Between coloring and list-coloring: μ -coloring

Flavia Bonomo^{1,2} and Mariano Cecowski³

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires, Argentina

Abstract

A new variation of the coloring problem, μ -coloring, is defined in this paper. Given a graph G and a function μ , a μ -coloring is a coloring where each vertex v of G must receive a color at most $\mu(v)$. It is proved that μ -coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. The notion of perfection is extended for μ -coloring, leading us to a new characterization of cographs. Finally, a polynomial time algorithm to solve μ -coloring for cographs is shown.

Keywords: cographs, coloring, list-coloring, $\mu\text{-coloring},$ M-perfect graphs, perfect graphs.

¹ Partially supported by UBACyT Grant X184, PICT ANPCyT Grant 11-09112 and PID Conicet Grant 644/98, Argentina CNPq under PROSUL project Proc. 490333/2004-4, Brazil.

² Email: fbonomo@dc.uba.ar

³ Email: mcecowsk@dc.uba.ar

1 Introduction

Let G be a graph, with vertex set V(G). Denote by $N_G(v)$ the set of neighbors of $v \in V(G)$. A cograph is a P_4 -free graph, where P_4 is the path of four vertices.

A complete of G is a subset of vertices pairwise adjacent. A clique is a complete not properly contained in any other. We may also use the term clique to refer to the corresponding complete subgraph. Let X and Y be two sets of vertices of G. We say that X is complete to Y if every vertex in X is adjacent to every vertex in Y, and that X is anticomplete to Y if no vertex of X is adjacent to a vertex of Y.

A coloring of a graph G = (V, E) is a function $f : V \to \mathbb{N}$ such that $f(v) \neq f(w)$ if v is adjacent to w. A k-coloring is a coloring f for which $f(v) \leq k$ for every $v \in V$. A graph G is k-colorable if there is a k-coloring of G.

Several variations of the coloring problem are studied in the literature (see a review in [10], and a recent work in [8]). One of them is list-coloring [11]. Given a graph G = (V, E) and a finite list $L(v) \subseteq \mathbb{N}$ of colors for each vertex $v \in V$, G is list-colorable if there is a coloring f for which $f(v) \in L(v)$ for each $v \in V$.

We define here μ -coloring as follows. Given a graph G = (V, E) and a function $\mu : V \to \mathbb{N}$, G is μ -colorable if there is a coloring f for which $f(v) \leq \mu(v)$ for each $v \in V$. This problem lies between k-coloring and listcoloring. A trivial reduction from k-coloring to μ -coloring can be done defining $\mu(v) = k$ for every v. The reduction from μ -coloring to list-coloring can be done defining $L(v) = \{1, \ldots, \min\{\mu(v), |V(G)|\}\}$. We show in this work that the betweenness is strict, that is, there is a class of graphs (bipartite graphs) for which μ -coloring is NP-complete while coloring is in P, and there is another class of graphs (cographs) for which list-coloring is NP-complete while μ -coloring is in P.

We say that a coloring f is *minimal* when for every vertex v, and every i < f(v), v has a neighbor w_i with $f(w_i) = i$. Note that every k-coloring or μ -coloring can be transformed into a minimal one.

The chromatic number of a graph G is the minimum k such that G is kcolorable, and is denoted by $\chi(G)$. An obvious lower bound is the maximum
cardinality of the cliques of G, the clique number of G, denoted by $\omega(G)$. A
graph G is perfect [1] when $\chi(H) = \omega(H)$ for every induced subgraph H of G.
Perfect graphs have very nice properties: they are a self-complementary class
of graphs [9], the k-coloring problem is solvable in polynomial time for perfect
graphs [5], they have been characterized by minimal forbidden subgraphs [2]

and recognized in polynomial time [3].

In this work we define M-perfect graphs and show that they are exactly the cographs. It follows from this equivalence that M-perfect graphs are a self-complementary class of graphs and can be recognized in linear time [4]. Moreover, we show that the μ -coloring problem is solvable in polynomial time for this class of graphs.

