3}
for some strip H̃2

i : note that {ui2, ui3} is maximal unless its extremities belong to classes
Pj and P` ∈ P ′ and there exist a strip H̃3

a whose extremities are in the same classes Pj

and P`: in this case, {ui2, ui3, ua2} is a larger maximal clique. For these cliques things are
more involved: with respect to H, the correspondence is to a multistar centered at yij,`
in the former case and to a multitriangle induced by vertices xj , x`, y

i
j,` in the latter;

with respect to G, in both cases, there might not be any direct correspondence to a
clique.

We now analyze more in detail 3-classes cliques. So consider a multitriangle of H induced
by vertices xj , x`, xk. By construction, each of the strips Ha, Hb, Hc is either an even strip or
an even-odd strip (Gi,Ai), for i ∈ {a, b, c}. Let a1, a2 be the endpoints of an even Aa

1–Aa
2 path,

and define b1, b2 and c1, c2 analogously. Then these three paths along with the edges a2b1,
b2c2 and a1c1 induce an odd hole, unless the three paths have length zero, i.e, a1 = a2, b1 = b2
and c1 = c2. That is the case when G is a perfect graph. If a1 = a2, b1 = b2 and c1 = c2 then
Aa

1∩Aa
2 6= ∅, Ab

1∩Ab
2 6= ∅ and Ac

1∩Ac
2 6= ∅ and by construction (Aa

1∩Aa
2)∪(Ab

1∩Ab
2)∪(Ac

1∩Ac
2)

is a clique. Moreover, Ha, Hb and Hc are even-short strips. (Note that the same argument
applies to the case where there are more than 3 strips that have both extremities in the classes
Pj , P`, Pk.)

We now to fake cliques. So consider a multitriangle of H induced by vertices xj , x`, y
i
j,`

(see above). By construction, the strip Hi is an odd or even-odd strip (Gi,Ai), while the
strip Ha is an even or even-odd strip (Ga,Aa). Therefore, there exists an even Aa

1–Aa
2 path

in (Ga,Aa) and an odd Ai
1–A

i
2 path in (Gi,Ai). Then, since G is odd hole free, it follows

that every even Aa
1–Aa

2 path should have length zero and every odd path in Gi should be of
length one. Thus (Gi,Ai) is an odd-short strip, (Ga,Aa) is an even-short strip, and Aa

1 ∩Aa
2

is non-empty and complete to Ai
1 ∪Ai

2.

Following the above discussion, the only cliques of G̃ that do not correspond to any clique
of G are fake cliques and they “arise” from the clique {ui2, ui3} for some strip H̃2

i . We therefore
start by considering the case where there are no such cliques.
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3.3.3 When no strip Hi is replaced by the strip H̃2
i = (T i

2, Ãi
2).

In this case, each maximal clique of G̃ corresponds to a maximal clique of G. In particular,
following the discussion in the previous section, each maximal clique K̃ of G̃ is either a
partition clique or a 3-classes clique. In the former case, K̃ corresponds to a multistar centered
at some vertex xj of H and we will translate into the partition-clique φ(K̃) =

⋃
A∈Pj

A. In

the latter case, K̃ corresponds to a multitriangle xjx`xk of H and will translate into the
clique φ(K̃) =

⋃
d∈Ij,`,k(Ad

1 ∩ Ad
2), where Ij,`,k is the set of indices d of even-short 2-strips

Hd = (Gd,Ad) in the decomposition having their two extremities in two different sets in
{Pj , P`, Pk}.

In both cases, for each maximal clique K̃ in the support of ỹ, we will set y(φ(K̃)) = ỹ(K̃).
Therefore y will be a “partial” weighted clique cover y of G with value τw̃(G̃), and we need to
complete y on each strip Hi as to cover the “residual” weight of vertices in Hi. As we show
in the following, this will be done building upon a suitable weighted clique cover of value δi1
with respect to a weight function wi defined on the vertices of Gi (or, in some cases, on the
vertices of the auxiliary graph Gi

=, see Section 3). We will deal with strips in this order:
1-strips, 2-strips replaced by H̃0; 2-strips replaced by H̃1; 2-strips replaced by H̃3

i that are
not even-short; 2-strips replaced by H̃3

i that are even-short.

1-strips. Let Hi = (Gi,Ai) be a 1-strip. Hi has been replaced by the strip H̃0
i =

(T i
0, Ãi

0), where the graph T i
0 consists of a single vertex ci, and Ãi

0 = {{ci}}. It follows
from the discussion in Section 3.3.1 that there is only one clique in the support of ỹ covering
Ãi

0 = {{ci}}, and that clique corresponds in G to the partition clique from the class of P
which Ai

1 belongs to. Therefore, each vertex in Ai
1 is covered by a single clique in the support

of y, with weight at least w̃(ci) = αw(Gi)−δi1, where δi1 = αw(Gi\Ai
1). Then we can “extend”

y into a mwcc of G, with respect to w, because of the following lemma:

Lemma 8 For some i between 1 and k, suppose that Hi = (Gi,Ai) is a 1-strip. Let b be
greater than or equal to αw(Gi) − δi1 and let us define function wi mapping V (Gi) to R+ as
follows:

wi(v) =

{
w(v), if v ∈ V (Gi) \Ai

1,

max{0, w(v)− b}, otherwise.

Then αwi(Gi) = δi1.

Proof. Let S be a stable set of Gi \ Ai
1. Since wi(v) = w(v) for v ∈ V (Gi) \ Ai

1, it
follows that wi(S) = w(S) ≤ αw(Gi \ Ai

1) = δi1, and the equality holds for any mwss S of
Gi \ Ai

1. Now consider a stable set S of Gi containing one vertex v ∈ Ai
1. If wi(v) = 0,

then wi(S) = w(S \ v) + wi(v) ≤ w(S \ v) ≤ αw(Gi \ Ai
1) = δi1; if wi(v) > 0, then

wi(S) = w(S)− b ≤ w(S)− αw(Gi) + δi1 ≤ δi1. 2

2-strips replaced by H̃0. We now move to 2-strips that have been replaced by H̃0,
i.e., strips with both extremities in the same class of P. Let Hi = (Gi,Ai) be such a strip.
Hi has been replaced by the strip H̃0

i = (T i
0, Ãi

0), where the graph T i
0 consists of a single

vertex ci, and Ãi
0 = {{ci}}. It follows from the discussion in Section 3.3.1 that there is

only one clique in the support of ỹ covering Ãi
0 = {{ci}}, and that clique corresponds in

G to the partition clique from the class of P which Ai
1 and Ai

2 belong to. Therefore, each
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vertex in Ai
1 ∪ Ai

2 is covered by a single clique in the support of y, with weight at least
w̃(ci) = max{αw(Gi\Ai

1), αw(Gi\Ai
2), αw(Gi\(Ai

14Ai
2))}−δi1, where δi1 = αw(Gi\(Ai

1∪Ai
2)).

Then we can “extend” y into a mwcc of G, with respect to w, because of the following lemma:

Lemma 9 For some i between 1 and k, suppose that Hi = (Gi,Ai) is a 2-strip. Let Gi
= be

the graph obtained from Gi by adding the edges between Ai
1 and Ai

2. Let b be greater than or
equal to max{αw(Gi \ Ai

1), αw(Gi \ Ai
2), αw(Gi \ (Ai

1 4 Ai
2))} − δi1 and let us define function

wi mapping V (Gi) to R+ as follows:

wi(v) =

{
w(v), if v ∈ V (Gi) \ (Ai

1 ∪Ai
2),

max{0, w(v)− b}, otherwise.

Then αwi(Gi
=) = δi1. Moreover, if Gi

= is perfect, any mwcc of Gi
= with respect to wi does

not assign strictly positive weight to the clique Ai
1∪Ai

2 (and so αwi(Gi
=) = αwi(Gi

=\(Ai
1∪Ai

2))).

Proof. First note that αw(Gi
=) = max{αw(Gi \ Ai

1), αw(Gi \ Ai
2), αw(Gi \ (Ai

1 4 Ai
2))}.

Now, let S be a maximum stable set of Gi \ (Ai
1 ∪Ai

2) with respect to w. Since wi(v) = w(v)
for v ∈ V (Gi) \ (Ai

1 ∪Ai
2), then wi(S) = w(S) = αw(Gi \ (Ai

1 ∪Ai
2)) = δi1. On the other hand

and by the same reason, any stable set S of Gi
= such that wi(S) > δi1 should contain a vertex

v ∈ Ai
1 ∪Ai

2, such that wi(v) > 0, i.e., wi(v) = w(v)− b. Since it is a clique of Gi
=, there is at

most one such vertex. So, wi(S) = w(S)−b ≤ w(S)−αw(Gi
=)+δi1 ≤ δi1. Then αwi(Gi

=) = δi1.
If Gi

= is perfect, any mwcc of Gi
= with respect to wi should have weight δi1. In particular,

every clique with strictly positive weight must intersect any mwss of Gi \ (Ai
1 ∪ Ai

2). So, in
any mwcc of Gi

=, the clique Ai
1 ∪Ai

2 has weight zero. 2

Remark 2 According to Lemma 9, when Hi is a 2-strips with both extremities in the same
class of P, the extension of y into a mwcc of G requires the evaluation of a mwcc of Gi

=.
Even though Gi

= is a subgraph of Gi, strictly speaking it is possible that Gi
= does not belong to

the class of graphs C as Gi (see the statement of Theorem 2). However, there is an interesting
case where we do not need dealing with Gi

=. Namely, suppose that there are no two vertices
v1 ∈ Ai

1 and v2 ∈ Ai
2 with a common neighbor in V (Gi) \ (Ai

1 ∪ Ai
2): in this case, the only

maximal clique that might be present in Gi
= but not in Gi is Ai

1 ∪Ai
2. In this case, following

the last statement of the lemma, any mwcc of Gi
= (with respect to wi) does not assign strictly

positive weight to the clique Ai
1 ∪Ai

2, so any mwcc of Gi (with respect to wi) is also a mwcc
of Gi

= (with respect to wi).

