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b CONICET and Departamento de Matemática, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
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Abstract

A graph is balanced if its clique-vertex incidence matrix is balanced, i.e., it does
not contain a square submatrix of odd order with exactly two ones per row and per
column. Interval graphs, obtained as intersection graphs of intervals of a line, are
well-known examples of balanced graphs. A circular-arc graph is the intersection
graph of a family of arcs on a circle. Circular-arc graphs generalize interval graphs,
but are not balanced in general. In this work we characterize balanced graphs
by minimal forbidden induced subgraphs restricted to graphs that belong to some
classes of circular-arc graphs.
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1 Introduction

A {0, 1}-matrix A is balanced if it does not contain a square submatrix of
odd order with exactly two ones per row and per column. Such matrices have
remarkable properties related to two fundamental combinatorial optimization
problems, set packing

max cT x s.t. Ax ≤ 1l, x ∈ {0, 1}n(1)

and set covering

min cT x s.t. Ax ≥ 1l, x ∈ {0, 1}n.(2)

The matrix A is perfect (resp. ideal) if no integrality requirements are needed
in (1) (resp. (2)) as the polytope P (A) = {x ∈ R

n
+ | Ax ≤ 1l} (resp. the

polyhedron Q(A) = {x ∈ R
n
+ | Ax ≥ 1l}) has integral extreme points only.

The matrix A is balanced if and only if all its submatrices are perfect if and only
if all its submatrices are ideal [10]. Well-known examples of balanced matrices
are totally unimodular matrices where even no integrality requirements are
needed in the above formulations for varying right hand side vectors.

A graph G is balanced if its clique-matrix is balanced [8]. Here, a clique Q

in a graph G = (V,E) is an inclusion-wise maximal subset of pairwise adjacent
vertices and given an enumeration Q1, . . . , Qk of all cliques of G and an order
v1, . . . , vn of all vertices of G, a clique-matrix of G is the k × n {0, 1}-matrix
A = (aij) such that aij = 1 if and only if vj ∈ Qi. The clique-matrix of a
graph is unique up to permutations of rows and/or columns.

The class of balanced graphs is closed under taking induced subgraphs.
Well-known examples of balanced graphs are bipartite graphs (having a parti-
tion of their vertices into two stable sets) and interval graphs (the intersection
graphs of intervals of a line), as their clique-matrices are totally unimodular
and, thus, balanced.

Well-known superclasses of balanced graphs are perfect graphs and hered-
itary clique-Helly graphs. A graph is perfect if its clique-matrix is perfect [7].
Some years ago, the minimal forbidden induced subgraphs of perfect graphs
were characterized [6], settling affirmatively a conjecture posed more than 40
years before by Berge [1]. The minimal forbidden induced subgraphs of perfect
graphs are the chordless cycles of odd length having at least 5 vertices, called
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odd holes C2k+1, and their complements, the odd antiholes C2k+1.

A graph is hereditary clique-Helly if in any of its induced subgraphs, every
nonempty subfamily of pairwise intersecting cliques has a common vertex.
It follows from [2] that balanced graphs are hereditary clique-Helly. Prisner
[13] characterized hereditary clique-Helly graphs as those graphs containing
no induced 0-, 1-, 2-, or 3-pyramid (see Figure 1).

Hence, no balanced graph contains an odd hole, odd antihole, or any of
the pyramids as induced subgraph.

Fig. 1. The pyramids

In addition, balanced graphs were characterized by means of forbidden
induced subgraphs in [4]. For a graph G = (V,E) and W ⊆ V , let N(W ) =⋂

w∈W N(w) and use N(e) as shorthand for N({u, v}) for an edge e = uv.
An unbalanced cycle of G is an odd cycle C = (V ′, E ′) such that, for each
edge e ∈ E ′, there exists a (possibly empty) complete subgraph We of G such
that We ⊆ N(e) \ V ′ and N(We) ∩ N(e) ∩ V ′ = ∅. Note that the subsets
We and Wf for different edges e, f ∈ E ′ may overlap. An extended odd sun

is a graph G with an unbalanced cycle C such that V = V ′ ∪
⋃

e∈E′ We and
|We| ≤ |N(e) ∩ V ′| for each edge e of C. The smallest extended odd suns are
C5 and the pyramids.

The characterization of balancedness by forbidden subgraphs is as follows.

Theorem 1.1 ([4]) A graph is balanced if and only if it has no unbalanced

cycle, or, equivalently, if and only if it contains no induced extended odd sun.

However, the above characterization is not by minimal forbidden induced
subgraphs because some extended odd suns contain some other extended odd
suns as proper induced subgraphs, as Figure 2 shows.

Fig. 2. On the left, an extended odd sun that is not minimal. Bold lines correspond
to the edges of a proper induced extended odd sun, depicted on the right.



