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Abstract

A graph G is clique-perfect if the cardinality of a maximum clique-
independent set of H is equal to the cardinality of a minimum clique-
transversal of H, for every induced subgraph H of G. When equality
holds for every clique subgraph of G, the graph is c–clique-perfect.
A graph G is K-perfect when its clique graph K(G) is perfect. In
this work, relations are described among the classes of perfect, K-
perfect, clique-perfect and c–clique-perfect graphs. Besides, partial
characterizations of K-perfect graphs using polyhedral theory and
clique subgraphs are formulated.
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FAPERJ, Brasil.



1 Introduction

Let G be a graph, with vertex set V (G) and edge set E(G). Denote by
N(v) the set of neighbours of v ∈ V (G). The closed neighbourhood of v is
N [v] = N(v) ∪ {v}. For v, w ∈ V (G), say that v is dominated by w when
N [v] ⊆ N [w]. In particular, when N [v] = N [w], then v and w are twins.

A complete set of G is a subset of vertices pairwise adjacent. A clique is
a complete set not properly contained in any other. We may also use the
term clique to refer to the corresponding complete subgraph.

Let C(v) be the set of cliques containing the vertex v. Denote m(v) =
|C(v)|.

A clique cover of a graph G is a subset of cliques covering all the vertices of
G. The clique-covering number θ(G) is the cardinality of a minimum clique
cover of G. An independent set in a graph G is a subset of pairwise non-
adjacent vertices of G. The independence number α(G) is the cardinality
of a maximum independent set of G.

The chromatic number of a graph G is the smallest number of colours that
can be assigned to the vertices of G in such a way that no two adjacent
vertices receive the same color, and is denoted by χ(G). An obvious lower
bound is the maximum cardinality of the cliques of G, the clique number

of G, denoted by ω(G).

A graph G is perfect when θ(H) = α(H) for every induced subgraph H
of G (or equivalently, when χ(H) = ω(H) for every induced subgraph H).
If the first equality holds (θ(G) = α(G)) for the graph G, G is α-good. If
the second one happens (χ(G) = ω(G)), G is χ-good. If both results are
verified, we say that G is good.

Perfect graphs are very interesting from an algorithmic point of view, see
[16]. While determining the clique-covering number, the independence
number, the chromatic number and the clique number of a graph are NP-
complete problems, they are solvable in polynomial time for perfect graphs
[17]. Besides, it has been proved recently that perfect graphs can be recog-
nized in polynomial time [11].

A clique-transversal of a graph G is a subset of vertices that meets all the
cliques of G. A clique-independent set is a collection of pairwise vertex-
disjoint cliques. The clique-transversal number and clique-independence

number of G, denoted by τc(G) and αc(G), are the sizes of a minimum
clique-transversal and a maximum clique-independent set of G, respectively.



It is easy to see that τc(G) ≥ αc(G) for any graph G. A graph G is clique-

perfect if τc(H) = αc(H) for every induced subgraph H of G. If this equality
holds for the graph G, we say that G is clique-good.

Clique-perfect graphs have been implicitly studied in many articles, as [1,
4, 7, 9, 14, 18, 19]. The terminology “clique-perfect” has been introduced
in [18].

Let H = (V, E) be a hypergraph. A sequence v1, E1, . . . , vk, Ek of dis-
tinct vertices v1, . . . , vk and distinct hyperedges E1, . . . , Ek of H is a spe-

cial cycle of length k if k ≥ 3, vi, vi+1(mod k) ∈ Ei and Ei ∩ {v1, . . . , vk} =
{vi, vi+1(mod k)}, for each i, 1 ≤ i ≤ k.

A hypergraph H is balanced if it contains no special cycles of odd length
[4]. The clique hypergraph of a graph G has the same vertex set as G and
all cliques of G as hyperedges. Say that a graph G is balanced if its clique
hypergraph is balanced [13].

A subset V ′ ⊆ V is a transversal of a hypergraph H if every hyperedge
contains a vertex from V ′. The cardinality of a minimum transversal of
H is the transversal number of H. A subset E ′ ⊆ E is a matching of an
hypergraph H if and only if for all distinct Ei, Ej ∈ E ′, Ei ∩ Ej = ∅. The
cardinality of a maximum matching of H is the matching number of H.