2-strips replaced by H̃1. Let Hi = (Gi,Ai) be such a strip. Hi has been replaced by
the strip H̃1

i = (T i
1, Ãi

1), where V (T i
1) = {ui1, ui2}, E(T i

1) = ∅, Ãi
1 = {Ãi

1, Ã
i
2} and Ãi

1 = {ui1},
Ãi

2 = {ui2}. It follows from the discussion in Section 3.3.1 that there is only one clique in the
support of ỹ covering Ãi

1 = {ui1}, and that clique corresponds in G to the partition clique from
the class of P which Ai

1 belongs to, and the same holds with respect to ui2 and Ai
2. Therefore,

each vertex in Ai
1 \ Ai

2 is covered by a single clique in the support of y, with weight at least
w̃(ui1) = αw(Gi \ Ai

2) − δi1, and each vertex in Ai
2 \ Ai

1 is covered by a single clique in the
support of y, with weight at least w̃(ui2) = αw(Gi \Ai

1)− δi1, where δi1 = αw(Gi \ (Ai
1 ∪Ai

2)).
Recall that αw(Gi \Ai

1) + αw(Gi \Ai
2) = αw(Gi) + δi1, as we replaced Hi with H̃1

i : it follows
that each vertex in Ai

1∩Ai
2 is covered with weight at least αw(Gi)−δi1. Then we can “extend”

y into a mwcc of G, with respect to w, because of the following lemma:
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Lemma 10 For some i between 1 and k, suppose that Hi = (Gi,Ai) is a 2-strip. Let b1, b2
be such that b1 ≥ αw(Gi \Ai

2)− δi1, b2 ≥ αw(Gi \Ai
1)− δi1, and b1 + b2 ≥ αw(Gi)− δi1. Let us

define function wi mapping V (Gi) to R+ as follows:

wi(v) =


w(v), if v ∈ V (Gi) \ (Ai

1 ∪Ai
2),

max{0, w(v)− b1}, if v ∈ Ai
1 \Ai

2,

max{0, w(v)− b2}, if v ∈ Ai
2 \Ai

1,

max{0, w(v)− b1 − b2}, otherwise.

Then αwi(Gi) = δi1.

Proof. On one hand, let S be a mwss ofGi\(Ai
1∪Ai

2) with respect to w. Since wi(v) = w(v)
for v ∈ V (Gi) \ (Ai

1 ∪ Ai
2), then wi(S) = w(S) = αw(Gi \ (Ai

1 ∪ Ai
2)) = δi1. On the other

hand and by the same reason, any stable set S such that wi(S) > δi1 should contain a vertex
v ∈ Ai

1∪Ai
2 such that wi(v) > 0. In fact, without loss of generality, we can assume that every

vertex in S has strictly positive weight. Now, we have four cases to consider: S contains a
vertex v of Ai

1 and no vertex of Ai
2; S contains a vertex v of Ai

2 and no vertex of Ai
1; S contains

a vertex v of Ai
1∩Ai

2; or S contains a vertex v of Ai
1\Ai

2 and a vertex v′ of Ai
2\Ai

1. In the first
case, wi(v) = w(v)−b1 and so wi(S) = w(S)−b1 ≤ w(S)−αw(Gi \Ai

2)+δi1 ≤ δi1. The second
case is symmetric. In the last two cases, wi(S) = w(S)−b1−b2 ≤ w(S)−αw(Gi)+δi1 ≤ δi1. 2

2-strips replaced by H̃3
i that are not even-short. Let Hi = (Gi,Ai) be such a

strip. Hi has been replaced by the strip H̃3
i = (T i

3, Ãi
3), with V (T i

3) = {ui1, ui2, ui3}, E(T i
3) =

{ui1ui2, ui2ui3}, Ãi
3 = {Ãi

1, Ã
i
2} and Ãi

1 = {ui1, ui2}, Ãi
2 = {ui2, ui3}. It follows from the discussion

in Section 3.3.1 that there is only one clique in the support of ỹ covering ui1 (resp. ui3),
and that clique corresponds in G to the partition clique from the class of P which Ai

1 (resp.
Ai

2) belongs to. Therefore, as Ai
1 and Ai

2 do not intersect, each vertex in Ai
1 is covered

by a single clique in the support of y, with weight b1 at least w̃(ui1) = αw(Gi \ Ai
2) − δi1,

where δi1 = αw(Gi \ (Ai
1 ∪ Ai

2)); analogously, each vertex in Ai
2 is covered by a single clique

in the support of y, with weight b2 at least w̃(ui3) = αw(Gi \ Ai
1) − δi1. Note also that

b1 +b2 ≥ w̃(ui2) = αw(Gi)−δi1, as the only maximal cliques of G̃ covering ui2 contain either ui1
or ui3. Then we can “extend” y into a mwcc of G, with respect to w, because of Lemma 10
again.

2-strips replaced by H̃3
i that are even-short. In this case, in particular, Ai

1∩Ai
2 6= ∅.

Note that such strips might be involved in some multitriangles in the root graph of G̃.
Let Hi = (Gi,Ai) be such a strip. Hi has been replaced by the strip H̃3

i = (T i
3, Ãi

3),
with V (T i

3) = {ui1, ui2, ui3}, E(T i
3) = {ui1ui2, ui2ui3}, Ãi

3 = {Ãi
1, Ã

i
2} and Ãi

1 = {ui1, ui2}, Ãi
2 =

{ui2, ui3}. It follows from the discussion in Section 3.3.1 that there is only one clique in the
support of ỹ covering ui1 (resp. ui3), and that clique corresponds in G to the partition clique
from the class of P which Ai

1 (resp. Ai
2) belongs to. Therefore, each vertex in Ai

1 \ Ai
2 is

covered by a single clique in the support of y, with weight b1 at least w̃(ui1) = αw(Gi\Ai
2)−δi1,

where δi1 = αw(Gi \ (Ai
1 ∪ Ai

2)); analogously, each vertex in Ai
2 \ Ai

1 is covered by a single
clique in the support of y, with weight b2 at least w̃(ui3) = αw(Gi \ Ai

1) − δi1. As for the
vertices in Ai

1 ∩ Ai
2, they might be also covered, with weight a ≥ 0, by some clique φ(K̃)

of G arising from some 3-classes clique K̃ containing the vertex ui2 as, for example, those of
the form φ(K̃) =

⋃
d∈Ij,`,k(Ad

1 ∩ Ad
2), with i ∈ Ij,`,k (recall that Ij,`,k is the set of indices d of
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even-short 2-strips Hd = (Gd,Ad) in the decomposition having their two extremities in two
different sets in {Pj , P`, Pk}). So, b1 + b2 + a ≥ w̃(ui2) = αw(Gi)− δi1. Then we can “extend”
y into a mwcc of G, with respect to w, because of the following lemma:

Lemma 11 For some i between 1 and k, suppose that Hi = (Gi,Ai) is an even-short 2-strip
such that Gi is perfect. Let b1, b2, a be such that b1 ≥ αw(Gi \Ai

2)− δi1, b2 ≥ αw(Gi \Ai
1)− δi1,

and a+ b1 + b2 ≥ αw(Gi)− δi1. Let us define function wi mapping V (Gi) to R+ as follows:

wi(v) =


w(v), if v ∈ V (Gi) \ (Ai

1 ∪Ai
2),

max{0, w(v)− b1}, if v ∈ Ai
1 \Ai

2,

max{0, w(v)− b2}, if v ∈ Ai
2 \Ai

1,

max{0, w(v)− b1 − b2 − a}, otherwise.

Then αwi(Gi) = δi1.

Proof. On one hand, let S be a mwss ofGi\(Ai
1∪Ai

2) with respect to w. Since wi(v) = w(v)
for v ∈ V (Gi) \ (Ai

1 ∪ Ai
2), then wi(S) = w(S) = αw(Gi \ (Ai

1 ∪ Ai
2)) = δi1. On the other

hand and by the same reason, any stable set S such that wi(S) > δi1 should contain a vertex
v ∈ Ai

1 ∪ Ai
2 such that wi(v) > 0. In fact, Without loss of generality, we can assume that

every vertex in S has strictly positive weight. Now, we have four cases to consider: S contains
a vertex v of Ai

1 and no vertex of Ai
2; S contains a vertex v of Ai

2 and no vertex of Ai
1; S

contains a vertex v of Ai
1 ∩Ai

2; or S contains a vertex v of Ai
1 \Ai

2 and a vertex v′ of Ai
2 \Ai

1.
In the first case, wi(v) = w(v)− b1 and so wi(S) = w(S)− b1 ≤ w(S)−αw(Gi \Ai

2) + δi1 ≤ δi1.
The second case is symmetric. In the third case, wi(v) = w(v) − b1 − b2 − a, and so
wi(S) = w(S)−b1−b2−a ≤ w(S)−αw(Gi)+δi1 ≤ δi1. In the last case, wi(v) = w(v)−b1 and
wi(v′) = w(v′)−b2, and so wi(S) = w(S)−b1−b2 ≤ w(S)−αw(Gi\Ai

2)−αw(Gi\Ai
1)+2δi1. Note

that, since Hi is an even-short strip, the strip H ′i = (Gi\(Ai
1∩Ai

2), {Ai
1\Ai

2, A
i
2\Ai

1}) is either
non-connected or odd, so by Lemma 6, αw(Gi \Ai

1) +αw(Gi \Ai
2) ≥ αw(Gi \ (Ai

1 ∩Ai
2)) + δi1.

Thus wi(S) ≤ w(S)− αw(Gi \ (Ai
1 ∩Ai

2)) + δi1 ≤ δi1. 2

3.3.4 When some strip is replaced by the strip H̃2
i = (T i

2, Ãi
2).

We finally deal with the case where some stripHi has been replaced by the strip H̃2
i = (T i

2, Ãi
2).

Let Hi = (Gi,Ai) be such a strip. Hi has been replaced by the strip H̃2
i = (T i

2, Ãi
2), with

V (T i
2) = {ui1, ui2, ui3}, E(T i

2) = {ui1ui2, ui2ui3}, Ãi
2 = {Ãi

1, Ã
i
2} and Ãi

1 = {ui1, ui2}, Ãi
2 = {ui3}.

We also set: w̃(ui1) = αw(Gi)−αw(Gi\Ai
1), w̃(ui2) = αw(Gi\Ai

2)−δi1, w̃(ui3) = αw(Gi\Ai
1)−δi1.

