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A Flavia y a Mario, mis directores, por la gran oportunidad de trabajar con ellos, por
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Un enfoque algoŕıtmico sobre algunas variantes del problema de
coloreo de grafos y el problema de conjunto independiente máximo

En esta Tesis estudiamos variantes del problema de coloreo de grafos para varias fa-
milias de grafos, y analizamos el problema del conjunto independiente máximo bajo un
enfoque de generación de planos de corte.

En el problema del (k, i)-coloreo, asignamos conjuntos de colores de cardinalidad k a los
vértices de un grafo G, de manera que los conjuntos que correspondan a vértices adya-
centes en G intersequen en no más de i elementos y la cantidad total de colores usados
sea mı́nima. Esta cantidad mı́nima recibe el nombre de número (k, i)-cromático y es
denotada por χik(G). Este parámetro, que generaliza el número cromático χ0

1(G), es tan
dif́ıcil de trabajar que su valor es desconocido aún para grafos completos. Desarrollamos
un algoritmo de orden lineal para el cómputo de χik para ciclos y generalizamos este
resultado a grafos cactus. Adicionalmente, estudiamos la relación entre este problema
en grafos completos y un problema abierto clásico de teoŕıa de códigos.

Un b-coloreo de un grafo es un coloreo tal que cada clase color admite un vértice
adyacente a por lo menos un vértice perteneciente a cada una de las demás clases color.
El número b-cromático de un grafo G, denotado como χb(G), es el máximo número t
tal que G admite un b-coloreo con t colores. Describimos un algoritmo polinomial para
computar el número b-cromático de la clase de los grafos P4-tidy y estudiamos para
esta clase dos propiedades conocidas: la b-continuidad y la b-monotońıa.

Estudiamos además la versión sobre aristas del b-coloreo y su ı́ndice b-cromático aso-
ciado. Presentamos cotas para el ı́ndice b-cromático del producto directo de grafos
y damos resultados generales para varios productos directos de grafos regulares. In-
troducimos también un modelo sencillo de programación lineal para el b-coloreo de
aristas, que utilizamos para calcular resultados exactos para el producto directo de
algunas clases de grafos.

Finalmente, proponemos un nuevo método de generación de planos de corte para el
problema del conjunto independiente máximo. El algoritmo genera desigualdades de
rango y otras desigualdades válidas, y utiliza un procedimiento de lifting basado en
la resolución del conjunto independiente máximo con pesos sobre un grafo de menor
tamaño.

Palabras clave: (k, i)-coloreo, grafos cactus, b-coloreo, grafos P4-tidy, b-coloreo de
aristas, producto directo de grafos, conjunto independiente máximo, planos de corte,
algoritmos branch and cut.



An algorithmic approach for some variants of the graph coloring
problem and the maximum stable set problem

In this Thesis we study variants of the graph coloring problem for several families of
graphs, and we address the stable set problem under a new cutting plane generation
approach.

In the (k, i)-coloring problem, we assign sets of colors of size k to the vertices of a graph
G, so that the sets which belong to adjacent vertices of G intersect in no more than
i elements and the total number of colors used is minimum. This minimum number
of colors is called (k, i)-chromatic number and is denoted by χik(G). This parameter,
which generalizes the chromatic number χ0

1(G), is so difficult to deal with, that its value
is unknown even for complete graphs. We develop a linear time algorithm to compute
χik for cycles and generalize the result to cacti. Further, we study the relation between
this problem on complete graphs and a classic open problem in coding theory.

A b-coloring of a graph is a coloring such that every color class admits a vertex adjacent
to at least one vertex receiving each of the colors not assigned to it. The b-chromatic
number of a graph G, denoted by χb(G), is the maximum number t such that G admits
a b-coloring with t colors. We describe a polynomial time algorithm to compute the
b-chromatic number for the class of P4-tidy graphs and study this class for two known
properties: the b-continuity and the b-monotonicity.

We study also the edge version of the b-coloring problem and its associated b-chromatic
index for the direct product of graphs and provide general results for many direct
products of regular graphs. We introduce a simple linear programming model for the
b-edge coloring problem, which we use for computing exact results for the direct product
of some special graph classes.

Finally, we propose a general procedure for generating cuts for the maximum stable
set problem. The algorithm generates both rank and non-rank valid inequalities, and
employs a lifting method based on the resolution of a maximum weighted stable set
problem on a smaller graph.

