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Abstract

A new variation of the coloring problem, µ-coloring, is defined in this paper. Given
a graph G and a function µ, a µ-coloring is a coloring where each vertex v of G

must receive a color at most µ(v). It is proved that µ-coloring lies between color-
ing and list-coloring, in the sense of generalization of problems and computational
complexity. The notion of perfection is extended for µ-coloring, leading us to a
new characterization of cographs. Finally, a polynomial time algorithm to solve
µ-coloring for cographs is shown.
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1 Introduction

Let G be a graph, with vertex set V (G). Denote by NG(v) the set of neighbors
of v ∈ V (G). A cograph is a P4-free graph, where P4 is the path of four vertices.

A complete of G is a subset of vertices pairwise adjacent. A clique is a
complete not properly contained in any other. We may also use the term
clique to refer to the corresponding complete subgraph. Let X and Y be two
sets of vertices of G. We say that X is complete to Y if every vertex in X is
adjacent to every vertex in Y , and that X is anticomplete to Y if no vertex of
X is adjacent to a vertex of Y .

A coloring of a graph G = (V,E) is a function f : V → N such that
f(v) 6= f(w) if v is adjacent to w. A k-coloring is a coloring f for which
f(v) ≤ k for every v ∈ V . A graph G is k-colorable if there is a k-coloring of
G.

Several variations of the coloring problem are studied in the literature (see
a review in [10], and a recent work in [8]). One of them is list-coloring [11].
Given a graph G = (V,E) and a finite list L(v) ⊆ N of colors for each vertex
v ∈ V , G is list-colorable if there is a coloring f for which f(v) ∈ L(v) for
each v ∈ V .

We define here µ-coloring as follows. Given a graph G = (V,E) and
a function µ : V → N, G is µ-colorable if there is a coloring f for which
f(v) ≤ µ(v) for each v ∈ V . This problem lies between k-coloring and list-
coloring. A trivial reduction from k-coloring to µ-coloring can be done defining
µ(v) = k for every v. The reduction from µ-coloring to list-coloring can
be done defining L(v) = {1, . . . , min{µ(v), |V (G)|}}. We show in this work
that the betweenness is strict, that is, there is a class of graphs (bipartite
graphs) for which µ-coloring is NP-complete while coloring is in P, and there
is another class of graphs (cographs) for which list-coloring is NP-complete
while µ-coloring is in P.

We say that a coloring f is minimal when for every vertex v, and every
i < f(v), v has a neighbor wi with f(wi) = i. Note that every k-coloring or
µ-coloring can be transformed into a minimal one.

The chromatic number of a graph G is the minimum k such that G is k-
colorable, and is denoted by χ(G). An obvious lower bound is the maximum
cardinality of the cliques of G, the clique number of G, denoted by ω(G). A
graph G is perfect [1] when χ(H) = ω(H) for every induced subgraph H of G.
Perfect graphs have very nice properties: they are a self-complementary class
of graphs [9], the k-coloring problem is solvable in polynomial time for perfect
graphs [5], they have been characterized by minimal forbidden subgraphs [2]



and recognized in polynomial time [3].

In this work we define M-perfect graphs and show that they are exactly
the cographs. It follows from this equivalence that M-perfect graphs are a
self-complementary class of graphs and can be recognized in linear time [4].
Moreover, we show that the µ-coloring problem is solvable in polynomial time
for this class of graphs.

2 Cographs and M-perfect graphs

A graph G is perfect when χ(H) = ω(H) for every induced subgraph H of
G. This definition is equivalent to the following: “G is perfect when for every
induced subgraph H of G and for every k, H is k-colorable if and only if every
clique of H is k-colorable”.

Analogously, we define M-perfect graphs as follows: a graph G is M-perfect
when for every induced subgraph H of G and for every function µ : V → N,
H is µ-colorable if and only if every clique of H is µ-colorable.

M-perfect graphs are also perfect, because perfection is equivalent to M-
perfection with µ restricted to constant functions. The converse is not true.
We will show that the graph P4 is not M-perfect, although it is perfect. In
fact, M-perfect graphs are exactly the cographs. In order to prove it we need
the next general result about minimal colorings on cographs.

Theorem 2.1 Let G be a cograph and x ∈ V (G). Let f be a minimal coloring

of G − x, and T ∈ N. If f cannot be extended to G coloring x with a color at

most T then there is a complete H ⊆ NG(x) of size T and such that f(H) =
{1, . . . , T}.