Recall that, in this case, there might be some maximal cliques of G̃ that do not correspond
to any maximal clique of G, we called these cliques fake. We will show how to define a weight
function on the vertices of the strip Hi so as to get a cover with the same value which includes
only cliques.

Recall that these fake cliques correspond in the root graph H to some multistar centered
at yij,` and to some multitriangle yij,`xjx`. We first deal with the case where in H there is a

multitriangle yij,`xjx`, as the other case will follow easily. The edge xjx` in the root graph of

G̃ implies the existence of at least one 2-strip (Ga,Aa) whose extremities belong to Pj and P`

and that has been replaced by the gadget strip H̃3
a . Following our discussion in Section 3.3.2,

(Gi,Ai) is odd-short and (Ga,Aa) is even-short, thus there is at least one vertex x ∈ Aa
1 ∩Aa

2
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that is complete to Ai
1 ∪Ai

2. Without loss of generality, we assume that x is unique (in fact,
if there are more vertices from (Ga,Aa) or some other 2-strips satisfying the same properties,
then they form a clique of G). We prove the following lemma, which essentially shows that,
if our cover of G̃ has assigned a weight a > 0 to the clique corresponding to the multitriangle
yij,`xjx`, then we can discard this clique and ask for a mwcc of value δi1 + a in the graph

induced by Gi and x, that we denote by Gi
• and is trivially perfect, in such a way that x is

covered by a quantity greater or equal to a.

Lemma 12 For some i between 1 and k, suppose that Hi = (Gi,Ai) is a 2-strip. Let Gi
• be

the graph obtained from Gi by adding a new vertex x complete to both Ai
1 and Ai

2. Let b1, b2, a
be such that b1 ≥ αw(Gi)−αw(Gi \Ai

1), a+ b1 ≥ αw(Gi \Ai
2)− δi1, a+ b2 ≥ αw(Gi \Ai

1)− δi1.
Let us define function wi mapping V (Gi

•) to R+ as follows:

wi(v) =



w(v), if v ∈ V (Gi) \ (Ai
1 ∪Ai

2),

max{0, w(v)− b1}, if v ∈ Ai
1 \Ai

2,

max{0, w(v)− b2}, if v ∈ Ai
2 \Ai

1,

max{0, w(v)− b1 − b2}, if v ∈ Ai
1 ∩Ai

2,

a, otherwise (i.e., if v = x).

Then αwi(Gi
•) = δi1 + a. In particular, αwi(Gi) ≤ δi1 + a.

Proof. On one hand, let S be a mwss of Gi \ (Ai
1 ∪ Ai

2) with respect to w. Then
S ∪ {x} is a stable set of Gi

•. Since wi(v) = w(v) for v ∈ V (Gi) \ (Ai
1 ∪ Ai

2), then
wi(S ∪ {x}) = w(S) + wi(x) = αw(Gi \ (Ai

1 ∪ Ai
2)) + a = δi1 + a. In fact, since x is complete

to Ai
1 ∪ Ai

2 in Gi
•, any stable set of Gi

• containing x should be composed by x and a stable
set of Gi \ (Ai

1 ∪Ai
2), and will have weight wi at most δi1 + a. So, any stable set S such that

wi(S) > δi1 + a should contain a vertex v ∈ Ai
1 ∪ Ai

2 such that wi(v) > 0. In fact, without
loss of generality, we can assume that every vertex in S has strictly positive weight. Now,
we have four cases to consider: S contains a vertex v of Ai

1 and no vertex of Ai
2; S contains

a vertex v of Ai
2 and no vertex of Ai

1; S contains a vertex v of Ai
1 \ Ai

2 and a vertex v′ of
Ai

2 \ Ai
1; or S contains a vertex v of Ai

1 ∩ Ai
2. In the first case, wi(v) = w(v) − b1 and so

wi(S) = w(S)−b1 ≤ w(S)−αw(Gi\Ai
2)+δi1+a ≤ δi1+a. The second case is symmetric. In the

third case, wi(v) = w(v)−b1 and wi(v′) = w(v′)−b2, and in the last case wi(v) = w(v)−b1−b2.
So, in both cases, wi(S) = w(S) − b1 − b2. By adding the first two required inequalities, it
follows that a+ b1 + b2 ≥ αw(Gi)− δi1, so wi(S) ≤ w(S)− αw(Gi) + δi1 + a ≤ δi1 + a. 2

Note that, when αw(Gi \ Ai
1) + αw(Gi \ Ai

2) = αw(Gi) + δi1, the conditions b1 ≥ αw(Gi \
Ai

2)− δi1 and b2 ≥ αw(Gi \Ai
1)− δi1, imply that b1 + b2 ≥ αw(Gi)− δi1.

We observe that the last sentence of Lemma 12, i.e., the fact that αwi(Gi) ≤ δi1 + a,
suggests also how to “translate” the weight a possibly assigned to a clique of G̃ corresponding
to the multistar centered at some yij,`. Note also that in this case we do not need to evaluate

a mwcc of Gi
•. Therefore, we need a mwcc of Gi

• only when there exists x ∈ Aa
1 ∩ Aa

2 that
is complete to Ai

1 ∪Ai
2: as in this case Gi

• is an induced subgraph of G.

We are done with the proof of Theorem 2. Following Remark 2 and the discussion above,
we are indeed able to provide a slightly technical improvement for it, which will be useful for
the following:

17



Theorem 13 Let G be the class of perfect graphs which are the composition of strips Hi =
(Gi,Ai) i = 1, . . . , k with respect to a partition P, such that each of the strips belongs to a
class C. Suppose also that there exists a function p such that for a strip Hi = (Gi,Ai) in C,
we can compute in time O(p(|V (Gi)|)):

(i) a mwcc of Gi and of Gi
•, if Hi is an odd-short strip and Gi

• is an induced subgraph of
G;

(ii) a mwcc of Gi and of Gi
=, if Gi

= is an induced subgraph of G, Ai
1 and in Ai

2 belong to
the same class of P, and there are two vertices v1 ∈ Ai

1 and v2 ∈ Ai
2 with a common

neighbor in V (Gi) \ (Ai
1 ∪Ai

2). In particular, for the mwcc on Gi
=, it is enough to deal

with weight functions wi defined on V (Gi
=) such that αwi(Gi

=) = αwi(Gi
= \ (Ai

1 ∪Ai
2));

(iii) a mwcc of Gi otherwise.
Then the mwcc problem on G ∈ G can be solved in time O(

∑k
i=1 p(|V (Gi)|)+match(|V (G)|)),

where match(n) is the time required to solve the matching problem on a graph with n vertices.
If p is a polynomial, then the mwcc can be solved on the class G in polynomial time.

4 The mwcc on claw-free perfect graphs.

As an application of Theorem 13, we give a new algorithm for the mwcc on strip-composed
claw-free perfect graphs. Recall that claw-free perfect graphs are in fact quasi-line. In the last
decade the structure of quasi-line graphs was deeply investigated, with some results providing
a detailed description and characterization of the strips that, through composition, can be
part of a quasi-line graph. This is the case of the structure theorem by Chudnovsky and
Seymour in [6] and the structure theorem by Chudnovsky and Plumettaz in [4].

An algorithmic decomposition theorem for quasi-line graph has been given in [10, 11].
Before stating this theorem, we need a few definitions. The first one is that of net, i.e., a
graph formed by a triangle and three vertices of degree one, each of them adjacent to a distinct
vertex of the triangle.

Definition 14 A clique K of a connected graph G is distance simplicial if, for every j, its
j-th neighborhood is also a clique. In this case, we also say that G is distance simplicial with
respect to K (or simply distance simplicial). Finally, a strip H = (G,A) is distance simplicial
if G is distance simplicial with respect to each A ∈ A and:

(j) either Ai
1 = Ai

2 = V (Gi);
(jj) or Ai

1 ∩ Ai
2 = ∅ and there exists j2 such that Nj2+1(A

i
1) = ∅, Nj2(Ai

1) ∩ Ai
2 6= ∅,

Nj2−1(A
i
1) ∪Nj2(Ai

1) ⊇ Ai
2, where Nj(A

i
1) is the j-th neighborhood of Ai

1 in Gi (and a
similar statement holds with respect to Ai

2).

Theorem 15 [10, 11] Let G be a connected quasi-line graph. In time O(|V (G)||E(G)|), one
can:

(i) either recognize that G is net-free;
(ii) or provide a decomposition of G into k ≤ |V (G)| quasi-line strips (G1,A1), . . . , (Gk,Ak),

with respect to a partition P, such that each graph Gi is distance simplicial with respect
to each clique A ∈ Ai. Moreover, if Ai

1 ∩Ai
2 = ∅, then:

• each vertex in A has a neighbor in V (Gi) \A, for each A ∈ Ai;
• if Ai

1 and Ai
2 are in the same set of P, then Ai

1 is anticomplete to Ai
2.
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4.1 The mwcc problem on strip composed claw-free perfect graphs.

Suppose that we are given a claw-free perfect graph G that is the strip composition of strips
obeying to case (ii) of Theorem 15. If we are interested in finding a mwcc of G, following
Theorem 13, we must show that for a strip that is distance simplicial we can compute in
polynomial time:

1. a mwcc of the strip;

2. a mwcc ofGi
•, i.e., Gi plus a vertex complete to both extremities, when the strip (Gi,Ai)

is odd-short and Gi
• is an induced subgraph of G: note that in this case (Gi,Ai) must

obey to (jj) in Definition 14, as otherwise the strip is even since Ai
1 = Ai

2 = V (Gi);

3. a mwcc of Gi
=, i.e., Gi plus edges as to make Ai

1 complete to Ai
2, if Gi

= is an induced
subgraph of G, Ai

1 and in Ai
2 belong to the same class of P, and there are two vertices

v1 ∈ Ai
1 and v2 ∈ Ai

2 with a common neighbor in V (Gi) \ (Ai
1 ∪ Ai

2): note that also in
this case (Gi,Ai) must obey to (jj) in Definition 14, as otherwise V (Gi)\(Ai

1∪Ai
2) = ∅.

Before going into each case, we give a last definition. A graph is cobipartite if its vertex
set can be covered by two cliques. Note that a cobipartite graph is distance simplicial with
respect to each of the two cliques covering its vertex set. Also it is not difficult to see that
distance simplicial graphs are perfect, since they can be iteratively decomposed by clique
cutsets into cobipartite graphs.

