Between coloring and list-coloring: p-coloring
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Abstract

A new variation of the coloring problem, u-coloring, is defined in this paper. Given
a graph G and a function p, a p-coloring is a coloring where each vertex v of G
must receive a color at most u(v). It is proved that p-coloring lies between color-
ing and list-coloring, in the sense of generalization of problems and computational
complexity. The notion of perfection is extended for u-coloring, leading us to a
new characterization of cographs. Finally, a polynomial time algorithm to solve
p-coloring for cographs is shown.
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1 Introduction

Let G be a graph, with vertex set V(G). Denote by Ng(v) the set of neighbors
of v € V(G). A cograph is a Ps-free graph, where P, is the path of four vertices.

A complete of G is a subset of vertices pairwise adjacent. A clique is a
complete not properly contained in any other. We may also use the term
clique to refer to the corresponding complete subgraph. Let X and Y be two
sets of vertices of G. We say that X is complete to Y if every vertex in X is
adjacent to every vertex in Y, and that X is anticomplete to Y if no vertex of
X is adjacent to a vertex of Y.

A coloring of a graph G = (V,E) is a function f : V — N such that
f(v) # f(w) if v is adjacent to w. A k-coloring is a coloring f for which
f(v) <k for every v € V. A graph G is k-colorable if there is a k-coloring of
G.

Several variations of the coloring problem are studied in the literature (see
a review in [10], and a recent work in [8]). One of them is list-coloring [11].
Given a graph G = (V, E) and a finite list L(v) C N of colors for each vertex
v € V, G is list-colorable if there is a coloring f for which f(v) € L(v) for
each v € V.

We define here p-coloring as follows. Given a graph G = (V, F) and
a function p : V. — N, G is p-colorable if there is a coloring f for which
f(v) < p(v) for each v € V. This problem lies between k-coloring and list-
coloring. A trivial reduction from k-coloring to p-coloring can be done defining
pu(v) = k for every v. The reduction from p-coloring to list-coloring can
be done defining L(v) = {1,...,min{u(v), |V(G)|}}. We show in this work
that the betweenness is strict, that is, there is a class of graphs (bipartite
graphs) for which p-coloring is NP-complete while coloring is in P, and there
is another class of graphs (cographs) for which list-coloring is NP-complete
while p-coloring is in P.

We say that a coloring f is minimal when for every vertex v, and every
i < f(v), v has a neighbor w; with f(w;) = i. Note that every k-coloring or
p-coloring can be transformed into a minimal one.

The chromatic number of a graph G is the minimum £ such that G is k-
colorable, and is denoted by x(G). An obvious lower bound is the maximum
cardinality of the cliques of G, the clique number of G, denoted by w(G). A
graph G is perfect [1] when x(H) = w(H) for every induced subgraph H of G.
Perfect graphs have very nice properties: they are a self-complementary class
of graphs [9], the k-coloring problem is solvable in polynomial time for perfect
graphs [5], they have been characterized by minimal forbidden subgraphs [2]



and recognized in polynomial time [3].

In this work we define M-perfect graphs and show that they are exactly
the cographs. It follows from this equivalence that M-perfect graphs are a
self-complementary class of graphs and can be recognized in linear time [4].
Moreover, we show that the u-coloring problem is solvable in polynomial time
for this class of graphs.

2 Cographs and M-perfect graphs

A graph G is perfect when x(H) = w(H) for every induced subgraph H of
(. This definition is equivalent to the following: “G is perfect when for every
induced subgraph H of G and for every k, H is k-colorable if and only if every
clique of H is k-colorable”.

Analogously, we define M-perfect graphs as follows: a graph G is M-perfect
when for every induced subgraph H of G and for every function p: V — N,
H is p-colorable if and only if every clique of H is p-colorable.

M-perfect graphs are also perfect, because perfection is equivalent to M-
perfection with p restricted to constant functions. The converse is not true.
We will show that the graph P, is not M-perfect, although it is perfect. In
fact, M-perfect graphs are exactly the cographs. In order to prove it we need
the next general result about minimal colorings on cographs.

