
Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Semantic performance-analysis of
LLM-based autoformalization

Tesis de Licenciatura en Ciencias de la Computación

Juan Manuel Baldonado

Director: Vı́ctor A. Braberman

Codirector: Flavia Bonomo

Buenos Aires, 2024

RESUMEN

En los últimos años, los LLMs (Large Language Models) han experimentado un enorme
crecimiento en popularidad, en parte debido a su versatilidad para abordar una gran var-
iedad de tareas “downstream” sin necesidad de reentrenamiento. Esto se logra con el uso
de distintas técnicas de ≪prompt engineering≫, que permiten condicionar las respuestas
del modelo en función de la tarea que se desea resolver. Consecuentemente, se ha iniciado
una revolución en términos de desarrollo de un tipo de software (el ≪promptware≫) que
utiliza LLMs para resolver las más variadas funcionalidades. Sin embargo y a pesar de los
constantes avances, desarrollar software basado en interactuar con LLMs carece de teoŕıa
y métodos que soporten enfoques disciplinados. De hecho, un área con carencias significa-
tivas es la evaluación (y mejora) de performance de un LLM para una tarea dada. Muchas
veces no se tiene en cuenta la naturaleza estocástica del proceso generativo subyacente y
la competencia de formas superficiales en las que se pueden presentar los resultados a una
pregunta. En este trabajo analizamos la distribución de las respuestas generadas por LLMs
en función de su contenido semántico. Estudiamos la performance de una tarea desde la
perspectiva de la propiedades de la distribución “clusterizada” resultante, el v́ınculo con
los resultados esperados y los tipos de errores de alineamiento. Usamos esas observaciones
para ejemplificar mecanismos más disciplinados de mejoras basadas en la descomposición
de tareas. Nos centramos en la tarea de auto-formalización, que consiste en generar una
representación formal de una descripción en lenguaje natural. En particular, el problema
a analizar será el de generar especificaciones de programas a partir de su documentación.

Palabras claves: Autoformalización, Large Language Models, Clustering Semantico,
Dafny.

i

ABSTRACT

In recent years, Large Language Models (LLMs) have experienced a significant growth in
popularity, partly due to their versatility in tackling a wide range of downstream tasks
without the need for retraining. This is achieved through various techniques of ”prompt
engineering,” which allow the model’s responses to be conditioned for on the task at
hand. Consequently, a revolution has begun in the development of a new type of software
(promptware) that leverages LLMs to perform a wide array of tasks. However, despite the
constant advancements, developing software that interacts with LLMs lacks the theoret-
ical foundations and methods to support disciplined approaches. In fact, one area with
significant gaps is the evaluation (and improvement) of an LLM’s performance on a given
task. Often, the stochastic nature of the underlying generative process and the alternative
variants in which answers to a question can be presented are not taken into account. In
this work, we analyze the distribution of responses generated by LLMs based on their se-
mantic content. We study the performance of a task from the perspective of the properties
of the resulting ”clustered” distribution, its alignment with expected results, and types of
alignment errors. We use these observations to exemplify more disciplined improvement
mechanisms based on task decomposition. We focus on the task of auto-formalization,
which involves generating a formal representation of a description in natural language.
Specifically, the problem to be analyzed will be generating program specifications from
their documentation.

Keywords: Autoformalization, Large Language Models, Semantic Clustering, Dafny.

ii

AGRADECIMIENTOS

A Vı́ctor y Flavia, por todo su apoyo, gúıa y motivación.
A mis padres, mi hermano y mis amigos.
Al Departamento de Computación y a la Universidad de Buenos Aires.

iii

CONTENTS

1. Introduction . 1

2. Large Language Models . 3
2.1 Text Generation and Sampling . 4
2.2 The prompting paradigm . 4
2.3 The Modern LLM Landscape . 6
2.4 Measuring the quality of generated LLM outputs 7

3. Formalization . 9
3.1 Formal Methods . 9
3.2 The Dafny Programming Language . 9
3.3 Autoformalization . 12

4. Distribution over the semantic domain of Auto-formalizations 14
4.1 Auto-formalization with LLMs . 14
4.2 Measuring accuracy and uncertainty in formalizations 16
4.3 Confidence Measures . 17

5. Experiments and Results . 20
5.1 The CloverBench dataset . 20
5.2 Transfer model implementation details . 21
5.3 Baseline formalization . 22
5.4 Introducing an Intermediate Verbalization Step 26
5.5 Intervened Verbalization . 29
5.6 Relation between entropy and performance 30
5.7 Abstraction from reference specification . 31
5.8 Limitations and Threats to Validity . 32

6. Conclusions . 34
6.1 Related Work . 36

iv

1. INTRODUCTION

In recent years, we have seen the emergence of Large Language Models, which have demon-
strated great potential for various applications. These models are large neural networks,
often made up of tens or even hundreds of billions of parameters trained on vast, unlabeled
text corpora to predict the next word in a piece of text based on the preceding context.
Notable examples of these models include OpenAI’s GPT-4[24], Meta’s Llama[29], and
Google’s Gemini[28] which have gained significant popularity both in the scientific com-
munity and among the general public.

These models have an impressive performance in natural language-related tasks like text
summarization, question-answering, and text completion [8]. The success of these models
is often attributed to in-context learning. Several studies have shown that by simply
conditioning these models on a set of instructions describing the task (zero-shot) or on
a small set of examples (few-shot), they are able to perform a diverse variety of tasks
effectively [33].

Large language models have been widely applied on the field of software engineering and
formal verification [6]. Their effectiveness has been studied in various areas, such as
unit-test generation[2], fuzzing [16], penetration testing [9], root-cause analysis [37], vul-
nerability detection [12] and program verification [26], [34].

Despite its recent significant breakthroughs, working with LLMs remains challenging due
to various factors. These models consist of complex parameterized functions with some-
times tens or even hundreds of billions of parameters, making it difficult to pinpoint exactly
how they arrive at a particular response. Additionally, LLMs exhibit nondeterministic
behavior, which arises from the sampling process used during the generation phase for
positive temperature values, where the sampling distribution often depends on the choice
of prompt and context. Most notably, these models are prone to a phenomenon usually
known as hallucinations in which the generated content contains factual or logical errors.

Recent research by Farquhar explored a novel approach aimed at detecting hallucinations
by measuring what they define as semantic entropy [11]. This method evaluates the un-
certainty at the semantic level rather than focusing on specific word sequences. Their
approach involves clustering the outputs generated by the model into equivalence classes
based on their semantic similarity and then computing the entropy of the clustered distri-
bution. They evaluated this metric on a range of tasks and found that semantic entropy
outperforms other popular approaches like self-consistency or a self-check using the model
itself.

In this thesis, we explore a similar framework for analyzing LLM-based approaches in the
context of auto-formalization, a task that involves generating formal representations from
informal descriptions or problem statements. We focus on auto-formalization because the
domain of formal specifications is especially suited to semantic analysis. Formal languages
can be equipped with an equivalence relationship that enables semantic clustering of formal
statements, allowing us to assess not only the quality of particular instances but also the
uncertainty of the solutions generated by a language model.

1

1. Introduction 2

A key aspect of our investigation is that we intend to analyze performance in terms which
differentiates from the traditional performance metrics used in other studies. In this
case, we analyze performance in terms of the distribution of the model’s outputs across a
clustered support, rather than a singular metric of performance or accuracy. We examine
how the concentration of outputs—i.e., the language model’s tendency to produce similar
responses—relates to the quality of the generated formalizations. With this qualitative
analysis we look to identify common failure modes and how concentration relates to the
quality of the generated formalizations.

We also aim to perform a re-engineering of existing LLM-enabled solutions integrated
with formal verification tools, such as Dafny [20], in order to refine the solution approach.
We seek to understand whether the insights gained from this analysis can guide improve-
ments in prompt-based design, ultimately contributing to a more systematic and robust
framework for prompt engineering and LLM-based solutions.

To this end, we pose the following research questions that will guide our analysis of the
interaction between alignment, concentration, and the quality of auto-formalizations pro-
duced by an LLM-based approach:

1. Can we observe a link between alignment and concentration on the auto-
formalization task? We seek to determine whether there is a measurable connec-
tion between alignment, how closely the generated specifications match the intended
formal specifications, and concentration (the consistency between the generated spec-
ifications). Additionally, we want to investigate whether other potential measures
can serve as indicators for performance on the auto-formalization task.

2. What happens when concentration and non-alignment occur? By looking
into the specific instances where outputs are concentrated but not aligned with the
reference specifications, we hope to uncover if there are specific logical structures or
types of annotations that are consistently misinterpreted by the model.

3. Can these observations inform targeted improvements in the model’s
auto-formalization capabilities? We want to explore how the insights gained
from our analysis can inform the development prompting methods that could poten-
tially lead to an improvement of the capabilities of an LLM-based auto-formalization
system.

2. LARGE LANGUAGE MODELS

In the recent decades, statistical language modeling has become fundamental to many
natural language processing tasks, ranging from speech recognition, machine translation,
to information retrieval. Statistical language modeling essentially looks to capture the reg-
ularities of natural language by modeling the probability distribution of various linguistic
units, such as words and sentences.

Earlier language models were based on the Markov assumption, stating that the probability
of the next word in a sentence can be characterized using the most recent context [18].
Mathematically, this can be expressed as:

P (wn|w1, .., wn−1) = P (wn|wn−k, .., wn−1) (2.1)

where wn is the next word and k is the size of the context window. This means we only
consider the last k words when estimating the probability of wn. On these earlier models,
this distribution was typically estimated from the observed text frequencies on a text
corpus. While this simplification made early language models computationally feasible,
it limited their ability to capture long-range dependencies and more nuanced semantic
relationships between words which often resulted in generated text that lacked coherence
and fluency.

Modern approaches often use an intermediate numerical representation for text known
as word-embeddings. In this process, text is segmented into tokens which consists of
smaller linguistic units such as words, sub-words, or punctuation marks. Each token is
then projected or embedded into an n-dimensional vector space vector through techniques
like Word2Vec or transformers based approaches [21], [31].

In recent years, neural language models emerged, which essentially model this conditional
distribution using neural networks[5]. These models, though often more complex and
with more parameters allow us to model more complex and non-linear functions. These
models are functions parameterized by a set of parameters θ which are often found by
optimizing an objective or loss function for a particular task. In the case of language
models, where the task is generally next-token prediction, the objective is to minimize the
negative log-likelihood of the true next token given the previous tokens

L(θ) = −
T−1∑
t=1

logPθ(xt+1|x1:t) (2.2)

where Pθ is our neural language model under training, with parameters θ. This loss
function depends on both the parameters θ and the data x1, . . . , xT . By minimizing this
loss, we effectively maximize the likelihood of the observed sequence of tokens, improving
the model’s capacity to predict future tokens accurately.