A hypergraph H has the König property if the transversal number of H is
equal to the matching number of H (see, for example, [3]).

Clique-perfection of a graph G means that for every induced subgraph
G′ of G the clique hypergraph of G′ has the König property. Berge and
Las Vergnas showed that balanced hypergraphs fulfill the König property
[4]. These results imply that balanced graphs are clique-perfect, using the
terminology of [18].

Strongly chordal graphs [9], dually chordal graphs [7], comparability graphs
[1], odd sun-free chordal graphs [19] and short-chorded graphs not contain-
ing either a 4-wheel or a 3-fan as induced subgraphs [14] are examples of
other clique-perfect graph classes.

Clearly, perfect graphs are not necessarily clique-perfect. On the other
hand, clique-perfect graphs are not necessarily perfect. The graph C6j+3,
the complement of a chordless cycle of length 6j + 3, is clique-perfect but
not perfect for any j ≥ 1 [21].

Perfect matrices are defined in the context of perfect graphs. A matrix
A ∈ Rk×n is perfect if the polyhedron P (A) = {x ∈ Rn/Ax ≤ 1, x ≥ 0} has



only integer extreme points.

Let M1, . . . ,Mk and v1, . . . , vn be the cliques and vertices of a graph G,
respectively. A clique matrix AG ∈ Rk×n of G is a 0-1 matrix whose entry
aij is 1 if vj ∈ Mi, and 0, otherwise.

Consider a finite family of non-empty sets. The intersection graph of this
family is obtained by representing each set by a vertex, two vertices being
connected by an edge if and only if the corresponding sets intersect.

Let A ∈ Rr×n be a 0-1 matrix having no zero columns. The derived graph

of A is the intersection graph of its columns, that is, a graph of n vertices
v1, . . . , vn where vi is adjacent to vj if there exists a row l in A such that
ali = alj = 1.

The clique graph K(G) of G is the intersection graph of the cliques of G.
Denote by K2(G) the clique graph of K(G). A graph G is self-clique if
K(G) is isomorphic to G. A graph G is K-perfect if K(G) is perfect.

A family of subsets S satisfies the Helly property when every subfamily of it
consisting of pairwise intersecting subsets has a common element. A graph
is clique-Helly (CH) when its cliques satisfy the Helly property. A graph G
is hereditary clique-Helly (HCH) when H is clique-Helly for every induced
subgraph H of G.

A graph is chordal when every cycle of length greater than 3 has a chord.

Let G be a graph, M the set of cliques of G and M ′ ⊆ M . Denote by GM ′

the subgraph of G formed exactly by the vertices and edges corresponding
to the cliques of M ′. When every clique of GM ′ is also a clique of G, we
say that GM ′ is a clique subgraph of G. A graph G is c–clique-perfect if
τc(H) = αc(H) for every clique subgraph H of G.

The paper is organized as follows. In section 2, some basic results on
perfect, clique-perfect and good graphs are shown. In section 3, partial
characterizations of K-perfect graphs using polyhedral theory and clique
subgraphs are formulated.



2 Basic results

2.1 Perfect graphs

Berge defined perfect graphs and stated two famous conjectures [2]. The
first one said that a graph is perfect if and only if its complement is perfect.
This conjecture was proved by Lóvasz in 1972 [20] and is known as the
Perfect Graph Theorem.

Theorem 2.1 (Perfect Graph Theorem) Given a graph G, the follow-

ing statements are equivalent:

(P1) ω(H) = χ(H) for every induced subgraph H of G.

(P2) α(H) = θ(H) for every induced subgraph H of G.

(P3) |V (H)| ≤ ω(H)α(H) for every induced subgraph H of G.

The second one, known as the Strong Perfect Graph Conjecture, was open
more than forty years and was recently proved [10].

Theorem 2.2 (Strong Perfect Graph Theorem) A graph G is perfect

if and only if it contains neither induced odd cycle of length at least five nor

its complement.

On the other hand, Chvátal [12] formulated the following theorem which
relates perfect matrices with perfect graphs.

Theorem 2.3 Let A be a 0-1 matrix with neither zero columns nor domi-

nated rows. The matrix A is perfect if and only if A is the clique matrix of

a perfect graph.

2.2 Good graphs

In this subsection we prove some results on good graphs and variations of
them.

