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Abstract. We give new algorithms for the minimum (weighted) clique
cover in a claw-free perfect graph G, improving the complexity from
O(|V (G)|5) to O(|V (G)|3). The new algorithms build upon neat refor-
mulations of the problem: it basically reduces either to solving a 2-SAT
instance (in the unweighted case) or to testing if a polyhedra associated
with the edge-vertex incidence matrix of a bidirected graph has an in-
teger solution (in the weighted case). The latter question was elegantly
answered using neat polyhedral arguments by Schrijver in 1994. We give
an alternative approach to this question combining pure combinatorial
arguments (using techniques from 2-SAT and shortest paths) with poly-
hedral ones. Our approach is inspired by an algorithm from the Con-
straint Logic Programming community and we give as a side benefit a
formal proof that the corresponding algorithm is correct (apparently an-
swering an open question in this community). Interestingly, the systems
we study have properties closely connected with the so-called Edmonds-
Johnson property and we study some interesting related questions.

Keywords: clique cover,claw-free perfect graphs, bidirected graphs, Edmonds-
Johnson property

1 Introduction

Given a graph G, a clique cover is a collection K of cliques covering all the
vertices of G. Given a weight function w : V (G) 7→ Q defined on the vertices of
G, a weighted clique cover of G is a collection of cliques K, with a positive weight
yK assigned to each clique K in the collection, such that, for each vertex v of G,
∑

K∈K:v∈K yK ≥ w(v). A minimum clique cover of G (mcc) is a clique cover of
minimum cardinality, while a minimum weighted clique cover of G (mwcc) is a
weighted clique cover minimizing

∑

K∈K
yK .

For perfect graphs, it is well-known [5, 20] that the convex hull of the in-
cidence vectors of all stable sets is described by clique inequalities and non-
negativity constraints. It follows that the maximum weighted stable set (mwss)



problem (the left program) and the mwcc problem (the right program) form a
primal-dual pair:

max
∑

v∈V

w(v)xv

∑

v∈C

xv ≤ 1 ∀C ∈ K(G)

xv ≥ 0 ∀v ∈ V

min
∑

C∈K(G)

yC

∑

C∈K(G):v∈C

yC ≥ w(v) ∀v ∈ V

yC ≥ 0 ∀C ∈ K(G)

Moreover, when w is integral, there always exists an integer solution to the
mwcc problem, as it was originally shown by Fulkerson [10].

In 1988, Grötschel, Lovász and Schrijver [12] gave a (non-combinatorial) poly-
nomial time algorithm, building upon Lovász’s theta function, to compute so-
lutions to the mwss problem and the mwcc problem in perfect graphs. It is a
major open problem in combinatorial optimization whether there exist polyno-
mial time combinatorial algorithms for those two problems.

For particular classes of perfect graphs, such algorithms exist. This is the
case, for instance, for claw-free perfect graphs: a graph is claw-free if none of
its vertices has a stable set of size three in its neighborhood. Claw-free graphs
are a superclass of line graphs, and the mwss problem in claw-free graphs is
a generalization of the matching problem, and in fact there are several poly-
nomial time combinatorial algorithms for solving the former problem (see [23])
and the fastest algorithm [9] runs in time O(|V (G)|2 log |V (G)|+ |V (G)||E(G)|).
Conversely, to the best of our knowledge, the only combinatorial algorithm for
the mwcc problem in the (entire) class of claw-free perfect graphs is due to
Hsu and Nemhauser [15] in 1984 and runs in O(|V (G)|5). The algorithm is
based on a clever use of complementary slackness in linear programming, com-
bined with the resolution of several mwss problems. Hsu and Nemhauser also
designed a more efficient algorithm for the unweighted case [14], that runs in
O(|V (G)|4). However, building non-trivially upon the clique cutset decomposi-
tion theorems for claw-free perfect graphs by Chvátal and Sbihi [6] and Maffray
and Reed [19] and the algorithmic approach by Whitesides [27], one may design
an O(|V (G)|3 log |V (G)|)-time algorithm for the mcc problem and a more in-
volved O(|V (G)|4)-time algorithm for the mwcc problem (for the latter result,
one needs to use some ideas from [4], where an O(|V (G)|3)-time algorithm for
solving the mwcc problem on the subclass of strip-composed claw-free perfect
graphs is given). [We defer the (long) details for this approach to the journal
version of this paper.]