The recent advances on more efficient neural architectures like the transformer, combined
with distributed training methods allowed language models to scale to tens or even hun-
dreds of billions of parameters which are trained on large Web-scale text corpora. This

3

2. Large Language Models 4

new class of language models, now often referred to as Large Language Models (LLMs)
have significantly extended the capabilities and performance of statistical language models
beyond the task for which they were originally trained on. Moreover, their generative na-
ture allows them to create coherent and contextually relevant text that can mimic various
styles, tones, and formats. Not only this, but also numerous they seem to be capable of
following human instructions and performing multi-step reasoning.

2.1 Text Generation and Sampling

As generative language models, large language models not only capture the statistical
properties of language but also enable the generation of text by using the distribution
learned during the training phase. This process involves using a given context as input,
from which the model computes the likelihood of all tokens in its vocabulary that could
follow. This is, given a context x, the language model’s output is not exactly a single
token but rather a probability distribution over the set of tokens or vocabulary. Let
P (tk|x) denote the probability of the k − th token tk given the context x. The LLM then
selects the token tk with the probability according to:

tk ∼ P (tk|C, tk−1, .., tk−w) (2.3)

This process continues until either the number of sampled tokens exceeds a threshold value
or until a special token, the EOS (End-of-Sentence) token is sampled which indicates the
end of the text. One parameter is often used to control the randomness of the distribution
is the temperature parameter T . This parameter essentially adjusts the probability output
probability distribution:

P (t|x) =
exp(logP (t|x)

T)∑
t′∈V exp(logP (t′|x)

T)
(2.4)

In essence, higher temperature values (T > 1) flatten the probability distribution by
making it more likely to choose less probable tokens while lower temperature values (T < 1)
concentrate the probability distribution over the most probable tokens leading to more
deterministic outputs.

Another refinement technique is top-k sampling, which limits the number of tokens con-
sidered for sampling to the top-k tokens with the highest k logit values. This essentially
limits the number of tokens considered for sampling to the top k tokens with the highest
probabilities:

Vk = {t1, t2, . . . , tk} where P (ti|C) ≥ P (ti+1|C) (2.5)

2.2 The prompting paradigm

The prompting paradigm rose to prominence with the release of GPT-3 series of models
by OpenAI. In prompting, a pre-trained language model is provided with a prompt or
instruction in natural language that describes a specific task. In this way, the language
model is conditioned to generate probable responses (i.e sequences with a high likelihood)
based on what was learned from the training corpus. Since their release, people have begun

2. Large Language Models 5

to explore diverse conversational strategies, from straightforward queries to more nuanced
dialogues that involve context switching, role-playing, and iterative feedback. This has led
to the emergence of multiple patterns of interaction based on their conversational nature
and the dynamic way they engage with users.

One of the most-commonly employed techniques, zero-shot prompting or in-context learn-
ing, consists of providing just the instruction and particular instance of the task to be
solved. Despite its broad applicability, some tuning of the prompt is required to enhance
performance, especially for complex tasks. Previous research studies have identified gen-
eral principles or guidelines for designing effective prompts which include specifying clear
output patterns, breaking down the task and expliciting output constraints.

Zero-shot Prompt Example

Instruction: Determine if the sentiment of this review is positive or negative.
Input: The product exceeded my expectations and I am extremely satisfied with
my purchase.

Above we show an example to demonstrate a zero-shot prompt where the model is asked to
determine the sentiment of a review without any prior examples. Even though this method
is applicable to many problems, earlier language models frequently encounter difficulties
with more complex tasks.

A technique known as few-shot prompting addresses this last issue by including some
examples of the task along with the instruction in order to help guide the model’s responses.
The main challenges with this prompting strategy often revolve around choosing examples
that will effectively inform the model. Numerous studies have focused on optimizing these
few-shot examples to enhance performance and found that this approach typically performs
better when in-context examples closely resemble the test examples. This is also crucial
since the model’s context window is generally limited.

Few-shot Prompt Example

Instruction: Determine if the sentiment of this review is positive or negative.
Below are some examples:
Example 1: The food was terrible and the service was worse.
Sentiment: Negative
Example 2: I love this place! The ambiance is fantastic.
Sentiment: Positive
Input: The product exceeded my expectations and I am extremely satisfied with
my purchase.

Another approach, chain-of-though (CoT) prompting refines direct prompting by encour-
aging the model to verbalize or articulate intermediate reasoning steps. This technique
attempts to endow language models with the ability to generate a coherent series of inter-
mediate reasoning steps that lead to the final answer for a problem. Wei et al show that
this technique enhances reasoning for sufficiently large language models by enabling them

2. Large Language Models 6

to break down multi-step problems into intermediate steps and its applicability to various
tasks, including math problems and commonsense reasoning [32].

Chain-of-Thought Prompt Example

Instruction: Solve the following math problem.
Input: If a train travels at a speed of 60 km/h for 2 hours, how far will it have
traveled?
Tought: First, identify the speed and the time traveled. The train travels at 60
km/h, and it travels for 2 hours. To find the distance, use the formula Distance =
Speed × Time. Multiply 60 km/h by 2 hours to get 120 km.
Answer: 120 km

In the example, the chain-of-thought prompting method is demonstrated using a math
problem. The model is asked to determine the distance a train travels at a speed of 60
km/h for 2 hours. By breaking down the problem into steps, the model identifies the
speed and time, applies the formula for distance, and calculates the answer.

Fig. 2.1: Depiction of how LLMs can interact with external tools

More recently, LLM-applications have been extending large language models (LLMs) with
the ability to interact with their environment which ends up generating feedback loops:
their previous outputs influence the state of the world, which subsequently affects their
future outputs. This can help improve their responses by augmenting the language model’s
knowledge base and enabling them to iteratively refine their answers with feedback from
these external sources or environment. Some examples of this are giving the ability to call
external APIs to retrieve documents from an external database or execute code.

2.3 The Modern LLM Landscape

Training large language models (LLMs) from scratch is often infeasible due to the required
computational resources and time. For instance, training a model like GPT-3, which has
175 billion parameters, is estimated to cost around $4.6 million and take several months
using thousands of high-end GPUs. Thus, the process becomes prohibitively expensive,
even for large organizations. Instead, researchers and developers rely mostly on pre-trained
versions of these models, which have already undergone training. This approach allows
them to fine-tune the models for specific tasks, significantly reducing the cost and effort
involved while still leveraging the capabilities of these large models.

2. Large Language Models 7

In the modern landscape of Large Language Models, there are numerous models to choose
from, both open-source and closed-source. For open-source language models, their pa-
rameters are made available to the developers or researchers who can run then perform
inference on their own hardware. Some open source models, such as Meta’s LLaMA, have
garnered significant attention for their competitive performance relative to much larger
models [29]. The models in the LLaMA series have been trained on a diverse range of data
sources, enabling them to handle various natural language processing (NLP) tasks with
high accuracy. Additionally, these models are designed to be highly adaptable and can be
customized through fine-tuning for specific use cases, such as text generation, question-
answering, or even more niche applications like code synthesis. However, it’s important
to note that operating the larger versions of open-source models still requires substantial
computational resources, which can be a limiting factor.

Google’s Gemma family of models is another noteworthy addition to the open-source
landscape. The Gemma models are lightweight, state-of-the-art open models built upon
the same principles used to create the Gemini models. Gemma models come in various
sizes, including 2B, 7B, 9B, and 27B, and are designed for different use cases. One par-
ticular model in the Gemma family is Code-Gemma, which is specialized in code-related.
Code-Gemma is optimized for code completion and generation, making it a note-worthy
candidate. However, it is usually restricted to mainstream programming languages like
Python, which limits its applicability to niche or less common languages.

On the other hand, closed-source models like OpenAI’s GPT, Anthropic’s Claude, and
Google’s Gemini, while often more expensive and less flexible in terms of tuning and
operational customization, provide significantly better performance in downstream tasks.
Despite the higher costs and reduced flexibility, the superior capabilities of these larger
closed-source models make them a compelling choice for many organizations, developers
and researchers. These models can be accessed through an API, enabling users access the
models’ powerful capabilities without needing extensive infrastructure or computational
resources.

On some preliminary tests, we found the performance of smaller open-source models like
LLaMA 7B and Gemma on formalization tasks to be far behind the capabilities of the
other much larger models and it not being able to generate specifications that followed
the Dafny language syntax.

2.4 Measuring the quality of generated LLM outputs

As we mentioned before, LLMs exhibit non-deterministic behavior which arises from the
sampling process used during the generation phase, where the distribution is often de-
pendent on the choice of prompt and context. These models are particularly prone to
a phenomenon often known as hallucinations in which the generated content contains
factual or logical errors. Furthermore, hallucinations in LLMs can take several forms.
Recent studies have aimed to categorize these hallucinations into different types [17], [38].
These categories include, for example, input-conflicting hallucinations, when the gener-
ated output deviates from user input or task instructions. These are often a result of
misunderstanding the user’s intent or failing to align the response with the given task.

2. Large Language Models 8

Context-conflicting hallucinations occur when LLMs lose track of the conversation or con-
text, leading to inconsistencies, especially in longer, multi-turn interactions. Finally, fact-
conflicting hallucinations happen when the model generates information that contradicts
established world knowledge, which can mislead users and introduce factual inaccuracies.

Research by Kadavath et al. studied whether language models can evaluate the validity
of their own claims and predict which questions they will be able to answer correctly[19].
They hypothesized that model hallucinations tend to be diverse. When a model is con-
fident in its answer, it tends to give consistent responses, resulting in low entropy (less
diversity). Conversely, when unsure the model “hallucinates” and produces a wide range
of answers, leading to high entropy (more diversity). They found that the entropy distri-
bution differed based on whether the model’s answers were correct or incorrect, suggesting
some predictive power. However, as models increase in size, they tend to solve more com-
plex problems and provide a diverse set of correct answers thus the entropy of the token
sequences as they measured might not be a robust metric.

3. FORMALIZATION

3.1 Formal Methods

In computer science and mathematics, a series of methods known as formal methods
emerged to specify and verify software systems as well as assisting in the proof of math-
ematical theorems. These methods have their roots on the early 19th century work of
mathematicians that aimed to formalize and axiomatize mathematics [3].

Formal methods rely on formal languages to define objects and specify their properties and
behavior. Formal languages are essentially sets of sequences of symbols from a predefined
alphabet together with a formal grammar, a set of rules that determine which sequences
constitute valid expressions within a particular language [15]. In addition to a grammar or
syntax rules, these languages also require the definition of semantics, which determines the
meanings of the symbols and expressions. Finally, formal methods rely on the definition
of inference rules, which allow the derivation of additional facts and can be used to guide
the search towards the goal or property we are attempting to prove.