1. We start by briefly describing how to compute a mwcc in distance simplicial graphs
(we just observed that they are perfect). We rely on a property of perfect graphs, namely,
there always exists a clique which intersects each mwss: we will call such a clique crucial
(crucial cliques are a key ingredient to the algorithm in [23]). Our algorithm relies on the fact
that for graphs that are distance simplicial with respect to some identifiable clique K, we can
inductively compute crucial cliques and decide the value of this clique in a mwcc. The first
crucial clique will be K ′ := K ∪ {v /∈ K : v is complete to K}: we will suitably update the
weight of each vertex, and then find a new crucial clique (with respect to the new weights)
in an inductive way.

Assume therefore that D is a distance simplicial graph with respect to a clique K1 and let
w be a strictly positive weight function on V (D). In the following, for the sake of shortness,
we let Kj+1 := Nj(K1).

Lemma 16 Algorithm 1 is correct and can be implemented as to run in O(|V (D)|2)-time.

Proof. We claim the following property. Let Q ⊆ V (D) be a non-empty subset of vertices.
Let j ∈ {1, . . . , t+ 1} be such that Ki ∩Q = ∅ for every 1 ≤ i < j, and Kj ∩Q 6= ∅. Then, in
D[Q], (Kj ∩Q)∪{v ∈ Q \Kj : v is complete to Kj ∩Q in the graph D[Q]} is a crucial clique.

Proof of the claim. Since D is distance simplicial with respect to K1, (Kj ∩ Q) ∪ {v ∈
Q\Kj : v is complete to Kj ∩Q in the graph D[Q]} is a clique in D[Q]. Suppose that there is
a mwss S in D[Q] that does not intersect it. In particular, j < t+ 1, no vertex of S belongs
to Kj , and no vertex of S is complete to Kj ∩Q. Since Kj+1 is a clique, at most one vertex
of S belongs to it, and any other vertex of S is anticomplete to Kj . In any case, there is a
vertex in Kj ∩Q that is anticomplete to S, a contradiction to the maximality of S, since the
weight w is strictly positive. This proves the claim.
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Algorithm 1

Require: A graph D that is distance simplicial graph with respect to a clique K1 and a
strictly positive weight function w on V (D). Assume that Kj+1 6= ∅, for every 1 ≤ j ≤ t,
while Kj+2 = ∅.

Ensure: A mwcc for D with respect to the weight function w.
1: Let Q← V (D); y = 0;
2: While Q 6= ∅ do:

2.1 Let j ∈ {1, . . . , t} be such that Ki ∩Q = ∅ for 1 ≤ i < j and Kj ∩Q 6= ∅.
2.2 Let K ← (Kj ∩Q) ∪ {v ∈ Q \Kj : v is complete to Kj ∩Q in the graph D[Q]}.
2.3 Let v̄ be the vertex of K with minimum (current) weight w.
2.4 Let Q← Q \ {v ∈ K : w(v) = w(v̄)}.
2.5 For each v ∈ K, let w(v)← w(v)− w(v̄).
2.6 Let y(K)← w(v̄).

3: Return y.

By the claim, the set K we build at step 2.2 is a clique that intersects every mwss of
the current graph. In steps 2.5 and 2.6, we are decreasing the weighted stability number of
the current graph by y(K), or in other words

∑
K∈K(D) y(K) = αw(D) (where K(D) is the

collection of all the cliques of the graph D). In fact let us call w′ the weight function after
step 2.5 and suppose by contradiction that αw′(D) > αw(D) − w̄, and denote with S′ the
maximum weight stable set with respect to the weight function w′ and with D′ := D[Q] after
step 2.4. We have to analyze two cases: (i) S′ ∩ K 6= ∅ and (ii) S′ ∩ K = ∅. If (i) holds
then αw′(D) = w′(S′) = w(S′) − w̄ ≤ αw(D) − w̄ which is a contradiction. If (ii) holds we
know that in D′, K̄ = K̄j ∪ {v /∈ K̄j : v is complete to K̄j in the graph D[Q]}, where K̄j

is Kj restricted to vertices with strictly positive weight, is a crucial clique, so in particular
S′ ∩ K̄ 6= ∅. Since S′ ∩ K = ∅ and S′ ∩ K̄ 6= ∅, we have that S′ contains a vertex x /∈ K̄j

such that x is complete to K̄j in the graph D[Q] that in D was not complete to Kj , or in
other words, x was not adjacent to some vertex of y ∈ Kj of weight w̄. But then we can
consider the set S′ ∪ {y} and we can observe that this is a stable set in D, and its weight is
w′(S′) + w̄ = αw′(D) + w̄ > αw(D), which is a contradiction.

Moreover, as the stop condition for step 2 is Q = ∅, we have covered every vertex with its
weight and this concludes correctness.

In the uniform cost model, steps 2.1 to 2.6 can be implemented as to run in O(|V (D)|)-
time, and we can easily observe that they will be repeated at most |V (D)| because each time
we perform step 2.4 the cardinality of the set Q strictly decreases. 2

2. Consider now an odd-short distance simplicial strip Hi = (Gi,Ai) such that:
- Gi

• is an induced subgraph of G, and therefore claw-free perfect;
- Ai

1∩Ai
2 = ∅ and there exists j2 such that Nj2+1(A

i
1) = ∅, Nj2(Ai

1)∩Ai
2 6= ∅, Nj2−1(A

i
1)∪

Nj2(Ai
1) ⊇ Ai

2 (and a similar statement holds with respect to Ai
2)

Lemma 17 Gi
• is cobipartite.

Proof. Recall that Gi
• is Gi plus a vertex x complete to both extremities. Since Gi is

odd-short, then Ai
2 ∩N(Ai

1) 6= ∅. It follows that Ai
2 ⊆ N(Ai

1) ∪N2(A
i
1). If N2(A

i
1) is empty,

then (Ai
1∪{x}, N(Ai

1)) is a bipartition of Gi
•. The same holds if N2(A

i
2) is empty. So, suppose

that N2(A
i
1) and N2(A

i
2) are both non-empty.
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We claim that: (i) N(Ai
1) \ Ai

2 = N(Ai
2) \ Ai

1; (ii) N2(A
i
1) \ (Ai

1 ∪ Ai
2) = ∅. Proof of

Claim (i). Let v ∈ N(Ai
1) \ Ai

2 then, since Gi is distance simplicial with respect to Ai
1, v is

complete to Ai
2∩N(Ai

1), that is non-empty. And so, v ∈ N(Ai
2). Symmetrically, every vertex

in N(Ai
2) \ Ai

1 belongs to N(Ai
1), and that proves the claim. Proof of Claim (ii). Suppose

there is a vertex v ∈ N2(A
i
1) \ Ai

2. Then, since Gi is distance simplicial with respect to Ai
1,

v is complete to Ai
2 ∩ N2(A

i
1), that is non-empty. And so, v ∈ N(Ai

2). But, by claim (i) v
would then belong to N(Ai

1), a contradiction.

Claims (i) and (ii) imply that B = V (Gi) \ (Ai
1 ∪Ai

2) ⊆ N(Ai
1) is a clique.

The vertices of Gi
• can be partitioned into four cliques, namely Ai

1, A
i
2, {x}, and B,

such that {x} is complete to Ai
1 ∪ Ai

2, and B is complete to (N(Ai
1) ∩ Ai

2) ∪ (N(Ai
2) ∩ Ai

1).
Moreover, by Theorem 15, each vertex in (N2(A

i
1) ∩ Ai

2) ∪ (N2(A
i
2) ∩ Ai

1) has a neighbor in
B. In particular, since N2(A

i
1) ∩Ai

2 is non-empty, B is non-empty.
Since Gi

• is perfect, in order to prove that it is cobipartite, it is enough to prove that it
has no stable set of size three. Since the non-neighbors of x form a clique, if there is a stable
set of size 3, then it has one vertex in each of Ai

1 ∩N2(A
i
2), A

i
2 ∩N2(A

i
1), and B. Let v, v′ be

two non-adjacent vertices in Ai
1 and Ai

2, respectively. Then, they cannot have both a common
neighbor and a common non-neighbor in B. To the contrary, let w be a common neighbor
and w′ a common non-neighbor of v, v′ in B. Since B is a clique, w,w′, v, v′ induce a claw in
Gi, a contradiction. Suppose that v, v′ have a common non-neighbor in B. Since they have
also at least one neighbor each in B, and they do not have a common neighbor, there exist
w,w′ ∈ B such that w is adjacent to v and not to v′ and w′ is adjacent to v′ and not to v.
But then vww′v′x induce a hole of length five on Gi

•, a contradiction. So, there is no stable
set of size three in Gi

•, and it is cobipartite. 2

3. Consider now a distance simplicial strip Hi = (Gi,Ai) such that:
- Gi

= is an induced subgraph of G, and therefore claw-free perfect;
- Ai

1 ∩Ai
2 = ∅ and Ai

1 and in Ai
2 belong to the same class of P, and there are two vertices

v1 ∈ Ai
1 and v2 ∈ Ai

2 with a common neighbor in V (Gi) \ (Ai
1 ∪Ai

2);
- αwi(Gi

=) = αwi(Gi
= \ (Ai

1 ∪ Ai
2)) holds, where wi is the weight function defined on the

vertices of Gi (that without loss of generality we take strictly positive, i.e., we remove
vertices with wi(v) = 0)

Lemma 18 Either Gi
= is cobipartite, or every mwcc of Gi is also a mwcc of Gi

=.

Proof. We claim that V (Gi)\(Ai
1∪Ai

2) can be partitioned into three complete sets, namely
B = (N(Ai

1)\Ai
2)∩(N(Ai

2)\Ai
1), C1 = N(Ai

1)\(Ai
2∪N(Ai

2)) and C2 = N(Ai
2)\(Ai

1∪N(Ai
1)).