Proof. Let G be a cograph and x ∈ V (G). Let f be a minimal coloring of
G − x, and T ∈ N. Let us prove the result by induction on T . Suppose first
that T = 1. If f cannot be extended to G coloring x with color 1, then there
exists v ∈ NG(x) such that f(v) = 1. In this case, H = {v}. Suppose it holds
for T = s − 1 and let us see that it holds for T = s, s ≥ 2. If f cannot be
extended to G coloring x with a color less or equal to s, in particular the same
holds for s−1, and so, by inductive hypotheses, there is a complete H ⊆ NG(x)
of size s−1 using the colors from 1 to s−1. On the other hand, since x cannot
use color s, it must be a vertex v ∈ NG(x) such that f(v) = s. Let us consider

the subgraph G̃ of G−x induced by {w ∈ G−x : f(w) ≤ s− 1}∪{v} and let

f̃ be the coloring f restricted to G̃− v. By the minimality of f it follows that
f̃ is minimal and it cannot be extended to G̃ coloring v with a color less or
equal than s− 1, so, by inductive hypotheses, there is a complete F ⊆ N

G̃
(v)



of size s − 1 using colors from 1 to s − 1.
If H = F then H ∪ {v} is a complete of size s in the neighborhood of x using
colors from 1 to s. Suppose that they are not equal. Then F \ H and H \ F

have the same cardinality and use the same colors. Let vH in H \ F , and let
vF in F \ H such that f(vF ) = f(vH). Since f is a coloring of G − x, vF and
vH are not adjacent. Since G is P4-free, vH , x, v, vF do not induce a P4, so x is
adjacent to vF or v is adjacent to vH . If all the vertices of H \F are adjacent
to v, then H∪{v} is a complete of size s in the neighborhood of x using colors
from 1 to s.
So, suppose that the set Hv = {w ∈ H : (w, v) 6∈ E(G)} is non empty, and
define Fv = {z ∈ F : ∃zH ∈ Hv with f(z) = f(zH)}. Note that Fv and Hv

have the same cardinality and use the same colors. Since Hv is anticomplete
to v, it follows that Fv must be complete to x. If H \Hv is empty, then F = Fv

is complete to x and F ∪ {v} is a complete of size s in the neighborhood of x

using colors from 1 to s.
Suppose that H \ Hv is non empty, and let us see that Fv is complete to
H \ Hv. Let z ∈ Fv and w ∈ H \ Hv. Let zH ∈ Hv such that f(zH) = f(z).
Then zH is neither adjacent to z nor to v and since H is a complete, zH

and w are adjacent. Besides, w is adjacent to v because of being in H \ Hv.
Since zH , w, v, z do not induce a P4, w must be adjacent to z. Therefore Fv is
complete to H \ Hv. Hence H̃ = (H ∪ Fv ∪ {v}) \ Hv is a complete in NG(x)

of size s such that f(H̃) = {1, . . . , s}. 2

Theorem 2.2 If G is a graph, the following are equivalent:

(i) G is a cograph

(ii) G is M-perfect

(iii) for every function µ : V → N, G is µ-colorable if and only if every clique

of G is µ-colorable.

Proof (Sketch). It is easy to prove that (ii) and (iii) are equivalent. Let us
see that (i) and (ii) are equivalent.

(ii) ⇒ (i)) Let v1v2v3v4 be a P4, and let µ be defined as follows: µ(v1) =
µ(v4) = 1, µ(v2) = µ(v3) = 2. Clearly, every clique is µ-colorable, but the
whole graph is not.

(i) ⇒ (ii)) Suppose that there is a P4-free graph which is not M-perfect.
Let G be a minimal one, that is, G is P4-free and it is not M-perfect, but for
every vertex x of G, G − x is M-perfect.
Let µ : V (G) → N such that the cliques of G are µ-colorable but G is not.
Let x be a vertex of G with µ(x) maximum. The graph G − x is M-perfect,



and since the cliques of G are µ-colorable, also those of G − x are, so G − x

is µ-colorable. Let f be a minimal µ-coloring of G − x.
Since G is not µ-colorable, f cannot be extended to a µ-coloring of G. Hence
by Theorem 2.1, NG(x) contains a complete of size µ(x). But then G contains
a complete of size µ(x) + 1 for which the upper bounds of all of its vertices
are at most µ(x) (we have chosen x with maximum value of µ). This is a
contradiction, because all the cliques of G are µ-colorable.
Therefore there is not minimal M-imperfect P4-free graph, and that concludes
the proof. 2

3 Algorithm for µ-coloring cographs

The greedy coloring algorithm consists of successively color the vertices with
the least possible color in a given order.