In computer science and software engineering ensuring the correct, secure, and safe op-
eration of software systems is crucial. While testing the most frequently used approach
to assure the quality of an implementation, it primarily aims at uncovering errors or
issues and cannot guarantee their absence. In contrast, formal verification methods pro-
vide stronger quality guarantees by formally proving the correctness of a software system.
These methods rely on a formal description or specification of the system or program
under analysis, which essentially specifies the properties that the system must satisfy. To-
day formal methods are used, among other things, to specify and verify the correctness
of computer programs and communication protocols, identify vulnerabilities, etc. Some
formal verification methods for example use an approach known as model checking to
specify the properties that the system should satisfy and then make use of a SAT or SMT
solver to search for a counterexample trace, that is, an execution path that violates the
specification.

3.2 The Dafny Programming Language

The Dafny programming language was developed at Microsoft Research with the pur-
pose of integrating verification and software development into the programming language
itself[20]. Dafny has been successfully used in various projects and research initiatives,
particularly in areas requiring strong correctness guarantees. For instance, it has been
used in a series of research projects by Microsoft Research to develop reliable and formally
verifiable distributed systems protocols[14].

The Dafny programming language implements many of the constructs and data structures
that can be found in most imperative programming languages today such as if statements,
for and while loops, arrays, sets and event support for object oriented programming.

Additionally, Dafny implements a specification language to allow developers to write for-
mal specifications and verify them using a verification framework based on Hoare logic.

9

3. Formalization 10

Hoare logic, proposed in 1969 by Tony Hoare, is based around the concept of a Hoare
triplet to describe and reason about a program’s behavior. A Hoare triplet is an expres-
sion of the form {P} S {Q} where P is a pre-condition, that is, a logical expression that
must be true before executing the statement or sequence of instructions S. The expression
Q is the post-condition, a logical expression which must hold true after the execution of
S. We say that an implementation of a computer program is partially correct with respect
to a specification if, assuming the precondition is true just before the function executes,
then if the function terminates, the post-condition is true. The implementation is totally
correct if additionally to partial correctness, the function is guaranteed to terminate and
when it does, the post-condition is true.

Fig. 3.1

In Dafny, these specifications are expressed as annotations within the code and are later
translated into an intermediate verification language, Boogie, such that the correctness of
this intermediate program implies the correctness of the original program[4]. Boogie is used
to generate logical assertions or verification conditions that are passed into a satisfiability
modulo theories (SMT) solver Z3 to automatically generate a proof[22]. It is worth noting
that sometimes the verification might fail. Errors in Dafny can be attributed to two main
reasons: either the provided specification is not consistent with the implementation or
the SMT solver cannot automatically reach the required proof even though such a proof
exists. Differentiating between these two is not generally trivial, however in the second
scenario additional intervention by the developer is required to give additional context by

3. Formalization 11

writing auxiliary conditions in the form of predicates, lemmas and functions.

0 method arraySum (a : a r ray<i n t >, b : a r ray<i n t >) r e t u r n s (c : a r ray<i n t>)
1 r e q u i r e s a . Length=b . Length
2 e n s u r e s c . Length=a . Length
3 e n s u r e s f o r a l l i : : 0 ≤ i< a . Length=> a [i] + b [i]=c [i]
4 {
5 c := new i n t [a . Length] ;
6 va r i := 0 ;
7 wh i l e i<a . Length
8 i n v a r i a n t 0≤ i≤a . Length
9 i n v a r i a n t f o r a l l j : : 0 ≤ j< i=> a [j] + b [j]=c [j]

10 {
11 c [i] :=a [i]+b [i] ;
12 i := i +1;
13 }
14 }

Listing 3.1: Example of a dafny specification

On Fig 3.1 we show an example of a Dafny program. The program defines a method, which
corresponds to what might be called procedure or function in other imperative languages.
In this case we define a method arraySum which takes two input arrays, a and b, and
returns a new array c that contains the element-wise sum of the two input arrays. We can
see that this Dafny method contains the following components:

1. Method Signature: The signature specifies the method name, the input and output
variables along with their corresponding types. In this case the method named ar-
raySum takes input variables (a and b) which are both arrays of integers array<int>
and returns an output array c of the same type.

2. Preconditions: in Dafny preconditions are specified using the requires keywords.
In this example the method requires that both input arrays have the same length
(a.Length == b.Length), ensuring that element-wise addition is properly defined.

3. Post-conditions: in Dafny post-conditions are specified using the ensures keyword.
In this case they signify that after execution, this method should guarantee that the
length of the output array c is the same as that of the input arrays, and that for all
indices i in the range from 0 to the length of the array, the sum of the elements from
a and b at index i equals the element in c at the same index (c[i] == a[i] + b[i]).

4. Body: after the pre and post conditions the actual body of the method, in between
braces, containes the actual implementation of the method. In this example the
method initializes the output array c with the same length as the input arrays.
Then a loop iterates over the indices, computing the sum for each corresponding
pair of elements from a and b, storing the result in c.

5. Loop Invariants: The loop includes loop-invariants, also marked with the invariant
keyword. These are conditions that should hold true on every iteration of the loop
and are usually required to prove its termination. In this case, the first invariant
asserts that the loop index i remains within bounds, while the second invariant
asserts that all previously computed sums are correct (forall j:: 0 ≤ j < i ==> a[j]
+ b[j] == c[j]).

3. Formalization 12

Dafny specifications can become much more rich and complex in practice, allowing the
user to define boolean predicates, assertions and auxiliary lemmas to be used during the
verification phase. It also allows to define a modifies clause to specify that given variable
or field might be altered by a method during its execution.

In a similar spirit to Dafny, Coq and Lean are some of the most prominent languages
used for formal verification, these are focused mostly around formal proof development.
Coq is celebrated for its expressive type system, which permits the construction of math-
ematical proofs and interactive verification. Lean, designed for both theorem proving and
programming, offers an approachable syntax while retaining powerful verification capa-
bilities. Alternatives also exist for more popular programming languages like the Java
Modeling Language (JML) for Java, which provides a way to specify program behavior
but requires separate verification libraries.

It is worth noting that despite the notable progress in these verification tools achieved
in recent years, the manual effort needed to write additional verification code can be
considerable and difficult to master. Some studies suggest that formal specifications for
the program under analysis often require as many tokens as the program itself [10].

3.3 Autoformalization

The task of auto-formalization involves transforming informal descriptions into some for-
mally correct and automatically verifiable format [27]. By this we mean a format that
adheres to a set of well-defined rules and principles, ensuring that it accurately represents
the intended concepts and relationships without ambiguity. Ideally, it should be possible
for this format to be evaluated by automated tools in order to verify its correctness.

In the software development process, developers often rely on documentation, typically
in the form of informal natural language descriptions of a programs functionality and
expected behaviour. While such informal descriptions are less precise than formal speci-
fications and cannot be used automatically to verify the functionality of the system, they
can still offer useful insights into a program’s intended behavior. The recent advent of
large language models has shown great promise to helping automate and bridge this gap
between informal descriptions and formal specifications.

Recent studies have shown the capabilities of integrating large language models with proof
assistants and formal verification tools in order to generate loop-invariants, assertions,
and auxiliary lemmas for intermediate proofs. Some notable examples include Wu et
al., who studied LLM-based auto-formalization on translating mathematical problems
to formal specifications and proofs in Isabelle/HOL [35]. They found that LLMs could
accurately translate a significant portion of a set of mathematical competition problems
into formal specifications in Isabelle/HOL. Another noteworthy example is Mugnier et al.,
who introduced Laurel, a tool that leverages LLMs to generate helper assertions for Dafny
programs to guide the SMT solver during the verification phase and showed that it could
generate over 50% of the required helper assertions with only a few attempts [23].

We must note that auto-formalization remains a challenging task due to several reasons.
Firstly, the system must ensure that the transformed text respects the syntax of the target
language, not only this but the resulting expression must also adhere to other constraints
such as the correct usage of types and dependencies used on expressions.

3. Formalization 13

The more significant challenge lies in correctly capturing the meaning behind informal de-
scriptions (the semantics) and being able to translate that meaning into a formal system.
Natural language can be highly ambiguous, and the same sentence might have different
meanings in different contexts. For example, when describing the behaviour of a sorting
algorithm in an imperative language as “This method sorts an array of integers in as-
cending order”, we are not specifying whether this could be modifying the original array
(in-place) or creating a new copy of it (out-of-place).

Another challenge that arises in the developing such a system is domain knowledge. For
example, the phrase “The function calculates the voltage drop across a resistor in a simple
circuit given a voltage and resistor” implicitly assumes background knowledge in physics.
To correctly formalize this statement one would need to recognize that the formula V =
I * R (Ohms law), is needed.

4. DISTRIBUTION OVER THE SEMANTIC DOMAIN OF
AUTO-FORMALIZATIONS

4.1 Auto-formalization with LLMs

The auto-formalization task can be thought of as the construction of a mapping between
the elements of two sets. Let L denote the set of all natural language strings and let A be
the set of all syntactically valid statements in a given formal language (i.e first order logic
formulas or Dafny annotations). The goal of auto-formalization consists of constructing
f : L → A mapping elements from L to elements in A [26].

The construction of such a mapping is complex due to two main challenges. Firstly, the
ambiguity of natural language, that is, natural language sentences often contain ambi-
guities and nuances that can lead to multiple interpretations. This inherent ambiguity
makes it difficult to determine a single, definitive formal representation for a given natu-
ral language string. Additionally, even when a particular meaning is clear, there may be
multiple syntactically valid ways to express that meaning within the formal language. For
example, in propositional logic, some simple transformations like adding double-negations
or inverting the order in disjunctions leads to logically equivalent expressions.

Due to the probabilistic nature of neural language models, a mapping between the natural
language and formal language domain should defined as a conditional probability distri-
bution over the formal language domain. Given a natural language description x ∈ L, a
transfer model T : L × A → R induces a probability distribution over A. Specifically,
for any annotation y ∈ A, T (x, y) denotes the probability that x is transferred onto to y,
defined as:

T (x, y) = Pr(Y = y | X = x),

In practice, we do not have direct access to the full conditional probability distribution
T for a given a natural language description x. Instead, we typically work with a model
that, conditioned on x, generates outputs sequentially. This means that instead of directly
sampling from a pre-defined distribution over all possible formal statements, we must rely
on the model to produce outputs step by step.