Our new approach to the problem relies on testing and building integer so-
lution to systems of inequalities with at most 2 non-zero coefficients per row,
both of them in {−1,+1} . We study in a slightly more general problem: given
an m× n matrix A satisfying

n
∑

j=1

|aij | ≤ 2, for all i = 1, ..,m, with aij ∈ Z for all i,j (1)



(i.e., A is the vertex-edge incidence matrix of a bidirected graph, see Chapter
36 in [23] for more properties of those systems) and an integer vector b, can
one determine in polynomial time if the system Ax ≤ b has an integer solution
(and build one if any)? So we are interested in the polyhedron Pb(A) := {x ∈
Rn : Ax ≤ b}, and in particular in knowing if the integer hull of Pb(A), that we
denote by Int(Pb(A)), is empty or not: we sometimes refer to this question as
the integer feasibility for Pb(A). (When A is clear from the context, we abuse
notation and denote Pb(A) by Pb.) Note that all inequalities in Pb(A) are of the
type xi + xj ≤ bij , −xi − xj ≤ bij , xi − xj ≤ bij , xi ≤ bi, −xi ≤ bi, 2xi ≤ bi,
−2xi ≤ bi.

We just pointed out that addressing efficiently the is question of integer fea-
sibility for Pb(A) leads to improved algorithm for mwcc in claw-free perfect
graphs. However those systems are interesting for their own sake, as they also
appear in other contexts, like for instance hardware and software verification [2],
and, they received considerable attention from the Constraint Logic Program-
ming community, as we recall later.

Schrijver [22] was, to the best of our knowledge, the first to consider this
question (and he was motivated by some path problem in planar graphs!), and he
gave an O(n3)-time algorithm based on the Fourier-Motzkin elimination scheme
that also produces a feasible integer solution when it exists.

An alternative to Schrijver’s approach is that of Peis [21]. She reduces the
problem of checking whether Int(Pb) = ∅ to, first, testing for fractional feasibil-
ity, i.e. if Pb = ∅, through shortest paths techniques. If Pb is non-empty, she gets
a half integral solution certificate as a side benefit of the shortest path calcu-
lation. Then she tests if the fractional components of this half integral solution
can be “rounded” up or down to an integer solution (solving a suitable 2-SAT
problem). She proves that there always exists such a rounding procedure when
a feasible integer solution exists. Like Schrijver’s approach, her method is con-
structive, i.e. she builds a feasible integer solution when the system is integer
non-empty. Her algorithm can be implemented to run in time O(nm).

The result of Schrijver, and the more recent work of Peis, do not seem to be
very well known, as several people in the Constraint Logic Programming com-
munity developed alternative algorithms and arguments for the problem (see
e.g. [16, 13, 18, 25, 2, 24]), apparently ignoring the (previous) result in [22]. Inter-
estingly though, the focus of this community is slightly different. They are not
only interested in the integer feasibility, but they want to build efficiently what
they call the tight closure of the system to possibly derive additional structural
properties.

The best algorithm [24] to derive the tight closure runs in time O(n2 log n+
mn) (note that this is better than O(n3) as m = O(n2) when A satisfies (1)),
while the best algorithm for testing integer feasibility runs in O(nm) [18]. It
seems however that all those results were pretty controversial in this community
as they all rely on a fundamental theorem claimed in [16] that was never proved
formally, as pointed out by [2] who declare in their paper “to present and, for



the first time, fully justify an O(n3) algorithm to compute the tight closure of a
set of UTVPI integer constraints”.

