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Abstract

A clique-transversal of a graph G is a subset of vertices that meets all the cliques of
G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. The
clique-transversal number and clique-independence number of G are the sizes of a
minimum clique-transversal and a maximum clique-independent set of G, respec-
tively. A graph G is clique-perfect if the sizes of a minimum clique-transversal and
a maximum clique-independent set are equal for every induced subgraph of G. The
list of minimal forbidden induced subgraphs for the class of clique-perfect graphs is
not known. In this paper, we present a partial result in this direction, that is, we
characterize clique-perfect graphs by a restricted list of forbidden induced subgraphs
when the graph belongs to a certain class.
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1 Introduction

Let G be a graph, with vertex set V (G) and edge set E(G). Denote by G,
the complement of G. The line graph L(G) of G is the intersection graph of
the edges of G. A graph F is a line graph if there exists a graph H such that
L(H) = F .

A complete set of G is a subset of vertices pairwise adjacent. A clique

is a complete set not properly contained in any other. We may also use the
term clique to refer to the corresponding complete subgraph. A stable set in
a graph G is a subset of pairwise non-adjacent vertices of G. The stability

number α(G) is the cardinality of a maximum independent set of G.

A clique cover of a graph G is a subset of cliques covering all the vertices
of G. The clique-covering number k(G) is the cardinality of a minimum clique
cover of G. The chromatic number of a graph G is the smallest number of
colors that can be assigned to the vertices of G in such a way that no two
adjacent vertices receive the same color, and is denoted by χ(G). An obvious
lower bound is the maximum cardinality of the cliques of G, the clique number

of G, denoted by ω(G).

A graph G is perfect when χ(H) = ω(H) for every induced subgraph H of
G. Perfect graphs are very interesting from an algorithmic point of view, see
[11]. While determining the clique-covering number, the independence num-
ber, the chromatic number and the clique number of a graph are NP-complete
problems, they are solvable in polynomial time for perfect graphs [12]. Be-
sides, it has been proved recently that perfect graphs can be characterized
by two families of minimal forbidden induced subgraphs [8] and recognized in
polynomial time [7]. The clique graph K(G) of G is the intersection graph of
the cliques of G. A graph G is K-perfect if K(G) is perfect.

A clique-transversal of a graph G is a subset of vertices that meets all the
cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint
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cliques. The clique-transversal number and clique-independence number of G,
denoted by τc(G) and αc(G), are the sizes of a minimum clique-transversal
and a maximum clique-independent set of G, respectively. It is easy to see
that τc(G) ≥ αc(G) for any graph G. A graph G is clique-perfect if τc(H) =
αc(H) for every induced subgraph H of G. Clique-perfect graphs have been
implicitly studied in [1,2,4,3,5,10,13,14]. The terminology “clique-perfect” has
been introduced in [13]. There are two main open problems concerning this
class of graphs:

• find all minimal forbidden induced subgraphs for the class of clique-perfect
graphs, and

• is there a polynomial time recognition algorithm for this class of graphs?

In this paper, we present a partial result in this direction, that is, we
characterize clique-perfect graphs by forbidden subgraphs when the graph
belongs to a certain class.

2 Forbidden families for clique-perfect graphs

Let G be a graph and C be a cycle of G not necessarily induced. An edge of
C is non proper (or improper) if it forms a triangle with some vertex of C.
An r-generalized sun, r ≥ 3, is a graph G whose vertex set can be partitioned
into two sets: a cycle C of r vertices, with all its non proper edges {ej}j∈J

(J is permitted be an empty set) and a stable set U = {uj}j∈J , such that for
each j ∈ J , uj is adjacent only to the endpoints of ej. A hole is a chordless
cycle of length at least 4. An antihole is the complement of a hole. A hole or
antihole is said to be odd if its cardinality is odd. An r-generalized sun is said
to be odd if r is odd. Clearly odd holes are odd generalized suns.

Theorem 2.1 [3] Odd generalized suns and antiholes of length t = 1, 2 mod 3
(t ≥ 5) are not clique-perfect.

Unfortunately, odd generalized suns are not necessary minimal (with re-
spect to taking induced subgraphs) and besides there are other minimal non-
clique-perfect graphs, for example the following family of graphs. Define the
graph Sk, k ≥ 2, as follows: V (Sk) = {v1, . . . , v2k, v, v′, w, w′} where v1, . . . , v2k

induce a path, v is adjacent to v′, v1, v2 and v2k; v′ is adjacent to v, v1, v2k−1

and v2k; w is adjacent only to v1 and v2; w′ is adjacent only to v2k−1 and v2k.

At this time we do not know whether the list of all such graphs has a
nice description. However, if we restrict our attention to certain classes of
graphs (that can be described by forbidding certain induced subgraphs), we



can describe all the forbidden induced subgraphs, and this is our main result.

