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1 Introduction

A coloring of a graph G = (V,E) is a function f : V → N such that
f(v) 6= f(w) whenever vw ∈ E. A k-coloring is a coloring f such that
f(v) ≤ k for every v ∈ V . The vertex coloring problem takes as input a
graph G and a natural number k, and consists in deciding whether G is
k-colorable or not. This well-known problem is a basic model for frequency
assignment and resource allocation problems.

In order to take into account particular constraints arising in practical
settings, more elaborate models of vertex coloring have been defined in the
literature. One of such generalized models is the list-coloring problem, which
considers a prespecified set of available colors for each vertex. Given a graph
G and a finite list L(v) ⊆ N for each vertex v ∈ V , the list-coloring problem
asks for a list-coloring of G, i.e., a coloring f such that f(v) ∈ L(v) for
every v ∈ V .

Many classes of graphs where the vertex coloring problem is polyno-
mially solvable are known, the most prominent being the class of perfect
graphs [13]. Meanwhile, the list-coloring problem is NP-complete for gen-
eral perfect graphs, and is also NP-complete for many subclasses of per-
fect graphs, including split graphs [20], interval graphs [3,23], and bipartite
graphs [20]. However, using dynamic programming techniques this problem
can be solved in polynomial time for a well known subclass of bipartite
graphs: trees [20]. Another class of graphs where list-coloring can be poly-
nomially solved is the class of complete graphs: we can reduce this problem
to maximum matching on bipartite graphs, a known polynomial problem.
Combining these two ideas, list-coloring can be solved in polynomial time
for block graphs [19].

We are interested in the complexity boundary between vertex coloring
and list-coloring. Our goal is to analyze the computational complexity of
coloring problems lying “between” (from a computational complexity view-
point) these two problems.

We consider some particular cases of the list-coloring problem. The pre-

coloring extension (PrExt) problem takes as input a graph G = (V,E), a
subset W ⊆ V , a coloring f ′ of W , and a natural number k, and consists in
deciding whether G admits a k-coloring f such that f(v) = f ′(v) for every
v ∈ W or not [3]. In other words, a prespecified vertex subset is colored be-
forehand, and our task is to extend this partial coloring to a valid k-coloring
of the whole graph. This is a typical case of a completion problem. Many
efficiently-solvable combinatorial problems have a more difficult general so-
lution by the imposition of a partial one (we refer to [10] for a review about
some completion problems).

Given a graph G and a function µ : V → N, G is µ-colorable if there
exists a coloring f of G such that f(v) ≤ µ(v) for every v ∈ V [4]. This
model arises in the context of classroom allocation to courses, where each
course must be assigned a classroom which is large enough so it fits the
students taking the course. We define here a new variation of this problem.
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Given a graph G and functions γ, µ : V → N such that γ(v) ≤ µ(v) for
every v ∈ V , we say that G is (γ, µ)-colorable if there exists a coloring f of
G such that γ(v) ≤ f(v) ≤ µ(v) for every v ∈ V .

The classical vertex coloring problem is clearly a special case of µ-
coloring and precoloring extension, which in turn are special cases of (γ, µ)-
coloring. Furthermore, (γ, µ)-coloring is a particular case of list-coloring.
These observations imply that all the problems in this hierarchy are poly-
nomially solvable in those graph classes where list-coloring is polynomial
and, on the other hand, all the problems are NP-complete in those graph
classes where vertex coloring is NP-complete. Furthermore, list-coloring can
be polynomially reduced to precoloring extension in a straightforward way.
To this end, attach precolored vertices of degree 1 to each vertex in order
to reduce the available colors from which it can be colored, creating the
desired lists. But note that this reduction, unlike the previous ones, does
not preserve the graph. In particular, many graph classes are not closed
under this kind of operations. List-coloring can be polynomially reduced to
µ-coloring in a similar way, but again this reduction does not preserve the
graph structure.

It is interesting to note that the list-coloring problem can be polyno-
mially reduced to the (γ, µ)-coloring problem while preserving the original
graph, if the list of colors can be renamed in such a way that each list is
an interval of colors. This renaming is possible if and only if there exists a
row permutation of the 0− 1 color-vertex matrix such that the ones in each
column of the resulting matrix are consecutive [15]. This property is known
as the consecutive ones property and can be checked in linear time [6].

In this work, we are interested in the computational complexity of these
problems over graph classes where vertex coloring is polynomially solvable
and the complexity of list-coloring is NP-complete. In §2, we show some
known complexity results about these coloring problems.