We outline now the main contributions of each section. In Section 2, we
discuss a new O(|V (G)|3)-time, very simple, algorithm for the minimum (cardi-
nality) clique cover in claw-free perfect graphs. We then extend our finding and
devise a O(V (G)|3) algorithm for the weighted case thanks to Schrijver’s result
for matrices satisfying (1). In Section 3, we revisit from a polyhedral perspec-
tive the algorithm proposed in [24] for the integer feasibility and tight closure
of systems Ax ≤ b, with A satisfying (1), and offer a self-contained proof for its
correctness and running time. We believe that this contribution is important as
it bridges the gap between the CP community and the integer programming one,
and also yields the tight closure (this is not possible neither with the approach
of Schrijver, nor with that of Peis), and therefore addresses the different focus of
the CP community. In Section 3.1, we introduce and study properties of those
system that are closely related to the so-called Edmonds-Johnson property, and
in Section 3.2 we identify a class of them with the following nice property: if the
system has a fractional solution, then it has an integral one, and we show that
this class includes the systems arising from the mwcc problem. [For the sake of
shortness some proofs will be postponed to the full version of this paper.]

2 Clique covers in claw-free perfect graphs

We focus here on claw-free perfect graphs. We will give new O(|V (G)|3)-time
algorithms for the mcc and the mwcc problem. In particular, we will show how
to “reduce” the latter problem to testing the existence of integer solution in
polyhedra associated with the edge-incidence matrix of bidirected graphs. We
start with the unweighted case.

2.1 A new algorithm for mcc in claw-free perfect graphs

Suppose that we are given a stable set S of a claw-free perfect graph G = (V,E).
We want to check if S is a maximum stable set of G. In the case that it is, we
want to build a suitable clique cover of G of size |S|; in case it is not, we want
to find an augmenting path (given a stable set S of a graph G, a path P is
S–alternating if (V (P ) \ S) ∪ (S \ V (P )) is a stable set of G; S–augmenting, if
in addition this stable set has size |S| + 1. Berge [3] proved that a stable set
S is maximum for a claw-free graph G if and only if there are no paths that
are S–augmenting). Without loss of generality we assume that S is maximal;
therefore a vertex v ∈ V \ S is either bound, i.e., it is adjacent to two vertices
s1(v) and s2(v) of S, or is free, i.e., it is adjacent to one vertex s(v) of S.

We will achieve our target by solving a suitable instance of the 2-SAT prob-
lem. The rationale is the following. By complementary slackness, in a perfect
graph, every clique of a mcc intersects every mss. Therefore, given S, in order
to build a mcc we must “assign” each vertex of v ∈ V \S to a vertex in N(v)∩S,
in such a way that the set of vertices of V \S assigned to a same s ∈ S will form



a clique. As we show in the following, this can be easily expressed as a 2-SAT
formula.

For every bound (resp. free) vertex v ∈ V \ S, we define two (resp. one)
variables, or terms, xvs1(v) and xvs2(v) (resp. xvs(v)) that will specify the above
assignment. We also introduce an auxiliary boolean variable y to express that,
for a free vertex v, xvs(v) has to be true. We consider three classes of clauses (we
again denote by ¬xvs the negation of a term xvs):

(c1) for each v ∈ V \ S that is bound, xvs1(v) ∨ xvs2(v) must be true;
(c2) for each s ∈ S and each u, v ∈ N(s) that are non-adjacent, ¬xus ∨ ¬xvs

must be true;
(c3) for each v ∈ V \S that is free, both xvs(v) ∨ y and xvs(v) ∨¬y must be true

(i.e., xvs(v) must be true).