Theorem 2.1 Let G be a cograph and x € V(G). Let f be a minimal coloring
of G—x, and T € N. If f cannot be extended to G coloring x with a color at
most T then there is a complete H C Ng(x) of size T' and such that f(H) =

{1,...,T}.

Proof. Let G be a cograph and = € V(G). Let f be a minimal coloring of
G —x, and T € N. Let us prove the result by induction on 7. Suppose first
that T'= 1. If f cannot be extended to G coloring = with color 1, then there
exists v € Ng(z) such that f(v) = 1. In this case, H = {v}. Suppose it holds
for T'= s — 1 and let us see that it holds for T' = s, s > 2. If f cannot be
extended to G coloring x with a color less or equal to s, in particular the same
holds for s—1, and so, by inductive hypotheses, there is a complete H C Ng(x)
of size s —1 using the colors from 1 to s —1. On the other hand, since x cannot
use color s, it must be a vertex v € Ng(x) such that f(v) = s. Let us consider
the subgraph G of G — z induced by {w € G —z : f(w) < s—1}U{v} and let
f:be the coloring f restricted to G—v. By the minimality of f it follows that
f is minimal and it cannot be extended to G coloring v with a color less or
equal than s — 1, so, by inductive hypotheses, there is a complete F' C Ng(v)



of size s — 1 using colors from 1 to s — 1.

If H=F then H U {v} is a complete of size s in the neighborhood of = using
colors from 1 to s. Suppose that they are not equal. Then F'\ H and H \ F
have the same cardinality and use the same colors. Let vy in H \ F', and let
vp in F'\ H such that f(vp) = f(vg). Since f is a coloring of G — x, vp and
vy are not adjacent. Since G is Py-free, vy, x, v, vrp do not induce a Py, so x is
adjacent to vp or v is adjacent to vy. If all the vertices of H \ F are adjacent
to v, then HU{v} is a complete of size s in the neighborhood of  using colors
from 1 to s.

So, suppose that the set H, = {w € H : (w,v) ¢ E(G)} is non empty, and
define F, = {z € F : 3zy € H, with f(z) = f(zy)}. Note that F, and H,
have the same cardinality and use the same colors. Since H, is anticomplete
to v, it follows that F, must be complete to x. If H\ H, is empty, then F = F,
is complete to x and F'U {v} is a complete of size s in the neighborhood of x
using colors from 1 to s.

Suppose that H \ H, is non empty, and let us see that F, is complete to
H\ H,. Let z € F, and w € H \ H,. Let zy € H, such that f(zy) = f(2).
Then zpy is neither adjacent to z nor to v and since H is a complete, zg
and w are adjacent. Besides, w is adjacent to v because of being in H \ H,.
Since zy,w,v, z do not induce a P, w must be adjacent to z. Therefore F), is
complete to H \ H,. Hence H = (H U F, U{v}) \ H, is a complete in Ng(x)
of size s such that f(H) = {1,...,s}. O

Theorem 2.2 If G is a graph, the following are equivalent:
(i) G is a cograph
(ii) G is M-perfect

(iii) for every function u:V — N, G is p-colorable if and only if every clique
of G is u-colorable.

Proof (Sketch). It is easy to prove that (ii) and (iii) are equivalent. Let us
see that (i) and (ii) are equivalent.

(ii) = (i)) Let vyvavsvy be a Py, and let pu be defined as follows: u(vy) =
p(vg) = 1, p(vy) = p(vs) = 2. Clearly, every clique is p-colorable, but the
whole graph is not.

(i) = (ii)) Suppose that there is a Ps-free graph which is not M-perfect.
Let G be a minimal one, that is, G is Ps-free and it is not M-perfect, but for
every vertex x of G, G — x is M-perfect.

Let p: V(G) — N such that the cliques of G are p-colorable but G is not.
Let x be a vertex of G with u(x) maximum. The graph G — x is M-perfect,



and since the cliques of G are p-colorable, also those of G — x are, so G — x
is p-colorable. Let f be a minimal y-coloring of G — .