For instance, in sequence-to-sequence models, the process of generating an annotation y
can be seen as sampling one token at a time. At each step, the model generates the
next token in the sequence based on the previously generated tokens and the original
natural language description x, which serves as the conditioning context. The probability
of generating the next token depends on the entire sequence of prior tokens, thus the model
samples from a distribution over the next token at each step. This sequential generation
process effectively approximates the process of sampling from the conditional distribution
T (x, y), but does not allow us to directly access the full distribution across the entire
output space at once.

Both the natural language and formal language domain posses a structure between its
elements that can be exploited in order to deal with the many syntactical variations of a

14

4. Distribution over the semantic domain of Auto-formalizations 15

given statement. Specifically, an equivalence relation for the elements in A can be defined
based on logical equivalence. That is, given two annotations a1, a2 ∈ A we say that these
are equivalent, denoted as a1 ≡ a2, if and only if a1 and a2 are logically equivalent (i.e
they have the same truth value for every model).

In practice this equivalence relationship between annotations can be evaluated using a
theorem prover or SMT solver. For example consider the following program that takes as
input an integer x and returns its absolute value y.

0 p r e d i c a t e i s a b s 1 (x : i n t , y : i n t)
1 {
2 (x≥0 => x=y) ∧ (x<0 => x+y=0)
3 }
4

5 p r e d i c a t e i s a b s 2 (x : i n t , y : i n t)
6 {
7 (x≥0 => x=y) ∧ (x<0 => y = −x)
8 }
9

10 lemma eq (x : i n t , y : i n t)
11 e n s u r e s i s a b s 1 (x , y) ⇐⇒ i s a b s 2 (x , y)
12 {
13 }

Listing 4.1: Equivalence checking using Dafny

Both predicates on 4.1 state that if x is non negative then the output y is equivalent to x.
The first predicate then states that if x is negative then the sum of x and y should equal
zero while the second one states that y should be equal to −x. The equivalence of these
two predicates can be checked by writing a lemma that prooves their mutual implication.

In a similar fashion we can also define an equivalence relationship for the description
domain whereby two natural descriptions are equivalent if and only if they are semantically
equivalent. Unlike logical equivalence where this relationship is well defined, semantic
equivalence for natural language expressions is less straightforward. This is due to the
inherent complexity and variability in how meaning is conveyed and interpreted in natural
language, which can depend on context and individual understanding. In practice, we can
use a language model to approximate if two descriptions are semantically equivalent.

This structure in both domains L andA is crucial because it allows us to group annotations
into equivalence classes based on their semantic meaning. This grouping not only simplifies
the analysis by reducing redundancy but also ensures that we can focus on the meaningful
semantic differences between annotations rather than their syntactic variations.

Using these equivalence relations, we can partition the domain into these classes of seman-
tically equivalent elements. We use e(A) to denote the set of equivalence classes in the
annotation domain and use [a] to denote the equivalence class of element a ∈ A. Given
a set of samples annotations from the model we can use a simple procedure to partition
the domain into equivalence classes

4. Distribution over the semantic domain of Auto-formalizations 16

Algorithm 1 Compute Equivalence Classes for Annotations

1: Input: Set of annotations A = {a1, a2, . . . , an}, equivalence relation E(ai, aj)
2: Output: Set of equivalence classes e(A)

3: e(A)← ∅ // Initialize an empty set of equivalence classes
4: for ai ∈ A do
5: found ← false // Flag to track if a match is found
6: for each equivalence class Cj ∈ e(A) do
7: if ∃aj ∈ Cj such that E(ai, aj) then
8: Cj ← Cj ∪ ai // If there is a match, add ai to the existing class
9: found ← true

10: break // Exit the loop, since a matching class is found
11: end if
12: end for
13: if not found then
14: Cnew ← {ai} // If no matching class was found, create a new equivalence class
15: e(A) := e(A) ∪ Cnew // Add Cnew to e(A)
16: end if
17: end for
18: Return e(A)

On Algorithm 1 we show a procedure to compute equivalence classes in the annotation
domain. It begins by initializing an empty set of equivalence classes. For each new
annotation ai, we check whether it belongs to any of existing equivalence class. For this,
it compares the current candidate specification ai against all previously formed classes
using the equivalence relation E(ai, aj). If we find that ai is equivalent to a given aj ,
a representative in an existing class Ci, then ai is added to class Ci. If no match is
found after checking all existing classes, a new equivalence class is created with ai as the
representative element. The algorithm continues this process iteratively, building up a set
of equivalence classes that group equivalent annotations together. Finally, the result is a
set of equivalence classes e(A), where each class groups logically equivalent annotations.

4.2 Measuring accuracy and uncertainty in formalizations

There are several possible ways to measure the performance of an auto-formalization sys-
tem. Most notably, a parallel can be drawn between formalization and another related
task extensively studied in NLP research: machine translation. Both tasks involve trans-
forming information from one form to another while preserving meaning and intent. Just
as machine translation transforms text from one language to another, auto-formalization
looks to translate informal mathematical language into formal specifications and proofs.

One performance metric, derived from the field of machine translation is the BLEU metric
which essentially measures the accuracy of machine-generated translations by comparing
them to human-generated references [25]. Previous studies have made use of this metric
for this particular purpose, most notably Wu et al. [35] approached the translation of
mathematical competition problems to formal specifications in Isabelle/HOL. The authors

4. Distribution over the semantic domain of Auto-formalizations 17

used BLEU to measure the degree to which the output aligned with formal specifications
crafted by a human expert.

However, we must note that BLEU as a performance evaluation metric in this context
has a few problems. Firstly, the meaning in a sentence can change significantly just a
few words or tokens. BLEU primarily focuses on string similarity rather than the actual
meaning, which can lead to inaccuracies in evaluating the true quality of translations. This
metric does not account for the various ways a sentence can be correctly translated. For
example, changing the name of a quantifier or a non-free variable in a formula should not
change its meaning, but this can be problematic for BLEU. Thus, BLEU might penalize
such changes resulting in lower scores for valid translations that differ from the reference
specification.

Alternatively, if one already has access to a reference specification r ∈ A for a given natural
language description x ∈ L we can simply check whether its translation T (x) is logically
equivalent T (x) ≡ r by using an SMT-solver to prove the statement T (x) ⇐⇒ r. This
approach would ensure that the generated specification is semantically identical to the
reference, regardless of syntactic differences.

However, it is worth mentioning that SMT-solvers come with its own set of challenges
and limitations. Most notably, SMT solvers can exhibit brittleness, meaning they can
sometimes be sensitive to small changes in the input or problem formulation [30] . This
brittleness can lead to inconsistent performance and fail to find a solution due to the
complexity of some logical statements (such as those involving universal quantifiers), limi-
tations of the solver itself or sometimes even due to seemingly irrelevant conditions like the
naming of a variable. This in turn can lead to false negatives, where the solver incorrectly
determines that two equivalent specifications are not equivalent. Additionally, while SMT
solvers are powerful, they can struggle with very large or complex specifications, leading
to longer computation times.

4.3 Confidence Measures

While accuracy measures how often a model’s predictions are correct, it does not tell us
how confident the model is about its predictions or how reliable those predictions might
be in cases for which we don’t have a ground truth specification. This is where confidence
measures come into play. Confidence measures provide a numerical value that reflects the
model’s certainty in its predictions. These can be expressed as confidence scores, which
typically range from 0 to 1, where 0 indicates no confidence and 1 indicates complete
confidence. Confidence scores can be derived using various methods depending on the
task and the model underlying model architecture and assumptions. For example, in
classification tasks, confidence is often calculated as the probability assigned by the model
to the predicted class ŷ as P (ŷ|x).

When dealing with sequence models, the task becomes more complex compared to binary
classification because the output is a sequence of tokens rather than a single label and
the probability of each token can be dependent on the previous one. For a sequence y =
(y1, y2, . . . , yt), where T denotes the length of the sequence, the probability of generating
the entire sequence according to the model is:

4. Distribution over the semantic domain of Auto-formalizations 18

P (y) =

T∏
t=1

P (yt|y1, y2, . . . , yt−1) (4.1)

In practice, log-probabilities are used since they simplify computations and help avoid
numerical issues. The log-probability of the sequence is then given by summing the log-
probabilities of each token conditional on the tokens that came before it:

logP (y) =

T∑
t=1

logP (yt|y1, y2, . . . , yt−1) (4.2)

However, the log probability of a sequence is not always a direct reflection of confidence,
especially in tasks where the output is a sequence of tokens rather than a single label.
In this context, entropy can be a useful complementary measure. In information the-
ory, entropy is a measure of uncertainty or randomness in a distribution. It quantifies
the amount of unpredictability or surprise associated with a set of possible outcomes.
For a discrete random variable X with possible outcomes x1, x2, . . . , xn and probabilities
p(x1), p(x2), . . . , p(xn), the entropy H(X) is defined as:

H(X) = −
n∑

i=1

p(xi) log2 p(xi) (4.3)

where p(xi) is the probability of outcome xi, and the logarithm is typically base 2, mea-
suring entropy in bits. When the distribution of outcomes is spread out more evenly,
meaning no outcome is highly probable compared to others, the entropy is higher. This
indicates greater uncertainty or unpredictability because each outcome is nearly equally
likely. Alternatively, when one outcome is highly probable while others are less so, the
entropy is lower. This reflects a situation where the outcome is more predictable because
there’s less uncertainty about which outcome will occur.

To compute entropy as a measure of uncertainty in a sequence model’s predictions, we
would need to generate multiple samples or predictions from the model. Kadavath et
al. studied whether language models can evaluate the validity of their own claims and
predict which questions they will be able to answer correctly [19]. To this aim they
sampled multiple answers for a set of questions and estimated the entropy of the answer
distribution as

H(A|Q) = EA

[
N∑
i=1

(− logP (ai|Q, a0, . . . , ai−1))

]
(4.4)

However, they found that as models increase in size, and capable of providing more diverse
set of correct answers the entropy of the token sequences as they measured might not
be a robust measure. Farquhar et al recently explored an alternative approach aimed
at detecting hallucinations in large language models [11]. Their method addressed this
limitation of the previous entropy based approaches by computing entropy at the semantic
level.

4. Distribution over the semantic domain of Auto-formalizations 19

To estimate semantic entropy, first multiple samples of the sample problem must be gener-
ated. After this, the outputs generated by the model are clustered into groups of sentences
that convey the same meaning. This can be done by defining an equivalence relationship
≡s where two elements are the same if they are conveying the same idea in a particular
context. In practice this can also be approximated using an language model. Then, the
likelihood that a sequence produced by the model belongs to a particular class is given
by summing the probabilities of all possible token sequences that can be interpreted as
expressing the same meaning.