Consider the 2-SAT instance made of the conjunction of all the above clauses,
which we denote in the following by the pair (G,S). It is straightforward to
check that a clique cover of size |S| induces a solution (i.e. a satisfying truth
assignment) to (G,S). Vice versa, from a solution to (G,S) we can easily build a
clique cover of size |S| of G. In fact, for each vertex s ∈ S, let X(s) := {s}∪{v ∈
N(s) : xvs true}. Note that for each free vertex u, following (c3), u ∈ X(s(u)).
Moreover, for each s ∈ S, X(s) is a clique, following (c2). Finally, following the
clauses (c1), each bound vertex u belongs to either X(s1(u)) or to X(s2(u)).
The family {X(s), s ∈ S} is then a clique cover of size |S|. Therefore, a maximal
stable set S is a maximum stable set of G if and only if there exists a solution
to the 2-SAT instance (G,S). Moreover, from a solution to (G,S) we can easily
build a mcc of G.

Following the above discussion, in order to design an algorithm for the mcc

problem of a claw-free perfect graph G, we are left with the following question:
what if S is not a maximum stable set of G, i.e. there is no solution to the
2-SAT instance (G,S)? In this case, in time O|V (G)2| we can find a path that
is augmenting with respect to S. While we postpone the proof of this argument,
that is rather standard, to the full version of the paper, we point that the search
for this augmenting path is not technical, as we simply get it from a careful
analysis of the implication graph of the unsatisfiable 2-SAT instance.

One therefore gets a simple algorithm that produces both a mcc and a mss of
a claw-free perfect graph G in time O(|V (G)|3), in the spirit of the augmenting
path algorithm for maximum bipartite matching and minimum vertex cover.

2.2 A new algorithm for mwcc in claw-free perfect graphs

We are now given a claw-free perfect graph G = (V,E) and also a weight function
w : V (G) 7→ N \ {0}. Since w is strictly positive, every mwss is maximal. We
want to check if a given maximal stable set S of G is also a mwss.

We will follow an approach inspired by the unweighted case. In that case,
as in a perfect graph every clique of a mcc intersects every mss, we tried to
“assign” each vertex v ∈ V \ S to a vertex in N(v) ∩ S, so that the vertices



of V \ S assigned to a same s ∈ S form a clique. In the weighted case, the
assignment is no longer possible, as some vertices might have to be covered by
several cliques in a mwcc. However, for each v ∈ V \ S and s ∈ N(v) ∩ S, we
will compute how much of w(v) is covered by cliques that contain both s and v.
Therefore, for every bound (resp. free) vertex v ∈ V \ S, we define two (resp.
one) non-negative integer variables xvs1(v) and xvs2(v) (resp. xvs(v)), that will
provide that information. We then consider the following constraints (note that,
for s ∈ S and v ∈ N(s), xvs is equivalent to either xvs(v), or xvs1(v), or xvs2(v)):

(d1) for each v ∈ V \ S that is bound, xvs1(v) + xvs2(v) ≥ w(v);
(d2) for each v ∈ V \ S that is free: xvs(v) ≥ w(v).
(d3) for each s ∈ S and each u, v ∈ N(s) that are non-adjacent, xus+xvs ≤ w(s);
(d4) for each s ∈ S and each u ∈ N(s), xus ≤ w(s).

Consider the integer program Pb defined by the previous constraints, together
with non-negativity and integrality for each variable. We claim that Pb has a
(integer) solution if and only if there exists for G a (integer) weighted clique
cover (K, y) with weight w(S), i.e. if and only if S is a mwss of G. Suppose there
exists a weighted clique cover (K, y) of G with weight w(S). Then S is a mwss

of G. It is straightforward to check that y induces a solution to Pb by letting, for
each s ∈ S and v ∈ N(s), xvs =

∑

K∈K:s,v∈K yK . Vice versa, let x be a (integer)
solution to P . We want to “translate” x into a weighted clique cover (K, y) of
weight w(S). Let s ∈ S: we first take care of the weights of the cliques in the
cover that contain s. So consider the graph Gs = G[N [s]], with a weight function
ws defined as follows: for each vertex v ∈ N(s), ws(v) = xvs; w

s(s) = w(s).
Trivially, {s} is a mwss of Gs, with respect to the weight function ws, following
constraints (d3)-(d4). Moreover, as every clique of Gs is a clique of G too, and
ws(s) = w(s), if we compute a mwcc (Ks, ys) of Gs (with respect to ws), then
the following holds: (j) for each vertex v ∈ N(s),

∑

K∈Ks:s,v∈K ysK ≥ xvs; (jj)
∑

K∈Ks y
s
K = w(s). Following constraints (d1)-(d2), if we compute, for each

s ∈ S, a mwcc (Ks, ys) of Gs, with respect to ws, and we take K =
⋃

s∈S Ks

and juxtapose the different ys, s ∈ S, we then get a weighted clique cover (K, y)
of G of weight w(S).