Keywords: (k, i)-coloring, cacti, b-coloring, P4-tidy graphs, b-edge-coloring, direct
product of graphs, maximum stable set, cutting plane generation, branch and cut
algorithms.
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CHAPTER 1

Introduction

Graph coloring is one of the earliest and most important areas of graph theory. Since
its origins in the second half of the nineteenth century, it posed fascinating questions.
It gave birth to deep mathematical results, and to many practical applications as well.
If graph theory provides a mathematical model for objects involved in a binary relation,
graph coloring deals with the fundamental problem of partitioning these objects into
classes, according to a set of rules that specify whether any two objects are allowed in
the same class. For example, two objects may belong to the same class if they are not
related. In the language of graph theory, this means assigning integer numbers (“col-
ors”) to the vertices of a graph in such a way that adjacent vertices receive different
colors. Such an assignment is called proper coloring. We seek also to minimize or max-
imize some objective function related to the colors. We may want to minimize the total
amount of colors used, for instance. This problem is called classic graph coloring, and
has applications in scheduling, assignment of wavelengths in optical networks, register
allocation and timetable design, among others. Let us give an example application.

The number of wireless communications systems deployed around the globe increases
continuously. Because of this, the problem of the optimal assignment of a limited
radio frequency spectrum becomes of primary importance. The frequency band is
normally divided into a number of channels. The frequency assignment problem (FAP)
models the task of assigning channels to a set of transmitters. A channel can be
reused many times for different transmitters if they are far enough apart, so that
the co-channel interference is low. If too close transmitters use the same channel
simultaneously, the increase of co-channel interference will make the quality of the
communication unsatisfactory. Thus it is important to assign adequate channels to the
transmitters. Since the available frequency band is limited, we are interested in using as
few channels as possible. To model this problem, we define a graph G with one vertex
for each transmitter in the network of interest. Two vertices vt1 and vt2 are adjacent if
transmitters t1 and t2 cannot use the same channel. This graph is called the conflict
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Chapter 1. Introduction 2

graph of the problem. The co-channel FAP is then equivalent to finding a coloring
on the graph G with the minimum possible number of colors, each color representing
a channel. The coloring represents thus the optimum assignment of channels to the
transmitters.

There are real-life problems, however, which resemble a coloring problem but do not
match exactly the classic formulation. There could be additional constraints to be
satisfied. For this reason, numerous variants of the problem were defined to incorporate
these rules to the formulation. Continuing with the above example, suppose the network
of interest is now a cellular network. In these kind of networks, the total service region
is partitioned into a predefined number of cells, each with a base station located at
its center. Mobile users can only communicate with other users via the base station
assigned to the cell which they currently occupy. Each base station of a cellular network
must be assigned a set of channels, say of size k, to be used to communicate with users
within its cell region without causing interference to neighboring cells. This transforms
the coloring problem we had before into the so called k-tuple coloring of the same
conflict graph G, where we aim at assigning a set of k colors to each vertex in such a
way that adjacent vertices are assigned color sets that do not intersect with each other,
seeking to minimize the total amount of colors. See [85] for a complete treatment of
this application.

Other graph coloring variants appeared also with a theoretical motivation, such as
mathematical generalization. Together, more than 200 different graph coloring prob-
lems are studied in the literature, each of them interesting in their own right.

Unfortunately, classic graph coloring as an algorithmic problem is known since the be-
ginning of the 1970s to be NP-complete [69]. As additional constraints are introduced,
algorithmic complexity tends to increase even more. One way to work around this
difficulty is to restrict our attention to specific graph classes instead of general graphs.
The study of some graph coloring problem variants for known graph classes is the main
subject of this thesis.

Several generalizations of the coloring problem were introduced in the literature in
which each vertex is assigned not only a color but a set of colors, under different
restrictions. One of these variations is the k-tuple coloring introduced independently
by Hilton, Rado and Scott [50], Stahl [92], and Bollobás and Thomason [13]. Brigham
and Dutton [18] generalize the concept of k-tuple coloring by introducing the idea of
k : i coloring, in which the sets of colors assigned to adjacent vertices must intersect
in exactly i colors. In the (k, i)-coloring problem, this generalization is extended even
further: we assign sets of colors of size k to the vertices of a graph G, so that the
sets which belong to adjacent vertices of G intersect in no more than i elements and
the total number of colors used is minimum. This minimum number of colors is called
(k, i)-chromatic number and is denoted by χik(G). This variant was introduced by
Méndez-Dı́az and Zabala in [83]. Very little is known about this problem; even simple
graph classes pose a challenge for the (k, i)-coloring. For example, the computation of
χik is still open for cliques. Our alternative line of work was therefore to examine graph
classes that contain only small cliques, and that proved to be fruitful. We present in
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Chapter 2 new bounds for the (k, i)-chromatic number. We develop then a linear time
algorithm to compute χik for cycles and generalize the result to cacti (a graph G is a
cactus if every edge is part of at most one cycle). We slightly modify the algorithm to
solve k : i-coloring, obtaining a simpler algorithm than the one given by Brigham and
Dutton in JCTB [18]. Further, the (k, i)-chromatic number of some cartesian products
is given. Finally, we study the relation between this problem on complete graphs and
a classic problem in coding theory. The main part of these results were presented in
[15].