2 Cographs and M-perfect graphs

A graph G is perfect when $\chi(H) = \omega(H)$ for every induced subgraph H of G. This definition is equivalent to the following: "G is perfect when for every induced subgraph H of G and for every k, H is k-colorable if and only if every clique of H is k-colorable".

Analogously, we define M-perfect graphs as follows: a graph G is M-perfect when for every induced subgraph H of G and for every function $\mu : V \to \mathbb{N}$, H is μ -colorable if and only if every clique of H is μ -colorable.

M-perfect graphs are also perfect, because perfection is equivalent to Mperfection with μ restricted to constant functions. The converse is not true. We will show that the graph P_4 is not M-perfect, although it is perfect. In fact, M-perfect graphs are exactly the cographs. In order to prove it we need the next general result about minimal colorings on cographs.

Theorem 2.1 Let G be a cograph and $x \in V(G)$. Let f be a minimal coloring of G - x, and $T \in \mathbb{N}$. If f cannot be extended to G coloring x with a color at most T then there is a complete $H \subseteq N_G(x)$ of size T and such that $f(H) = \{1, \ldots, T\}$.

Proof. Let G be a cograph and $x \in V(G)$. Let f be a minimal coloring of G - x, and $T \in \mathbb{N}$. Let us prove the result by induction on T. Suppose first that T = 1. If f cannot be extended to G coloring x with color 1, then there exists $v \in N_G(x)$ such that f(v) = 1. In this case, $H = \{v\}$. Suppose it holds for T = s - 1 and let us see that it holds for $T = s, s \ge 2$. If f cannot be extended to G coloring x with a color less or equal to s, in particular the same holds for s-1, and so, by inductive hypotheses, there is a complete $H \subseteq N_G(x)$ of size s-1 using the colors from 1 to s-1. On the other hand, since x cannot use color s, it must be a vertex $v \in N_G(x)$ such that f(v) = s. Let us consider the subgraph \tilde{G} of G - x induced by $\{w \in G - x : f(w) \le s - 1\} \cup \{v\}$ and let \tilde{f} be the coloring f restricted to $\tilde{G} - v$. By the minimality of f it follows that \tilde{f} is minimal and it cannot be extended to \tilde{G} coloring v with a color less or equal than s - 1, so, by inductive hypotheses, there is a complete $F \subseteq N_{\tilde{G}}(v)$

of size s - 1 using colors from 1 to s - 1.

If H = F then $H \cup \{v\}$ is a complete of size s in the neighborhood of x using colors from 1 to s. Suppose that they are not equal. Then $F \setminus H$ and $H \setminus F$ have the same cardinality and use the same colors. Let v_H in $H \setminus F$, and let v_F in $F \setminus H$ such that $f(v_F) = f(v_H)$. Since f is a coloring of G - x, v_F and v_H are not adjacent. Since G is P_4 -free, v_H, x, v, v_F do not induce a P_4 , so x is adjacent to v_F or v is adjacent to v_H . If all the vertices of $H \setminus F$ are adjacent to v, then $H \cup \{v\}$ is a complete of size s in the neighborhood of x using colors from 1 to s.

So, suppose that the set $H_v = \{w \in H : (w, v) \notin E(G)\}$ is non empty, and define $F_v = \{z \in F : \exists z_H \in H_v \text{ with } f(z) = f(z_H)\}$. Note that F_v and H_v have the same cardinality and use the same colors. Since H_v is anticomplete to v, it follows that F_v must be complete to x. If $H \setminus H_v$ is empty, then $F = F_v$ is complete to x and $F \cup \{v\}$ is a complete of size s in the neighborhood of xusing colors from 1 to s.

Suppose that $H \setminus H_v$ is non empty, and let us see that F_v is complete to $H \setminus H_v$. Let $z \in F_v$ and $w \in H \setminus H_v$. Let $z_H \in H_v$ such that $f(z_H) = f(z)$. Then z_H is neither adjacent to z nor to v and since H is a complete, z_H and w are adjacent. Besides, w is adjacent to v because of being in $H \setminus H_v$. Since z_H, w, v, z do not induce a P_4, w must be adjacent to z. Therefore F_v is complete to $H \setminus H_v$. Hence $\widetilde{H} = (H \cup F_v \cup \{v\}) \setminus H_v$ is a complete in $N_G(x)$ of size s such that $f(\widetilde{H}) = \{1, \ldots, s\}$.