From Theorem 2.1 we can prove the following result.

Theorem 3.1 The greedy coloring algorithm applied to the vertices in non-

decreasing order of µ gives a µ-coloring for a cograph, when it is µ-colorable.

A little improvement in the greedy algorithm allows us to find a non µ-
colorable clique when the graph is not µ-colorable. A nice corollary of this
theorem is the following.

Corollary 3.2 The greedy coloring algorithm gives an optimal coloring for

cographs, independently of the order of the vertices.

Jansen and Scheffler [7] prove that list-coloring is NP-complete for cographs,
hence µ-coloring is “easier” than list-coloring, unless P=NP.

4 Bipartite graphs

It follows from Theorem 2.1 that a cograph G that is µ-colorable can be µ-
colored using the first χ(G) colors. This does not happen for bipartite graphs,
even for trees.

Define the family {Tn}n∈N of trees and the corresponding family {µn}n∈N of
functions as follows: T1 = {v} is a trivial tree, and µ1(v) = 1. The tree Tn+1 is
obtained from T1, . . . , Tn by adding a root w adjacent to the roots of T1, . . . , Tn.
Function µn+1 extends µ1, . . . , µn and is defined at w as µn+1(w) = n+1. The
tree Tn requires n colors to be µn-colored, and it has 2n−1 vertices. In fact,
the following property holds.



Theorem 4.1 Let T be a tree, and let µ be a function such that T is µ-

colorable. Then T can be µ-colored using at most the first log2(|V (T )|) + 1
colors.

A similar result can be obtained for bipartite graphs. Define the family
{Bn}n∈N of bipartite graphs and the corresponding family {µn}n∈N of functions
as follows: B1 = {v} is a trivial graph, and µ1(v) = 1. The bipartite graph
Bn+1 = (V,W,E) has V = {v1, . . . , vn}, W = {w1, . . . , wn}; vi is adjacent to
wj for i 6= j; vn is adjacent to wn, and vi is not adjacent to wi for i < n;
µn+1(vi) = µn+1(wi) = i for i < n; µn+1(vn) = n and µn+1(wn) = n + 1. The
bipartite graph Bn requires n colors to be µn-colored, and it has 2n−2 vertices
(if n ≥ 2). Analogously, the following property holds.

Theorem 4.2 Let B be a bipartite graph, and let µ be a function such that

B is µ-colorable. Then B can be µ-colored using at most the first
(|V (B)|+2)

2

colors.

Hujter and Tuza [6] prove that list-coloring is NP-complete for bipartite
graphs, and the same holds for µ-coloring.

Theorem 4.3 µ-coloring is NP-complete for bipartite graphs.

Proof. Consider an instance of bipartite list-coloring, i.e., assume that a bi-
partite graph G = (X,Y,E) is given, and for each v ∈ V (G), we have a
finite list L(v) ⊆ N of the possible colors of v. Let k = |

⋃
v∈V (G) L(v)|.

Without loss of generality we can assume that L(v) ⊆ {1, . . . , k}. We add
two k-element sets of vertices, X ′ = {x′

1, . . . , x
′
k} and Y ′ = {y′

1, . . . , y
′
k} to G

such that X,Y,X ′, Y ′ are pairwise disjoint. Furthermore, we take a biparti-
tion (X ∪ X ′, Y ∪ Y ′) of the new graph G′, and for any x ∈ X, y ∈ Y , and
i, j ∈ {1, . . . , k}, define the following new adjacency relations: x′

i is adjacent to
y′

j if and only if i 6= j; x′
i is adjacent to y if and only if i 6∈ L(y); y′

i is adjacent
to x if and only if i 6∈ L(x). We define µ(x′

i) = µ(y′
i) = i and µ(x) = µ(y) = k.

Then G is list-colorable if and only if G′ is µ-colorable. The transformation
can be made in polynomial time, and this completes the proof. 2

Coloring is trivially in P for bipartite graphs, hence µ-coloring is “harder”
than coloring, unless P=NP.
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