In practice this quantity is not tractable due to the fact that only a limited number of
classes can be sampled from the model. This would mean that

SE(A|Q) =
∑
ci∈C

P (ci|Q) logP (ci|Q) (4.5)

where P (ci) determines the probability of observing an answer from the semantic cluster
ci given a question Q. In practice this can be approximated by P (ci|Q) = 1

|S|
∑

x∈S 1x∈ci
where S is the set of all outputs sampled from the model. This is particularly convenient,
in our case since the log-probabilities were not available on the Gemini API (AI Studio)
at the time of writing, thus we used the discrete approximation of semantic entropy were
we approximate the probability of each equivalence class using the observed frequencies.

5. EXPERIMENTS AND RESULTS

In this chapter, we present an empirical evaluation of an LLM-based approach to auto-
formalization with a focus on addressing the research questions outlined in the intro-
duction. The first two sections describe the general architecture and the dataset used
throughout our experiments. We then evaluate 3 different strategies over a collection of
programs, measuring both alignments (i.e., was the generated solution equivalent to the
reference specification) and concentration (whether the largest equivalence class dominates
the distribution) for the generated formalizations.

To explore what happens in cases of concentration and non-alignment, we analyze and
illustrate instances of misalignment, particularly examining the most frequently occurring
equivalent classes for each proposed architecture. This analysis looks to address the nature
of misalignment but also serves to inform the restructuring of the prompt-based solution
on later experiments.

In the final sections, we investigate the relationship between alignment and concentration
through the lens of semantic entropy, aiming to analyze the if there is a relation between
these two phenomenons. Additionally, we explore the performance of the inverse task
(turning formal specifications into informal descriptions) to determine whether it could
serve as an indicator of the overall performance of the model on a given program.

5.1 The CloverBench dataset

For our experiments we use an existing dataset of Dafny programs. The CloverBench
dataset consists of 62 small hand-written example programs similar to those found in
standard computer science textbooks [26]. Each program in the dataset consists of a single
method and includes a Dafny implementation, annotations specifying pre-conditions and
post-conditions, and a docstring that describes program.

0 // Find a key i n a p o s s i b l y empty a r r a y . Return the i ndex o f i t s f i r s t occu rance .
1 // Ensure i nd ex i s i n range . I f not found , r e t u r n −1.
2 method Find (a : a r ray<i n t >, key : i n t) r e t u r n s (i nd ex : i n t)
3 e n s u r e s −1 ≤ i n d e x < a . Length
4 e n s u r e s i nd ex ̸= −1 => a [i nd e x] = key ∧ (f o r a l l i : : 0 ≤ i < i n d e x => a [i] ̸= key)
5 e n s u r e s i nd ex = −1 => (f o r a l l i : : 0 ≤ i < a . Length => a [i] ̸= key)
6 {
7 i n d e x := 0 ;
8 wh i l e i nd e x < a . Length
9 i n v a r i a n t 0≤i n d e x≤a . Length

10 i n v a r i a n t (f o r a l l i : : 0 ≤ i < i n d e x=>a [i] ̸= key)
11 {
12 i f a [i nd e x] = key {
13 r e t u r n ;
14 }
15 i n d e x := i n d e x + 1 ;
16 }
17 i f i n d e x ≥ a . Length {
18 i n d e x := −1;
19 }
20 }

Listing 5.1: Example of a dafny specification

20

5. Experiments and Results 21

In the example above we show one of the programs found on the CloverBench dataset. The
first two lines that make up the documentation outline the goal of finding a key in an array
and returning its index or -1 if the key is not present. The specification section defines the
formal constraints which in this case first ensure that returned index is within bounds and
then specify that if the returned index is different than -1 then the index correspond to
the first occurrence of the key in the array and finally that the index returned should be -1
if the key is not present in the array. Finally there is also a body with the implementation
of the method where a loop goes through all the indexes in the array until a matching
value is found.

5.2 Transfer model implementation details

Fig. 5.1: General architecture used throughout the experiments.

The experiments in this thesis share a common architecture outlined on Figure 5.1. The
initial step involves generating an initial few-shot prompt candidate from the natural
language description text and method signature from the target program. This few-shot
approach augments the system instruction and target documentation with other relevant
examples in order to give a more comprehensive context to the LLM on the type of
solutions that are expected.

The examples we use to use in the few-shot prompt are retrieved from a document database
stored in memory and are selected based on their semantic similarity to the target doc-
umentation. This essentially consists of converting text into a numerical representation
known as embeddings. Embeddings are dense vector representations of text, where se-
mantically similar words and/or texts have closer representations in the target space when
measured using a distance metric such as cosine similarity [21]. Identifying vectors that
are close to each other in this space allows us to retrieve examples from the database that
are semantically similar and contextually relevant to the target program. Throughout our
experiments, we initialize the document database with the other programs in the Clover-
Bench dataset, and we retrieve a subset k = 10 programs. We exclude the target program
to avoid leaking information from the reference specification in our tests.

Next, after constructing the few-shot prompt we query an LLM. In this case, we use the
Gemini family of models, made available through the Gemini API [13], [28]. Some of the
models available in the Gemini API at the time of writing include Gemini 1.0, Gemini 1.5

5. Experiments and Results 22

Flash and Gemini 1.5 Pro. We opted for the Gemini 1.5 Flash model for our experiments,
as the other models in the Gemini family were subject to rate limiting at that time. This
model allows us to provide a set of parameters like temperature, the maximum number
of tokens to sample and the top p parameter for controlling the tokens used in nucleus
sampling. We limited the maximum number of tokens to 1000 and used a temperature
parameter of 0.7 throughout our experiments.

After receiving the response from the model, we check use the Dafny compiler to check
for syntax and type errors. If any syntax or type errors are detected during compilation
then a retry mechanism is used in which we query the LLM augment the initial prompt
with the response and compilation error log from the compiler.

5.3 Baseline formalization

First we want to assess the consistency and accuracy of specifications generated by the
LLM and the properties of the underlying distribution when looking at the set of generated
equivalence classes. We want to look at how consistently the model generates specifications
that fall within the same logical equivalence class. Additionally we want to determine if
there is an association between concentration and alignment between the generated and
reference specification. We also want to determine if there are observable biases or common
patterns in the model’s output for misaligned specifications.

In order to do so, for each program in the dataset, we prompted the model to generate
a specification from the original documentation. We sampled 30 specifications for each
program and then grouped the generated specifications into equivalence classes based on
their logical equivalence.

5. Experiments and Results 23

Prompt template 1

SYSTEM INSTRUCTION
You are an expert in Dafny. Given the function’s docstring and signature for a
Dafny program, please extract the pre and post-conditions for the program pro-
vided. Please make the pre-condition as weak as possible and the post-conditions
as strong as possible. Put one condition per line. Do not return the docstring and
the function implementation. Do not use helper functions. Use abs for absolute
value. Do not explain. Follow the format:

DESCRIPTION: docstring

SIGNATURE: method signature

SPECIFICATION: the program specification in Dafny

———————————————————————————————-

DESCRIPTION: Find a key in a possibly empty array. Return the index of its
first occurrence. Ensure index is in range. If not found, return -1.

SIGNATURE: method Find(a: array < int >, key: int) returns (index: int)

SPECIFICATION:
ensures− 1 <= index < a.Length
ensures index ̸= −1 ==> a[index] == key
ensures index ̸= −1 ==> foralli :: 0 <= i < index ==> a[i] ̸= key
ensures index = −1 ==> (foralli :: 0 <= i < a.Length ==> a[i]! = key)

In this case, a system instruction is provided to the language model describing the instruc-
tions for the task. Specifically, the LLM is instructed to formulate the weakest possible
preconditions and strongest possible post-conditions for the method, excluding both the
docstring and implementation from the response. The instructions also outline the for-
mat for the interaction, where the description is followed by the method’s signature and
after this, a specification following the Dafny syntax is expected. The example above
demonstrates how this interaction would occur when querying the language model. In
this example, we begin by providing a description and the signature for the program find.
A possible output from the language model for this program is shown in blue below and
contains the expected specification for the respective method in the Dafny syntax.

On Table 5.1, we show a breakdown of the solutions generated by the language model
based on alignment and concentration. The rows indicate the type of alignment with
the reference specification, categorized as Aligned, Not Aligned and Strongly Not Aligned.
The first category, Aligned, corresponds to programs for which specification of the largest
equivalence class coincides with the reference specification. On the second category, Not

5. Experiments and Results 24

Alignment/Concentration Concentrated Not Concentrated

Aligned 45 3

Not Aligned 3 3

Strongly Not Aligned 4 4

Tab. 5.1: Alignment and concentration of the most frequent equivalence class

Aligned, we include programs for which a specification equivalent to the reference specifica-
tion was found but this one was not its majority class. On the third category, Strongly Not
Aligned we include programs for which none of the specifications generated were aligned
with the reference specification. The columns represent the concentration, with Concen-
trated indicating that a solution holds more than 50% of the weight within its logical
equivalence class, signifying dominance with respect to the other generated specifications.
Conversely, Not Concentrated solutions have less than 50% weight, indicating they are
overshadowed by other incorrect or misaligned specifications.

We observed that, for 54 out of the 62 programs the LLM was able to generate a correct
solution, that is, it was able to generate at least one specification which could be proven
to be equivalent to the reference specification.

After grouping solutions into their respective logical equivalence classes we found that for
45 programs the equivalence class corresponding to the reference specification concentrated
the majority of the weight of the distributions. For the other 9 programs, even though
a solution was found, it was outweighed by another classes corresponding to mis-aligned
solutions that concentrated a larger proportion of the distribution’s weight.

Fig. 5.2: (Left) Bar plot for the equivalence to reference specification by the frequency of the largest
equivalence class.

In Fig 5.2, we show the results of this experiment after grouping the generated specifica-
tions according to their logical equivalence. The plot shows the distribution of problems

5. Experiments and Results 25

by the size of their most frequent equivalence class. The x-axis represents the number of
elements within our sample that fall into the most frequent equivalence class. Addition-
ally, the plot highlights in green and gray the proportion of programs for which the largest
equivalence class was determined to be equivalent to the reference specification.

This results reveal that for most of the problems present in the dataset the model gen-
erates specifications which fall within the same logical equivalence class. Moreover, for
52 out of the 62 programs examined we see that there is a single equivalence class which
captures the majority of the empirical distribution’s weight. This means that when look-
ing at the model’s outputs, most of them fall into one specific logical equivalence class
rather than being spread out among multiple options. We can interpret this as the model
having a fairly high degree of confidence in these cases. Additionally, there appears to
be a correlation between the concentration and the overall alignment. In other words,
when the model’s generated specifications are heavily concentrated within one equivalence
class, those specifications are more likely to align with the reference specification. This
would suggest that when the model is confident enough to produce specifications that
cluster together, those specifications are typically a more accurate representation original
intention in the documentation. We can interpret this as evidence of the model having a
high degree of confidence in its responses for the majority of the problems presented here.

