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Abstract. The only available combinatorial algorithm for the minimum
weighted clique cover (mwcc) in claw-free perfect graphs is due to Hsu
and Nemhauser [10] and dates back to 1984. More recently, Chudnovsky
and Seymour [3] introduced a composition operation, strip-composition,
in order to define their structural results for claw-free graphs; however,
this composition operation is general and applies to non-claw-free graphs
as well. In this paper, we show that a mwcc of a perfect strip-composed
graph, with the basic graphs belonging to a class G, can be found in
polynomial time, provided that the mwcc problem can be solved on G
in polynomial time. We also design a new, more efficient, combinatorial
algorithm for the mwcc problem on strip-composed claw-free perfect
graphs.

Keywords: claw-free graphs, perfect graphs, minimum weighted clique
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1 Introduction

Given a graph G and a non-negative weight function w defined on the vertices
of G, a weighted clique cover of G is a collection of cliques, with a non-negative
weight yC assigned to each clique C in the collection, such that, for each vertex
v of G, the sum of the weights of the cliques containing v in the collection is
at least w(v). A minimum weighted clique cover of G (mwcc) is a clique cover
such that the sum of the weights of all the cliques in the collection is minimum.
When all weights are 1, a (minimum) weighted clique cover is simply called a
(minimum) clique cover. It is known that for a perfect graph G, the weight τw(G)
of a mwcc is the same as αw(G), the weight of a maximum weighted stable set
(mwss) of G, that is, a set of pairwise nonadjacent vertices such that the sum
of the weights of the vertices in the set is maximum.

In perfect graphs, the weight of a mwcc can be determined in polynomial
time by using Lovász’s θw(G) function. If one wants to compute also a mwcc
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of a perfect graph G (and not only the number τw(G)), a polynomial time al-
gorithm proposed by Grötschel, Lovász and Schrijver in [7] can be used. This
algorithm is not combinatorial and it uses the θw(G) function combined with
other techniques; however, for particular classes of perfect graphs, there also
exist polynomial time combinatorial algorithms.

This is the case, for instance, for claw-free perfect graphs, where combina-
torial algorithms for both the unweighted and the weighted version have been
proposed by Hsu and Nemhauser [9, 10]. (A graph is claw-free if none of its ver-
tices has a stable set of size three in its neighborhood.) The algorithm for the
weighted case – in the paper we deal with this case, as it is more general – is
essentially a “dual” algorithm as it relies on any algorithm for the mwss problem
in claw-free graphs (we have, nowadays, several algorithms for this, see [11, 12,
14, 5, 13, 15]), and, in fact, builds a mwcc by a clever use of linear programming
complementarity slackness. The computational complexity of the algorithm by
Hsu and Nemhauser is O(|V (G)|5). To the best of our knowledge, this is so
far the only available combinatorial algorithm to solve the problem in claw-free
perfect graphs.

In the last years a lot of efforts have been devoted to a better understanding
of the structure of perfect graphs and of other relevant classes of graphs. Claw-
free graphs in particular have been investigated, with an outstanding series of
papers by Chudnovsky and Seymour (for a survey see [3]). The results by Chud-
novsky and Seymour show that claw-free graphs with stability number greater
than three are either fuzzy circular interval graphs (a generalization of proper
circular arc graphs, we do not give the definition, as it is not interesting for this
paper) or strip-composed, i.e., they are suitable composition of some basic graphs
(the formal definition is given in the next section). Understanding this “2-case”
structure of claw-free graphs has been the key for several developments for the
mwss problem [4, 14, 5] and the dominating set problem [8]. In particular, in [14]
it is shown that a mwss of a (non-necessarily claw-free) strip-composed graph,
with the basic graphs belonging to a class G, can be found in polynomial time by
solving a matching problem, provided that the mwss problem can be solved on
G in polynomial time. Building upon this result, new algorithms for the mwss

problem in claw-free graphs are given in [14] and [5].

In this paper, we provide an analogous of the result in [14] for the mwcc

problem. Namely, we show that a mwcc of a (non-necessarily claw-free) perfect
strip-composed graph, with the basic graphs belonging to a class G, can be
found in polynomial time, provided that the mwcc problem can be solved on G
in polynomial time. We point out that while the statement of this result goes
along the same lines of the result in [14], its proof is by far more challenging.
We apply this result to strip-composed claw-free perfect graphs, and provide
a O(|V (G)|3)-time algorithm for the mwcc problem that, differently from the
O(|V (G)|5)-time dual algorithm by Hsu and Nemhauser, has both a primal (on
each basic graph we directly compute a mwcc) and a primal-dual flavour (on
the composition of graphs we use a primal-dual algorithm for matching).