In §3, we prove new complexity results about precoloring extension,
µ-coloring, (γ, µ)-coloring, and list-coloring in some subclasses of perfect
graphs and line graphs of complete graphs. As a consequence of our re-
sults, we prove that, unless P = NP, µ-coloring and precoloring extension
are strictly more difficult than vertex coloring. On the other hand, we show
that list-coloring is strictly more difficult than (γ, µ)-coloring, and (γ, µ)-
coloring is strictly more difficult than precoloring extension.

In §4, some general theorems are stated showing polynomial-time re-
ductions from list-coloring to the other problems. These reductions involve
changes in the graph, but are closed within some graph classes. They can
be used, therefore, to prove that the problems studied here are polynomi-
ally equivalent in those classes. Finally, §5 presents a table reviewing the
complexity situation of these problems in the classes of graphs we analyzed.

An extended abstract of a preliminary version of this work appears in [5].
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2 Known results

Most of the graph classes considered in this paper are subclasses of per-
fect graphs. A graph G is perfect when the chromatic number is equal to the
cardinality of a maximum complete subgraph for every induced subgraph
of G.

A graph is an interval graph if it is the intersection graph of a set of inter-
vals over the real line. A unit interval graph is the intersection graph of a set
of intervals of length one. Since interval graphs are perfect, vertex coloring
over interval and unit interval graphs is polynomially solvable. On the other
hand, precoloring extension over unit interval graphs is NP-complete [23],
implying that (γ, µ)-coloring and list-coloring are NP-complete over this
class and over interval graphs.

A split graph is a graph whose vertex set can be partitioned into a
complete graph K and an independent set I. A split graph is said to be
complete if its edge set includes all possible edges between K and I. It is
trivial to color a split graph in polynomial time, and it is a known result that
precoloring extension is also solvable in polynomial time on split graphs [18],
whereas list-coloring is known to be NP-complete even over complete split
graphs [20].

A bipartite graph is a graph whose vertex set can be partitioned into two
independent sets V1 and V2. A bipartite graph is said to be complete if its
edge set includes all possible edges between V1 and V2. Again, the vertex
coloring problem over bipartite graphs is trivial, whereas precoloring ex-
tension [17] and µ-coloring [4] are known to be NP-complete over bipartite
graphs. This implies that (γ, µ)-coloring and list-coloring over this class are
also NP-complete, and that the four problems are NP-complete on compa-
rability graphs, a widely studied subclass of perfect graphs which includes
bipartite graphs. Moreover, list-coloring is NP-complete even over complete
bipartite graphs [20].

For complements of bipartite graphs, precoloring extension can be solved
in polynomial time [18], but list-coloring is NP-complete [19]. The same
holds for cographs, i.e., graphs with no induced P4 (or P4-free) [18,20]. For
this class of graphs, µ-coloring is polynomial [4]. Cographs are a subclass
of distance-hereditary graphs, another known subclass of perfect graphs.
A graph is distance-hereditary if any two vertices are equidistant in every
connected induced subgraph containing them.

Two known subclasses of cographs are trivially perfect and threshold

graphs. A graph is trivially perfect if it is {C4, P4}-free. A graph G is thresh-
old if G and G are trivially perfect. This last class includes complete split
graphs.

The line graph of a graph is the intersection graph of its edges. The edge
coloring problem (equivalent to coloring the line graph) is NP-complete in
general [16] but can be solved in polynomial-time for complete graphs and
bipartite graphs [21]. It is known that precoloring extension is NP-complete



Exploring the complexity boundary between coloring and list-coloring 5

on line graphs of complete bipartite graphs Kn,n [8], and list-coloring is
NP-complete on line graphs of complete graphs [22].

A good survey on variations of the coloring problem appears in [25].
Graph classes and graph theory properties not defined here can be found
in [7,12].

3 New results

In this section we introduce new results on the computational complex-
ity of the previously mentioned coloring problems over the graph classes
described in §2 and related classes. We first analyze different subclasses
of perfect graphs and in subsection 3.2 we study a non-perfect class: line
graphs of complete graphs.

3.1 Subclasses of perfect graphs

3.1.1 Interval graphs In order to prove that the µ-coloring problem over
interval graphs is NP-complete we will show a reduction from the coloring
problem over circular-arc graphs, which is NP-complete [11]. The proof is
similar to the one given in [3] for precoloring extension over interval graphs.

Theorem 1 The µ-coloring problem over interval graphs is NP-complete.

Proof An instance of the coloring problem over circular-arc graphs is given
by a circular-arc graph G and an integer k ≥ 1, and consists in deciding
whether G can be k-colored or not. Let G be a circular-arc graph and k be
an integer greater than zero. Let A = {(a1, b1), . . . , (an, bn)} be a circular-
arc representation of G (i.e., a collection of arcs over the unit circle [0, 2π)
such that G is the intersection graph of A). For i = 1, . . . , n, we call vi the
vertex of G corresponding to the arc (ai, bi).