Moreover, B is complete to C1 ∪ C2, A
i
1 is anticomplete to C2 and Ai

2 is anticomplete to C1.
Proof of the claim. Let us consider now the graph Gi that, by Theorem 15, is distance

simplicial with respect to Ai
1 and Ai

2 and in which, by the same theorem, Ai
1 is anticomplete

to Ai
2. By hypothesis, there are two vertices v1 ∈ Ai

1 and v2 ∈ Ai
2 having a common neighbor

in V (Gi) \ (Ai
1 ∪ Ai

2). So, B = NGi
(Ai

1) ∩ NGi
(Ai

2) = (NGi
=(Ai

1) \ Ai
2) ∩ (NGi

=(Ai
2) \ Ai

1)

is non-empty. This implies that there is a vertex in Ai
2 ∩ NGi

2 (Ai
1) and, by Theorem 15,

N4
Gi

(Ai
1) is empty. Symmetrically, N4

Gi
(Ai

2) is empty. Let C1 = NGi
(Ai

1) \ NGi
(Ai

2) =

NGi
=(Ai

1)\(Ai
2∪NGi

=(Ai
2)) and C2 = NGi

(Ai
2)\NGi

(Ai
1) = NGi

=(Ai
2)\(Ai

1∪NGi
=(Ai

1)). Since
Gi is distance simplicial with respect to Ai

1 and Ai
2, B is a clique and it is complete to C1 and

C2. Moreover, NGi
(Ai

1)C1 ∪B, and NGi
(Ai

2) = C2 ∪B. Since B is non-empty, Ai
2 ∩NGi

2 (Ai
1)
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is non-empty. Since NGi

2 (Ai
1) is a clique, NGi

2 (Ai
1) ⊆ (Ai

2 ∪NGi
(Ai

2)) \NGi
(Ai

1) = Ai
2 ∪ C2.

Symmetrically, NGi

2 (Ai
2) ⊆ (Ai

1 ∪ NGi
(Ai

1)) \ NGi
(Ai

2) = Ai
1 ∪ C1. Suppose that NGi

3 (Ai
1)

is non-empty, and let v ∈ NGi

3 (Ai
1). Then v has a neighbor in NGi

2 (Ai
1) ⊆ Ai

2 ∪ NGi
(Ai

2),

thus v ∈ Ai
2 ∪ NGi

(Ai
2) ∪ NGi

2 (Ai
2) ⊆ Ai

2 ∪ C2 ∪ B ∪ Ai
1 ∪ C1 ⊆ Ai

1 ∪ NGi
(Ai

1) ∪ NGi

2 (Ai
1), a

contradiction. Therefore, NGi

3 (Ai
1) and NGi

3 (Ai
2) are empty, and the claim holds.

Suppose that there is no mwcc of Gi that is also a mwcc of Gi
=. Then, every mwcc of

Gi
= contains a clique C that is not a clique of Gi, thus, it intersects both Ai

1 and Ai
2 and,

since Ai
1 is anticomplete to C2 and Ai

2 is anticomplete to C1, C ⊆ Ai
1 ∪ Ai

2 ∪ B. Since C is a
crucial clique of Gi

= (it has positive weight in a mwcc of Gi
=), C intersects every maximum

weight stable set of Gi
=. In particular, since αw(Gi

=) = αw(Gi \ (Ai
1 ∪ Ai

2)), it intersects
every maximum weight stable set of Gi \ (Ai

1 ∪ Ai
2). So, there is a maximum stable set S of

Gi \ (Ai
1 ∪ Ai

2) such that S ⊆ B, namely, S = {b}, with b ∈ B. Since {b} is also a maximum
stable set of Gi

= and w is strictly positive, b is complete to V (Gi
=) \ {b}. Finally, a quasi-line

graph containing a universal vertex is cobipartite. 2

We have therefore the following theorem for strip-composed claw-free perfect graphs. We
underline that the resulting algorithm never requires the computation of any mwss on the
strips, while it uses a primal-dual algorithm for the maximum weighted matching on the root
graph of G̃ (see Section 3).

Theorem 19 Let G be a claw-free perfect graph as in case (ii) of Theorem 15. Then we can
compute a mwcc of G with respect to w in time O(|V (G)|3).

Proof. From Theorem 13, we know that, given the decomposition of G into strips,
we can compute a mwcc of G in time O(

∑k
i=1 pi(|V (G)|) + match(|V (G)|)). For every

2-strip with extremities in different classes of P and for every 1-strip, from Lemma 16
pi(|V (Gi)|) = O(|V (Gi)|2). For every 2-strip with the extremities in the same class of P,
we first need to check if Gi

= is cobipartite, which takes O(|V (Gi)|+ |E(Gi
=)|), and then we ei-

ther compute directly a mwcc of Gi
= or we compute a mwcc of Gi, and in both cases it takes

O(|V (Gi)|2). Finally, for the computation of the mwcc of Gi
•, when needed, it takes again

O(|V (Gi)|2). Then O(
∑k

i=1 pi(|V (Gi)|)) = O(|V (G)|2) and the overall complexity of the al-
gorithm for the mwcc is O(|V (G)|2 + |V (G)|2 log |V (G)|) = O(|V (G)|2 log |V (G)|) (using the
primal dual algorithm for maximum weight matching by Gabow [13])). As it takes O(|V (G)|3)
to obtain the decomposition in strips, this is the overall complexity bound of the algorithm. 2

4.2 The mwcc problem on {claw,net}-free perfect graphs.

In this section, we describe an approach to the mwcc problem based on clique cutset decom-
position. Following the results in the previous sections and Theorem 15, we may restrict to
the case where G is a {claw,net}-free perfect graph. Brandstädt and Dragan [2] indeed char-
acterized {claw,net}-free graphs, and this structure was used in [11] to deal with the mwss
problem with the case of non-strip-composed for claw-free graphs, but we could not adapt
these ideas to the mwcc. We will instead exploit the structure of clique cutset decomposi-
tions in {claw,net}-free graphs and will show that the computational complexity for mwcc
is O(|V (G)|3).

A set C is a clique cutset of a graph G if G[C] is complete and G[V (G) \ C] has more
connected components than G. If G1, . . . , Gk are the connected components of G[V (G) \ C],
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then C decomposes G into the non-disjoint graphs G[G1 ∪ C], . . . , G[Gk ∪ C]. If any of
these graphs admits a clique cutset then the decomposition procedure can be continued, so
we obtain a clique cutset decomposition tree. A leaf of such a tree, that is, a graph that has
no clique cutset, is called an atom. Note that we can always assume that the decomposition
tree is binary, as we may assume that the clique cutset C decomposes G into G[G1 ∪ C] and
G[G2 ∪ · · · ∪ Gk ∪ C]. In particular, Tarjan [33] gave an O(|V ||E|) time algorithm to find a
binary decomposition tree in which for every node that is not a leaf, one of its children is a
leaf.

In 1982, Whitesides described a combinatorial polynomial-time algorithm for mwss on
hereditary classes of graphs that can be decomposed by clique cutsets into pieces in which
one can solve mwss in polynomial time in a combinatorial way [36]. Still in [36], Whitesides
also describes an algorithm for mwcc on perfect hereditary classes of graphs that can be
decomposed by clique cutsets into pieces in which one can solve mwcc in polynomial time in
a combinatorial way.

However, in order to solve mwcc on claw-free perfect graphs, we will not directly rely
on Whitesides’ algorithm, as the resulting complexity would be O(|V (G)|)5 (we skip the
details). We will first show that, when dealing with {claw,net}-free perfect graphs, one may
assume that the decomposition tree returned by Tarjan’s algorithm satisfies some additional
conditions that in practice imply that one may reduce the problem to the solution of a single
mwcc problem on an atom graph. Since Chvátal and Sbihi [8] proved that for claw-free
perfect graphs, atoms are either peculiar or elementary graphs, we will show how to solve
the mwcc on both classes in time O(|V (G)|)3. This, combined with the result from the
previous section, shows that we can solve the mwcc problem in claw-free perfect graphs in
time O(|V (G)|)3.

4.2.1 Decomposition trees for {claw,net}-free perfect graphs

Let G be a connected graph, C be a clique cutset of G, and (A,B) be a partition of V (G) \C
such that A is anticomplete to B. Without loss of generality, one may always assume that
for every vertex v in C, both N(v) ∩A and N(v) ∩B are non-empty.

Assume now that G is {claw,net}-free and perfect. The proof of the first two claims is
straightforward.

Claim 20 Both NA(v) and NB(v) are cliques.

Claim 21 Let w be a vertex of C. Then either NA(v) ⊆ NA(w) or NB(v) ⊆ NB(w) (and,
symmetrically, either NA(w) ⊆ NA(v) or NB(w) ⊆ NB(v)).

Claim 22 Suppose NB(C) is not a clique. Then there are at least two vertices of C complete
to A, and A is a clique.

Proof of the claim. Let b1, b2 be two non-adjacent vertices in NB(C), and v1, v2 their
respective neighbors in C. By Claim 20, v1 and v2 are two distinct vertices, v1 is not adjacent
to b2, and v2 is not adjacent to b1. By Claim 21, NA(v1) = NA(v2). Because for every
vertex v in C, both NA(v) and NB(v) are non-empty, and because of Claim 20, NA(v1)
is a non-empty clique. Let A′ be the connected component of G[A] containing NA(v1). If
NA(v1) ( A′, being G[A′] connected, there exist a1 in NA(v1) and a2 in A′ \ NA(v1) such
that a1 is adjacent to a2. But then {a2, a1, b1, v1, b2, v2} induce a net in G, a contradiction.
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Thus NA(v1) = NA(v2) = A′ and, by Claim 20, A′ is a clique. Suppose now that G[A] is not
connected and let A′′ be another connected component of G[A]. Since G is connected, there
is a vertex a3 in A′′ having a neighbor v3 in C. By Claim 21, NB(v3) = NB(v1) and also
NB(v3) = NB(v2), but NB(v1) and NB(v2) are different, a contradiction. Then A = A′. This
proves the claim.

Claim 23 Suppose NB(C) is a clique, and G[B ∪ C] is an atom. Then B = NB(C) and, in
particular, B is a clique. (Notice that otherwise, NB(C) would be a clique cutset of G[B∪C]).

Recall that according to [33] there exists a binary decomposition tree in which for every
node that is not a leaf, one of its children is a leaf, i.e., an atom. Based on the above claims,
for {claw,net}-free graphs we can prove the following:

Lemma 24 Let G be a connected {claw,net}-free graph. Then, there is a binary clique cutset
decomposition tree of G such that for every node associated with a clique cutset C, whose
children are associated with the subgraphs G[C ∪ A] and G[C ∪B], either A is a clique or B
is a clique. Moreover, that tree can be builded in O(|V (G)||E(G)|) time.