We shall consider finite, simple, loopless, undirected graphs. When dealing
with multigraphs, we will say so explicitly. Let G be a graph. Denote by V (G)
its vertex set and by E(G) its edge set. For a subset V ′ ⊆ V (G), the j-th
neighborhood Nj(V

′) is the set of vertices u ∈ V (G) at distance j from the set
V ′. When V ′ = {v} we will write simply Nj(v) and when j = 1 we will write just
N(V ′) (resp. N(v)). We will denote by G[V ′] the subgraph of G induced by V ′,
and by G \ V ′ the subgraph of G induced by V (G) \ V ′. Two sets U,U ′ ⊂ V (G)
are complete (to each other) if every vertex in U is adjacent to all the vertices
in U ′. They are anticomplete (to each other) if no vertex of U is adjacent to a
vertex of U ′.

A claw is a graph formed by a vertex with three neighbors of degree one. An
odd hole is a chordless cycle of odd length at least 5. If H is a graph, a graph G
is called H-free if no induced subgraph of G is isomorphic to H.

A graph is cobipartite if its vertex set can be covered by two cliques. A
clique K of a connected graph G is distance simplicial if, for every j, its j-th
neighborhood is also a clique. In this case, G is distance simplicial w.r.t. K (or
simply distance simplicial). Note that a cobipartite graph is distance simplicial
w.r.t. each of the two cliques covering its vertex set. Also it is not difficult to see
that distance simplicial graphs are perfect.

The intersection graph of a family of sets C is the graph with vertex set C,
two sets in C being adjacent if and only if they intersect. The line graph L(G)
of a graph or multigraph G is the intersection graph of its edges. A graph H
is a line graph if there is a graph or multigraph G such that H = L(G) (G
is called a root graph of H). A star or a multistar is the set of edges incident
to a vertex v, while a triangle or multitriangle is a complete graph on three
vertices with possibly multiple edges. Amatching is a set of pairwise nonadjacent
edges of a graph (two edges are adjacent if they share a vertex). Note that the
multistars and multitriangles of a graph G correspond to the cliques of L(G),
while the matchings of G correspond to the stable sets of L(G). Note also that
the neighborhood of a vertex in a line graph can be always covered by two
cliques. A graph is quasi-line if the neighborhood of each vertex is cobipartite.
A quasi-line graph is, in particular, claw-free. Moreover, as observed by Hsu and
Nemhauser in [10], a claw-free perfect graph is indeed quasi-line.

2 The mwss problem on strip-composed perfect graphs

Chudnovsky and Seymour [3] introduced a composition operation in order to
define their structural results for claw-free graphs. This composition operation
is general and applies to non-claw-free graphs as well.

A strip H = (G,A) is a graph G (not necessarily connected) with a multi-
family A of either one or two designated non-empty cliques of G. The cliques
in A are called the extremities of H, and H is said a 1-strip if |A| = 1, and a
2-strip if |A| = 2. Let G = (G1,A1), . . . , (Gk,Ak) be a family of k vertex disjoint
strips, and let P be a partition of the multi-set of the cliques in A1 ∪ . . . ∪ Ak.
The composition of the k strips w.r.t. P is the graph G that is obtained from the



union of G1, . . . , Gk, by making adjacent vertices of A ∈ Ai and B ∈ Aj (i, j not
necessarily different) if and only if A and B are in the same class of the partition
P. In this case we also say that (G,P), where G = {(Gj ,Aj), j ∈ 1, . . . , k},
defines a strip decomposition of G. Note that we can assume w.l.o.g. that each
graph Gi is an induced subgraph of G.

We say that a graph G is strip-composed if G is a composition of some set
of strips w.r.t. some partition P. Each class of the partition of the extremities
P defines a clique of the composed graph, and is called a partition-clique. We
denote the extremities of the strip Hi by Ai = {Ai

1, A
i
2} if Hi is a 2-strip and by

Ai = {Ai
1} if Hi is a 1-strip. We often abuse notations, and when we refer to a

vertex of a strip (or to a stable set of a strip etc.) we indeed consider a vertex
(or a stable set etc.) of the graph in the strip.

The composition operation preserves some graph properties. Given a 2-strip
(G, {A1, A2}), the graph G+ is obtained from G by adding two vertices a1, a2
such that N(aj) = Aj , for j = 1, 2; for a 1-strip (G, {A1}) the graph G+ is
obtained from G by adding a vertex a1 such that N(a1) = A1. A strip (G,A) is
claw-free/quasi-line/line if the graph G+ is claw-free/quasi-line/line. The com-
position of claw-free/quasi-line/line strips is a claw-free/quasi-line/line graph
(see e.g. [5]).

Suppose we are given a graph G and its strip decomposition (G,P). In [14]
it is shown how to exploit this decomposition in order to solve the mwss on G.

Theorem 1. [14] Let G be the composition of strips Hi = (Gi,Ai) i = 1, . . . , k
w.r.t. a partition P. Suppose that for each i = 1, . . . , k one can compute a mwss

of Hi in time O(pi(|V (Gi)|)). Then the mwss problem on G can be solved in time

O(
∑k

i=1
pi(|V (Gi)|) + match(|V (G)|)), where match(n) is the time required to

solve the matching problem on a graph with n vertices. If pi(|V (Gi)|) is polyno-
mial for each i, then the mwss can be solved on G in polynomial time.