Let A0 be the set of arcs from A containing the point 0. We can suppose
w.l.o.g. A0 = {(a1, b1), . . . , (at, bt)}. We can also suppose t ≤ k, otherwise
G is clearly not k-colorable. Define

I = (A\A0) ∪ {(ai, 2π) : i = 1, . . . , t}

∪ {(0, bi) : i = 1, . . . , t}

to be a family of arcs over the unit circle. Since a < b for every arc (a, b) ∈
I, we can see I as a family of intervals on the real line. Let H be the
interval graph induced by I. For i = 1, . . . , t, we call wi and w′

i the vertices
of H corresponding to the intervals (ai, 2π) and (0, bi), respectively. For
i = t + 1, . . . , n, we call wi the vertex corresponding to the interval (ai, bi).
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Moreover, let µ : V (H) → N be defined by

µ(wi) =

{

i if i = 1, . . . , t

k otherwise
for i = 1, . . . , n

µ(w′
i) = i for i = 1, . . . , t

This construction is clearly polynomial. We claim that G is k-colorable if
and only if H is µ-colorable.

Assume first that G is k-colorable and let c : V (G) → N be a coloring of
G using at most k colors. The vertices v1, . . . , vt corresponding to arcs of A0

form a complete graph, hence we can reorder the colors of c in such a way
that c(vi) = i, for i = 1, . . . , t. Now, the function d : V (H) → N defined by

d(wi) = c(vi) for i = 1, . . . , n

d(w′
i) = c(vi) for i = 1, . . . , t

is a µ-coloring of H and, therefore, H is µ-colorable.
On the other hand, assume that H is µ-colorable and let d : V (H) → N

be a µ-coloring of H. Since the vertices w1, . . . , wt form a complete subgraph
and µ(wi) = i for i = 1, . . . , t, then we have d(wi) = i for i = 1, . . . , t. A
similar analysis shows d(w′

i) = i for i = 1, . . . , t.
Consider now the function c : V (G) → N defined by c(vi) = d(wi) for

i = 1, . . . , n. Since t ≤ k and d(wi) ≤ µ(wi) for i = 1, . . . , n, it holds that
c(vi) ≤ k for i = 1, . . . , n. We claim that c is a valid k-coloring of G. To this
end, let vivj ∈ E(G) be an edge of G. The following case analysis shows
that c(vi) 6= c(vj):

− If i, j > t or i, j ≤ t, then c(vi) = d(wi) 6= d(wj) = c(vj).
− If i ≤ t and j > t, then either the interval (aj , bj) intersects the interval

(ai, 2π) (in which case c(vi) = d(wi) 6= d(wj) = c(vj)), or the interval
(aj , bj) intersects the interval (0, bi) (in which case c(vi) = d(wi) = i =
d(w′

i) 6= d(wj) = c(vj)). In both cases we get c(vi) 6= c(vj).
− If i > t and j ≤ t, a similar argument shows c(vi) 6= c(vj).

Hence, the graph G is k-colorable. ut

With this result and the NP-completeness of precoloring extension on in-
terval graphs, it follows that the four problems considered are NP-complete
also for chordal graphs, one of the most studied subclasses of perfect graphs,
which is a superclass of interval graphs.

3.1.2 Complete bipartite graphs The next theorem uses combinatorial ar-
guments to prove that (γ, µ)-coloring problem is polynomial in complete
bipartite graphs. If G = (V,E) is a graph and γ, µ : V → N, we define
γmin = min{γ(v) : v ∈ V } and µmax = max{µ(v) : v ∈ V }.
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Theorem 2 The (γ, µ)-coloring problem in complete bipartite graphs can be

solved in polynomial time.

Proof Let G = (V,E) be a complete bipartite graph, with bipartition V1∪V2,
and let γ, µ : V → N such that γ(v) ≤ µ(v) for every v ∈ V . Let K0 =
{γmin, . . . , µmax}, and consider the following procedure:

set K := K0; {available colors}

set F := ∅; {uniquely colorable vertices}

while there exists some non-colored vertex v ∈ V such that
K ∩ {γ(v), . . . , µ(v)} is a singleton, say {i}:

Let j ∈ {1, 2} such that v ∈ Vj ;

Assign color i to all the vertices w in Vj such that
γ(w) ≤ i ≤ µ(w) (note that this includes the vertex v);

set K := K\{i};

set F := F ∪ {v};

end;

Upon termination of this procedure, we are left with a set C ⊆ V of
colored vertices. Moreover, the set F ⊆ C contains uniquely colorable ver-
tices and so, each vertex of this set is assigned the only possible color in
any valid (γ, µ)-coloring of G. We now show that G is (γ, µ)-colorable if
and only if K ∩ {γ(v), . . . , µ(v)} 6= ∅ for every v ∈ V \C. Assume there
exists some v ∈ V \C such that K ∩ {γ(v), . . . , µ(v)} = ∅, and suppose
w.l.o.g. v ∈ V1. For every j = γ(v), . . . , µ(v), there exists some w ∈ V2 ∩ F

such that the procedure has assigned the color j to w, and this is the only
possible color for w in any (γ, µ)-coloring. Hence v cannot be assigned any
color in {γ(v), . . . , µ(v)} and, therefore, G is not (γ, µ)-colorable.