We also found some examples for which the output distribution is concentrated over a
single incorrect equivalence class. For example, a problem in the dataset consisted on
searching for an element in a possibly empty array and return the index of its first ap-
pearance. After grouping the specifications generated by the LLM we observed that these
fall into two groups, with one of them concentrating over 83% of the distribution. The
first one was classified as incorrect due to the missing post-condition requirement that the
index returned should coincide with the first appearance.

Verification Failures Concentrated Non Concentrated Total

Weak post-conditions 3 3 6

Incorrect Post 2 2 4

Syntax error 1 2 3

Weak pre-conditions 1 0 1

Total 7 7 14

Tab. 5.2: Nature of non-alignment for most frequent equivalence clusters.

On the right side of Fig 5.2 we present a table that details the breakdown of nature of
non-alignment identified in the most frequent logical equivalence class for each problem.
We observed that the most frequent non-alignment reason could be attributed to the post-
conditions that were too weak compared to the reference specification. For example, on
the program LinearSearch where the task consists of linearly searching for an element in a
possibly empty array and return the index of its first appearance the generated examples
consistently failed to include the post-condition that the returned index is indeed the first
appearance (∀0 ≤ j < |a| : j < i→ a[j] ̸= e). Interestingly a similar statement did appear
in the specification generated by the language model but it was conditional to the item

5. Experiments and Results 26

not being found. That is, here the model might be generating post-conditions that are
syntactically plausible or commonly seen in similar tasks, but not semantically aligned
with the specific program’s requirements. This misalignment might happen because the
model doesn’t always grasp the full logical structure of the problem.

Additionally, we found programs with incorrect post-conditions among the instances of
mis-aligned and concentrated solutions. For example, on one program which the task was
to generate a map r by transforming the keys from an input map m using the an injective
function f : N− > N . On the class that concentrated over 50% of the distribution we
found the model was consistently generating specifications that contained the statement
∀k ∈ Nat : ¬(k ∈ m) =⇒ ¬(k ∈ r), meaning that if a key is not in the original array
then it should not be present in the result/output array. The correct statement could
actually be ∀k ∈ Nat : ¬(k ∈ m) => ¬(f(k) ∈ r) where if the element is not in the array
then, its value after f , f(k) should not be in the resulting array.

We also identified three instances where the most frequent equivalence class contained
syntax errors, leading to verification failures. Finally, after manual inspection, we dis-
covered two programs where the most frequent equivalence class was indeed correct and
syntactically valid, but the verification procedure failed to verify that this specification was
equivalent to the reference specification. For our analysis, we counted those specifications
as correct. This is interesting since it underscores the limitations of the SAT solver ap-
proach in accurately determining equivalence, showing that these failures can occur even
for this set of seemingly simple programs.

5.4 Introducing an Intermediate Verbalization Step

In the previous section, we observed that weak post-conditions were a primary source
of error which suggests that the model may struggle to fully capture and evaluate the
local structure and relationships between the variables involved in the program. Recent
studies show that breaking down tasks into a series of intermediate reasoning steps can
significantly improve the ability of large language models to perform complex reasoning
[32]. A priori, we expect that this intermediate verbalization step could promote self-
consistency by encouraging the model to first articulate and consider the multiple aspects
of the program involved. Essentially, this approach attempts to mimic aspects of our
intuition on how humans might approach this task by first decomposing a problem and
considering the entities involved in it and their interactions. For this experiment, we
test whether this intermediate decomposition of the source documentation into a more
specific natural language description leads to an improvement in the performance of the
auto-formalization capabilities of the LLM.

5. Experiments and Results 27

Prompt

DESCRIPTION:
Find a key in a possibly empty array. Return the index of its first occurrence. Ensure
index is in range. If not found, return -1.

SIGNATURE:
method Find(a: array< int >, key: int) returns (index: int)

VARS:
a: array of integers, representing the array to be searched
key: integer, representing the key to be found
index: integer, representing the index of the first occurrence of the key in the array, or -1
if the key is not found.

THOUGHT PRE:
There are no preconditions

THOUGHT MODIFIES:
The method does not modify any of the input parameters.

THOUGHT POST:
If the key is found, the returned index should be the index of the first occurrence of the key
in the array. If the key is not found, the returned index should be -1. The returned index
should be within the range of the array, or -1.

To this end, we modify the system instruction to elicit a response that begins with a de-
scription of each variable involved. Following this, the response should describe in natural
language the pre-conditions and post-conditions and also consider whether the method
alters the input variables. Finally, we instruct the LLM to express these conditions as
Dafny statements (requires, modifies, ensures). Above we show an example for a program
in the dataset. In this example, the task consists of finding a key in an array and return
the index of its first occurrence. We can see that the variables involved are the input
variables a and key which correspond to the input array and the key to be found in the
array, and the output variable index which corresponds to the index of the first occurrence
of the key in the array.

Alignment/Concentration Concentrated Not Concentrated

Aligned 38 5

Not Aligned 4 5

Strongly Not Aligned 4 6

Tab. 5.3: Alignment and concentration breakdown

An analysis into the resulting distribution of the specifications generated by this variant
appears to yield a degradation of both the overall accuracy and concentration. We observed
a drop in the number of problems for which a solution is found to 51. Most notably, on
table 5.3 we see that after grouping the specifications by their logical equivalence the
number of problems for which solutions were concentrated into a class aligned with the
reference specification drops from 46 to 38.

5. Experiments and Results 28

Fig. 5.3: Bar plot for the equivalence to reference specification by the frequency of the largest
equivalence class.

When delving deeper at the reasons that lead to the non-aligned solutions we observe
that there is a higher frequency of specifications that contain stronger than required pre-
conditions. Upon manual examination we can see that most of the errors here stem
from the verbalization process. Interestingly, we observed that for 6 of these programs
with strong pre-conditions, their intermediate decomposition step contains a pre-condition
which requires non-empty arrays on problems which do not have this explicit requirement.
For example, on the program replace where the task consisted on replacing all elements
in an array strictly greater than an input value k with −1 while elements in the array
less than or equal to k remain unchanged we found that the intermediate decomposition
contained the statement The input array should not be empty or which resulted in a
pre-condition statement requiring arr.Length > 0. This example also highlights some of
the complications that arise from what could be considered and ambiguous prompt and
the model making incorrect assumptions, since the specification could indeed be verified
correctly and represent a feasible implementation, the requirement for the input array to
be non-empty is not mentioned anywhere in the program description.

Verification Failures Concentrated Non Concentrated Total

Too strong preconditions 5 2 7

Weak postconditions 1 3 4

Incorrect Post 1 3 4

Weak preconditions 1 0 1

Too strong postconditions 0 1 1

Syntax error 0 2 2

Total 8 11 19

Tab. 5.4: Verification failure reasons breakdown.

We think that the higher frequency of stronger pre-conditions observed in this experiment
could be caused by a bias introduced on the prompt itself. Studies have shown that LLMs

5. Experiments and Results 29

can be susceptible to a phenomenon often refereed to as prompt-bias [36]. Essentially, the
way a prompt is structured or presented to the model can lead to responses that are biased
towards certain types of outputs, regardless of whether they are appropriate or necessary
for the task at hand. In this particular case, the explicit mention of preconditions in the
prompt may have led the LLM to focus on including them in the generated specifications,
even when they were not required or necessary on the correct solution. In essence, we
think that the model might have been “primed” to include preconditions as part of its
output, even if the problem itself didn’t require such conditions.

5.5 Intervened Verbalization

As our results from the previous section showed, a significant number of the model errors
seem to be attributable to an incorrect interpretation of the original problem descriptions.
To examine this, we manually intervened the process used in the previous experiment by
feeding the the same prompt from the previous section but this time with the correct nat-
ural language decomposition included in the context. We expect this manual intervention
to reduce the propensity of the model to hallucinate and steer the answers towards the
original intentions of the original documentation. Like before we sampled 30 specifications
for each program and verified their outputs and later grouped them into their respective
equivalence classes.

Alignment/Concentration Concentrated Not Concentrated

Aligned 56 1

Not Aligned 0 0

Strongly Not Aligned 3 2

Tab. 5.5: Alignment and concentration with pre-filled prompt

On table 5.5 we show the contingency table for alignment and concentration. We can
see that for 57 out of the 62 programs the specifications generated were aligned with the
reference specification. We found one program for which the correct specification was
found but the distribution was not concentrated on its respective equivalence class mostly
due to a around 80% of the distribution being dominated by specifications with type errors.

We found only 5 programs for which a specification aligned with the reference specifi-
cation could not be found. Most notably we still found instances for which the model
generated specifications that were clustered around a class not aligned with the reference
specification. This included for example a case where the program consisted on modifying
the value at one specified index of a 2D array of natural numbers and even the verbaliza-
tion included the statement Every element in the 2D array arr remains unchanged, except
for the element at position (index1, index2). This means that any element (i, j) in the
array with i != index1 and or j != index2, will retain its original value. However, the
generated specification only guaranteed this condition for the modified inner array, that
is arr[index1][j] == old(arr[index1][j]).

In essence, we could think of the formalization task here as the LLM attempting to com-
plete two related tasks: first, it needs to accurately interpret and decompose the problem,

5. Experiments and Results 30

and second, it must translate this understanding into a formal logical specification. This
increase in performance after the intervention suggests that the source of the errors lies
primarily in the first sub-task (interpreting and decomposing problem), and that by pro-
viding more refined natural language descriptions significantly reduces the likelihood of
hallucinations and results in specifications that better align with the original intent of the
documentation.

5.6 Relation between entropy and performance

In the previous experiments, we observed that there appears to be a relationship between
concentration and performance for different transfer model instances. One particular way
of quantifying the concentration for a distribution is through its semantic entropy. In
this case, we believe that answers from a large language model (LLM) that exhibit lower
entropy values should correspond to answers on which the model is confident which in turn
could have a higher likelihood of being aligned with the original documentation. Note that
it is also possible for outputs to be concentrated among incorrect or misaligned answers. In
such cases, the model’s confidence is misplaced on plausible but incorrect answers, leading
to systematic errors that are consistently misaligned with the intention conveyed in the
original documentation.

To investigate this relationship further, we measured the discrete entropy and accuracy on
each strategy. We computed the accuracy on each example as the proportion of correctly
generated specifications (equivalent to the reference specification) relative to the total
number of specifications produced. On figure 5.4 we show both the average entropy and
the accuracy for each of the different strategies that we tried.