In order to prove their theorem [14], the authors replace every strip Hi with
a suitable simpler gadget strip Ti, that is a single vertex for each 1-strip and
a triangle for each 2-strip (in this second case the extremities are two different
edges of the triangle). Then they define a weight function on the vertices of
those simpler strips; for every strip Hi with extremities Ai

1 and Ai
2 this function

depends on the values αw(G
i), αw(G

i \Ai
1), αw(G

i \Ai
2), αw(G

i \(Ai
1∪Ai

2)) and
αw(G

i \ (Ai
1∆Ai

2)). Thus, if one can compute a mwss of Gi in polynomial time,
then one can compute the weight function of the simpler strips in polynomial
time.

They define a suitable partition P̃ of the extremities of the gadget strips.
In this way they obtain a graph G̃ which is the strip-composition of the strips
Ti, i = 1, . . . , k, w.r.t. the partition P̃, and, since the strips are line strips, this
graph is line. Moreover, from the construction of the simpler strips and of the
weights, it is easy to translate a mwss of G̃ into a mwss of G. Finally, as G̃ is
a line-graph, they can find a mwss of G̃ by building the root graph of G̃ and
computing a maximum weighted matching in this graph.



3 The mwcc problem on strip-composed perfect graphs

Suppose we are given a perfect graph G that is the composition of strips H1 =
(G1,A1), . . . , Hk = (Gk,Ak) w.r.t. a partition P, and a non-negative weight
function w on V (G). In this section we will show how to exploit the decomposi-
tion in order to solve the mwcc on G. We will follow the approach outlined in
the previous section for the mwss; however, as we explain in the following, the
task is now much more challenging.

We will compute a mwcc of G in three steps. Step 1. We replace each
strip Hi by a simple gadget strip H̃i = (G̃i, Ãi) and compose the strips H̃i with
respect to a suitable partition of the multi-set

⋃
i=1..k Ã

i so as to obtain a graph

G̃. However, we cannot use the gadget strips defined in the previous section, as
the graph G̃ might be imperfect: this will lead us to define four different new
gadgets, with different parity properties, that are such that G̃ is odd hole free
and line, thus perfect [16]. We also define a suitable weight function w̃ on the
vertices of G̃, as well as new weight functions w1, . . . , wk on the vertices of each
strip. Step 2. Following [16], we may find a mwcc of G̃, w.r.t. the weight w̃, by
running a primal-dual algorithm for the maximum weighted matching [6] on the
root graph of G̃. Step 3. We reconstruct a mwcc of G from a mwcc of G̃ and a
mwcc of each of the strips Hi w.r.t. the weight function wi. Again, this will be
more involved than for the mwss problem, because unfortunately there is not
always a direct correspondence between cliques of G̃ and cliques of G. Moreover,
for some 2-strips Hi = (Gi,Ai), besides a mwcc of the strip, we will also need to
compute a mwcc of some auxiliary graphs associated to the strip: the graph Gi

•

that is obtained from Gi by adding a new vertex x complete to both Ai
1 and Ai

2

and the graph Gi
= that is the graph obtained from Gi by making Ai

1 complete
to Ai

2.

In order to give a few more details we need some additional definitions. Let
U,W ⊆ V (G). We call a path P = v1, . . . , vk (k ≥ 1) a U–W path if P is
chordless, v1 ∈ U , vk ∈ W , and vi /∈ U ∪ W for 2 ≤ i ≤ k − 1. A 2-strip
Hi = (Gi,A1 = {Ai

1, A
i
2}) will be called non-connected if there is no Ai

1–A
i
2

path, and connected otherwise. We say that a connected 2-strip Hi is even (resp.
odd) if every Ai

1–A
i
2 path has even (resp. odd) length. If a connected 2-strip has

both even and odd length Ai
1–A

i
2 paths, then we say that Hi is an even-odd

strip. We call an odd or even-odd strip Hi odd-short if every odd Ai
1–A

i
2 path

has length one, and we call an even or even-odd strip Hi even-short if every even
Ai

1–A
i
2 path has length zero (i.e., it consists of a vertex in Ai

1 ∩ Ai
2). (With the

notation of [1], Hi is an odd strip if and only if Ai
1 and Ai

2 are an odd pair of
cliques in Gi.)

Theorem 2. Let G be a perfect graph, composition of strips Hi = (Gi,Ai)
i = 1, . . . , k w.r.t. a partition P. For each i = 1, . . . , k let O(pi(|V (Gi)|)) be the
time required to compute:

– a mwcc of Gi and of Gi
•
, if Hi is an odd-short strip and Gi

•
is an induced

subgraph of G (thus perfect);



– a mwcc of Gi and of Gi
=, if G

i
= is an induced subgraph of G (thus perfect),

Ai
1 and in Ai

2 belong to the same class of P, and there is an A1–A2 path of
length two in the strip. In this case, when solving the mwcc on Gi

=, one can
restrict to the case where the weight function wi defined on V (Gi

=) is such
that αwi(Gi

=) = αwi(Gi
= \ (Ai

1 ∪Ai
2));

– a mwcc of Gi else.