The b-coloring problem was introduced by Irving and Manlove in 1999 [56]. Given a
graph G, we ask for a proper coloring as in the classic coloring, now with the additional
requirement that at least one vertex in every color class has in its neighbourhood
vertices of all the other colors. We aim here to maximize the number of colors used.
This maximum number of colors is called the b-chromatic number. The motivation for
this coloring comes from the following heuristic for coloring a graph using the minimum
number of colors: start from a given coloring and try to decrease the number of colors
by eliminating color classes. For this purpose, select (if possible) a color class such
that every vertex from that class can be recolored with a different color that is not
used by any of its neighbors. Thus, a b-coloring is a coloring where we cannot apply
the strategy above to decrease the number of colors. In other words, the b-chromatic
number provides an upper bound for the accuracy of this heuristic.

In Chapter 3 we study the b-coloring problem for P4-tidy graphs. This is a general-
ization of many classes of graphs with few induced P4s. We describe in this chapter
a polynomial time algorithm to compute the b-chromatic number for this class. For
achieving this, we use a decomposition theorem for P4-tidy graphs due to Giakoumakis
et al. [38], based on previous results of Jamison and Olariu [63]. Further, we study for
this class two known parameters associated with the b-coloring: the b-continuity and
the b-monotonicity. They are motivated in two aspects in which b-coloring differs from
the behavior of classic coloring. It is easy to see that we may always obtain a classic
coloring with k + 1 colors from a coloring with k colors, as long as k < V (G). This
is not necessarily the case for b-colorings. It makes therefore sense to study the graph
families in which there exists a t-b-vertex coloring for every integer t between χ(G)
and χb(G). This graph classes are called b-continuous. Another atypical property of b-
colorings is that the b-chromatic number can increase when taking induced subgraphs.
A graph G is b-monotonous if χb(H1) ≥ χb(H2) for every induced subgraph H1 of G
and every induced subgraph H2 of H1. We prove that P4-tidy graphs are b-continuous
and b-monotonous.

The results in this chapter extend a previous work by Bonomo et al. [16], where an
analogous study was performed on the class of P4-sparse graphs. Our results were
published in [11].

Earlier on we introduced the purpose of colorings as partionining objects into classes.
The need for partitioning pairs of objects gives rise to edge colorings. We illustrate
this with a known example from the literature called timetabling [19], in this case a
Class-Teacher timetabling.
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Consider a school having a set of teachers and a set of classes. Every week, a teacher
has to teach certain classes. A teacher cannot teach two classes at the same time.
Also, a class cannot be taught by two teachers at the same time. The design of the
weekly timetable can be modeled as a graph coloring problem as follows: Let G be a
bipartite graph where one bipartition class Vt represents the teachers and the other one
Vc represent the classes. A vertex vt ∈ Vt is connected to a vertex vc ∈ Vc if teacher t
is in charge of class c. If k is the number of available time slots in the week, the colors
correspond to these time slots. A timetable for the teaches and classes is possible if
and only if the edges of the bipartite graph can be colored with k colors.

Edge colorings may appear different in nature to vertex colorings, but in fact, they are
equivalent to vertex colorings of a special graph class, the so called line graphs. The
line graph L(G) of G contains one vertex ve for each edge e of G. Vertices ve and wf
of L(G) are adjacent if edges e and f share a common vertex in G. In spite of this,
the transformation of an instance of the edge coloring problem into its corresponding
vertex coloring instance is rarely convenient, because we resign thus the particularities
of the edge version in favor of the more general vertex coloring problem. Analogously
as with vertex colorings, edge colorings have their own variants that arise from their
applications.