On the other hand, suppose K ∩ {γ(v), . . . , µ(v)} contains at least two
colors for every v ∈ V \C. Let K = {i1, . . . , ik} with it < it+1 for t =
1, . . . , k − 1. Since each vertex in V1\C (resp. V2\C) admits at least two
consecutive colors in K (note that they are not necessarily consecutive in
K0), then we can color V1\C with colors in {ij in K : j is odd} and we
can color V2\C with colors in {ij in K : j is even}, thus obtaining a valid
(γ, µ)-coloring of G. This procedure is clearly polynomial in the number of
vertices of G. ut

This result implies that µ-coloring over complete bipartite graphs can
be solved in polynomial time.

Remark 1 The final observation in the proof of the previous theorem can be
generalized as follows. Let G = (V,E) be an arbitrary k-colorable graph,
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and let γ, µ : V → N such that, for each vertex v in V , µ(v)− γ(v) + 1 ≥ k.
Then G is (γ, µ)-colorable: just take a coloring c of G with k colors, and then
for each vertex v of G, assign to it a color c′(v) such that γ(v) ≤ c′(v) ≤ µ(v)
and c′(v) ≡ c(v) mod k.

3.1.3 Split graphs We first prove that for general split graphs the µ-coloring
problem is NP-complete. We use a reduction from the dominating set prob-
lem on split graphs, which is NP-complete [2,9].

Theorem 3 The µ-coloring problem over split graphs is NP-complete.

Proof An instance of the dominating set problem on split graphs is given
by a split graph G and an integer k ≥ 1, and consists in deciding if there
exists a subset D of V (G), with |D| ≤ k, and such that every vertex of
V (G) either belongs to D or has a neighbor in D. Such a set is called a
dominating set.

Let G be a split graph and k be an integer greater than zero. We will
construct a split graph G′ and a function µ : V (G′) → N such that G′

is µ-colorable if and only if G admits a dominating set of cardinality at
most k. Let K and I such that V (G) = K ∪ I, K is a complete and I is an
independent set in G. We may assume w.l.o.g. that G does not have isolated
vertices and k ≤ |K|. The graph G′ is defined as follows: V (G′) = K ∪ I; K

is a complete and I is an independent set in G′; for every pair of vertices
v ∈ K and w ∈ I, vw ∈ E(G′) if and only if vw 6∈ E(G). Define µ(v) = |K|
for every v ∈ K, and µ(w) = k for every w ∈ I.

Suppose first that G admits a dominating set D with |D| ≤ k. Since
G has no isolated vertices, G admits such a set D ⊆ K. Let us define a µ-
coloring of G′ as follows: color the vertices of D using different colors from 1
to |D|; color the remaining vertices of K using different colors from |D|+ 1
to |K|; for each vertex w in I, choose w′ in D such that ww′ ∈ E(G) and
color w with the color used by w′.

Suppose now that G′ is µ-colorable, and let c : V (G′) → N be a µ-
coloring of G′. Since µ(v) = |K| for every v ∈ K and K is complete in G′,
it follows that c(K) = {1, . . . , |K|}. Since k ≤ |K|, for each vertex w ∈ I

there is a vertex w′ ∈ K such that c(w) = c(w′) ≤ k. Then ww′ 6∈ E(G′),
so ww′ ∈ E(G). Thus the set {v ∈ K : c(v) ≤ k} is a dominating set of G

of size k. ut

This result implies that (γ, µ)-coloring over split graphs is NP-complete
too. At this moment, split graphs is the only class where we know that
the computational complexity of µ-coloring and precoloring extension is
different, unless P = NP.

Now, integer programming techniques are employed to prove the poly-
nomiality of the (γ, µ)-coloring problem for complete split graphs.
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Theorem 4 The (γ, µ)-coloring problem in complete split graphs can be

solved in polynomial time.