Then the mwcc problem on G can be solved in time O(
∑k

i=1
pi(|V (Gi)|) +

match(|V (G)|)), where match(n) is the time required to solve the matching prob-
lem on a graph with n vertices. If pi(|V (Gi)|) is polynomial for each i, then the
mwcc can be solved on G in polynomial time.

We devote the rest of this section to provide more details about Theorem 2
and its proof. We first deal with the gadget strips (that in this section we simply
call gadgets) that will compose the graph G̃ and establish the relation between
τw(G) and τw̃(G̃). We make a heavy use of duality between the mwcc and the
mwss problem: the fact that for every induced subgraph J of G, αw(J) = τw(J),
is due to the perfection of G. We use this relation to easily prove the correctness
of the weight function defined on the vertices of each gadget.

To design the gadgets, we delve into three cases: (i) Hi = (Gi,Ai) is a 1-
strip; (ii) Hi = (Gi,Ai) is a 2-strip with the extremities in the same class of
the partition P; (iii) Hi = (Gi,Ai) is a 2-strip with the extremities in different
classes of the partition.

(i)−(ii) For the first two cases the gadget will be a single vertex. In particular
we define the trivial 1-strip H̃0

i = (T i
0, Ã

i
0), where the graph T i

0 consists of a
single vertex ci, and Ãi

0 = {{ci}}. Moreover, for (i) we let δi1 = αw(G
i \Ai

1) and
define w̃(ci) = αw(G

i)− δi1. For (ii) we let δi1 = αw(G
i \ (Ai

1 ∪ Ai
2)) and define

w̃(ci) = max{αw(G
i \Ai

1), αw(G
i \Ai

2), αw(G
i \ (Ai

1 4Ai
2))} − δi1. Finally, if we

use H̃0
i instead of Hi in the composition, the new partition is P ′ := (P \ {P})∪

{(P \ Ai) ∪ Ãi}, where P ∈ P was the set containing Ai. We can show that
replacing a 1-strip or a 2-strip with both extremities in the same class of P by
its corresponding gadget strip makes the value of the mwss drop by δi1.

(iii) Let us consider a 2-strip Hi = (Gi,Ai) with the extremities in different
classes of the partition P. We want to introduce a gadget H̃i = (G̃i, Ãi) and a
new weight function w̃ on the vertices of G̃i in such a way that, when replacing
Hi by H̃i in the strip-composition for a suitable partition, the difference between
the weights of the mwss of the original graph and the mwss of the new graph
is δi1, where δi1 = αw(G

i \ (Ai
1 ∪Ai

2)).

This is satisfied by the gadget defined in [14], but it is an even-odd strip,
and we need to take into consideration the parity of the strips, otherwise the
composition may introduce odd holes. We will introduce three gadgets (an odd
strip, an even strip and a non-connected one). None of them will work for all the
cases, but depending on the fact that the relation αw(G

i \Ai
1) + αw(G

i \Ai
2) R

αw(G
i)+δi1 is satisfied with =, > or <. We will see later on that the satisfaction

of this relation is strictly related to the parity of the strips. Given a 2-strip
Hi = (Gi,Ai), we define three associated trivial strips as follows:



(a) H̃1
i = (T i

1, Ã
i
1) such that V (T i

1) = {ui
1, u

i
2}, E(T i

1) = ∅, Ãi
1 = {Ãi

1, Ã
i
2}

and Ãi
1 = {ui

1}, Ã
i
2 = {ui

2}. The new weight function w̃ gives the following
weights to the vertices of T i

1: w̃(u
i
1) = αw(G

i \ Ai
2) − δi1, w̃(u

i
2) = αw(G

i \
Ai

1)− δi1.
(b) H̃2

i = (T i
2, Ã

i
2) such that V (T i

2) = {ui
1, u

i
2, u

i
3}, E(T i

2) = {ui
1u

i
2, u

i
2u

i
3}, Ã

i
2 =

{Ãi
1, Ã

i
2} and Ãi

1 = {ui
1, u

i
2}, Ã

i
2 = {ui

3}. The new weight function w̃ gives
the following weights to the vertices of T i

2: w̃(u
i
1) = αw(G

i)− αw(G
i \ Ai

1),
w̃(ui

2) = αw(G
i \Ai

2)− δi1, w̃(u
i
3) = αw(G

i \Ai
1)− δi1.

(c) H̃3
i = (T i

3, Ã
i
3) such that V (T i

3) = {ui
1, u

i
2, u

i
3}, E(T i

3) = {ui
1u

i
2, u

i
2u

i
3}, Ã

i
3 =

{Ãi
1, Ã

i
2} and Ãi

1 = {ui
1, u

i
2}, Ã

i
2 = {ui

2, u
i
3}. The new weight function w̃

gives the following weights to the vertices of T i
3: w̃(u

i
1) = αw(G

i \Ai
2)− δi1,

w̃(ui
2) = αw(G

i)− δi1, w̃(u
i
3) = αw(G

i \Ai
1)− δi1.