3 Partial characterizations

Let us call a class of graphs C hereditary if for every G ∈ C, every induced
subgraph of G also belongs to C. We say that a graph is interesting if no
induced subgraph of it is an odd generalized sun or an antihole of length
greater than 5 and equal to 1, 2 mod 3.

A family of sets S is said to satisfy the Helly property if every subfamily of
it, consisting of pairwise intersecting sets, has a common element. A graph is
clique-Helly (CH) if its cliques satisfy the Helly property, and it is hereditary

clique-Helly (HCH) if H is clique-Helly for every induced subgraph H of G.
Hereditary clique-Helly graphs are of particular interest because in this case
it follows from [3] that if K(H) is perfect for every induced subgraph H of G,
then G is clique-perfect (the converse is not necessarily true). On the other
hand, the class of hereditary clique-Helly graphs can be easily characterized
by forbidden induced subgraphs [15]. The following is a useful fact about
hereditary clique-Helly graphs:

Proposition 3.1 Let L be a hereditary graph class, which is HCH and such

that every interesting graph in L is K-perfect. Then every interesting graph in

L is clique-perfect.

Proof. Let G be an interesting graph in L. Let H be an induced subgraph
of G. Since L is hereditary, H is an interesting graph in L, so it is K-perfect.
Since L is a HCH class, H is clique-Helly and then αC(H) = α(K(H)) =
k(K(H)) = τC(H) [3], and the result follows. 2

A claw is the graph K1,3, and a diamond is the graph K4 − {e}, it follows
from [15] that diamond-free graphs are HCH. Our main result is the following:

Theorem 3.2 Let G be a graph which is either diamond-free, or a line graph,

or HCH and claw-free. Then G is clique-perfect if and only if it is interesting.

The proof of Theorem 3.2 in the diamond-free case is rather simple, we
show:

Theorem 3.3 If G is diamond-free, the following are equivalent:

(i) G is interesting

(ii) G contains no odd generalized sun

(iii) G is clique-perfect.



Let us prove that (ii) implies (iii). First we can show that K(G) is Berge,
and therefore perfect. By [6], G being diamond-free implies that K(G) is dia-
mond free, and hence K(G) contains no antihole of length at least 7. Suppose
K(G) contains an odd hole k1k2 . . . k2n+1, where k1, . . . , k2n+1 are cliques of G.
Then G contains an odd cycle v1v2 . . . v2n+1, where vi belongs to ki ∩ ki+1 and
no other kj. Since G contains no odd generalized suns, we may assume that
some edge of this cycle, say, (v1, v2) is in a triangle with another vertex of the
cycle, say vm. Now v1, v2 both belong to k2, and vm does not. Since k2 is a
clique, it follows that vm has a non-neighbor w in k2. But now {v1, v2, vm, w}
induces a diamond, a contradiction. This proves that no induced subgraph of
K(G) is an odd hole, and so K(G) is Berge. Finally, Proposition 3.1 completes
the proof.

In the case that G is a line graph we prove:

Theorem 3.4 Let G be a line graph. Then the following are equivalent:

(i) G is interesting

(ii) no induced subgraph of G is and odd hole, or a 3-generalized sun

(iii) G is clique-perfect.

We prove again that (ii) implies that K(G) is perfect, in order to show that
G is clique-perfect. But note that we can not use Proposition 3.1 to prove
that K(G) perfect implies (iii), because line graphs are not necessarily HCH.

The last part of Theorem 3.2 is the following:

Theorem 3.5 Let G be claw-free and assume that G is HCH. Then the

following are equivalent:

(i) G is interesting

(ii) no induced subgraph of G is an odd hole, or C7

(iii) G is clique-perfect

In this case, the proof of K(G) perfect is rather involved, and uses a re-
cent structure theorem for claw-free graphs [9], that states that every claw-free
graph can be built from a few basic classes by gluing them together in pre-
scribed ways. Thus in order to prove that K(G) is perfect, it is enough to
show that it holds for the basic classes, and then that the property is preserved
under the gluing operations. However, one of the basic classes we need to deal
with is the class of graphs with stability number 2, and part of the proof is



getting an explicit description of all HCH graphs in this class. Finally, the
use of Proposition 3.1 completes the proof of Theorem 3.5.

These results allow us to formulate partial characterizations of clique-
perfect graphs by forbidden subgraphs, as is shown in Table 1.

Graph classes Forbidden subgraphs Reference

Diamond-free graphs odd generalized suns Thm 3.3

HCH claw-free graphs odd holes Thm 3.5

C7

Line graphs odd holes Thm 3.4

3-generalized sun

Table 1
Forbidden induced subgraphs for clique-perfect graphs in each studied class.

Note that in the last two cases all the forbidden induced subgraphs are
minimal. In the first case, however, we need to forbid every odd-generalized
sun. Obviously, in this case it is enough to forbid diamond-free odd general-
ized suns. It is easy to see that all such suns have no improper edges but we
do not yet know what the minimal diamond-free odd generalized suns are.
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