We focus in Chapter 4 on the edge coloring version of b-colorings for the direct product
of graphs. The b-chromatic index χ′b(G) of a graph G is the largest integer k such that
G admits a proper k-edge coloring in which every color class contains at least one edge
incident to edges in every other color class. The direct product G×H is the graph with
vertex set V (G) × V (H); two vertices (x, y) and (v, w) are adjacent in G × H if and
only if xv ∈ E(G) and yw ∈ E(H).

We give in this chapter bounds for the b-chromatic index of the direct product of graphs
and provide general results for many direct products of regular graphs. In addition, we
introduce an integer linear programming model for the b-edge coloring problem, which
we use for computing exact results for the direct product of some special graph classes.
The results in this work were proposed in [74].

In Chapter 5 we move away from colorings and approach another basic graph optimiza-
tion problem with many applications, the maximum stable set problem. Here we do not
seek to partition objects into classes, but we aim instead at finding a class of unrelated
objects that is as large as possible. The maximum stable set problem is known to be
NP-Hard, and was addressed using a number of algorithmic techniques. We work in
this chapter with one of these techniques, the integer linear programming approach.
Within this technique, a well known family of exact algorithms called branch and cut
has proven very effective for solving linear programs. One of the building blocks of
the branch and cut algorithms is the cutting plane procedure. We propose a general
procedure for generating cuts for this problem, inspired by a procedure by Rossi and
Smriglio [88] but applying a new lifting procedure by Xavier and Campelo [100]. In
contrast to existing cut-generating procedures, our algorithm generates both rank and
non-rank valid inequalities, and employs a lifting method based on the solution of a
smaller maximum weighted stable set problem. Computational experience on DIMACS
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benchmark instances shows the competitiveness of the proposed approach. These re-
sults were submitted for publication in [29].

Finally, in Chapter 6 we draw conclusions on the results obtained and present possible
continuations of this work.

In the rest of this chapter, we present a summary of the historical development of
graph coloring. The next section introduces basic definitions and notations that will
be used throughout this thesis. We conclude the chapter with an introduction to linear
programming and branch and cut algorithms.

1.1 Historical notes on graph coloring

We give here a summary of the origins of the graph coloring problem. We refer the
reader to [99] and [26] for a more detailed treatment on this subject. For the most
part, both references were the source of the material given here.

On 23 October 1852, English mathematician Augustus de Morgan wrote a letter to his
friend Sir William Rowan Hamilton, in which he told him about an intriguing problem
that was posed to him by a student of his named Francis Guthrie. His pupil had asked
him whether

The regions of every map can be colored with four or fewer colors in such a way that
every two regions sharing a common boundary are colored differently.

This problem became known as the Four Color Conjecture, and gave rise to the area
of colorability of graphs, that in turn led to the investigation of several other areas of
graph theory. It resisted the efforts of mathematicians for over a hundred years, and
even its proofs raised enormous controversy, to such extent that the last proof we are
aware of dates back to...2007.

Hamilton was not interested in Guthrie’s problem, but De Morgan wasn’t discouraged
and communicated it to many other mathematicians. In April 1860, a book review due
to De Morgan appeared in the scientific and literary journal Atheneum in which he
stated the problem for the first time in print. This contributed to the Conjecture be-
coming known in the United States. American logician and philosopher Charles Pierce
took interest in the problem, and presented an attempted proof to a mathematical
society at Harvard University. He also came up with a map drawn on a torus that
required six colors.

In 1878, after De Morgan’s death, the celebrated mathematician Arthur Cayley asked
for a solution in a meeting of the London Mathematical Society, at which he presided.
He attacked the problem himself without success and published in the April issue of
the Proceedings of the Royal Geographical Society in 1879 a short paper in which he
tried to explain where the essential difficulty of the problem lied. A former student of
Cayley named Alfred Bray Kempe was present at the meeting of 1878. This lawyer
and enthusiastic mathematician worked on the problem until 1879, when he announced
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Figure 1.1: A map and its corresponding planar graph. Kempe did not use the word
’graph’, but ’linkage’. The word graph was coined by James Sylvester in 1878.