The following concept is related to property P3 of Theorem 2.1. A graph
G is L-good if |V (G)| ≤ ω(G)α(G).
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Figure 1: Intersection between classes of good graphs.

Proposition 2.1 Let G be a graph. Then if G is either χ-good or α-good,

then G is L-good.

Proof: Suppose G is χ-good. As there are at most α(G) vertices in each
one of the χ(G) independent sets in the partition of the vertices induced
by an optimal colouring of the graph, it follows that |V (G)| ≤ α(G)χ(G).
If χ(G) = ω(G), G results L-good.

Now suppose the graph G is α-good. Observe that each one of the θ(G)
cliques in an optimal clique covering covers at most ω(G) vertices of G.
Then, |V (G)| ≤ ω(G)θ(G). If α(G) = θ(G), the result follows directly. 2

Figure 1 shows that graph classes α-good, χ-good and L-good are not
equivalent.

Now, a characterization of χ-good graphs is formulated.

Theorem 2.4 Let G be a graph, then G is χ-good if and only if there

exists a sequence of induced subgraphs H0 = G ⊃ H1 ⊃ · · · ⊃ Hω(G)−1

which verifies for i = 0, . . . , ω(G) − 2:



(i) V (Hi+1) = V (Hi) − Si, where Si is an independent set of Hi,

(ii) ω(Hi+1) = ω(Hi) − 1.

Proof:

⇒) Suppose G is a χ-good graph. Let F1, . . . , Fω(G) be a partition of the
vertices of G into ω(G) independent sets. Consider the following sequence
of graphs: H0 = G, H1 defined as the induced subgraph which contains
every vertex of G except for the ones belonging to F1. In general, define Hi

as the subgraph of G induced by the vertices of Hi−1 except for the vertices
belonging to Fi. We need to check that this sequence verifies the previous
conditions. Clearly, Hi ⊃ Hi+1. It remains to prove that ω(Hi+1) =
ω(Hi)−1. Observe that, since the family F1, . . . , Fω(G) is a partition of the
vertices of G into independent sets, it follows that V (Hω(G)−1) = Fω(G). As
Fω(G) is an independent set, ω(Hω(G)−1) = 1. On the other hand, from the
fact that the set of vertices V (Hi − Hi+1) is an independent set, it follows
that the difference between ω(Hi) and ω(Hi+1) is either 0 or 1. Then, in
each step, the value of ω can decrease by at most 1. If we observe that in
the sequence ω(H0), . . . , ω(Hω(G)−1) there are ω(G) − 1 steps to go from
the number ω(G) to 1, we conclude that ω(Hi) − ω(Hi+1) must be 1.

⇐) Suppose there exists a sequence H0 = G ⊃ H1 ⊃ · · · ⊃ Hω(G)−1 veri-
fying the hypothesis of the theorem. We are going to construct a partition
of the vertices of G into ω(G) independent sets. Define F1 as the set of
vertices belonging to H0 and not to H1. In general, for i ≤ ω(G)− 1 define
Fi as the set of vertices which belong to Hi−1 and not to Hi. Observe that
from the fact that ω(Hi) − ω(Hi+1) = 1, it follows that ω(Hω(G)−1) = 1.
This means that the vertices of Hω(G)−1 are an independent set. Hence, by
defining Fω(G) as the set of vertices of Hω(G)−1, it follows that the family
F1, . . . , Fω(G) is a partition of the vertices G into ω(G) independent sets.
2

It is a trivial result that a graph G is χ-good if and only if G is α-good.
So, we may formulate an analogous characterization for α-good graphs.

Theorem 2.5 Let G be a graph, then G is α-good if and only if there

exists a sequence of induced subgraphs L0 = G ⊃ L1 ⊃ · · · ⊃ Lα(G)−1 which

verifies for j = 0, . . . , α(G) − 2:

(i) V (Lj+1) = V (Lj) − Cj, where Cj is a complete set of Lj,

(ii) α(Lj+1) = α(Lj) − 1.



Clearly, graphs Hi of Theorem 2.4 are χ-good and graphs Lj of Theorem
2.5 are α-good.

Clique-good graphs and graphs whose clique graph is α-good are related
by Theorem 2.6. To prove this theorem, we will need the following lemma:

Lemma 2.1 [15] Let G be a clique-Helly graph and let K(G) be its clique

graph. Then, each clique L of K(G) has an associated vertex vL in G such

that the vertices of L in K(G) are exactly those corresponding to the cliques

of C(vL) in G.