If we use either H̃1
i , H̃

2
i or H̃3

i instead of Hi in the composition, the new
partition is P ′ := P \{P1, P2}∪{(P1 \ {A

i
1})∪{Ãi

1}, (P2 \ {A
i
2})∪{Ãi

2}}, where
P1, P2 ∈ P : Ai

1 ∈ P1, A
i
2 ∈ P2.

Lemma 1. Let G be the composition of strips H1 = (G1,A1), . . . , Hk = (Gk,Ak)
w.r.t. a partition P, and let w be a non-negative weight function defined on
the vertices of G. Suppose that H1 is a 2-strip with the extremities in different
classes of the partition P. For some j ∈ {1, 2, 3}, let G′ be the composition of
strips H̃j

1 = (T 1
j ,A

1
j ), H2 = (G2,A2), . . . , Hk = (Gk,Ak) w.r.t. the partition P ′

previously defined. Let w′ be the weight function defined on the vertices of G′ as
w′(v) = w(v) for v ∈

⋃
i=2..k V (Gi), and w′(v) = w̃(v) for v ∈ V (T 1

j ).

(a) If j = 1 and αw(G
1 \ A1

1) + αw(G
1 \ A1

2) = αw(G
1) + δ11, then αw(G) =

αw′(G′) + δ11.
(b) If j = 2 and αw(G

1 \ A1
1) + αw(G

1 \ A1
2) ≥ αw(G

1) + δ11, then αw(G) =
αw′(G′) + δ11.

(c) If j = 3 and αw(G
1 \ A1

1) + αw(G
1 \ A1

2) ≤ αw(G
1) + δ11, then αw(G) =

αw′(G′) + δ11.

Lemma 2. The following relations hold depending of the connection and parity
of a 2-strip H1 = (G1,A1):
(a) if it is non-connected then αw(G

1 \A1
1) + αw(G

1 \A1
2) = αw(G

1) + δ11;
(b) if it is odd and G1 perfect then αw(G

1 \A1
1) + αw(G

1 \A1
2) ≥ αw(G

1) + δ11;
(c) if it is even and G1 perfect then αw(G

1 \A1
1)+αw(G

1 \A1
2) ≤ αw(G

1)+ δ11.

We now give a method to choose one gadget for every 2-strip Hi. If we can
calculate the values of the minimum weighted clique covers τw(G

i), τw(G
i \Ai

2),
τw(G

i \Ai
1) and τw(G

i \ (Ai
1 ∪Ai

2)) for each strip, we can determine which one
of these three relations holds
1. τw(G

i \Ai
1) + τw(G

i \Ai
2) = τw(G

i) + τw(G
i \ (Ai

1 ∪Ai
2))

2. τw(G
i \Ai

1) + τw(G
i \Ai

2) > τw(G
i) + τw(G

i \ (Ai
1 ∪Ai

2))
3. τw(G

i \Ai
1) + τw(G

i \Ai
2) < τw(G

i) + τw(G
i \ (Ai

1 ∪Ai
2))

If 1) holds we can simply use H̃1
i as a suitable gadget. If 2) holds we know that

the strip is either odd or even-odd and we can use H̃2
i as a suitable gadget. If 3)

holds we know that the strip is either even or even-odd and we can use H̃3
i as a

suitable gadget.



Remark 1. Let G be the composition of the stripsH1, H2, . . . , Hk with respect to
a partition P and suppose that G is odd hole free. Let G′ be the composition of
H̃j

1 , H2, . . . , Hk with respect to the partition P ′ previously defined. For j = 0, 1,
G′ is odd hole free. If H1 is odd or even-odd and j = 2, then G′ is odd hole free.
If H1 is even or even-odd and j = 3, then G′ is odd hole free.

Strips H̃0
i , H̃

1
i , H̃

2
i , H̃

3
i are line strips. So, if we iteratively replace each strip

Hi by the suitable gadget H̃j
i , according to the validity of 1, 2 or 3, the graph

G̃ we obtain is odd hole free and a line graph, thus perfect [16]. As a corollary

of the previous Lemmas, it follows that αw(G) = αw̃(G̃) +
∑k

i=1
δi1. Since both

graphs are perfect, by duality the same relation holds for the values of the mwcc

of the two graphs.
G̃ is a line, perfect graph. Let H be a multigraph that is a root of G̃. Fol-

lowing [16], we may build a mwcc of G̃, by a primal-dual algorithm for the
maximum weighted matching [6]: this is because each maximal clique of G̃ cor-
responds to either a multistar of H or to a multitriangle of H. We therefore
compute a mwcc of G̃, w.r.t. the weight w̃. We now need to “translate” this
into a mwcc of G, w.r.t. the weight w. However, there is a catch: unfortunately
there are some cliques of G̃ that do not correspond to any clique of G. In order
to deal with this problem, we detail the structure of H.