Thus, excluding extended odd suns suffices to guarantee balancedness, but
it is not necessary to exclude all of them. We address the problem to find the
minimal forbidden induced subgraphs, i.e., those graphs that are not balanced
but all their proper induced subgraphs are balanced. This problem is still
open, and only some partial results are known. A characterization of strongly
chordal graphs [9] showed that they are balanced. The balanced graphs which
are chordal have been characterized in [12]. Minimal forbidden induced sub-
graph characterizations of balanced graphs restricted to the following graph
classes are found in [5]: P4-tidy graphs, paw-free graphs, line graphs, and com-
plements of line graphs. In this paper, we study balanced graphs restricted to
some subclasses of circular-arc graphs.

A circular-arc (CA) graph is the intersection graph of a family of open arcs
on a circle Such a family of arcs is called a CA model of the graph. Clearly, CA
graphs can be seen as an extension of the well-known class of interval graphs.
While interval graphs form a subclass of balanced graphs, this is not the case
for CA graphs. Note that CA graphs are neither perfect nor hereditary clique-
Helly in general as odd holes, odd antiholes, and pyramids can be easily seen
to be CA graphs. Hence, the study of balancedness of CA graphs is in order.
Perfectness of CA graphs was addressed in [14].

Our aim is to present minimal forbidden induced subgraph characteriza-
tions of balanced graphs within a superclass of Helly circular-arc graphs and
the classes of claw-free circular-arc graphs and gem-free circular-arc graphs.

2 Balancedness of Some Classes of Circular-Arc Graphs

2.1 Balancedness of a Superclass of Helly Circular-Arc Graphs

A Helly circular-arc (HCA) graph is a circular-arc graph admitting a circular-
arc model that satisfies the Helly property, i.e., every subset of pairwise in-
tersecting arcs have a point in common. Note that in [11] it is shown that
a CA graph is HCA if and only if it does not contain an obstacle, which is
a graph H with a clique Q = {v1, v2, . . . , vt} where t ≥ 3 such that for each
i = 1, . . . , t at least one of the following assertions holds (where indices are
considered modulo t):

(i) N(wi) ∩ Q = Q \ {vi, vi+1}, for some wi ∈ V (H) \ Q.

(ii) N(ui) ∩ Q = Q \ {vi} and N(zi) ∩ Q = Q \ {vi+1}, for some adjacent
vertices ui, zi ∈ V (H) \ Q.



Fig. 3. Families of minimally not balanced HCA graphs: (a) The family V 2t+1
p .

The dotted paths joining v3 and vp+1 and joining vp+2 and v1 represent chordless
even paths, not simultaneously empty. All vertices of the dotted path joining v3

to vp+1 are adjacent to u2. (b) The family D2t+1. The dotted path joining v3 and
v2t+1 represents a non-empty even path of length 2t−2. (c) The family X2t+1

p . The
dotted paths joining v4 and vp and joining vp+1 and v2t+1 represent any chordless
even paths, both of them possibly empty, even simultaneously. The vertices of the
dotted path joining v4 to vp are all adjacent to u4.

In order to give a minimal forbidden induced subgraphs characterization
of balancedness within HCA graphs, we introduce the following graph families.

• For each t ≥ 2 and even p with 2 ≤ p ≤ 2t, we define the graph V 2t+1
p

with vertex set {v1, v2, . . . , v2t+1, u1, u2}, such that v1v2 . . . v2t+1v1 is a cycle
whose only chord is v1v3, N(u1) = {v1, v2}, and N(u2) = {v2, v3, . . . , vp+1}.

• For t ≥ 2, let the graph D2t+1 have vertex set {v1, v2, . . . , v2t+1, u1, u2, u3},
such that v1v2 . . . v2t+1v1 is a cycle whose only chords are v2t+1v2 and v1v3,
N(u1) = {v2t+1, v1}, N(u2) = {v2, v3}, and N(u3) = {v1, v2}.

• For t ≥ 2 and each even p with 4 ≤ p ≤ 2t, the graph X2t+1
p has vertex

set {v1, v2, . . . , v2t+1,u1, u2, u3, u4} such that v1v2 . . . v2t+1v1 is a cycle whose
only chords are v2t+1v2 and v1v3, N(u1) = {v2t+1, v1}, N(u2) = {v2, v3, u4},
N(u3) = {v2t+1, v1, v2, u4}, and N(u4) = {v1, v2, v3, . . . , vp, u2, u3}.

In the three above families of graphs, C = v1v2 . . . v2t+1v1 is an unbalanced
cycle and consequently all their members are not balanced. The three graph
families are schematically represented in Figure 3.

As one of our main results, we characterize those HCA graphs that are
balanced by minimal forbidden induced subgraphs as follows

Theorem 2.1 Let G be a HCA graph. G is balanced if and only if G contains

none of the following as induced subgraph:



(i) odd holes, C7,

(ii) 3-sun, 1-pyramid, 2-pyramid,

(iii) V 2t+1
p , D2t+1, X2t+1

p for any t ≥ 2 and any valid p.