Theorem 2.6 Let G be a graph. Then:

(i) αc(G) = α(K(G)).

(ii) τc(G) ≥ θ(K(G)).

(iii) If G is clique-Helly then τc(G) = θ(K(G)).

Proof:

(i) It follows from the fact that independent cliques of G correspond to
non adjacent vertices in K(G), and conversely.

(ii) Let v1, . . . , vτc(G) be a clique-transversal set of G. For each i, analyse
the m(vi) vertices in K(G) corresponding to the cliques in G that
contain the vertex vi. They form a complete set of K(G). This
complete set must be included in some clique Li of K(G). Observe
that these cliques Li (i = 1, . . . , τc(G)) are not all necessarily different.
Let us see that these at most τc(G) cliques are a clique cover of K(G).
Let w be a vertex of K(G). Then w corresponds to some clique
Mw of G. As the set v1, . . . , vτc(G) intersects all the cliques of G,
there is some vertex vj that belongs to Mw. This means that the
corresponding vertex of Mw in K(G) belongs to the clique Lj , i.e,
w ∈ Lj . Then, the size of the minimum clique cover of K(G) is at
most the size of this clique cover which is at most τc(G).

(iii) All we need to prove is that if G is clique-Helly, then τc(G) ≤ θ(K(G)).
Let L1, . . . , Lθ(K(G)) be a clique cover of K(G). Let vL1

, . . . , vLθ(K(G))

be the associated vertices of those θ(K(G)) cliques given by Lemma
2.1. We want to prove that they form a clique-transversal set of G.
Let M be a clique of G and wM its corresponding vertex in K(G).



Then there is an index j such that wM belongs to the clique Lj in
K(G). It follows that the associated vertex vLj

belongs to M in G.
2

A trivial corollary of this theorem is the following.

Corollary 2.1 Let G be a clique-good graph. Then the clique graph K(G)
is α-good. Besides, if G is a clique-Helly graph, the converse also holds.

2.3 Clique-perfect graphs

We describe classes of graphs which are not clique-perfect.

An r-sun, r ≥ 3, is a chordal graph G of 2r vertices whose vertex set can be
partitioned into two sets: W = {w1, . . . , wr} and U = {u1, . . . , ur}, such
that W is an independent set and for each i and j, wj is adjacent to ui if
and only if i = j or i ≡ j + 1 (mod r).

Let G be a graph and C be a cycle of G not necessarily induced. An edge
of C is non proper if it forms a triangle with some vertex of C.

An r-generalized sun, r ≥ 3, is a graph G whose vertex set can be partitioned
into two sets: a cycle C of r vertices, with non proper edges {ej}j∈J (J
could be an empty set) and an independent set U = {uj}j∈J , such that for
each j ∈ J , uj is adjacent only to the endpoints of ej .

An r-sun or an r-generalized sun is said to be odd if r is odd. Figure 2
shows some examples of odd generalized suns.

A hole is a chordless cycle of length at least 4. An antihole is the comple-
ment of a hole. A hole is said to be odd if the length of the chordless cycle
is odd, and even, otherwise.

Clearly, odd suns and odd holes are odd generalized suns.

Antiholes of length at least 5, except for C3k, are not clique-perfect [21].
The same holds for odd generalized suns, as follows.

Theorem 2.7 Odd generalized suns are not clique-perfect.

Proof: Let G be a (2k + 1)-generalized sun. Then its vertex set can be
partitioned into a (2k + 1)-cycle with a set E of non proper edges and an



A 7-generalized sun A 5-generalized sun

Viking

Figure 2: Examples of odd generalized suns.

independent set {ue}e∈E , as it is said in the definition. Each edge e of the
cycle either is proper (and then is a clique of G) or it forms a triangular
clique with the vertex ue. Let T be a minimum clique-transversal set of G
and let e be an edge of the cycle. If e is not covered by T , then e must be non
proper and the vertex ue must belong to T . Replacing ue by an endpoint of
e, we obtain a minimum clique-transversal set which also covers the edge e.
Repeating this procedure, we can obtain a minimum clique-transversal set
that covers all the edges of the cycle, so τc(G) ≥ k + 1. On the other hand,
every clique of G contains at least two vertices of the cycle, so αc(G) ≤ k.
Therefore G is not clique-good and, in consequence, is not clique-perfect
too. 2

It remains as an open problem to characterize clique-perfect graphs. In
addition, is there such a characterization by forbidden subgraphs? Finally,
another open question is whether clique-perfect graphs can be recognized
in polynomial time.