Remark 2. Suppose that P = {P1, . . . , Pr}. Then H is composed by: a set of
vertices {x1, . . . , xr}, each xi corresponding to the class Pi of P; an edge xjx`

for each strip Hi such that we use H̃3
i in the composition and such that Ai

1 ∈ Pj

and Ai
2 ∈ P` (this edge corresponds to the vertex ui

2 of T i
3); vertices zij and zi`

and edges zijxj and zi`x` for each strip Hi such that we use H̃3
i in the composition

and such that Ai
1 ∈ Pj and Ai

2 ∈ P` (the edges zijxj and zi`x` correspond to the

vertices ui
1 and ui

3 of T i
3, respectively); a vertex yij` and edges yij`xj and yij`x`

for each strip Hi such that we use H̃2
i in the composition and such that Ai

1 ∈ Pj

and Ai
2 ∈ P` (the edges yij`xj and yij`x` correspond to the vertices ui

2 and ui
3 of

T i
2, respectively); a vertex zij and an edge zijxj for each strip Hi such that we

use H̃2
i in the composition and such that Ai

1 ∈ Pj (the edge corresponds to the
vertex ui

1 of T i
2); a vertex zij and an edge zijxj for each strip Hi such that we

use H̃0
i in the composition and such that Ai

1 ∈ Pj (the edge corresponds to the
vertex ci of T i

0); vertices zij and zi` and edges zijxj and zi`x` for each strip Hi

such that we use H̃1
i in the composition and such that Ai

1 ∈ Pj and Ai
2 ∈ P` (the

edges zijxj and zi`x` correspond to the vertices ui
1 and ui

2 of T i
1, respectively).

The maximal cliques of G̃ correspond to the multistars and multitriangles of
H, i.e., the multistars centered at xj for j = 1, . . . , r, the possible multitriangles
xixjx` for i, j, ` pairwise distinct elements in {1, . . . , r}, and, for each vertex yij`,

either the star centered at yij` or the multitriangle yij`xjx` with j, ` ∈ {1, . . . , r}
and j 6= `, depending on the existence of edges joining xj and x`. To each of

these cliques of G̃ we will assign a clique of G, except for the case of cliques
involving y-vertices. We have to deal with those cliques in a different way.



To the clique of G̃ corresponding to the multistar centered at xj in H, we will

assign in G the partition-clique
⋃

Ai
d
∈Pj

Ai
d. To the clique of G̃ corresponding

to the multitriangle xixjx` in H, we will assign in G the clique induced by⋃
d∈Iij`

(Ad
1∩A

d
2), where Iij` is the set of indices d of 2-strips in the decomposition,

that have been replaced by H̃3
d , and having their two extremities belonging to two

different sets in {Pi, Pj , P`} (we can prove that these intersections are nonempty).
Now we want to show how we deal with the star centered at yij` and the

multitriangles yij`xjx`. As we have already said, these two structures correspond

to cliques in G̃, but the corresponding cliques in G̃ cannot be extended to cliques
of G. Thus we have to show that we can rearrange the weight function of the
vertices of the strips in order to get a cover with the same value which includes
only cliques. First we show that if we have a multitriangle yij`xjx` in H, then the

2-strip (Gi,Ai) is odd-short, and there is a vertex x complete to both extremities
of it in G. Then we prove the following lemma. This lemma essentially says that
if we have assigned a weight a > 0 to the triangle yij`xjx` then we can discard

this triangle and ask for a mwcc of value δi1 + a in the graph induced by Gi

and Ak
1 ∩ Ak

2 for every k such that Ak
1 ∩ Ak

2 is complete to Ai
1 ∪ Ai

2 (this set of
vertices form a clique), in such a way that

⋃
k(A

k
1 ∩Ak

2) is covered by a quantity
greater or equal to a. W.l.o.g. we may consider that we need to cover just an
extra vertex x of weight a complete to Ai

1 ∪Ai
2.

Lemma 3. Let Hi = (Gi,Ai) be a 2-strip. Let Gi
•
be the graph obtained from Gi

by adding a new vertex x complete to both Ai
1 and Ai

2. Let w be a non-negative
weight function defined on the vertices of Gi. Let δi1 = αw(G

i \ (Ai
1 ∪ Ai

2)). Let
a, b1, b2 be non-negative numbers such that b1 ≥ αw(G

i)−αw(G
i \Ai

1), a+ b1 ≥
αw(G

i \ Ai
2) − δi1, a + b2 ≥ αw(G

i \ Ai
1) − δi1, and let wi be defined as wi(v) =

w(v) for v ∈ V (Gi) \ (Ai
1 ∪ Ai

2), w
i(v) = max{0, w(v) − b1} for v ∈ Ai

1 \ Ai
2,

wi(v) = max{0, w(v)− b2} for v ∈ Ai
2 \A

i
1, and wi(v) = max{0, w(v)− b1 − b2}

for v ∈ Ai
1 ∩Ai

2. Then αwi(Gi
•
) = δi1 + a. In particular, αwi(Gi) ≤ δi1 + a.

We underline that the last sentence of Lemma 3 suggests also how to “trans-
late” the weight a possibly assigned to the star centered in yij` and, in general,