We are left with two questions. The first, and more challenging one, is that of
showing how it is possible to find an integral solution x to the system Pb defined
by constraints (d1)-(d4). Observe that any inequality in (d1)-(d-4) involves at
most two non-zero coefficients in {−1,+1}. Building integer solution to such
systems can be done in O(n3) by an algorithm of Schrijver [22]. The second
one is that of finding a mwcc of Gs with respect to the weight function ws;
we postpone to the full version of the paper the details, but this can be done
in O(|V (Gs)|2)-time. The overall complexity of this “translation” step is then
O(

∑

s∈S |V (Gs)|2). By simple algebra,
∑

s∈S |V (Gs)|2 ≤ (
∑

s∈S |V (Gs)|)2. But
each v ∈ V (G) belongs to at most two different graphs Gs, so

∑

s∈S |V (Gs)| ≤
2|V (G)|.

Our algorithm for the mwcc problem is summarized in the following: first
compute a mwss S of G, and then build a mwcc, as to run in O(|V (G)|3)-time.



The mwss S can be computed in O(|V (G)|3)-time (cfr. [9]). A non-negative, inte-
ger solution x to Pb defined by constraints (d1)-(d4) can be found in O(|V (G)|3)-
time, see the next section and Section 3.3. Note also that, differently from the
unweighted case, this algorithm does not use augmenting paths techniques to
build concurrently a mwss and a mwcc: we do not push this augmenting paths
approach, as it would result in a O(|V (G)|4)-time algorithm (we defer the details
to the journal version).

3 Ax ≤ b when A satisfies (1), and b is integer

We are interested in the following problem: given an m× n matrix A satisfying
(1) and an integer vector b, can one determine in polynomial time if the system
Ax ≤ b has an integer solution (and build one if any)?

We associate to Pb (recall Pb := {x ∈ Rn : Ax ≤ b}) another polyhedron

Qb ⊆ R2n := {A′

(

y

ȳ

)

≤ b′} by associating inequalities to each inequality in the

system Ax ≤ b as follows:

xi + xj ≤ bij →

{

yi − ȳj ≤ bij
−ȳi + yj ≤ bij

−xi − xj ≤ bij →

{

ȳi − yj ≤ bij
−yi + ȳj ≤ bij

xi − xj ≤ bij →

{

yi − yj ≤ bij
−ȳi + ȳj ≤ bij

xi ≤ bi → yi − ȳi ≤ 2bi

2xi ≤ bi → yi − ȳi ≤ bi

−xi ≤ bi → −yi + ȳi ≤ 2bi
−2xi ≤ bi → −yi + ȳi ≤ bi

Lemma 1. Pb has a solution if and only if Qb has a solution.

Proof. Necessity. Given a feasible solution x∗ ∈ Pb, (y
∗, ȳ∗) : y∗i = x∗

i , ȳ
∗
i = −x∗

i

for all i, is a solution to Qb. Sufficiency. Given a feasible solution (y∗, ȳ∗) ∈ Qb,
x∗ : x∗

i = 1
2y

∗
i −

1
2 ȳ

∗
i is a solution to Pb. We check it for the first type of inequality

(i.e. to prove x∗
i + x∗

j ≤ bij) but the method is the same for all 5 cases. If the
inequality xi+xj ≤ bij is in the system Ax ≤ b, by definition we have yi−ȳj ≤ bij
and −ȳi + yj ≤ bij in the system defining Qb. Taking the combination of those
last two inequalities with multipliers 1