Proof. As sketched above, without loss of generality we may assume that the clique cutset
decomposition tree returned by the algorithm in [33] is such that for every node, A, B and
C satisfy Claims 21–23, and either G[A∪C] or G[B ∪C] is an atom. Suppose G[B ∪C] is an
atom. If NB(C) is a clique then, by Claim 23, B is a clique. If NB(C) is not a clique then,
by Claim 22, A is a clique and G[A ∪ C] is also an atom. 2

Lemma 24 suggests an algorithm for mwcc on {claw,net}-free perfect graphs. We may
assume without loss of generality the graph G is connected. Let us consider a clique cutset
tree T of G satisfying the conditions of the lemma. Let C1, . . . , Ck be the cutsets associated
with the internal nodes of T , let G[C1 ∪A1], . . . , G[Ck ∪Ak] be the graphs associated with k
of the leaves of T such that A1, . . . , Ak are cliques, and let G[Ck ∪B] be the graph associated
with the remaining leaf of T . Because for every vertex v in C, both NA(v) and NB(v) are
non-empty, and because of Claims 22, and 23, it follows that N(Ai) = Ci, for i = 1, . . . , k. Let
ni be the number of vertices of Ai, mi be the number of edges from Ai to Ci (i = 1, . . . , k), and
nB be the number of vertices of G[Ck ∪B]. Let G0 = G and, for i = 1, . . . , k, Gi = Gi−1 \Ai.
By using the first steps of Algorithm 1, we can iteratively find crucial cliques and reduce, for
i = 1, . . . , k, the problem in Gi−1 to the problem in Gi, in O(nimi) time. As a last step, we
need to solve the problem in Gk, that is an atom, and therefore either an elementary graphs
or a peculiar one. We may therefore state the following:

Theorem 25 Suppose that there exists an algorithm to solve mwcc in a graph G that is
either elementary graphs or peculiar graphs, in O(|V (G)|q) time. Then we may solve mwcc
in {claw,net}-free graphs in time O(|V (G)||E(G)|+ |V (G)|q).

4.2.2 The structure of peculiar graphs.

As we will see in the following, peculiar graphs have a very simple structure, and the mwcc
problem can be solved on peculiar graphs and their induced subgraphs in a similar fashion
than on distance simplicial graphs (i.e., iteratively computing crucial cliques).
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A graph is called peculiar if it can be obtained as follows: take three, pairwise vertex-
disjoint, cobipartite graphs with cobipartitions (A1, B2), (A2, B3), (A3, B1), respectively, such
that each of them has at least one pair of non-adjacent vertices; add all edges between every
pair of such graphs; then take three cliques K1, K2, K3 that are pairwise disjoint and disjoint
from the Ai’s and Bi’s; add all the edges between Ki and Aj ∪Bj for j 6= i; there is no other
edge in the graph.

Let G be an induced subgraph of a peculiar graph with vertex partition Ai, Bi,Ki, i =
1, 2, 3, as in the definition. Let w be a positive weight function associated with its vertices.
If one of the Ki’s is empty, G is a cobipartite graph and, in particular, distance simplicial.
Otherwise, since the vertices of each Ki are twins, both for mwss and mwcc we may consider
that each Ki consists of just one vertex ki, where ki is one of the maximum weight vertices in
Ki (in this and the following definitions, the maximum weight is with respect to the set, not
to the whole graph). Let A′i (resp. B′i) be the set of maximum weight vertices of Ai (resp.
Bi). The candidates to mwss in G are {k1, k2, k3}; {ki, ai} and {ki, bi}, with ai ∈ A′i, bi ∈ B′i,
and i = 1, 2, 3; and {a, b} with a ∈ Ai and b ∈ Bj , i ∈ {1, 2, 3}, j = i + 1 mod 3, such that
either b ∈ B′j or a is complete to B′j and, analogously, either a ∈ A′i or b is complete to A′i,
otherwise the set would not be a maximum weight independent set.

For each of the following two cases, we will find a crucial clique K and define its weight
in the clique cover, as usual in this kind of algorithms, as yK = αw(G)− αw(G \K).

(i) Suppose first that for some i ∈ {1, 2, 3}, there is no mwss contained in Ki ∪ Ai or in
Ki ∪ Bi. Assume there is no mwss contained in K1 ∪ A1, i.e., w(k1) + w(a1) < αw(G), for
a1 ∈ A′1. Then the clique K3 ∪ B1 ∪ A2 ∪ B2 is a crucial clique of G, that can be assigned
weight αw(G)− w(k1)− w(a1). The other cases are symmetric.

(ii) Suppose now that for every i ∈ {1, 2, 3}, both {ki, ai} and {ki, bi}, with ai ∈ A′i and
bi ∈ B′i, are mwss of G. Then

∑
i=1,2,3(2w(ki)+w(ai)+w(bi)) = 6αw(G). As w(k1)+w(k2)+

w(k3) ≤ αw(G), it follows that
∑

i=1,2,3(w(ai) + w(bi)) ≥ 4αw(G). This implies that either
w(a1) + w(b2) > αw(G), or w(a2) + w(b3) > αw(G), or w(a3) + w(b1) > αw(G). Note that
w(ai) + w(bj) > αw(G) implies that A′i is complete to B′j . Assume w(a1) + w(b2) > αw(G),

thus A′1 is complete to B′2. Then the clique K3 ∪ B1 ∪ A2 ∪ B′2 ∪ Ã1, where Ã1 is the set
of vertices of A1 that are complete to B′2, is a crucial clique of G. Indeed, as in this case
A′1 ⊆ Ã1, all the sets {k1, a′1} with a′1 ∈ A′1 are intersected by the clique, as well as all the sets
{a, b} with a ∈ A1 and b ∈ B2 such that either b ∈ B′2 or a is complete to B′2. We can assign
to that clique the weight min{w(a1)−wa, w(b1)−wb}, where wa (resp. wb) is the maximum
weight of a vertex in A1 (resp. B2) that is not in the clique, with wa = 0 (resp. wb = 0) if
A1 = Ã1 (resp. B2 = B′2). The other cases are symmetric.

As usual, after a crucial clique K is identified and its weight yK is computed, the weight
of the vertices of K is modified by subtracting yK , and vertices with non-positive weight
are removed from the graph. Then we iterate (note that, for case (ii), if at some point B2

becomes empty, then Ã1 = A1).
Notice that the case (i) may arise at most six times. As for case (ii), each time it applies,

the sizes of the sets Ai\A′i, Bi\B′i do not increase, and at least one of them strictly decreases.
After these sets are all empty, only a constant number of steps are needed. So the number of
crucial cliques is linear on the number of vertices, and the computation of each crucial clique
requires at most O(|V (G)|2) time.

To recognize a peculiar graph that is not cobipartite (i.e., K1, K2 and K3 are non-empty),
it is enough to find a stable set of size three {k1, k2, k3}, which for a perfect graph is obtained
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as a certificate of the BFS algorithm if the graph is not cobipartite. The cliques K1, K2

and K3 should be formed by the vertices that have exactly two non-neighbors in {k1, k2, k3},
and we can similarly determine the sets Ai ∪ Bi, for i = 1, 2, 3. Then vertices in A1 can be
defined as those that have a non-neighbor in A2∪B2, and determining A2 and A3 can be done
similarly. Once the candidate sets are defined, it is easy to check in O(|V (G)|2) time if they
agree with the definition of peculiar graphs. So, the recognition requires at most O(|V (G)|2)
time.

We therefore conclude that we can find a mwcc in a peculiar graph with n vertices in
O(n3) time.

4.2.3 The structure of elementary graphs.

Building upon a characterization of Maffray and Reed [27], we show that elementary graphs
are indeed strip-composed, and the strips are cobipartite graphs.

Elementary graphs were defined by Chvátal and Sbihi as graphs whose edges can be
bicolored in such a way that every chordless path on three vertices has its two edges colored
differently. We are here interested in an alternative characterization of elementary graphs due
to Maffray and Reed [27], that was exploited to solve the unweighted mcc problem on this
class of graphs. Building upon to this characterization, we show that elementary graphs are
indeed strip-composed, and the strips are cobipartite graphs. Then, by the same arguments we
used in the proof of Theorem 19, we may conclude that we can find a mwcc in an elementary
graph with n vertices in O(n3) time.

Maffray and Reed showed that a graph is elementary if and only if it can be obtained
from the line graph G of a bipartite multigraph by an“augmenting” operation that consists
in replacing some particular edges of G by cobipartite graphs. However, since line graphs
are strip-composed, and the augmenting operation itself works on strips without destroying
the strip structure, elementary graphs are also strip-composed. We give more details in the
following.

An edge is flat if it does not lie in a triangle. Let xy be a flat edge of a graph G = (V,E)
and B(X,Y,EXY ) be a cobipartite graph that is disjoint from G and such that there is at
least one edge between X and Y . The augmentation of G with respect to xy and B is the
graph that arises from the union of G − {x, y} and B, by adding all the edges between X
and N(x)− {y} and all the edges between Y and N(y)− {x}. Analogously, if we are given a
matching of flat edges M = {x1y1, . . . , xhyh} ⊆ E, and h pairwise disjoint cobipartite graphs
B1(X1, Y1, E1), . . . , Bh(Xh, Yh, Eh) that are also disjoint from G, the augmentation of G with
respect to M and B1, . . . , Bh is the graph obtained by augmenting first G with respect to
x1y1 and B1, then augmenting the new graph with respect to x2y2 and B2 etc.

It is easy to see that each line graph G is a strip-composed graph. Namely, for each vertex
x ∈ V (G) there is 2-strip Hx = (Gx,Ax) where V (Gx) = Ax

1 = Ax
2 = {x}, and the classes of

P are in bijection with the vertices of H, the root of G (i.e., G is the line graph of H): each
vertex v ∈ H corresponds to the class {{e} : e ∈ δH(v)}, where δH(v) is the star centered at
v. In particular, if xy is flat, then Pv := {{x}, {y}} is a class of P corresponding to a vertex
v of degree 2 in H; moreover, if w and z the neighbors of v in H, Pw := {{e} : e ∈ δH(w)}
and Pz := {{e} : e ∈ δH(z)}, are also classes of P.