that he had a solution. Cayley encouraged him to submit it to American Journal of
Mathematics. This way, one of the most famous mistaken proofs in the history of
mathematics was published. Kempe’s argument certainly contained an error, but some
of his ideas were used in subsequent attempts at the problem. Further, he pointed out
that the problem could be dualized to coloring the vertices of a graph, as shown in
Figure 1.1, introducing thus the modern formulation of the problem. We give here a
sketch of his proof. He first proved that every map contained necessarily one of the
four configurations illustrated in Figure 1.2. We call such a set unavoidable. As a
second step, for each configuration he showed that given any map M containing it,
and any 4-coloring c of M minus the shaded region of the configuration, c could be
extended to a 4-coloring of the whole map. Such a configuration of regions that cannot
occur in a minimum counterexample of the Four Color Conjecture is called a reducible
configuration. It is easy to see that the shaded region in configurations (a) and (b) can
be colored with a color not used by its neighbours. For case (c), if the neighbours of
the shaded region R use less than 4 colors we are done. If 4 colors are used, Kempe
looked at the regions of the map that used two colors. He was able to interchange these
two colors so that one of them is ‘freed’ from the neighbours of R, so we may use it
for R. To prove case (d), Kempe used the same argument as in (c), only interchanging
pairs of colors simultaneously as part of the process. Since all possible cases have been
considered, the proof is complete.

For a decade Kempe’s theorem was believed to be correct, until in 1890 an English
mathematician named Percy Heawood published a paper in which he exposed the flaw
in Kempe’s work. He presented an example map that couldn’t be colored with 4 colors
using the method above. Specifically, Kempe’s one colour interchanges were always
possible, while one cannot always perform two interchanges at the same time. Thus,
case (d) was not correctly solved. Nevertheless, Heawood managed to fix enough of
Kempe’s proof to show that every map can be colored with five colors.

The story of the approches to the problem for the next eighty six years is essentially
a succession of attempts at constructing unavoidable sets of reducible configurations.
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(a) (b) (c) (d)

Figure 1.2: Necessary configurations on any map

Around 1970, German mathematician Heinrich Heesch believed, giving probabilistic
arguments, that an unavoidable set of reducible configurations must exist, of cardinality
at most 9000. He provided also a technique for constructing unavoidable sets. His ideas
were developed by Kenneth Appel and Wolfgang Haken, who spent years programming
algorithms that would help in the search for unavoidable configurations, and assist in
the reducibility test. They managed thus to produce after 1200 hours of computer time
an unavoidable set of 1936 reducible configurations, completing this way the proof of the
theorem. Initially, this computer-aided result was resisted by many mathematicians,
and raised also interesting questions about the nature of mathematical proof. Since
then, the details in the original proof have been simplified, also decreasing the number
of configurations, but to the best of our knowledge, all successive improvements are still
computer assisted proofs. In 2007, Georges Gonthier published a proof of the theorem
using a formal proof system named Coq.

As stated above, already Kempe noted that the map coloring problem is equivalent
to coloring the vertices of a planar graph. This modern formulation of the problem
was further studied in the 1930s by Hassler Whitney in his Ph.D. thesis, by Rowland
Brooks, who in 1941 obtained a good upper bound on the number of colors required, by
Gabriel Dirac, who introduced in 1952 the idea of critical graph, and by many others.
Whitney developed the idea of the chromatic polynomial of a graph, where the number
of possible colorings is a polynomial function of the number of colors available. This
polynomial was much studied by George Birkhoff and Bill Tutte, among others.

In 1880, the natural philosopher Peter Guthrie Tait reformulated Kempe’s result in
terms of the coloring of boundary edges, instead of countries, believing that this would
simplify the proof. This idea led eventually to the problem of graph edge coloring.
Dénes König proved in 1916 that for a bipartite graph G, a number of colors equal to
the maximum degree ∆(G) of G is sufficient. Later Vadim Vizing, in two fundamental
papers proved that ∆(G)+1 are always sufficient for any graph G. Nevertheless, the so
called classification problem of determining whether a graph G needs ∆(G) or ∆(G)+1
colors is NP-complete [55].

Since the 1970s, the study of coloring problems made great progress, and continues to
be one of the most active research areas in graph theory. Further information about
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this development can be found in [66] and [36].

1.2 Definitions and notations

A graph G is an ordered pair (V (G), E(G)), that consists of a set V (G) called vertices
and a set E(G) of pairs of elements of V (G) called edges (we will also use the notation
G = (V,E)). If V = ∅, G is the empty graph. An edge {u, v} ∈ E(G) will be noted uv
for simplicity; u and v are called the endpoints of the edge. Two vertices connected by
an edge are adjacent, and two edges that share an endpoint are incident. If G allows
only one edge between two vertices, it is called simple. If multiple edges are allowed,
G is called a multigraph.