2 ,
1
2 yields x∗

i + x∗
j ≤ bij . ut

Observe that (A′)t is a network matrix; we call D the corresponding (di-
rected) graph, with cost b on its arcs. Any solution to Qb defines what is usually
called a feasible potential for D, and it follows from standard LP duality ar-
guments that there is such a solution if and only if there are no negative cost
cycles in D. In fact, given D, we can find in O(nm)-time either a feasible poten-
tial (integer potential as b is integer) or a negative cost cycle (see e.g. Theorem
7.7 in [17]).

For what follows, suppose therefore that Qb has a feasible potential, i.e.
Pb 6= ∅. The following lemma links the projection of Pb on each variable xi,
that we denote by Projxi

(Pb), to the length of some suitable shortest paths
in D, that e.g. can be computed in O(mn + n2 log n)-time by the algorithm of
Moore-Bellman-Ford (see e.g. [17]).



Lemma 2. If Pb 6= ∅, then Projxi
(Pb) = [pi

2 ,
qi
2 ], with qi being the length of a

shortest path from ȳi to yi in D (if any, else qi = ∞), and −pi that of one from
yi to ȳi (if any, else −pi = ∞).

Observe that if pi

2 or qi
2 are not integer values, then xi ≥ dpi

2 e and xi ≤
b qi

2 c are valid inequalities for the integer hull of Pb (recall that it is denoted
by Int(Pb)). Therefore, if we are interested in the integer feasibility of Pb, i.e.
if Int(Pb) is empty or not, we can add those inequalities and define a new
polyhedron P b := Pb ∩ {x ∈ Rn : dpi

2 e ≤ xi ≤ b qi
2 c, i = 1, ..., n} that is a tighter

formulation for Int(Pb).

Lemma 3. Suppose that Pb 6= ∅. If, for each i, d pi

2 e ≤ b qi
2 c, then Int(P b) =

Int(Pb) 6= ∅ and we may find an integer solution to Pb in time O(n3).

We would like to point out here that a slightly weaker result is implicit in
Schrijver’s approach (we defer the proof to the journal version of the paper).

Lemma 4. Int(Pb) 6= ∅ if and only if, for each i, Projxi
(Pb) has an integer

point.

The result is weaker than Lemma 3 in the sense that it does not tell us that
the projection can be computed efficiently through shortest path (and actually
Schrijver’s approach does not even compute the projections). The next corollary
follows from both lemmas (if we define P b := Pb ∩ {x : dminx∈Pb

xie ≤ xi ≤
bmaxx∈Pb

xic ,∀i = 1, ...n} when using Lemma 4).

Corollary 1. P b = ∅ if and only if Int(P b) = Int(Pb) 6= ∅.

We close this section by linking with the results from the Constraint Logic
Programming community. Because we can compute the transitive closure by
shortest path calculation in D (this is immediate by definition of the transitive
closure), our result also shows that we can compute the tight closure in time
O(n2logn+nm) (we apply the shortest path calculation twice). This is essentially
the approach proposed in [24].

3.1 A weak Edmonds-Johnson property for matrices A satisfying (1)

Given a polyhedron P = {x ∈ Rn : Ax ≤ b}, we denote by P ′ its Chvátal-
Gomory closure (or CG-closure), that is, the polytope obtained by adding to
the system Ax ≤ b all its Chvatál-Gomory cuts (i.e., inequalities of the form
cx ≤ bδc, where c is an integer vector and cx ≤ δ holds for each point in P .