Proof Let G = (V,E) be a complete split graph with partition V = K ∪ I,
where K is a complete graph and I is an independent set. For 0 < j ≤ i ≤
µmax, let Li,j = |{v ∈ K : j ≤ γ(v) and µ(v) ≤ i}|. We reduce the problem
of finding a (γ, µ)-coloring of G to a linear programming feasibility problem.
For j = 1, . . . , µmax, we define the integer variable xj to be the number of
colors from the set {1, . . . , j} assigned to vertices of K and, based on this
definition, we consider the following linear program:

x0 = 0 (1)

xj+1 − xj ≥ 0 ∀ j ∈ {0, . . . , µmax − 1} (2)

xj+1 − xj ≤ 1 ∀ j ∈ {0, . . . , µmax − 1} (3)

xi − xj−1 ≥ Li,j ∀ i, j : 0 < j ≤ i ≤ µmax (4)

xµ(v) − xγ(v)−1 ≤ µ(v) − γ(v) ∀ v ∈ I (5)

We may assume that every color between 1 and µmax belongs to the
interval [γ(v), µ(v)], for some v ∈ V . Furthermore, we may assume µ(v) −
γ(v) ≤ d(v) for every v ∈ K ∪ I, implying that the number of variables and
constraints is polynomial in the size of G. All the constraints take the form
xj−xk ≥ αjk or xj = αj , hence the constraint matrix is totally unimodular,
implying that the associated polytope is integral (see for example [24]). To
complete the proof, we verify that G is (γ, µ)-colorable if and only if the
linear program (1)-(5) is feasible.

Assume first G is (γ, µ)-colorable. Let x0 = 0 and, for j = 1, . . . , µmax,
let xj be the number of colors from {1, . . . , j} assigned to vertices of K.
Constraints (1) to (3) are clearly verified. Since K is a complete subgraph,
then |K| different colors are assigned to the vertices of K, hence constraints
(4) hold. Finally, since every vertex v ∈ I is assigned a color between γ(v)
and µ(v), and v is adjacent to every vertex in K, then K cannot use all the
colors in {γ(v), . . . , µ(v)} and, therefore, constraints (5) are verified. Thus,
the linear program (1)-(5) admits a feasible solution.

Conversely, assume the linear program (1)-(5) is feasible and let x be an
integer solution, which exists since the associated polytope is integral. We
shall verify that G admits a (γ, µ)-coloring. Let M = {j : 1 ≤ j ≤ µmax and
xj − xj−1 = 1}. We construct a bipartite graph B with vertex set K ∪ M ,
and such that v ∈ K is adjacent to j ∈ M if and only if γ(v) ≤ j ≤ µ(v).
Any (γ, µ)-coloring of K using a subset of M as color set corresponds to a
matching of B of size |K|. Moreover, by Hall’s Theorem, such a matching
exists if and only if for every subset R of K, the neighborhood of R in M

has at least |R| vertices [14].
Let R be a subset of K, and let MR ⊆ M be the neighborhood of R

in B. Let i1, . . . , it be the elements of M in (strictly) increasing order, and
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partition MR = M1
R ∪ · · · ∪ Mk

R such that M
j
R is a maximal interval in MR

(i.e., M
j
R = {ipj

, ipj+1, . . . , iqj
} for some pj and qj , and ipj−1, iqj+1 6∈ MR).

Since the neighborhood of every vertex of K is an interval in M , then we
can partition R in k disjoint sets R1, . . . , Rk such that the neighborhood of
Ri in M is exactly M i

R, for i = 1, . . . , k. Therefore, |MR| =
∑k

i=1 |M
i
R| and

|R| =
∑k

i=1 |Ri|. In order to complete the proof, we verify |M i
R| ≥ |Ri| for

i = 1, . . . , k.
Let M ′ = M ∪ {0, µmax + 1}. For i = 1, . . . , k, define ai to be the maxi-

mum value in M ′ such that every element from M i
R is strictly greater than

ai, and define bi to be the minimum value in M ′ such that every element
from M i

R is strictly less than bi. We have |Ri| ≤ Lbi−1,ai+1 and, since x veri-
fies (2)-(4), then |M i

R| ≥ Lbi−1,ai+1. We conclude that B admits a matching
of size |K| and, therefore, K is (γ, µ)-colorable. Since x verifies (5) and I

is an independent set, then this (γ, µ)-coloring of K can be extended to a
(γ, µ)-coloring of G. ut

This theorem implies that µ-coloring over complete split graphs can be
solved in polynomial time.

3.1.4 Line graphs of complete bipartite graphs Considering these coloring
variations applied to edge coloring, we have the following result.

Theorem 5 The µ-coloring problem over line graphs of complete bipartite

graphs is NP-complete.

Proof We will show a reduction from precoloring extension of line graphs
of bipartite graphs, which is NP-complete [8], to µ-coloring of line graphs
of complete bipartite graphs. The former takes as input a bipartite graph
B = (V1 ∪ V2, E), an integer k ≥ 1, and a partial edge-precoloring f : E1 ⊆
E → {1, . . . , k}, and consists in deciding whether f can be extended to a
valid k-edge-coloring of B or not. The second takes as input a complete
bipartite graph Kn,n, a function µ, and consists in deciding whether B′ can
be µ-edge-colored or not.