Suppose now that we augment the line graph G with respect to the flat edge xy and
B = (X,Y,EXY ). Then we get a strip decomposition of the new graph as soon as: we replace
the strips Hx and Hy by the strip B with extremities X and Y ; we eliminate the partition
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class Pv; we replace {x} by X in the class Pw and {y} by X in the class Pz. Therefore, by
iterating this argument, it follows that elementary graphs, that can be obtained from line
graphs by augmenting with respect to a matching of flat edges, are strip-composed graph.

We proved that we may solve mwcc in a graph G that is either elementary or peculiar in
O(|V (G)|3) time. We may therefore state the following corollary of Theorem 26:

Corollary 26 Let G be a {claw,net}-free perfect graph. Then mwcc can be solved in time
O(|V (G)|3).
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A Proof of Lemma 3.

Proof. First we prove αw(G) ≤ αw′(G
′)+δ11 . Let A = A1 if H1 is a 1-strip and A = A1∪A2 if

H1 is a 2-strip with the extremities in the same class of the partition P. Since A is a complete
set in G, we can partition the stable sets S of G in the following way:

1) S ∩A = ∅;
2) |S ∩A| = 1.
In case 1), we have that w(S) = w(S∩(G\G1))+w(S∩G1) ≤ w(S∩(G\G1))+δ11 , where the

last inequality follows from the fact that S misses A. Therefore, w(S∩ (G\G1)) ≥ w(S)− δ11 .
Moreover, S ∩ (G\G1) is a stable set of G′ and w′(S ∩ (G\G1)) = w(S ∩ (G\G1)). It follows
that αw′(G

′) ≥ w(S)− δ11 .
In case 2), we have that w(S) = w(S∩(G\G1))+w(S∩G1). If H1 is a 1-strip, then w(S∩

G1) ≤ αw(G1). If H1 is a 2-strip, then, as |S∩A| = 1, we have that either S∩A ⊆ A1
1∩A1

2, or
S∩A ⊆ A1

1\A1
2, or S∩A ⊆ A1

2\A1
1. Then, either S∩G1 ⊆ G1\(A1

14A1
2), or S∩G1 ⊆ G1\A1

2, or
S∩G1 ⊆ G1\A1

1. So, w(S∩G1) ≤ max{αw(G1\A1
1), αw(G1\A1

2), αw(G1\(A1
14A1

2))}. In this
case, S∩(G\G1)∪{c1} is a stable set of G′, and w′(S∩(G\G1)∪{c1}) = w(S∩(G\G1))+w̃(c1).
Then we have that αw′(G

′) ≥ w(S∩(G\G1))+w̃(c1) = w(S)−w(S∩G1)+w̃(c1) ≥ w(S)−δ11 ,
where the last inequality holds by the previous case analysis.

Thus we have shown that for every stable set S of G, αw′(G
′) ≥ w(S)− δ11 . In particular,

this must hold for a mwss of G, so we obtain αw(G) ≤ αw′(G
′) + δ11 .

Now we want to prove αw(G) ≥ αw′(G
′) + δ11 . We can partition the stable sets S′ of G′ in

the following way:
1) c1 6∈ S′;
2) c1 ∈ S′.
In case 1), let S1 be a mwss of G1\A. Then, as S′ misses c1 and there are no edges between

G1\A and G\G1, S1∪S′ is a stable set of G. It follows that αw(G) ≥ w(S′∪S1) = w′(S′)+δ11 .
In case 2), let S1 be a stable set of G1 of maximum weight among those having at most

one vertex in A. Now, S′ \ {c1} ∪ S1 is a stable set of G, so it holds αw(G) ≥ w(S′ \
{c1} ∪ S1) = w′(S′) − w̃(c1) + w(S1). If H1 is a 1-strip, then w(S1) = αw(G1). If H1 is a
2-strip, then w(S1) = max{αw(G1 \ A1

1), αw(G1 \ A1
2), αw(G1 \ (A1

1 4 A1
2))}. In both cases,

w(S1)− w̃(c1) = δ11 , so αw(G) ≥ w′(S′) + δ11 .
Thus we have shown that for every stable set S′ of G′, αw(G) ≥ w′(S′)+δ11 . In particular,

this must hold for a mwss of G′, so we obtain αw(G) ≥ αw′(G
′) + δ11 . 2

B Proof of Lemma 5.

Proof.

(a) First we prove αw(G) ≤ αw′(G
′) + δ11 . We can partition the stable sets S of G in the

following way:

1) S ∩ (A1
1 ∪A1

2) = ∅;
2) |S ∩ (A1

1 ∪A1
2)| = 1;

3) |S ∩ (A1
1 ∪A1

2)| = 2.

In case 1), we have that w(S) = w(S ∩ (G \ G1)) + w(S ∩ G1) ≤ w(S ∩ (G \ G1)) + δ11 ,
where the last inequality follows from the fact that S misses both A1

1 and A1
2. Therefore,
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w(S ∩ (G \G1)) ≥ w(S)− δ11 . Moreover, S ∩ (G \G1) is a stable set of G′ and w′(S ∩ (G \
G1)) = w(S ∩ (G \G1)). It follows that αw′(G

′) ≥ w(S)− δ11 .

Now we analyze case 2). We suppose first that S ∩ (A1
1 \ A1

2) 6= ∅. Then again w(S) =
w(S ∩ (G \ G1)) + w(S ∩ G1) ≤ w(S ∩ (G \ G1)) + αw(G1 \ A1

2), where again the last
inequality follows from the fact that S misses A1

2. Now we observe that S∩(G\G1)∪{u11}
is a stable set of G′, and w′(S∩(G\G1)∪{u11}) = w(S∩(G\G1))+w̃(u11) so we have that
αw′(G

′) ≥ w(S∩(G\G1))+ w̃(u11) = w(S∩(G\G1))+αw(G1 \A1
2)−δ11 ≥ w(S)−δ11 . The

case in which S ∩ (A1
2 \ A1

1) 6= ∅ is symmetric. We suppose now that S ∩ (A1
1 ∩ A1

2) 6= ∅.
Thus w(S) = w(S ∩ (G \ G1)) + w(S ∩ G1) ≤ w(S ∩ (G \ G1)) + αw(G1). In this case,
S∩(G\G1)∪{u11, u12} is a stable set of G′, and w′(S∩(G\G1)∪{u11, u12}) = w(S∩(G\G1))+
w̃(u11)+w̃(u12). Then we have that αw′(G

′) ≥ w(S∩(G\G1))+w̃(u11)+w̃(u12) = w(S∩(G\
G1)) +αw(G1 \A1

2)− δ11 +αw(G1 \A1
2)− δ11 = w(S∩ (G\G1)) +αw(G1)− δ11 ≥ w(S)− δ11 ,

where the last equality holds by hypothesis.

The proof of case 3) follows the same lines of the last subcase of case 2).

Thus we have shown that for every stable set S of G, αw′(G
′) ≥ w(S)− δ11 . In particular,

this must hold for a mwss of G, so we obtain αw(G) ≤ αw′(G
′) + δ11 .

Now we want to prove αw(G) ≥ αw′(G
′) + δ11 . We can partition the stable sets S′ of G′

in the following way:

1) S′ ∩ {u11, u12} = ∅;
2) |S′ ∩ {u11, u12}| = 1;
3) |S′ ∩ {u11, u12}| = 2.

In case 1), let S1 be a mwss of G1 \ (A1
1 ∪ A1

2). Then, as S′ misses both u11 and u12 and
there are no edges between G1 \ (A1

1 ∪ A1
2) and G \ G1, S1 ∪ S′ is a stable set of G. It

follows that αw(G) ≥ w(S′ ∪ S1) = w′(S′) + δ11 .

In case 2), we suppose that u11 ∈ S′ and let S1 be a mwss of G1 \A1
2. Then, as S′ misses

u12, S
′ \ {u11} ∪ S1 is a stable set of G. It follows that αw(G) ≥ w(S′ \ {u11} ∪ S1) =

w′(S′)− w̃(u11) + αw(G1 \A1
2) = w′(S′)− αw(G1 \A1

2) + δ11 + αw(G1 \A1
2) = w′(S′) + δ11 .

The case in which u12 ∈ S′ is analogous.

In case 3), let S1 be a mwss of G1. Now, S′ \ {u11, u12} ∪ S1 is a stable set of G, so it
holds αw(G) ≥ w(S′ \ {u11, u12} ∪ S1) = w′(S′) − w̃(u11) − w̃(ui2) + αw(G1) = w′(S′) −
αw(G1 \ A1

1)− αw(G1 \ A1
2) + 2δ11 + αw(G1) = w′(S′) + δ11 , where the last equality holds

by hypothesis.

Thus we have shown that for every stable set S′ of G′, αw(G) ≥ w′(S′)+δ11 . In particular,
this must hold for a mwss of G′, so we obtain αw(G) ≥ αw′(G

′) + δ11 .

(b) First we prove αw(G) ≤ αw′(G
′) + δ11 . We can partition the stable sets S of G in the

following way:

1) S ∩ (A1
1 ∪A1

2) = ∅;
2) |S ∩ (A1

1 ∪A1
2)| = 1;

3) |S ∩ (A1
1 ∪A1

2)| = 2.