A rational matrix A has the Edmonds-Johnson property if, for all d1, d2, b1, b2
integer vectors, the integer hull of

P = {x ∈ Rn : d1 ≤ x ≤ d2, b1 ≤ Ax ≤ b2} (2)

is given by P ′. Edmonds and Johnson [7, 8] proved that if A = (aij) is an in-
tegral m × n-matrix such that

∑m

i=1 |aij | ≤ 2 for all j = 1, .., n, then A has



the Edmonds-Johnson property. As shown by Gerards and Schrijver [11], the
property does not hold when passing to transpose i.e. when A satisfies (1) as
illustrated by taking A to be the edge-vertex incidence matrix of K4 and then
considering the system 0 ≤ x ≤ 1, 0 ≤ Ax ≤ 1 (note that this is the linear relax-
ation of the edge formulation of the stable set polytope of K4). Indeed it is easily
proved that two rounds of Chvátal-Gomory cuts are needed in this case (one to
produce all triangle inequalities, and one to produce the facet x(V (K4)) ≤ 1). In
some sense, Gerards and Schrijver [11] prove that the converse holds i.e. matrix
A satisfying (1) has the Edmonds-Johnson property if and only if it is the edge-
vertex incidence matrix of a bidirected graph with no odd K4-subdivision (see
[11] for a proper definition). Moreover, in this case, optimizing over the integer
hull of system (2) is easy, by the ellipsoid method, see [11] for more details; note
that, if we only assume condition (1), there is no hope (unless P = NP ) to
optimize in polynomial time over the integer hull of (2), as one may encode the
stable set problem.

We here define a weaker notion of Edmonds-Jonson property, that is mainly
concerned with integer feasibility (recall that P ′ denotes the CG-closure of P ):

Definition 1. A rational matrix A has the weak Edmonds-Johnson property
if, for all integer vectors d1, d2, b1, b2, the polyhedron P = {x ∈ Rn : d1 ≤ x ≤
d2, b1 ≤ Ax ≤ b2} has an integer solution if and only if P ′ is non-empty.

By definition, the Edmonds-Johnson property implies the weak Edmonds-
Johnson one, but the converse is not true. For instance, the edge-vertex inci-
dence matrix of K4 does not have the Edmonds-Johnson property but it has the
weak Edmonds-Johnson one. In fact, we show in the following, every matrix A

satisfying (1) has the property.

Theorem 1. Every integral matrix B such that, for each i,
∑

j |bij | ≤ 2 has the
weak Edmonds-Johnson property.

Proof. Let A be a matrix satisfying (1). For each integer vector b, consider the
polyhedron Pb = {x ∈ Rn : Ax ≤ b}. Without loss of generality, assume that
Pb 6= ∅. We know from Corollary 1 that Int(Pb) 6= ∅ if and only if P b 6= ∅,

where P b := Pb ∩ {x :

⌈

min
x∈Pb

xi

⌉

≤ xi ≤

⌊

max
x∈Pb

xi

⌋

,∀i = 1, ...n}. Observe that

(Pb)
′ ⊆ P b, as the inequalities dminx∈Pb

xie ≤ xi ≤ bmaxx∈Pb
xic , are special

CG-cuts for Pb. Therefore, IPb 6= ∅ if and only if (Pb)
′ 6= ∅. The statement follows

by observing that {x ∈ Rn : d1 ≤ x ≤ d2, b1 ≤ Bx ≤ b2} can be rewritten as
{x ∈ Rn : Ax ≤ b}, with b = (b2,−b1, d2,−d1)

t, and A = (B,−B, I,−I)t

satisfying (1). ut

3.2 When CG-cuts are not needed

We would like to understand now under which conditions we do not need to add
Chvátal-Gomory inequalities to Pb to ensure that fractional feasibility implies
integer feasibility.