Let B = (V1 ∪ V2, E), k ≥ 1, f : E1 ⊆ E → {1, . . . , k} be an instance of
precoloring extension of line graphs of bipartite graphs.

Construct a new graph B′ = (V ′
1 ∪ V ′

2 , E′) with

V ′
1 = V1 ∪ {wv′v : v ∈ V1, v

′ ∈ V2 and vv′ ∈ E1}

∪ {zvv′j : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1, 1 ≤ j < f(vv′)},

V ′
2 = V2 ∪ {wvv′ : v ∈ V1, v

′ ∈ V2 and vv′ ∈ E1}

∪ {zv′vj : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1, 1 ≤ j < f(vv′)},

E′ = (E \ E1) ∪ {v wvv′ : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1}

∪ {v′ wv′v : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1}

∪ {wvv′ zvv′j : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1, 1 ≤ j < f(vv′)}

∪ {wv′v zv′vj : v ∈ V1, v
′ ∈ V2 and vv′ ∈ E1, 1 ≤ j < f(vv′)}.
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Define µ : E′ → N as follows: µ(e) = k for e ∈ E \ E1; µ(v wvv′) =
µ(v′ wv′v) = f(vv′) for vv′ ∈ E1; µ(wvv′ zvv′j) = µ(wv′v zv′vj) = j for
vv′ ∈ E1, 1 ≤ j < f(vv′).

Finally, let n = max{|V ′
1 |, |V

′
2 |}. Add the required vertices and edges

to B′ in order to obtain Kn,n, and extend µ by defining µ(e) = 2n − 1
for each new edge e (this upper bound allows to color correctly the new
edges because they have 2n−2 incident edges). It is not difficult to see that
the transformation is polynomial, and that f can be extended to a valid
k-edge-coloring of B if and only if Kn,n can be µ-edge-colored. ut

3.2 A non-perfect class: line graphs of complete graphs

Finally, we analyze the class of line graphs of complete graphs. Again,
we have to consider the edge coloring of complete graphs.

Theorem 6 The µ-coloring problem over line graphs of complete graphs is

NP-complete.

Proof We show a reduction from the edge coloring problem, which is NP-
complete [16], to the edge µ-coloring problem of complete graphs, which is
equivalent to the µ-coloring problem over line graphs of complete graphs.
The edge coloring problem takes as input a graph G with n vertices, and
consists in deciding whether the edges of G can be colored with ∆(G) colors
or not, where ∆(G) is the maximum degree of the vertices of G. The reduc-
tion consists in extending G to the complete graph Kn, and then defining
µ : E(Kn) → N such that µ(e) = ∆(G) if e ∈ E(G) and µ(e) = 2n − 3,
otherwise (this upper bound allows to color correctly the new edges be-
cause they have 2n − 4 incident edges). It is easy to see that G can be
∆(G)-edge-colored if and only if Kn can be µ-edge-colored. ut

This result implies that (γ, µ)-coloring over line graphs of complete
graphs is NP-complete too.

Theorem 7 The precoloring extension problem over line graphs of complete

graphs is NP-complete.

Proof We provide a reduction from the precoloring extension problem over
line graphs of complete bipartite graphs, which is NP-complete [8], to the
edge precoloring extension problem of complete graphs, which is equivalent
to the precoloring extension problem over line graphs of complete graphs.
The former takes as input the complete bipartite graph Kn,n = (V1∪V2, E)
on 2n vertices, an integer k, and a partial edge-precoloring f : E′ ⊆ E →
{1, . . . , k}, and consists in deciding whether f can be extended to a valid
k-edge-coloring of Kn,n or not.
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Consider the case n even first. We extend the graph Kn,n to the complete
graph K2n by adding an edge between every pair of vertices in V1 and an
edge between every pair of vertices in V2. Denote by E1 (resp. E2) the set
of edges joining pairs of vertices in V1 (resp. V2). Since V1 (resp. V2) induces
a complete graph on (even) n vertices, then E1 (resp. E2) can be optimally
edge-colored with n− 1 colors. We precolor the edges in E1 (resp. E2) with
such an optimal edge-coloring using colors k + 1, . . . , k + n − 1, and we
maintain the original precoloring f for the precolored edges in E. Since
every vertex in V1 (resp. V2) is incident to an edge precolored with color c,
for each c ∈ {k+1, . . . , k+n−1}, then this new precoloring can be extended
to a (k + n − 1)-edge-coloring of K2n if and only if f can be extended to a
k-edge-coloring of Kn,n.