3 K-perfect graphs

3.1 A partial characterization by polyhedral theory

In this section, we relate the concept of K-perfection for a clique-Helly graph
G with properties of the polyhedron {x ∈ Rk/At

Gx ≤ 1, x ≥ 0}, where AG

is a clique matrix of G.

Theorem 3.1 Let G be a graph, AG a clique matrix of G and AK(G) a

clique matrix of K(G) with the vertices in the same order as their corre-

sponding cliques in AG. Then, the following statements are equivalent:



(i) G is clique-Helly.

(ii) The matrix At
G without the dominated rows is a clique matrix of

K(G).

(iii) The polyhedron {x ∈ Rk/At
Gx ≤ 1, x ≥ 0} is the same as the polyhe-

dron {x ∈ Rk/AK(G)x ≤ 1, x ≥ 0}.

Proof:

(i) ⇒ (ii) Let G be a clique-Helly graph and V (G) = {v1, v2, . . . , vn} the
vertices of G. Note that C(v1), . . . , C(vn) are identified by the columns
of AG, so by Lemma 2.1, every clique of K(G) is identified by a column
of AG and every column of AG represents a complete set of K(G). Then
the submatrix of At

G obtained by removing the dominated rows is a clique
matrix of K(G).

(ii) ⇒ (iii) As the variables are nonnegative, the dominated rows of the
matrix At

G can be removed without loosing restrictions.

(iii) ⇒ (i) Suppose that G is not clique-Helly. Let M1,M2, . . . ,Mr , r ≥ 2,
be a pairwise intersecting family of cliques in G without common intersec-
tion. Without loss of generality, we can assume that those cliques corre-
spond to the first r rows of AG. Then, for each vertex vj there exists a clique
Mij

not containing it. For every column j of the clique matrix of G, there
is some ij ≤ r such that aijj = 0. Let x = (xi) be the vector: xi = 1

r−1 for

1 ≤ i ≤ r, and xi = 0 for r + 1 ≤ i ≤ k and compute (At
Gx)j =

∑r

i=1 aijxi

+
∑k

i=r+1 aij0. As for each j there is at least one ij ≤ r such that aijj = 0,

then (At
Gx)j ≤ r−1

r−1 = 1 Then, the vector x belongs to the polyhedron

{x ∈ Rk/At
Gx ≤ 1, x ≥ 0}. Now, let AK(G) = {bij} be the clique matrix of

K(G). As M1,M2, . . . ,Mr are a pairwise intersecting family of cliques of
G, there must be a clique in K(G) containing their corresponding vertices
in the clique graph. Therefore, there is a row i in AK(G) such that bij = 1
for j ≤ r. Then (AK(G)x)i = r

r−1 > 1 and so x does not belong to the

polyhedron {x ∈ Rk/AK(G)x ≤ 1, x ≥ 0}, which is a contradiction. 2

Now, we are able to characterize clique-Helly K-perfect graphs.

Corollary 3.1 Let G be a graph and let AG be a clique matrix of G. Then

G is clique-Helly and K-perfect if and only if At
G is a perfect matrix.



Proof:

⇒) Let AK(G) be a clique matrix of K(G) with the vertices in the same
order than their corresponding cliques in AG. According to Theorem 2.3,
G is K-perfect if and only if AK(G) is perfect. By Theorem 3.1, if G is a
clique-Helly graph, the polyhedra P (At

G) and P (AK(G)) are the same, so
At

G is a perfect matrix.

⇐) Let A be the matrix obtained removing the dominated rows of At
G.

Then A is a 0-1 matrix with neither zero columns nor dominated rows.
Since P (At

G) and P (A) are the same, A is a perfect matrix. So by Theorem
2.3, A is the clique matrix of a perfect graph. The derived graph of A is
K(G), because it is the same as the derived graph of At

G. Therefore, K(G)
is perfect and A is a clique matrix of K(G). Finally, by Theorem 3.1, it
follows that G is a clique-Helly graph. 2

3.2 A partial characterization by clique subgraphs

In this section we give a characterization of hereditary clique-Helly K-
perfect graphs in terms of clique subgraphs.