The proof of Theorem 2.1 is based on Theorem 1.1, i.e., we show that any
minimal odd extended sun H which is a HCA graph is one of the graphs of
(i), (ii), or (iii). The crucial part of the proof is showing that if H is not an
odd hole and has an unbalanced cycle C of length at least 7 then C has at
most two chords, each of which is short (i.e., joining two vertices at distance
two within C) and if C has two chords then they cross (where two chords ab

and cd of C cross if a, c, b, d appear in that order in C).

In fact, we can extend Theorem 2.1 to a superclass of HCA graphs, namely
the class of CA graphs containing no induced net, S4, or U4 (see Figure 4).

Fig. 4. Some small graphs

For each t ≥ 3, let St denote the complete t-sun consisting of a clique
Qt = {w1, w2, . . . , wt} and vertices v1, v2, . . . , vt such that vi is adjacent to
exactly wi and wi+1 for each i = 1, 2, . . . , t (subindices are considered modulo
t). The complement of St is denoted by St. Note that obstacles for HCA
graphs as defined in [11] are not necessarily minimal (i.e., there are obstacles
that contain proper induced obstacles) and even there are minimal obstacles
that are not CA graphs. The following lemma characterizes those minimal
obstacles that are CA graphs and contain no induced 1-pyramid or 2-pyramid.

Lemma 2.2 Let H be a {1-pyramid,2-pyramid}-free minimal obstacle which

is a CA graph. Then, H is 3-pyramid, U4, or St for some t ≥ 3.

Lemma 2.2 and the characterization of HCA graphs given in [11] can be
used to extend Theorem 2.1 to {net,S4,U4}-free CA graphs as follows.

Corollary 2.3 Let G be a {net,S4,U4}-free CA graph. G is balanced if and

only if G contains none of the following as induced subgraph:

(i) odd holes, C7,

(ii) the pyramids,

(iii) V 2t+1
p , D2t+1, X2t+1

p for any t ≥ 2 and any valid p.



2.2 Balancedness of Claw-Free Circular-Arc Graphs

Next, we characterize the CA graphs without induced claw that are balanced
(see Figure 4 for a claw). Note that the class of claw-free CA graphs encom-
passes all proper circular-arc graphs, i.e., all CA graphs admitting a CA model
in which no arc properly contains another.

Our result relies on Corollary 2.3 and a result derived from [3] that a
claw-free CA graph containing an induced net is either a net, or contains an
induced 3-sun, or has true twins (i.e., two adjacent vertices with the same
closed neighborhoods).

Theorem 2.4 Let G be a claw-free CA graph. G is balanced if and only if G

contains none of the following as induced subgraph:

(i) odd holes, C7,

(ii) the pyramids.

The list of minimal forbidden induced subgraphs implies further:

Corollary 2.5 A claw-free CA graph G is balanced if and only if G is perfect

and hereditary clique-Helly.

2.3 Balancedness of Gem-Free Circular-Arc Graphs

In this subsection we will give a minimal forbidden induced subgraph charac-
terization of those gem-free CA graphs that are balanced (see Figure 4 for a
gem). Our prove relies on Corollary 2.3 and the following lemma.

Lemma 2.6 Let G be a gem-free CA graph that contains an induced net or

an induced U4. Then, G has either true twins or a cutpoint.

Here, a cutpoint is a vertex whose removal increases the number of con-
nected components of the graph.

We characterize balanced graphs among gem-free CA graphs as follows.

Theorem 2.7 Let G be a gem-free CA graph. G is balanced if and only if G

contains none of the following as induced subgraph:

(i) odd holes,

(ii) 3-pyramid.

The list of minimal forbidden induced subgraphs implies further:

Corollary 2.8 A gem-free CA graph G is balanced if and only if G is perfect

and hereditary clique-Helly.
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ungerade Kreise starr sind (Zusammenfassung), Wiss. Z. Martin-Luther-Univ.
Halle-Wittenberg, Math.-Naturwiss. Reihe 10 (1961), pp. 114–115.

[2] Berge, C., Balanced matrices, Math. Program. 2 (1972), pp. 19–31.

[3] Bonomo, F., G. Durán, L. N. Grippo and M. D. Safe, Partial characterizations
of circular-arc graphs, J. Graph Theory 61 (2009), pp. 289–306.

[4] Bonomo, F., G. Durán, M. C. Lin and J. L. Szwarcfiter, On balanced graphs,
Math. Program. 105 (2006), pp. 233–250.

[5] Bonomo, F., G. Durán, M. D. Safe and A. K. Wagler, On minimal forbidden
subgraph characterizations of balanced graphs, Electron. Notes Discrete Math.
35 (2009), pp. 41–46.

[6] Chudnovsky, M., N. Robertson, P. D. Seymour and R. Thomas, The strong
perfect graph theorem, Ann. Math. 164 (2006), pp. 51–229.
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