Consider now the case n odd. We cannot directly apply the previous
procedure in this case, since for odd n the chromatic index of Kn is n, hence
some edge in E could be assigned a color in {k + 1, . . . , k + n}. In order
to handle this situation, we first construct a graph K2n,2n with bipartition
V11 ∪ V12 and V21 ∪ V22 (each set Vij has n vertices). Define the partial
precoloring f ′ in the following way: color the edges joining vertices of V11

with vertices of V22 (resp. V12 and V21) with an optimal n-color edge-coloring
using colors k+1, . . . , k+n, and the edges joining vertices of V11 with vertices
of V21 (resp. V12 and V22) with the precoloring f . This new graph admits
a precoloring extension with k + n colors if and only if the original graph
admits a precoloring extension with k colors. To complete the proof, we
now apply the procedure for the even case to the newly constructed graph,
thus obtaining a complete graph on 4n vertices which admits a precoloring
extension with (k + 3n − 1) colors if and only if f ′ can be extended to a
k + n-edge-coloring of K2n,2n. ut

4 General results

Since all these problems are NP-complete in the general case, there are
polynomial-time reductions from each one to any other one. The reductions
we suggest in the following theorems involve changes in the graph, but are
closed within some graph classes. Therefore, they can be applied to prove
that the problems are polynomially equivalent in those classes.

Theorem 8 Let F be a family of graphs such that every graph in F has

minimum degree at least two. Then list-coloring, (γ, µ)-coloring and precol-

oring extension are polynomially equivalent in the class of F-free graphs.

Proof Let (G,L) be an instance of list-coloring over F-free graphs, consist-
ing of an F-free graph G = (V,E) and a list L(v) ⊆ {1, . . . , k} of colors for
every v ∈ V . We may assume

⋃

v∈V L(v) = {1, . . . , k}. For v ∈ V , define
L̄(v) = {1, . . . , k} \ L(v) to be the set of forbidden colors for the vertex v.
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Fig. 1 Example of reductions of Theorem 8 and Theorem 9. From left to right, a
list-coloring instance and its corresponding precoloring extension and µ-coloring
instances, respectively.

We shall reduce this instance to an instance of precoloring extension over
F-free graphs. To this end, we construct a new graph H = (V ′, E′) with

V ′ = V ∪ {wvj : v ∈ V and j ∈ L̄(v)},

E′ = E ∪ {v wvj : v ∈ V and j ∈ L̄(v)}.

In other words, for every vertex v ∈ V and every color j ∈ L̄(v), we add
a new vertex wvj adjacent to v. Furthermore, for every v ∈ V and every
j ∈ L̄(v), we precolor the vertex wvj with color j. Since G is an F-free
graph and all the vertices added to G by the construction have degree
one, then H does not contain any induced subgraph from F . Moreover,
G is list-colorable if and only if the precoloring of H can be extended to
a k-coloring. We can, therefore, reduce list-coloring over F-free graphs to
precoloring extension over F-free graphs and conversely, hence precoloring
extension, (γ, µ)-coloring, and list-coloring are polynomially equivalent over
this class. ut

Theorem 9 Let F be a family of graphs satisfying the following property:

for every graph G in F , no connected component of G is complete, and

for every cutpoint v of G, no connected component of G \ v is complete.

Then list-coloring, (γ, µ)-coloring, µ-coloring and precoloring extension are

polynomially equivalent in the class of F-free graphs.

Proof Since F satisfies the conditions of Theorem 8, it follows that list-
coloring, (γ, µ)-coloring, and precoloring extension are polynomially equiv-
alent over the class of F-free graphs. It suffices now to show a reduction
from (γ, µ)-coloring on F-free graphs to µ-coloring on F-free graphs.

Let (G, γ, µ) be an instance of (γ, µ)-coloring over F-free graphs, con-
sisting of an F-free graph G = (V,E) and two functions γ, µ : V → N such
that γ(v) ≤ µ(v) for every v ∈ V . We may assume µ(v) − γ(v) ≤ d(v) for
every v ∈ V , and that all the intervals cover the set {1, . . . , µmax}, implying
that µmax is polynomial in the size of G. We shall reduce this instance to
an instance of µ-coloring over F-free graphs. To this end, we construct a
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new graph H = (V ′, E′) with

V ′ = V ∪ {wvj : v ∈ V and 1 ≤ j < γ(v)},

E′ = E ∪ {v wvj : v ∈ V and 1 ≤ j < γ(v)}

∪ {wvj wvt : v ∈ V and 1 ≤ j < t < γ(v)}.