Given a graph G, the neighborhood of a vertex v in G is the set of all vertices adjacent
to v, denoted by NG(v) (each of these vertices is a neighbour of vertex v). The closed
neighbourhood of v is NG[v] = NG(v)∪{v}. The number of neighbours of v is the degree
of v and is denoted by dG(v). If all vertices of G have the same degree d, we say that G is
a d-regular graph. The minimum degree of G is the number δ(G) = min{dG(v), v ∈ V },
and the maximum degree of G is ∆(G) = max{dG(v), v ∈ V }. We may omit the
reference to G in the notation when it is clear from context.

The neighborhood of an edge e in a graph G is the set NG(e) of all edges incident to e
(the neighbours of e), and NG[e] = NG(e) ∪ {e} is its closed neighborhood. The degree
of e = uv is the number of its incident edges |NG(e)| and is denoted by dG(e). Note
that dG(e) = dG(u) +dG(v)−2. G is called an r-edge regular graph if all its edges have
the same degree r. Again, the reference to G will be frequently omitted for simplicity.

A subgraph of a graph G is another graph H contained in G, such that V (H) ⊆ V (G)
and E(H) ⊆ E(G). If H is a subgraph of G and it contains all the edges (x, y) ∈ E(G),
with x, y ∈ V (H), then H is an induced subgraph of G. We say that V (H) induces H
in G, and write H = G[V (H)].

A graph is complete if all its vertices are pairwise adjacent. The complete graph of size
n is denoted by Kn. If the subgraph G[C] induced by a set of vertices C ⊆ V (G) is
complete, then C is called a clique of G.

A subset S ⊆ V (G) is stable or independent if no two vertices of S are adjacent. The
stable set of n vertices is denoted by Sn. The stability number of G is the cardinality
of a maximum stable set in G and is denoted by α(G).

A graph G is bipartite when V (G) can be partitioned into two stable sets.

A matching of a graph G is a subset of edges pairwise non-incident.

The line graph L(G) of a graph G = (V,E) is the graph having as its vertex set the set
E of edges, two vertices in L(G) being adjacent if their corresponding edges in G are
incident.

The complement graph G of G has V (G) as its vertex set, and two vertices are adjacent
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in G if and only if they are not adjacent in G.

A path is a non empty graph P = ({v1, . . . , vn}, {(v1, v2), (v2, v3), . . . , (vn−1, vn)}). The
vertices v1 and vn are its endpoints, and the remaining vertices are midpoints. An in-
duced path on n vertices shall be denoted by Pn. An induced subgraph of G isomorphic
to Pn is simply said to be a Pn in G. The graph C = (V (P ), E(P )∪{(vn, v1)} is called
a cycle. A chordless cycle on n vertices is denoted by Cn. The length of a path or cycle
is the number of its edges. The girth of a graph G is the length of a shortest cycle in
G. The distance from a vertex u to a vertex v in G, written dG(u, v) is the length of a
shortest path from u to v. If no such path exists, then dG(u, v) =∞. The diameter of
a graph G, denoted by diam(G) is maxu,v∈V (G)d(u, v).

A graph G is connected if there exists a path between any two vertices of G and
disconnected otherwise. A connected component of a graph G is a maximal connected
subgraph of G.

If V ′ ⊆ V and G = (V,E), we write G − V ′ for G[V \ V ′]. If V ′ = {v} is a singleton,
we write G − v. If G − v has more connected components than G has, then v is a
cut-vertex of G. A block of a graph G is a maximal subgraph of G without cut-vertices.
An end-block is a block containing exactly one cut-vertex of G.

A connected graph with no cycles is called a tree. A graph with no cycles is a forest.

A (proper) vertex coloring of G (a vertex coloring, in short) is an assignment of colors
(represented by natural numbers) to the vertices of G, such that any two adjacent
vertices are assigned different colors. The smallest number t such that G admits a
vertex coloring with t colors is called the chromatic number of G and is denoted by
χ(G). A vertex coloring that uses k colors is a k-coloring. A k-coloring is a vertex
partition into k independent sets; each of them is called a color class.

An (proper) edge coloring of a (multi)graph G is an application from the edge set E to
a set of colors such that incident edges are assigned different colors. Here, a color class
is a matching of G. The minimum number of colors in an edge coloring of G is called
the chromatic index χ′(G) .

Unless otherwise specified, when we refer simply to a coloring, a vertex coloring is to
be understood.

Given a k-coloring, a vertex v (resp. edge e) is said to be dominant if vertices (resp.
edges) receiving all k colors in the coloring can be found in N [v] (resp. N [e]). A
dominant vertex v (resp. edge e) of color i is called color i dominating ; we say also
that color i is realized on v (resp. e).