Theorem 3.2 Let G be a clique-Helly K-perfect graph. Then G is c–clique-

perfect.

Proof: Let H be a clique subgraph of G. Since the cliques of H are cliques
of G, and G is a clique-Helly graph, H is CH too. As K(H) is an induced
subgraph of K(G), K(H) is perfect. According to Theorem 2.6, it follows
that αc(H) = τc(H). 2

This theorem allows us to conclude that dually chordal graphs and balanced
graphs are c–clique-perfect since they are clique-Helly and K-perfect [6, 8,
22].

Let H be a graph. The generator G of H is the induced subgraph of H
obtained identifying twin vertices and then removing dominated vertices.
If a graph G is the generator of H, we say that H is generated by G.

Lemma 3.1 [15] Let G be a clique-Helly graph. Then K2(G) is the gen-

erator of G.



Corollary 3.2 Let G be a perfect clique-Helly graph. Then K(G) is c–

clique-perfect.

Proof: By Lemma 3.1 K2(G) is an induced subgraph of G. So, if G is
perfect, then K2(G) is perfect too. By Theorem 3.2, K(G) is c–clique-
perfect. 2

Corollary 3.3 If G is K-perfect and clique-Helly, then the generator of G
is c–clique-perfect.

Proof: Combining Corollary 3.2 with Lemma 3.1 the proof is straightfor-
ward. 2

Lemma 3.2 Let G be a clique-Helly graph and let H be a clique-Helly graph

generated by G. Then K(H) is generated by K(G). In particular, if G is

self-clique, then K(H) contains G as an induced subgraph. Conversely, if

G is a self-clique clique-Helly graph, then every clique-Helly graph H such

that K(H) = G is generated by G.

Proof:

⇒) Let H be a clique-Helly graph generated by G. Then, by Lemma 3.1,
K2(H) = G. So K2(K(H)) = K3(H) = K(G). Since K(H) is clique-Helly,
by Lemma 3.1 it is generated by K(G).

⇐) Let H be a clique-Helly graph such that K(H) = G. Then K2(H) =
K(K(H)) = K(G) = G. So by Lemma 3.1, G is the generator of H. 2

Now, we are able to characterize hereditary clique-Helly K-perfect graphs
by clique subgraphs.

Theorem 3.3 Let G be an hereditary clique-Helly graph. Then the follow-

ing statements are equivalent:

(i) The matrix At
G is perfect.

(ii) G is K-perfect.

(iii) G is c–clique-perfect.



(iv) G does not contain as a clique subgraph a graph generated either by

an odd cycle of length at least five or by C7 .

Proof: Corollary 3.1 implies that items (i) and (ii) are equivalent. By
Theorem 3.2, item (ii) implies item (iii).

(iii) ⇒ (ii) Let U be an induced subgraph of K(G). Since G is hereditary
clique-Helly, there exists a clique subgraph H of G such that K(H) = U
[5]. As G is c–clique-perfect αc(H) = τc(H) and since H is clique-Helly, by
Theorem 2.6, α(U) = θ(U).

Let us see that items (ii) and (iv) are equivalent:

(ii) ⇒ (iv) Let us suppose that H is a clique subgraph of G generated by
an odd cycle of length at least five or by C7. Then H is a clique-Helly
graph generated by a self-clique clique-Helly graph. By Lemma 3.2, K(H)
contains the generator of H as induced subgraph, and so K(G). Therefore,
K(G) is not a perfect graph.

(iv) ⇒ (ii) If K(G) is not a perfect graph, by the Strong Perfect Graph
Theorem (Theorem 2.2), K(G) must contain an odd cycle of length at least
five or its complement as induced subgraph. Since the complement of an
odd cycle of length greater than 7 is not HCH, K(G) must contain an
induced subgraph U isomorphic to an odd cycle of length at least five or
C7. Then U is self-clique and clique-Helly. Since G is HCH, there exists a
clique subgraph H of G such that K(H) = U [5]. Since H is clique-Helly,
by Lemma 3.2 it is generated by U . 2

It remains an open question whether the last theorem holds for (general)
clique-Helly graphs.

Acknowledgements: To Santosh Vempala for all the discussions and ac-
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