how to deal with the strips that have been replaced by H̃2.
Now we want to show that if we have a weighted clique cover of G̃, we can

cover the “residual” weight wi of each strip Hi = (Gi,Ai) with a weighted clique
cover of value at most δi. The following lemmas give the desired result for 1-
strips and 2-strips that have been replaced with H̃1 or H̃3. In particular, Lemma
6 considers the case of 2-strips with a non empty intersection of the extremities
that might cause multitriangles in the root graph of G̃.

Lemma 4. Let Hi = (Gi,Ai) be a 1-strip and let w be a non-negative weight
function defined on the vertices of Gi. Let δi1 = αw(G

i \Ai
1), let b ≥ αw(G

i)−δi1,
and let wi be defined as wi(v) = w(v) for v ∈ V (Gi)\Ai

1, w(v) = max{0, w(v)−b}
for v ∈ Ai

1. Then αwi(Gi) = δi1.



Lemma 5. Let Hi = (Gi,Ai) be a 2-strip and let w be a non-negative weight
function defined on the vertices of Gi. Let δi1 = αw(G

i \ (Ai
1 ∪Ai

2)). Let b1, b2 be
numbers such that b1 ≥ αw(G

i \Ai
2)− δi1, b2 ≥ αw(G

i \Ai
1)− δi1, and b1 + b2 ≥

αw(G
i) − δi1, and let wi be defined as wi(v) = w(v) for v ∈ V (Gi) \ (Ai

1 ∪ Ai
2),

wi(v) = max{0, w(v) − b1} for v ∈ Ai
1 \ Ai

2, wi(v) = max{0, w(v) − b2} for
v ∈ Ai

2 \ Ai
1, and wi(v) = max{0, w(v) − b1 − b2} for v ∈ Ai

1 ∩ Ai
2. Then

αwi(Gi) = δi1.

Lemma 6. Let Hi = (Gi,Ai) be an even-short 2-strip such that Gi is perfect,
and let w be a non-negative weight function defined on the vertices of Gi. Let
δi1 = αw(G

i \(Ai
1∪Ai

2)). Let b1, b2, a be numbers such that b1 ≥ αw(G
i \Ai

2)−δi1,
b2 ≥ αw(G

i \ Ai
1) − δi1, and a + b1 + b2 ≥ αw(G

i) − δi1, and let wi be defined
as wi(v) = w(v) for v ∈ V (Gi) \ (Ai

1 ∪ Ai
2), w

i(v) = max{0, w(v) − b1} for v ∈
Ai

1 \A
i
2, w

i(v) = max{0, w(v)− b2} for v ∈ Ai
2 \A

i
1, and wi(v) = max{0, w(v)−

b1 − b2 − a} for v ∈ Ai
1 ∩Ai

2. Then αwi(Gi) = δi1.

Finally, we analyze the case of 2-strips with both extremities in the same
class of P. Such a strip Hi has been replaced with H̃0

i , thus every vertex in
its extremities is covered by a quantity of at least max{αw(G

i \ Ai
1), αw(G

i \
Ai

2), αw(G
i \ (Ai

1 4Ai
2))} − δi1.

Lemma 7. Let Hi = (Gi,Ai) be a 2-strip. Let Gi
= be the graph obtained from

Gi by adding the edges between Ai
1 and Ai

2. Let w be a non-negative weight
function defined on the vertices of Gi. Let δi1 = αw(G

i \ (Ai
1 ∪ Ai

2)), let b ≥
max{αw(G

i \Ai
1), αw(G

i \Ai
2), αw(G

i \(Ai
14Ai

2))}−δi1, and let wi be defined as
wi(v) = w(v) for v ∈ V (Gi)\(Ai

1∪A
i
2), w(v) = max{0, w(v)−b} for v ∈ Ai

1∪A
i
2.

Then αwi(Gi
=) = δi1. Moreover, if Gi

= is perfect, any mwcc of Gi
= w.r.t. wi does

not assign strictly positive weight to the clique Ai
1 ∪Ai

2.

Note that the last sentence of the previous lemma implies that, if Gi
= is

perfect and there are no two vertices v1 ∈ Ai
1 and v2 ∈ Ai

2 having a common
neighbor in V (Gi)\ (Ai

1∪Ai
2), then any mwcc of Gi

= w.r.t. wi is in fact a mwcc

of Gi w.r.t. wi. We also observe that whenever we cannot use Lemma 7 we must
be able to compute a mwcc of Gi

= in order to reconstruct a clique cover of G
from a clique cover of G̃. This is why we require in Theorem 2 that a mwcc of
Gi

= can be computed in time O(pi(|V (Gi)|)) in that case.