Fig. 5.4: Mean Accuracy and Entropy for each of the evaluated prompting strategies.

We can see that the verbalization instruction in this case has an accuracy of about 65%,
the baseline strategy 78% and after the intervention on the verbalization strategy achieves
an accuracy 92%. This would be indicative that as the overall performance for this task
increases so does its average concentration and consequently the entropy of the output
distribution is lower.

5. Experiments and Results 31

Fig. 5.5: Mean Accuracy and Entropy for each of these strategies

On figure 5.5 we show the accuracy for different entropy levels for each strategy. Here
we can see that within a strategy a similar pattern emerges where lower entropy values
are associated with a higher accuracy. Other studies have also shown similar relationships
between the entropy of a language model and its calibration [11], [19].

5.7 Abstraction from reference specification

Next we explore the capabilities of language models to perform the inverse task. This task
is also referred to as abstraction [6] and the goal consists of generating a natural language
description or abstraction of a formal object (in our case the program’s specification).
Other research works also explore this bi-directional approach. For example, Clover [26]
makes use of this method to try and verify whether generated code and its documentation
are consistent with each other. Similarly Allamanis et al. [1] explore an approach on this
direction by defining Round-Trip Correctness as alternative evaluation metric for code
generation tasks by ask a model to make a natural language description of the code,
feed that description back and check if this round-trip leads to code that is semantically
equivalent to the original input.

In this case we want to know whether the performance on this task for a program could be
indicative of the performance on the original formalization task for a given program. We
would expect for this this metric to show us programs where either the abstraction could
contain multiple possible interpretations thus carrying to different text, or additionally
programs for which their complexity is high enough that the LLM fails to capture subtleties
in its specification.

To this end, we provide the method signature along with its specification in the context and
ask it to generate a natural language description. Then to verify whether the generated
specification matches the original specification we prompt the LLM again providing both
the reference and generated descriptions and ask it to asses whether this two specifications
are semantically equivalent. We sampled 30 descriptions from the reference specification

5. Experiments and Results 32

of each program in our dataset following the prompt template shown below and measure
its accuracy.

Abstraction Task Instruction

Given the function signature and its specifications for a Dafny program. Please return a
short and concise docstring of the functional behavior implied by the specifications. Do
not mention implementation details. Please only return the description. Do not explain.
Below is the Dafny signature and its specifications:

SIGNATURE: method Find(a: array < int >, key: int) returns (index: int)
SPECIFICATION:
ensures− 1 <= index < a.Length
ensures index ̸= −1 ==> a[index] == key
ensures index ̸= −1 ==> foralli :: 0 <= i < index ==> a[i] ̸= key
ensures index = −1 ==> (foralli :: 0 <= i < a.Length ==> a[i]! = key)

For this task, the LLM was able to generate at least one correct description for all of the
programs in our dataset, but with a varying degree of accuracy. The average accuracy sits
at 92% and for about 49 of them it was able to get a correct description in all instances,
that is, with an accuracy of 100%. Interestingly, there were only 3 programs for which its
accuracy was below 50% and for these programs all three approaches failed to generate a
correct formalization as well.

5.8 Limitations and Threats to Validity

We must note that there are some factors that may compromise the validity of our findings
and its implications. One significant threat to the validity of our findings arises from the
fact that the specifications used in this study are assumed to be accurate and reflective
of the intended program behavior. These specifications can be subjective in nature, and
their correctness and relevance may vary depending on the context in which the programs
are implemented. Since specifications might not be universally objective in all cases, there
is a risk that they may not fully capture the intended functional requirements, potentially
introducing biases in the analysis.

Furthermore, several of the programs may be too elementary or trivial, and therefore not
representative of the complexity typically encountered in real-world software programs.
As a result, we are not able to extrapolate the findings to broader software engineering
contexts.

Another potential threat stems from the uncertainty surrounding the training data used for
the language model. It is not clear whether the model was exposed to prior specifications
of similar programs written in Dafny, especially for common or well-known programs. If
the model had access to such instances, it could have biased the generated specifications,
possibly making the results less generalizable or skewing them toward already familiar
patterns from its training corpus. This dependency and lack of transparency in the training
corpus complicates the interpretation of the results, as the model’s output might not solely
reflect its inherent capabilities, but rather in its exposure to previously seen examples.

5. Experiments and Results 33

Finally, a fundamental limitation of this study comes from the fact that the sample size
used when generating specifications is fairly small and this might limit the diversity of
the generated samples. Additionally, the experiments were constrained to a single set of
parameters and a single model.

6. CONCLUSIONS

We explored the use of Large Language Models (LLMs) for auto-formalization, a task
that consists of turning natural language descriptions into formal specifications. To assess
the effectiveness of LLM-based solutions, we made use of an existing dataset of Dafny
programs, together with their documentation and formal specifications. Our analysis was
focused not only on the model’s overall accuracy, but also on a qualitative understanding
these solutions in terms of their semantic distribution. We evaluated how the generated
specifications could be grouped based on logical equivalence using Dafny’s SMT solver,
and analyzed the semantic entropy of the resulting distributions. This allowed us to move
beyond simple syntactic comparisons and gain a deeper understanding of how the model’s
outputs varied and clustered semantically.

Our results revealed that the performance of the LLM-based approach varied significantly
across different prompting strategies. The baseline method, which directly generated
preconditions and postconditions, showed generally acceptable performance in terms of
distributional concentration—that is, the model’s tendency to produce similar outputs.
However, we also identified areas of poor alignment, especially related to the strength of
the generated preconditions. The most frequent failure in this approach was due to the
model producing preconditions that were too weak or too general. This observation led us
to propose a more complex strategy involving an intermediate verbalization step, which led
to a performance degradation. A closer inspection of the semantic clusters of the resulting
formalizations showed that the outputs tended to concentrate around specifications with
stronger preconditions.

After an intervention of the transfer model with correctly decomposed natural language
descriptions, breaking down the informal descriptions in a way that would help the model
better capture the logical structure of the problem we saw a significant improvement
both in terms of accuracy and concentration. The improved clustering of the generated
formalizations around correct specifications suggested that the root cause of earlier failures
lay in the model’s initial “interpretation” of the natural language input. When given
more precise and structured descriptions, the model was better able to generate consistent
and reliable formal specifications, with significantly fewer errors or hallucinations. We
believe that this qualitative analysis of performance in terms of distribution and clustering,
particularly in a clustered support where outputs can be analyzed semantically, seems to
provide valuable insights for understanding the challenges and limitations of LLMs in the
auto-formalization task.

Additionally, our analysis of the model’s semantic entropy—which reflects the semantic
distribution of generated outputs—provided a valuable indicator performance. Lower en-
tropy, corresponding to higher output concentration, was correlated with higher-quality
formalizations. We also explored the inverse task of generating natural language descrip-
tions from formal specifications and found that performance on this task was appears to
be correlated with performance on the formalization task itself.

We must also note that our results seem to align with recent studies. Like Sun et al., we
observed that language models generally perform well when tasked with generating formal

34

6. Conclusions 35

statements from natural language descriptions [26]. Our exploration of semantic entropy
also coincides with previous investigations that suggest this metric effectively captures
instances where the model’s uncertainty is linked to inaccuracies. However, unlike previous
studies, our work makes use of semantic clustering in the formal domain and we conduct
a more in-depth analysis of the underlying causes of mis-alignment that arise during the
formalization process and with instights that we believe can help guide enhancements in
LLM-based solutions for the auto-formalization task.

Looking ahead, we think that several avenues warrant further investigation. One of the
more pressing ones would be to expand the analysis to a more comprehensive dataset
of Dafny programs. Most of the programs in this dataset are small programs that one
might find in an algorithm’s text book and thus might not be representative of the types
of programs one modern software projects. It would also be interesting to expand this
analysis beyond the formalization of single methods, for example, modeling abstract data
types and their structural invariants.

We also think it would be interesting to test the effects of some handmade adversarial
prompts, purposefully built to introduce ambiguity into the desired specification. This
could also involve a comparison on how LLMs respond to these adversarial prompts in
contrast to a human participant. Some recent studies have shown that that LLMs are
likely to be misled by irrelevant information thus exploring how such information affects
the models accuracy and confidence could be a valuable research direction for future
research.

Furthermore, this analysis relied exclusively on the Gemini family of models. However,
with an ever increasing number of language models being released to the public, and each
with potentially new architectures, training data, and parameter sizes, it remains an open
question whether our results carry over to these other models. More specifically, it is still
unclear whether auto-formalization is an emergent capability that becomes possible only
after reaching a certain model size or complexity. As we continue to see rapid advancements
in model development, it will be interesting to explore how this ability manifests across
different architectures and scales.

Additionally, we believe it would be worthwhile to explore the possibility of fine-tuning a
pre-trained model for the autoformalization task using the set of programs descriptions and
their specifications from the dataset. Furthermore, we consider that a promising avenue for
future research could involve evaluating the possibility of using semantic-entropy, or other
related measures of statistical concentration, as unsupervised metrics for performance
evaluation during the fine-tuning process. Entropy, in particular, could serve as a powerful
tool for assessing the uncertainty and diversity of a model’s outputs, helping to guide model
adjustments and further optimize its performance, particularly when a supervised signal
might be limited to a subset of reference examples.

Finally, during our experiments we considered mainly one single specification as a ground
truth, but in reality the correspondence might not be so simple. In practice, a single
natural language description can be inherently ambiguous, potentially describing multiple,
distinct formal interpretations. This complexity suggests that a more nuanced approach
is needed to account for these ambiguities. We believe it could be valuable to explore

6. Conclusions 36

a more generalized metric of accuracy that could accommodate these scenarios where
multiple alternative solutions could be deemed correct. Potentially, this could include the
development of a distance metric over the set of possible specifications.

6.1 Related Work

There are some works that look into calibration or confidence estimation in large language
models. Among these is a recent study relevant to the calibration and confidence estima-
tion on large language models answers done by Zhang et. al [37]. They investigate this in
the context of root-cause analysis for cloud infrastructure incidents and develop a system,
PACE-LM, in which a large language model is queried with the instruction to explain the
root cause of an incident together with a confidence score and a confidence evaluation.
They proposed a way to combine this two scores into a well-calibrated confidence estimate
for the reliability of the diagnostics proposed by the language model.

Finally, several recent papers explore the integration of large language models into the
formal verification framework. Mugnier et. al [23] propose “Laurel”, an LLM based
approach to assists developers in generating helper assertions for the verification of Dafny
lemmas for which the internal SMT-solver may struggle. They evaluated their approach
and showed that it was able to generate over 50% of the required helper assertions given
only a few attempts.