Since G is not p-colorable, f cannot be extended to a u-coloring of G. Hence
by Theorem 2.1, Ng(x) contains a complete of size p(x). But then G contains
a complete of size p(z) + 1 for which the upper bounds of all of its vertices
are at most p(z) (we have chosen x with maximum value of p). This is a
contradiction, because all the cliques of G are p-colorable.

Therefore there is not minimal M-imperfect Py-free graph, and that concludes
the proof. a

3 Algorithm for p-coloring cographs

The greedy coloring algorithm consists of successively color the vertices with
the least possible color in a given order.
From Theorem 2.1 we can prove the following result.

Theorem 3.1 The greedy coloring algorithm applied to the vertices in non-
decreasing order of pu gives a p-coloring for a cograph, when it is p-colorable.

A little improvement in the greedy algorithm allows us to find a non u-
colorable clique when the graph is not p-colorable. A nice corollary of this
theorem is the following.

Corollary 3.2 The greedy coloring algorithm gives an optimal coloring for
cographs, independently of the order of the vertices.

Jansen and Scheffler [7] prove that list-coloring is NP-complete for cographs,
hence p-coloring is “easier” than list-coloring, unless P=NP.

4 Bipartite graphs

It follows from Theorem 2.1 that a cograph G that is p-colorable can be pu-
colored using the first x(G) colors. This does not happen for bipartite graphs,
even for trees.

Define the family {7}, },en of trees and the corresponding family {1, }nen of
functions as follows: T} = {v} is a trivial tree, and p;(v) = 1. The tree T), 44 is
obtained from 77, ..., T, by adding a root w adjacent to the roots of 1%, ..., T,.
Function p, 11 extends p1, ..., p, and is defined at w as pi,11(w) =n+1. The
tree T}, requires n colors to be p,-colored, and it has 2"~! vertices. In fact,
the following property holds.



Theorem 4.1 Let T be a tree, and let u be a function such that T is -
colorable. Then T can be p-colored using at most the first loga(|V(T)]) + 1
colors.

A similar result can be obtained for bipartite graphs. Define the family
{ By} nen of bipartite graphs and the corresponding family { ., }»en of functions
as follows: By = {v} is a trivial graph, and p;(v) = 1. The bipartite graph
Bnyr = (V,W,E) has V = {vy,..., v}, W = {wy,...,w,}; v; is adjacent to
wj for i # j; v, is adjacent to w,, and v; is not adjacent to w; for ¢ < n;
pint1(Vi) = pipg1(w;) =4 for i < n; ppy1(vy) = n and g1 (wy) = n + 1. The
bipartite graph B,, requires n colors to be pu,-colored, and it has 2n —2 vertices
(if n > 2). Analogously, the following property holds.

Theorem 4.2 Let B be a bipartite graph, and let u be a function such that
B is p-colorable. Then B can be p-colored using at most the first w
colors.

Hujter and Tuza [6] prove that list-coloring is NP-complete for bipartite
graphs, and the same holds for p-coloring.

Theorem 4.3 p-coloring is NP-complete for bipartite graphs.

Proof. Consider an instance of bipartite list-coloring, i.e., assume that a bi-
partite graph G = (X,Y, F) is given, and for each v € V(G), we have a
finite list L(v) € N of the possible colors of v. Let k = |U,cy(q) L(V)]-
Without loss of generality we can assume that L(v) C {1,...,k}. We add
two k-element sets of vertices, X' = {z/,...,2;} and Y/ ={y},...,y.} to G
such that X,Y, X', Y’ are pairwise disjoint. Furthermore, we take a biparti-
tion (X U X", Y UY’) of the new graph G’, and for any z € X, y € Y, and
i,7 € {1,...,k}, define the following new adjacency relations: z/ is adjacent to
y; if and only if i # j; 2} is adjacent to y if and only if i ¢ L(y); y; is adjacent
to x if and only if ¢ & L(x). We define p(z}) = p(yl) =7 and p(z) = u(y) = k.
Then G is list-colorable if and only if G’ is u-colorable. The transformation
can be made in polynomial time, and this completes the proof. O

Coloring is trivially in P for bipartite graphs, hence p-coloring is “harder”

than coloring, unless P=NP.
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