Observe that in the proof of Lemma 1, we retrieve a solution x of Pb from
a solution (y, ȳ) ∈ Qb by taking a simple convex combination of the values yi
and −ȳi (with multipliers 1

2 ). We could try to see if other “convex combinations”

yield valid solutions. For this purpose, we defineΠA = {λ ∈ [0, 1]q : A2λ ≤ A21

2 },
where A2 is the submatrix of A made of those rows with

∑

j |aij | = 2. Observe

that A21

2 ∈ {0, 1,−1}q and by definition λ = 1

2 is a feasible solution to ΠA.
The system ΠA is made of inequalities of the type λi − λj ≤ 0, λi + λj ≤ 1,
−λi − λj ≤ −1, 2λi ≤ 1 and −2λi ≤ −1. If we are interested in integer solution
of ΠA, the last two restrictions impose λi = 0 and λi = 1 respectively. We call
ΠA the polyhedra obtained from ΠA by substituting the restrictions 2λi ≤ 1 and
−2λi ≤ −1 with λi = 0 and λi = 1 respectively. All inequalities in ΠA can be
rewritten under the form λi + (1− λj) ≤ 1, λi + λj ≤ 1, (1− λi) + (1− λj) ≤ 1,
λi ≤ 0 or −λi ≤ −1 and thus ΠA can be trivially identified with the linear
relaxation associated with the standard integer programming formulation of a
2-SAT instance. We have therefore:

Lemma 5. ΠA has an integer solution if and only if the corresponding 2-SAT
instance is satisfiable.

The latter claim has the following nice consequence.

Lemma 6. If ΠA has an integer solution, then Pb has an integer solution if and
only if Pb is non-empty.

The proof of Lemma 6 (that we postpone to the full version of the paper)
shows that, when Qb is non-empty, and we are given an integer solution λ to ΠA,
one may always build an integer solution to Pb by (essentially) solving a single
shortest path calculation. We sum-up the results obtained in the following:

Theorem 2. If one knows a priori that ΠA has an integer solution, one can
build an integer solution to Pb by solving a single shortest path problem and a
single 2-SAT instance.

Observe that any matrix A which is TU has the property that ΠA has an
integer solution. This follows from the fact that A2 is a submatrix of A and
it is thus also TU, and that ΠA has the fractional solution 1

2 . Interestingly,
there are other 0,+/-1 matrices, that are not TU, that satisfy this property.

For instance the matrix A =

(

1 1
−1 1

)

. In general though, the fact that Pb has a

integer solution does not imply thatΠA has one (consider for instance the system
defined by the relations x1+x2 = 2, x2+x3 = 2, x3+x1 = 2). However if we ask
the property for all vector b and all subsystems (in the spirit of the definition
of TU matrices), the converse holds, i.e. πA has an integer solution, as ΠA is a
special subsystem of Pb with b = A1

2 . We are currently investigating a proper
definition of this kind to extend total unimodularity to the integer feasibility
question, as we did for the weak Edmonds-Johnson property. We defer this to
the journal version of the paper.



3.3 Back to minimum weighted clique cover

In the previous section we identified a class of systems that have a fractional
solution if and only if they have an integral one. We now show that this class
includes the systems arising from the mwcc problem.

We therefore go back to the algorithm in Section 2.2. So let S be a mwss of a
claw-free perfect graph G. We want to compute a non-negative, integer solution
x to the system Pb defined by constraints (d1)-(d4). Now let us give a look at the
corresponding ΠA. Because we only keep those rows with two non-zero elements
per row, ΠA reads:

λus + λvs ≤ 1,∀s ∈ S, u, v ∈ N(s), uv 6∈ E

λvs + λvs′ ≥ 1,∀v bound, where s, s′ are the vertices in S ∩N(v)
λ ∈ [0, 1]q

Now if there exists an integer solution to this system, there exists one with
λvs = 0 for all v free (those vertices are only involved in the first type of con-
straints). Thus, integer feasibility for ΠA reduces to the existence of integer
solutions to:

λus + λvs ≤ 1,∀s ∈ S, u, v ∈ N(s), uv 6∈ E, u, v bound
λvs + λvs′ ≥ 1,∀v bound, where s, s′ are the vertices in S ∩N(v)

λ ∈ [0, 1]n

Note that this latter system has an integral solution if and only if there exists
a clique cover of size |S| in the graph G[V \F ], where F is the set of the vertices
that are free with respect to S. But this is trivially the case, as in G[V \F ] there
are no free vertices, and therefore no augmenting paths.
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