4 Application to strip-composed claw-free perfect graphs

As an application of Theorem 2, we give a new algorithm for the mwcc on strip-
composed claw-free perfect graphs. Recall that claw-free perfect graphs are in
fact quasi-line. In the last decade the structure of quasi-line graphs was deeply
investigated, with some results providing a detailed description and characteri-
zation of the strips that, through composition, can be part of a quasi-line graph.
This is the case of the structure theorem by Chudnovsky and Seymour in [2].
The following algorithmic decomposition theorem from [5] applies to quasi-line
graphs. (A net is a graph formed by a triangle and three vertices of degree one,
each of them adjacent to a distinct vertex of the triangle.)



Theorem 3. [5] Let G be a connected quasi-line graph. In time O(|V (G)||E(G)|),
one can either recognize that G is net-free; or provide a decomposition of G into
k ≤ |V (G)| quasi-line strips (G1,A1), . . . , (Gk,Ak), w.r.t. a partition P, such
that each graph Gi is distance simplicial w.r.t. each clique A ∈ Ai. Moreover, if
Ai = {Ai

1, A
i
2}, then either Ai

1 = Ai
2 = V (Gi); or Ai

1 ∩ Ai
2 = ∅ and there exists

j2 such that Ai
2 ∩Nj2(A

i
1) 6= ∅, Ai

2 ⊆ Nj2−1(A
i
1) ∪Nj2(A

i
1) and Nj2+1(A

i
1) = ∅,

where Nj(A
i
1) is the j-th neighborhood of Ai

1 in Gi (and, analogously, there exists
j1 such that Ai

1 ∩Nj1(A
i
2) 6= ∅, Ai

1 ⊆ Nj1−1(A
i
2)∪Nj1(A

i
2) and Nj1+1(A

i
2) = ∅).

Besides, each vertex in A has a neighbor in V (Gi) \ A, for each clique A ∈ Ai.
Finally, if Ai

1 and Ai
2 are in the same set of P, then Ai

1 is anticomplete to Ai
2.

Now suppose that we are given a strip decomposition obeying to Theorem
3 for a claw-free perfect graph G. If we are interested in finding a mwcc of G,
following Theorem 2, we must show that for a strip that is distance simplicial
we can compute in polynomial time: a mwcc of the strip; a mwcc of Gi

•
, i.e. Gi

plus a vertex complete to both extremities, when the strip (Gi,Ai) is odd-short;
a mwcc of Gi

=, i.e. G
i plus the edges joining the extremities Ai

1, A
i
2 of the strip,

when they are in the same class of the partition and there is an A1–A2 path of
length two.

We start by briefly describing how to compute a mwcc in distance simplicial
graphs (recall that they are indeed perfect). We rely on a property of perfect
graphs, namely, there always exists a clique which intersects each mwss: we will
call such a clique crucial (crucial cliques are a key ingredient to the algorithm
in [10]). Our algorithm relies on the fact that for graphs that are distance simpli-
cial w.r.t. some identifiable clique K, we can inductively compute crucial cliques
and decide the value of this clique in a mwcc. The first crucial clique will be
K ′ := K ∪ {v /∈ K : v is complete to K}: we will suitably update the weight of
each vertex, and then find a new crucial clique (w.r.t. the new weights) in an
inductive way.

We now show that, for an odd-short distance simplicial strip Hi, we can
compute in polynomial time a mwcc of Gi

•
. Note that, in this case Gi

•
is claw-free

and, following Theorem 2, perfect. In this case, we prove that Gi
•
is cobipartite.

Note that, if Gi
•
is cobipartite, then it is distance simplicial w.r.t. each of

the two cliques covering its vertex set, so a mwcc can be found as above. We
now show that, for a distance simplicial strip Hi, such that the extremities are
in the same class of the partition and there is an A1–A2 path of length two, we
can compute in polynomial time a mwcc for Gi

=. Note that, in this case, Gi
= is

claw-free and, following Theorem 2, we may assume that it is perfect and that
αwi(Gi

=) = αwi(Gi \(Ai
1∪Ai

2)) holds, where w
i is the weight function defined on

the vertices of Gi (that w.l.o.g. we take strictly positive, i.e., we remove vertices
with wi(v) = 0). In this case, we prove that either Gi

= is cobipartite, or every
mwcc of Gi is also a mwcc of Gi

=. If G
i
= is not cobipartite, then we may simply

ignore the edges between the two extremities of the strip and then compute a
mwcc in Gi, which is distance simplicial.

We have therefore the following theorem for strip-composed claw-free perfect
graphs. We underline that the resulting algorithm never requires the computa-



tion of any mwss on the strips, while it uses a primal-dual algorithm for the
maximum weighted matching on the root graph of G̃ (see Section 3).

Theorem 4. Let G be a claw-free perfect graph with a non-negative weight func-
tion w on V (G) and let G be as in case (ii) of Theorem 3. Then we can compute
a mwcc of G w.r.t. w in time O(|V (G)|3).
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