Theorem 2.2 If G is a graph, the following are equivalent:

- (i) G is a cograph
- (ii) G is M-perfect
- (iii) for every function $\mu: V \to \mathbb{N}$, G is μ -colorable if and only if every clique of G is μ -colorable.

Proof (Sketch). It is easy to prove that (ii) and (iii) are equivalent. Let us see that (i) and (ii) are equivalent.

(ii) \Rightarrow (i)) Let $v_1v_2v_3v_4$ be a P_4 , and let μ be defined as follows: $\mu(v_1) = \mu(v_4) = 1$, $\mu(v_2) = \mu(v_3) = 2$. Clearly, every clique is μ -colorable, but the whole graph is not.

(i) \Rightarrow (ii)) Suppose that there is a P_4 -free graph which is not M-perfect. Let G be a minimal one, that is, G is P_4 -free and it is not M-perfect, but for every vertex x of G, G - x is M-perfect.

Let $\mu : V(G) \to \mathbb{N}$ such that the cliques of G are μ -colorable but G is not. Let x be a vertex of G with $\mu(x)$ maximum. The graph G - x is M-perfect, and since the cliques of G are μ -colorable, also those of G - x are, so G - x is μ -colorable. Let f be a minimal μ -coloring of G - x.

Since G is not μ -colorable, f cannot be extended to a μ -coloring of G. Hence by Theorem 2.1, $N_G(x)$ contains a complete of size $\mu(x)$. But then G contains a complete of size $\mu(x) + 1$ for which the upper bounds of all of its vertices are at most $\mu(x)$ (we have chosen x with maximum value of μ). This is a contradiction, because all the cliques of G are μ -colorable.

Therefore there is not minimal M-imperfect P_4 -free graph, and that concludes the proof. \Box

3 Algorithm for μ -coloring cographs

The greedy coloring algorithm consists of successively color the vertices with the least possible color in a given order.

From Theorem 2.1 we can prove the following result.

Theorem 3.1 The greedy coloring algorithm applied to the vertices in nondecreasing order of μ gives a μ -coloring for a cograph, when it is μ -colorable.

A little improvement in the greedy algorithm allows us to find a non μ colorable clique when the graph is not μ -colorable. A nice corollary of this
theorem is the following.

Corollary 3.2 The greedy coloring algorithm gives an optimal coloring for cographs, independently of the order of the vertices.

Jansen and Scheffler [7] prove that list-coloring is NP-complete for cographs, hence μ -coloring is "easier" than list-coloring, unless P=NP.

4 Bipartite graphs

It follows from Theorem 2.1 that a cograph G that is μ -colorable can be μ colored using the first $\chi(G)$ colors. This does not happen for bipartite graphs,
even for trees.

Define the family $\{T_n\}_{n\in\mathbb{N}}$ of trees and the corresponding family $\{\mu_n\}_{n\in\mathbb{N}}$ of functions as follows: $T_1 = \{v\}$ is a trivial tree, and $\mu_1(v) = 1$. The tree T_{n+1} is obtained from T_1, \ldots, T_n by adding a root w adjacent to the roots of T_1, \ldots, T_n . Function μ_{n+1} extends μ_1, \ldots, μ_n and is defined at w as $\mu_{n+1}(w) = n+1$. The tree T_n requires n colors to be μ_n -colored, and it has 2^{n-1} vertices. In fact, the following property holds. **Theorem 4.1** Let T be a tree, and let μ be a function such that T is μ colorable. Then T can be μ -colored using at most the first $\log_2(|V(T)|) + 1$ colors.