In other words, for every vertex v ∈ V we add a complete subgraph on
γ(v)−1 vertices, all of them joined to v. Furthermore, we keep µ(v) for every
v ∈ V and set µ(wvj) = j for every v ∈ V and every j = 1, . . . , γ(v) − 1.
Note that any µ-coloring of H assigns color j to wvj , for v ∈ V and j =
1, . . . , γ(v)−1, hence precluding the colors in {1, . . . , γ(v)−1} for the vertex
v. Therefore, G is (γ, µ)-colorable if and only if H is µ-colorable.

Finally, we verify that the construction of H ensures that H does not
contain any induced subgraph from F . Suppose the contrary, i.e., assume
H contains some induced subgraph S ∈ F . Denote by V new = V ′\V the
vertices of H added to G by the previous construction. Since G is an F-free
graph, then S must contain at least one vertex from V new. Moreover, since
no connected component of S is complete and every connected component
of H induced by V new is complete, then every connected component of S

must contain at least one vertex from V . Let C be a connected component
of S containing vertices of V new, and let v ∈ C ∩ V such that v has some
neighbor in C ∩ V new. By construction, and since C is not complete, v is a
cutpoint of C, and the neighbors of v in C∩V new form a complete connected
component M of C\v (in order to see that v is a cutpoint of C, recall that
every vertex in C ∩ V , different from v, does not have adjacencies in M).
Therefore, S admits a cutpoint v such that some connected component of
S\v is complete, contradicting the fact that S ∈ F . ut

An example of these reductions is shown in Figure 1, where we can
see a list-coloring instance and its corresponding precoloring extension and
µ-coloring instances.

Please note that, since odd holes and antiholes satisfy the conditions of
the theorems above, then these results are applicable for many subclasses
of perfect graphs. For example, since distance-hereditary graphs are equiv-
alent to {house, domino, gem, {Cn}n≥5}-free graphs [1] (see Figure 2 for
the definition of each one of these graphs), we obtain the following result as
a corollary of Theorem 9 and the fact that list-coloring is NP-complete for
distance-hereditary graphs [20].

Corollary 1 The (γ, µ)-coloring, µ-coloring and precoloring extension prob-

lems are NP-complete for distance-hereditary graphs.

5 Summary of complexity results

We summarize all the results about these coloring problems in Table 1.
As this table shows, unless P = NP, µ-coloring and precoloring extension are
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Fig. 2 Forbidden induced subgraphs for distance-hereditary graphs.

Class coloring PrExt µ-col. (γ, µ)-col. list-col.

Complete bipartite P P P P NP-c [20]

Bipartite P NP-c [17] NP-c [4] NP-c NP-c [22]

Cographs P [13] P [18] P [4] ? NP-c [20]

Distance-hereditary P [13] NP-c NP-c NP-c NP-c [20]

Interval P [13] NP-c [3] NP-c NP-c NP-c

Unit interval P NP-c [23] ? NP-c NP-c

Split P P [18] NP-c NP-c NP-c

Complete split P P P P NP-c [20]

Trivially perfect P P P ? NP-c

Threshold P P P ? NP-c

Line of Kn,n P [21] NP-c [8] NP-c NP-c NP-c

Complement of bipartite P [13] P [18] ? ? NP-c [19]

Line of Kn P [21] NP-c NP-c NP-c NP-c [22]

Table 1 Complexity table for coloring problems. Boldfaced results have been ob-
tained here. “NP-c” indicates an NP-complete problem, “P” a polynomial prob-
lem, and “?” an open problem. Results with no reference are trivial or can be
directly deduced from the other ones.

strictly more difficult than vertex coloring (due for example to interval and
bipartite graphs). On the other hand, list-coloring is strictly more difficult
than (γ, µ)-coloring, due to complete split and complete bipartite graphs,
and (γ, µ)-coloring is strictly more difficult than precoloring extension, due
to split graphs.

It remains as an open problem to know if there exists some class of
graphs where (γ, µ)-coloring is NP-complete and µ-coloring can be solved in
polynomial time. Among the classes considered in this work, the candidate
classes are cographs, unit interval, trivially perfect, threshold

and complement of bipartite.
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21. D. König, Über graphen und ihre anwendung auf determinantentheorie und

mengenlehre, Mathematische Annalen 77 (1916), 453–465.



Exploring the complexity boundary between coloring and list-coloring 17

22. M. Kubale, Some results concerning the complexity of restricted colorings of
graphs, Discrete Applied Mathematics 36 (1992), 35–46.

23. D. Marx, Precoloring extension on unit interval graphs, Discrete Applied

Mathematics 154 (2006), 995–1002.
24. G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization, Wiley

Interscience Series in Discrete Mathematics and Optimization, John Wiley &
Sons, New York, 1988.

25. Zs. Tuza, Graph colorings with local constraints – a survey, Discussiones

Mathematicae. Graph Theory 17 (1997), 161–228.