1.3 Linear programming and branch and cut algorithms

We begin this section by introducing briefly some polyhedral terminology. We follow
here mainly the definitions of [90], and refer the reader to this excellent book for a
more extensive treatment on the subject.



Chapter 1. Introduction 10

A subset C of Rn is convex if λx + (1 − λ)y belongs to C for all x, y ∈ C and each λ
with 0 ≤ λ ≤ 1. Thus C is convex if it holds for any two points in C that the whole
line segment connecting them belongs to C.

The convex hull of a set X ⊆ Rn, denoted by conv(X), is the smallest convex set
containing X.

A subset P of Rn is called a polyhedron if there exists an m×n matrix A and a vector
b ∈ Rm (for some m ≥ 0) such that P = {x | Ax ≤ b}. A subset P of Rn is called a
polytope if it is the convex hull of finitely many vectors in Rn. It can be shown that a
subset P of Rn is a polytope, if and only if it is a bounded polyhedron.

Let P = {x | Ax ≤ b} be a nonempty polyhedron. If c is a nonzero vector for which
δ = max{cx | x ∈ P} is finite, then {x | cx = δ} is called a supporting hyperplane
of P . A face of P is P itself or the intersection of P with a supporting hyperplane
of P . A point x for which {x} is a face is called a vertex of P . A facet of P is an
inclusionwise maximal face F of P with F 6= P . An inequality determining a facet is
called facet-defining or facet-inducing.

Any linear inequality c>x ≤ t is called valid for P if c>x ≤ t holds for each x ∈ P .

Let P be a polytope and y a given point. The task of deciding if this point lies in P ,
and in case it does not, to find a valid inequality for P which is violated by y is called
the separation problem for polytope P .

Linear programming concerns the problem of maximizing or minimizing a linear func-
tion c>x over a polyhedron P = {x | Ax ≤ b}, A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn.
A linear programming problem (LP) will be denoted by

maximize(minimize) c>x

subject to Ax ≤ b

or bymax(min){c>x | Ax ≤ b}. c>x is called the objective function and the inequalities
Ax ≤ b are the constraints. Frequently an LP is also called linear programming model.
It can be shown that a minimization problem may be transformed into a maximization
problem, so we will consider from this point onwards only the maximization case.

We say that x is an integer vector if x ∈ Zn. Many combinatorial optimization problems
may be formulated as an instance of a linear programming problem, where we seek to
optimize an objective function over the integer vectors of some polyhedron P . Such
problems are called integer linear programming problems, or ILP. While the resolution
of LP problems is polynomial [70], solving ILPs is NP-Complete (the satisfiability
problem may be transformed into an ILP problem where all variables are binary) [69].

Note that the following inequality holds max{c>x | Ax ≤ b, x integer} ≤ max{c>x |
Ax ≤ b}. This dropping of the integrality constraint is called linear programming
relaxation. The resulting LP may be used as an upper bound for the ILP.

A standard algorithmic approach for solving ILPs are branch and cut algorithms. These
are exact algorithms consisting of a combination of a cutting plane method with a
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branch and bound technique. A brief description of both follows.

A cutting plane algorithm receives as input an integer programming formulation of the
problem, max{c>x | Ax ≤ b, x integer}. Now, using a linear programming algorithm, it
finds an optimal solution x∗ to the linear programming relaxation max{c>x | Ax ≤ b}.
If x∗ is integral, then it is also an optimal solution to our combinatorial problem.
Otherwise, it inspects the valid inequalities to find any inequality that is violated by
x∗. The violated inequality is then added to the constraints of the linear programming
relaxation. Now a new optimal solution x∗∗ is sought and at this point, the procedure
is repeated.

In the best scenario, we find this way an integral solution to one of the linear program-
ming relaxations and solve thus the combinatorial problem. But, depending on the
objective function and our classes of valid inequalities, the procedure that searches for
violations may not find any. In this case, the process terminates without reaching an
integral optimal solution. In any case, the optimal value of each linear programming
relaxation provides an upper bound on the optimal value of the combinatorial problem
that usually improves the previous bound we had.

The branch and bound method is a technique for simulating a complete enumeration of
all possible solutions without having to consider them one by one. For many NP-hard
combinatorial optimization problems, it is the best known framework for obtaining an
optimum solution. It consists of the repeated application of a process for splitting
the space of solutions into two or more subspaces and applying an upper bounding
algorithm to each part. The point of this splitting is that the extra structure in these
parts may allow the bounding technique to perform better than on the entire solution
space, giving thus an improved upper bound.