In case 1), we have that w(S) = w(S ∩ (G \ G1)) + w(S ∩ G1) ≤ w(S ∩ (G \ G1)) + δ11 ,
where the last inequality follows from the fact that S misses both A1

1 and A1
2. Therefore,

w(S ∩ (G \G1)) ≥ w(S)− δ11 . Moreover, S ∩ (G \G1) is a stable set of G′ and w′(S ∩ (G \
G1)) = w(S ∩ (G \G1)). It follows that αw′(G

′) ≥ w(S)− δ11 .
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Now we analyze case 2). First, suppose that S ∩ (A1
1 \ A1

2) 6= ∅. Then again w(S) =
w(S ∩ (G \ G1)) + w(S ∩ G1) ≤ w(S ∩ (G \ G1)) + αw(G1 \ A1

2), where again the last
inequality follows from the fact that S misses A1

2. Now observe that S∩(G\G1)∪{u12} is a
stable set of G′, and w′(S∩(G\G1)∪{u12}) = w(S∩(G\G1))+w̃(u12). Then we have that
αw′(G

′) ≥ w(S∩ (G\G1))+ w̃(u12) ≥ w(S)−αw(G1 \A1
2)+αw(G1 \A1

2)−δ11 = w(S)−δ11 .
Now suppose that |S ∩ (A1

2 \A1
1)| = 1. We obtain w(S) = w(S ∩ (G \G1)) +w(S ∩G1) ≤

w(S∩(G\G1)+αw(G1 \A1
1). In this case, S∩(G\G1)∪{u13} is a stable set of G′ and this

gives rise to the inequality αw′(G
′) ≥ w(S ∩ (G \G1)) + w̃(u13) ≥ w(S)− αw(G1 \ A1

1) +
αw(G1 \ A1

1) − δ11 = w(S) − δ11 . Finally, suppose that S ∩ (A1
1 ∩ A1

2) 6= ∅. Thus w(S) =
w(S∩(G\G1))+w(S∩G1) ≤ w(S∩(G\G1))+αw(G1). Moreover, S∩(G\G1)∪{u11, u13} is
a stable set of G′, and w′(S∩(G\G1)∪{u11, u13}) = w(S∩(G\G1))+w̃(u11)+w̃(u13). Then
we have that αw′(G

′) ≥ w(S∩(G\G1))+w̃(u11)+w̃(u13) ≥ w(S)−αw(G1)+αw(G1)−δ11 =
w(S)− δ11 .

The proof of case 3) follows the same lines of the last subcase of case 2).

Thus we have shown that for every stable set S of G, αw′(G
′) ≥ w(S)− δ11 . In particular,

this must hold for a mwss of G, so we obtain αw(G) ≤ αw′(G
′) + δ11 .

Now we want to prove αw(G) ≥ αw′(G
′) + δ11 . We can partition the stable sets S′ of G′

in the following way:

1) S′ ∩ {u11, u12, u13} = ∅;
2) |S′ ∩ {u11, u12, u13}| = 1;
3) |S′ ∩ {u11, u12, u13}| = 2.

In case 1), let S1 be a mwss of G1 \ (A1
1 ∪ A1

2). Then, as S′ misses u11, u
1
2 and u13, and

there are no edges between G1 \ (A1
1 ∪ A1

2) and G \ G1, S1 ∪ S′ is a stable set of G. It
follows that αw(G) ≥ w(S′ ∪ S1) = w′(S′) + δ11 .

In case 2), first suppose that u11 ∈ S′ and let S1 be a mwss of G1 \A1
2. Then, as S′ misses

u12 and u13, S
′ \ {u11} ∪ S1 is a stable set of G, and w(S′ \ {u11} ∪ S1) = w′(S′)− w̃(u11) +

αw(G1\A1
2). It follows that αw(G) ≥ w(S′\{u11}∪S1) = w′(S′)−αw(G1)+αw(G1\A1

1)+
αw(G1 \ A1

2) ≥ w′(S′) + δ11 , where the last inequality holds by hypothesis. Now suppose
that u12 ∈ S′ and let S1 be a mwss of G1 \A1

2. Then, as S′ misses u11 and u13, S
′ \{u12}∪S1

is a stable set of G, and w(S′ \{u12}∪S1) = w′(S′)− w̃(u12) +αw(G1 \A1
2). It follows that

αw(G) ≥ w(S′ \ {u12} ∪ S1) = w′(S′) − αw(G1 \ A1
2) + δ11 + αw(G1 \ A1

2) = w′(S′) + δ11 .
Finally, suppose that u13 ∈ S′ and let S1 be a mwss of G1 \A1

1. Then, as S′ misses u11 and
u12, S

′\{u13}∪S1 is a stable set of G, and w(S′\{u13}∪S1) = w′(S′)−w̃(u13)+αw(G1\A1
1).

It follows that αw(G) ≥ w(S′ \ {u13} ∪ S1) = w′(S′)− αw(G1 \A1
1) + δ11 + αw(G1 \A1

1) =
w′(S′) + δ11 .

In case 3), from the structure of T2, we have that {u11, u13} ⊆ S′. Let S1 be a mwss of G1.
Now, S′ \ {u11, u13} ∪ S1 is a stable set of G, and w(S′ \ {u11, u13} ∪ S1) = w′(S′)− w̃(u11)−
w̃(u13) +αw(G1). It follows that αw(G) ≥ w(S′ \ {u11, u12} ∪S1) = w′(S′)−αw(G1) + δ11 +
αw(G1) = w′(S′) + δ11 .

Thus we have shown that for every stable set S′ of G′, αw(G) ≥ w′(S′)+δ11 . In particular,
this must hold for a mwss of G′, so we obtain αw(G) ≥ αw′(G

′) + δ11 .

(c) First we prove αw(G) ≤ αw′(G
′) + δ11 . We can partition the stable sets S of G in the

following way:
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1) S ∩ (A1
1 ∪A1

2) = ∅;
2) |S ∩ (A1

1 ∪A1
2)| = 1;

3) |S ∩ (A1
1 ∪A1

2)| = 2.

In case 1), we have that w(S) = w(S ∩ (G \ G1)) + w(S ∩ G1) ≤ w(S ∩ (G \ G1)) + δ11 ,
where the last inequality follows from the fact that S misses both A1

1 and A1
2. Therefore,

w(S ∩ (G \G1)) ≥ w(S)− δ11 . Moreover, S ∩ (G \G1) is a stable set of G′ and w′(S ∩ (G \
G1)) = w(S ∩ (G \G1)). It follows that αw′(G

′) ≥ w(S)− δ11 .

Now we analyze case 2). We first suppose that S ∩ (A1
1 \ A1

2) 6= ∅. Then again w(S) =
w(S ∩ (G \ G1)) + w(S ∩ G1) ≤ w(S ∩ (G \ G1)) + αw(G1 \ A1

2), where again the last
inequality follows from the fact that S misses A1

2. Now we observe that S∩(G\G1)∪{u11}
is a stable set of G′, and w′(S∩ (G\G1)∪{u11}) = w(S∩ (G\G1))+ w̃(u11). We have that
αw′(G

′) ≥ w(S∩ (G\G1))+ w̃(u11) ≥ w(S)−αw(G1 \A1
2)+αw(G1 \A1

2)−δ11 = w(S)−δ11 .
The case where S ∩ (A1

2 \A1
1) 6= ∅ is symmetric. Finally, suppose that S ∩ (A1

1 ∩A1
2) 6= ∅.

We have that w(S) = w(S∩(G\G1))+w(S∩G1) ≤ w(S∩(G\G1))+αw(G1). Moreover,
S∩(G\G1)∪{u12} is a stable set of G′, and w′(S∩(G\G1)∪{u12}) = w(S∩(G\G1))+w̃(u12).
Then we have that αw′(G

′) ≥ w(S ∩ (G\G1)) + w̃(u12) ≥ w(S)−αw(G1) +αw(G1)− δ11 =
w(S)− δ11 .

The proof of case 3) goes along the same lines of the last subcase of case 2).

Thus we have shown that for every stable set S of G, αw′(G
′) ≥ w(S)− δ11 . In particular,

this must hold for a mwss of G, so we obtain αw(G) ≤ αw′(G
′) + δ11 .

Now we want to prove αw(G) ≥ αw′(G
′) + δ11 . We can partition the stable sets S′ of G′

in the following way:

1) S′ ∩ {u11, u12, u13} = ∅;
2) |S′ ∩ {u11, u12, u13}| = 1;
3) |S′ ∩ {u11, u12, u13}| = 2.

In case 1), let S1 be a mwss of G1 \ (A1
1 ∪ A1

2). Then, as S′ misses u11, u
1
2 and u13, and

there are no edges between G1 \ (A1
1 ∪ A1

2) and G \ G1, S1 ∪ S′ is a stable set of G. It
follows that αw(G) ≥ w(S′ ∪ S1) = w′(S′) + δ11 .

In case 2), first suppose that u11 ∈ S′ and let S1 be a mwss of G1 \ A1
2. Then, as S′

misses u12 and u13, S
′ \ {u11} ∪ S1 is a stable set of G, and w(S′ \ {u11} ∪ S1) = w′(S′) −

w̃(u11) + αw(G1 \ A1
2). It follows that αw(G) ≥ w(S′ \ {u11} ∪ S1) = w′(S′) − αw(G1 \

A1
2) + δ11 +αw(G1 \A1

2) = w′(S′) + δ11 . The case where u13 ∈ S′ goes along the same lines.
Finally, let us suppose that u12 ∈ S′ and let S1 be a mwss of G1. Then S′ \ {u12} ∪ S1

is a stable set of G, and w(S′ \ {u12} ∪ S1) = w′(S′) − w̃(u12) + αw(G1). It follows that
αw(G) ≥ w(S′ \ {u12} ∪ S1) = w′(S′)− αw(G1) + δ11 + αw(G1) = w′(S′) + δ11 .

In case 3), from the structure of T2, we have that {u11, u13} ⊆ S′. Let S1 be a mwss of G1.
Now, S′ \ {u11, u13} ∪ S1 is a stable set of G, and w(S′ \ {u11, u13} ∪ S1) = w′(S′)− w̃(u11)−
w̃(u13) +αw(G1). It follows that αw(G) ≥ w(S′ \ {u11, u12} ∪S1) = w′(S′)−αw(G1 \A1

2) +
2δ11 −αw(G1 \A1

1) +αw(G1) ≥ w′(S′) + δ11 , where the last inequality holds by hypothesis.

Thus we have shown that for every stable set S′ of G′, αw(G) ≥ w′(S′)+δ11 . In particular,
this must hold for a mwss of G′, so we obtain αw(G) ≥ αw′(G

′) + δ11 .

2

33



C Example.

Figure 2: A graph G, composition of the 2-strips H1, . . . ,H5 and the 1-strips H6, H7, H8.
Partition P is given by
{{A1

1, A
7
1}, {A5

1, A
6
1}, {A1

2, A
2
2, A

3
2}, {A2

1, A
5
2, A

4
1}, {A3

1, A
4
2, A

8
1}}.
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Figure 3: The weighted graph G̃, corresponding to graph G in Figure 2, and the weight
function w such that w(v) = 1 for every vertex v of G.

Figure 4: The root graph H of the line graph G̃ in Figure 3.
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