Finally, another noteworthy attempts in the generation of verifiable computer programs
using Dafny is Brandfonbrener et al. who introduces a novel method for generating veri-
fiable code in Dafny using Monte Carlo Tree Search [7]. Their approach uses a language
model to generate partial versions of a target program and construct a value function on
these partial programs using the feedback from the Dafny verifier which allows for the
systematic exploration of possible solutions.

BIBLIOGRAPHY

[1] Miltiadis Allamanis, Sheena Panthaplackel, and Pengcheng Yin. “Unsupervised Eval-
uation of Code LLMs with Round-Trip Correctness”. In: Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. url: https://openreview.net/forum?id=YnFuUX08CE.

[2] Nadia Alshahwan et al. “Automated Unit Test Improvement using Large Language
Models at Meta”. In: Companion Proceedings of the 32nd ACM International Con-
ference on the Foundations of Software Engineering, FSE 2024, Porto de Galinhas,
Brazil, July 15-19, 2024. Ed. by Marcelo d’Amorim. ACM, 2024, pp. 185–196. doi:
10.1145/3663529.3663839.

[3] Jeremy Avigad. “Opinion: The Mechanization of Mathematics”. In: Notices of the
American Mathematical Society 65.6 (June 2018), pp. 681–690. doi: 10 . 1090 /

noti1688.

[4] Michael Barnett et al. “Boogie: A Modular Reusable Verifier for Object-Oriented
Programs”. In: Formal Methods for Components and Objects, 4th International Sym-
posium, FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised
Lectures. Ed. by Frank S. de Boer et al. Vol. 4111. Lecture Notes in Computer
Science. Springer, 2005, pp. 364–387. doi: 10.1007/11804192_17.

[5] Yoshua Bengio et al. “A Neural Probabilistic Language Model”. In: J. Mach. Learn.
Res. 3 (2003), pp. 1137–1155. url: https://jmlr.org/papers/v3/bengio03a.
html.

[6] Vı́ctor A. Braberman et al. Tasks People Prompt: A Taxonomy of LLM Downstream
Tasks in Software Verification and Falsification Approaches. 2024. arXiv: 2404 .
09384 [cs.SE].

[7] David Brandfonbrener et al. VerMCTS: Synthesizing Multi-Step Programs using
a Verifier, a Large Language Model, and Tree Search. 2024. arXiv: 2402.08147
[cs.SE].

[8] Aakanksha Chowdhery et al. “PaLM: Scaling Language Modeling with Pathways”.
In: J. Mach. Learn. Res. 24 (2023), 240:1–240:113. url: http://jmlr.org/papers/
v24/22-1144.html.

[9] Gelei Deng et al. “PentestGPT: Evaluating and Harnessing Large Language Mod-
els for Automated Penetration Testing”. In: 33rd USENIX Security Symposium,
USENIX Security 2024, Philadelphia, PA, USA, August 14-16, 2024. Ed. by Da-
vide Balzarotti and Wenyuan Xu. USENIX Association, 2024. url: https://www.
usenix.org/conference/usenixsecurity24/presentation/deng.

[10] João Pascoal Faria and Rui Abreu. “Case Studies of Development of Verified Pro-
grams with Dafny for Accessibility Assessment”. In: Fundamentals of Software Engi-
neering - 10th International Conference, FSEN 2023, Tehran, Iran, May 4-5, 2023,
Revised Selected Papers. Ed. by Hossein Hojjat and Erika Ábrahám. Vol. 14155.
Lecture Notes in Computer Science. Springer, 2023, pp. 25–39. doi: 10.1007/978-
3-031-42441-0_3.

37

BIBLIOGRAPHY 38

[11] Sebastian Farquhar et al. “Detecting hallucinations in large language models using
semantic entropy”. In: Nature 630.8017 (2024), pp. 625–630. doi: 10.1038/S41586-
024-07421-0.

[12] Michael Fu et al. “ChatGPT for Vulnerability Detection, Classification, and Repair:
How Far Are We?” In: 30th Asia-Pacific Software Engineering Conference, APSEC
2023, Seoul, Republic of Korea, December 4-7, 2023. IEEE, 2023, pp. 632–636. doi:
10.1109/APSEC60848.2023.00085.

[13] Google AI. Gemini API. https://ai.google.dev/aistudio. Accessed: 2024-09-29.
2024.

[14] Chris Hawblitzel et al. “IronFleet: Proving Practical Distributed Systems Correct”.
In: Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015. Ed. by Ethan L. Miller and Steven Hand.
ACM, 2015, pp. 1–17. doi: 10.1145/2815400.2815428.

[15] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata
theory, languages, and computation. 3rd. Pearson international edition. Addison-
Wesley, 2007. isbn: 978-0-321-47617-3.

[16] Jie Hu, Qian Zhang, and Heng Yin. Augmenting Greybox Fuzzing with Generative
AI. 2023. arXiv: 2306.06782 [cs.CR].

[17] Lei Huang et al. A Survey on Hallucination in Large Language Models: Principles,
Taxonomy, Challenges, and Open Questions. 2023. arXiv: 2311.05232 [cs.CL].

[18] Daniel Jurafsky and James H. Martin. Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition with Language Models. 3rd. Online manuscript released August 20, 2024.
2024.

[19] Saurav Kadavath et al. Language Models (Mostly) Know What They Know. 2022.
arXiv: 2207.05221 [cs.CL].

[20] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional Cor-
rectness”. In: Logic for Programming, Artificial Intelligence, and Reasoning - 16th
International Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised
Selected Papers. Ed. by Edmund M. Clarke and Andrei Voronkov. Vol. 6355. Lecture
Notes in Computer Science. Springer, 2010, pp. 348–370. doi: 10.1007/978-3-642-
17511-4_20.

[21] Tomás Mikolov et al. “Efficient Estimation of Word Representations in Vector Space”.
In: 1st International Conference on Learning Representations, ICLR 2013, Scotts-
dale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun. 2013. doi: 10.48550/arXiv.1301.3781.

[22] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. “Z3: An Efficient SMT
Solver”. In: Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings. Ed. by C. R. Ramakrishnan and Jakob Rehof.
Vol. 4963. Lecture Notes in Computer Science. Springer, 2008, pp. 337–340. doi:
10.1007/978-3-540-78800-3_24.

BIBLIOGRAPHY 39

[23] Eric Mugnier et al. Laurel: Generating Dafny Assertions Using Large Language Mod-
els. 2024. arXiv: 2405.16792 [cs.LO].

[24] OpenAI et al. GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL].

[25] Kishore Papineni et al. “Bleu: a Method for Automatic Evaluation of Machine Trans-
lation”. In: Proceedings of the 40th Annual Meeting of the Association for Computa-
tional Linguistics, July 6-12, 2002, Philadelphia, PA, USA. ACL, 2002, pp. 311–318.
doi: 10.3115/1073083.1073135. url: https://aclanthology.org/P02-1040/.

[26] Chuyue Sun et al. “Clover: Closed-Loop Verifiable Code Generation”. In: AI Veri-
fication - First International Symposium, SAIV 2024, Montreal, QC, Canada, July
22-23, 2024, Proceedings. Ed. by Guy Avni et al. Vol. 14846. Lecture Notes in Com-
puter Science. Springer, 2024, pp. 134–155. doi: 10.1007/978-3-031-65112-0_7.

[27] Christian Szegedy. “A Promising Path Towards Autoformalization and General
Artificial Intelligence”. In: Intelligent Computer Mathematics - 13th International
Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings. Ed. by
Christoph Benzmüller and Bruce R. Miller. Vol. 12236. Lecture Notes in Computer
Science. Springer, 2020, pp. 3–20. doi: 10.1007/978-3-030-53518-6_1.

[28] Gemini Team et al. Gemini: A Family of Highly Capable Multimodal Models. 2024.
arXiv: 2312.11805 [cs.CL].

[29] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models. 2023.
arXiv: 2302.13971 [cs.CL].

[30] Aaron Tomb Tristan and Jean-Baptiste. Avoiding verification brittleness in Dafny.
Dafny Blog, https://dafny.org/blog/2023/12/01/avoiding-verification-
brittleness/. Accessed: 2024-12-07. Dec. 2023.

[31] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by Isabelle Guyon
et al. 2017, pp. 5998–6008. url: https://proceedings.neurips.cc/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[32] Jason Wei et al. “Chain-of-Thought Prompting Elicits Reasoning in Large Lan-
guage Models”. In: Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022. Ed. by Sanmi Koyejo et al.
2022. url: http : / / papers . nips . cc / paper % 5C _ files / paper / 2022 / hash /
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

[33] Jason Wei et al. “Emergent Abilities of Large Language Models”. In: Trans. Mach.
Learn. Res. (2022), 209:1–209:30. url: https://openreview.net/forum?id=
yzkSU5zdwD.

[34] Haoze Wu, Clark Barrett, and Nina Narodytska. “Lemur: Integrating Large Lan-
guage Models in Automated Program Verification”. In: The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11
2024. OpenReview.net, 2024. url: https://openreview.net/forum?id=Q3YaCghZNt.

BIBLIOGRAPHY 40

[35] Yuhuai Wu et al. “Autoformalization with Large Language Models”. In: Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022. Ed. by Sanmi Koyejo et al. 2022. url: http://papers.nips.
cc/paper%5C_files/paper/2022/hash/d0c6bc641a56bebee9d985b937307367-

Abstract-Conference.html.

[36] Ziyang Xu et al. “Take Care of Your Prompt Bias! Investigating and Mitigating
Prompt Bias in Factual Knowledge Extraction”. In: Proceedings of the 2024 Joint
International Conference on Computational Linguistics, Language Resources and
Evaluation, LREC/COLING 2024, 20-25 May, 2024, Torino, Italy. Ed. by Nico-
letta Calzolari et al. ELRA and ICCL, 2024, pp. 15552–15565. url: https :/ /
aclanthology.org/2024.lrec-main.1352.

[37] Dylan Zhang et al. “LM-PACE: Confidence Estimation by Large Language Models
for Effective Root Causing of Cloud Incidents”. In: Companion Proceedings of the
32nd ACM International Conference on the Foundations of Software Engineering,
FSE 2024, Porto de Galinhas, Brazil, July 15-19, 2024. Ed. by Marcelo d’Amorim.
ACM, 2024, pp. 388–398. doi: 10.1145/3663529.3663858.

[38] Yue Zhang et al. Siren’s Song in the AI Ocean: A Survey on Hallucination in Large
Language Models. 2023. arXiv: 2309.01219 [cs.CL].