A similar result can be obtained for bipartite graphs. Define the family $\{B_n\}_{n\in\mathbb{N}}$ of bipartite graphs and the corresponding family $\{\mu_n\}_{n\in\mathbb{N}}$ of functions as follows: $B_1 = \{v\}$ is a trivial graph, and $\mu_1(v) = 1$. The bipartite graph $B_{n+1} = (V, W, E)$ has $V = \{v_1, \ldots, v_n\}$, $W = \{w_1, \ldots, w_n\}$; v_i is adjacent to w_j for $i \neq j$; v_n is adjacent to w_n , and v_i is not adjacent to w_i for i < n; $\mu_{n+1}(v_i) = \mu_{n+1}(w_i) = i$ for i < n; $\mu_{n+1}(v_n) = n$ and $\mu_{n+1}(w_n) = n + 1$. The bipartite graph B_n requires n colors to be μ_n -colored, and it has 2n-2 vertices (if $n \geq 2$). Analogously, the following property holds.

Theorem 4.2 Let B be a bipartite graph, and let μ be a function such that B is μ -colorable. Then B can be μ -colored using at most the first $\frac{(|V(B)|+2)}{2}$ colors.

Hujter and Tuza [6] prove that list-coloring is NP-complete for bipartite graphs, and the same holds for μ -coloring.

Theorem 4.3 μ -coloring is NP-complete for bipartite graphs.

Proof. Consider an instance of bipartite list-coloring, i.e., assume that a bipartite graph G = (X, Y, E) is given, and for each $v \in V(G)$, we have a finite list $L(v) \subseteq \mathbb{N}$ of the possible colors of v. Let $k = |\bigcup_{v \in V(G)} L(v)|$. Without loss of generality we can assume that $L(v) \subseteq \{1, \ldots, k\}$. We add two k-element sets of vertices, $X' = \{x'_1, \ldots, x'_k\}$ and $Y' = \{y'_1, \ldots, y'_k\}$ to G such that X, Y, X', Y' are pairwise disjoint. Furthermore, we take a bipartition $(X \cup X', Y \cup Y')$ of the new graph G', and for any $x \in X, y \in Y$, and $i, j \in \{1, \ldots, k\}$, define the following new adjacency relations: x'_i is adjacent to y'_j if and only if $i \neq j$; x'_i is adjacent to y if and only if $i \notin L(y)$; y'_i is adjacent to x if and only if $i \notin L(x)$. We define $\mu(x'_i) = \mu(y'_i) = i$ and $\mu(x) = \mu(y) = k$. Then G is list-colorable if and only if G' is μ -colorable. The transformation can be made in polynomial time, and this completes the proof.

Coloring is trivially in P for bipartite graphs, hence μ -coloring is "harder" than coloring, unless P=NP.

Acknowledgement

We thank Guillermo Durán and Adrian Bondy for their valuable ideas which improved this work.

References

- C. Berge, Les problemes de colorations en théorie des graphes, Publ. Inst. Stat. Univ. Paris 9 (1960), 123–160.
- [2] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, *The Strong Perfect Graph Theorem*, Annals of Mathematics, to appear.
- [3] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vušković, *Recognizing Berge Graphs*, Combinatorica, to appear.
- [4] D. Corneil, Y. Perl and L. Stewart, Cographs: recognition, applications and algorithms, Congr. Numer. 43 (1984), 249–258.
- [5] M. Grötschel, L. Lovász and A. Schrijver, *The ellipsoid method and its consequences in combinatorial optimization*, Combinatorica 1 (1981), 169–197.
- [6] M. Hujter and Zs. Tuza, Precoloring extension. II. Graph classes related to bipartite graphs, Acta Math. Univ. Comenianae 62 (1) (1993), 1–11.
- [7] K. Jansen and P. Scheffler, Generalized coloring for tree-like graphs, Discrete Applied Mathematics 75 (1997), 135–155.
- [8] S. Klein and M. Kouider, On b-perfect graphs, In: Annals of the XII CLAIO, Havanna, Cuba (2004).
- [9] L. Lovász, A characterization of perfect graphs and the perfect graph conjecture, J. Combin. Theory B 132 (1972), 95–98.
- [10] Zs. Tuza, Graph colorings with local constraints a survey, Discuss. Math. Graph Theory 17 (1997), 161–228.
- [11] V. Vizing, Coloring the vertices of a graph in prescribed colors, Metody Diskret. Anal. v Teorii Kodov i Shem 29 (1976), 3–10.