Branch and cut algorithms use cutting plane procedures as bounding mechanism in a
branch and bound scheme. The branching technique may vary. One common scheme
is to choose some variable xi that takes on a fractional value x∗i in the optimal solu-
tion of the current LP relaxation, and create one new subproblem with the additional
constraint xi ≤ bx∗i c and a second subproblem with the additional constraint xi ≥ dx∗i e.
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1.4 Resumen del caṕıtulo

Damos en este resumen las definiciones básicas que serán utilizadas a lo largo de todo
este trabajo.

Un grafo G es un par ordenado (V (G), E(G)), que consiste en un conjunto V (G)
denominado vértices y un conjunto E(G) de pares de elementos de V (G) llamados
aristas (utilizaremos también la notación G = (V,E)). Si V = ∅, G es el grafo vaćıo.
Una arista {u, v} ∈ E(G) será denotada uv por simplicidad; u y v son llamados extremos
de la arista. Dos vértices conectados por una arista son adyacentes, y dos aristas que
comparten un extremo son incidentes. Si G permite únicamente una arista entre dos
vértices, es llamado simple. Si se admiten múltiples aristas, G es llamado multigrafo.

Dado un grafo G, la vecindad de un vértice v en G es el conjunto de vértices adyacentes
a v, denotado por NG(v) (cada uno de estos vértices es un vecino de v). La vecindad
cerrada de v es NG[v] = NG(v) ∪ {v}. El número de vecinos de v es el grado de v y es
denotado dG(v). Si todos los vértices de G tienen el mismo grado d, decimos que G es
un grafo d-regular. El grado mı́nimo de G es el número δ(G) = min{dG(v), v ∈ V }, y
el grado máximo de G es ∆(G) = max{dG(v), v ∈ V }. Omitiremos la referencia a G
en la notación cuando resulte claro por contexto.

La vecindad de una arista e en un grafo G es el conjunto NG(e) de todas las aristas
incidentes a e (los vecinos de e), y NG[e] = NG(e) ∪ {e} es su vecindad cerrada. El
grado de e = uv es su número de aristas incidentes |NG(e)| y es denotado dG(e). Notar
que dG(e) = dG(u)+dG(v)−2. G es llamado r-arista regular si todas sus aristas tienen
el mismo grado r. Nuevamente, la referencia a G será omitida frecuentemente para
simplificar la notación.

Un subgrafo de un grafo G es otro grafo H contenido en G, tal que V (H) ⊆ V (G) y
E(H) ⊆ E(G). Si H es un subgrafo de G y contiene todas las aristas (x, y) ∈ E(G),
con x, y ∈ V (H), entonces H es un subgrafo inducido de G. Decimos que V (H) induce
H en G, y lo notamos H = G[V (H)].

Un grafo es completo si todos sus vértices son adyacentes de a pares. El grafo completo
de tamaño n se denota Kn. Si el subgrafo G[C] inducido por un conjunto de vértices
C ⊆ V (G) es completo, entonces C es llamado clique de G.

Un subconjunto S ⊆ V (G) es estable o independiente si ningún par de vértices de S es
adyacente. El conjunto estable de n vértices se denota Sn. El número de estabilidad
de G es la cardinalidad de un conjunto independiente máximo en G y se denota α(G).

Un grafo G es bipartito cuando V (G) puede ser particionado en dos conjuntos estables.

Un matching de un grafo G es un subconjunto de aristas tal que ningún par de ellas es
incidente.

El grafo de ĺınea L(G) de un grafo G = (V,E) es el grafo que tiene por vértices el con-
junto E de aristas, y tal que dos vértices son adyacentes en L(G) si sus correspondientes
aristas en G son incidentes.
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El grafo complemento G de G tiene a V (G) como vértices, y dos vértices son adyacentes
en G si y sólo si no son adyacentes en G.

Un camino es un grafo no vaćıo P = ({v1, . . . , vn}, {(v1, v2), (v2, v3), . . . , (vn−1, vn)}).
Los vértices v1 and vn son sus extremos, y los vértices restantes son vértices intermedios.
Un camino inducido de n vértices será denotado Pn. Un subgrafo inducido de G
isomorfo a Pn se dice simplemente un Pn en G. El grafo C = (V (P ), E(P )∪ {(vn, v1)}
es un ciclo. Un ciclo sin cuerdas de n vértices se denota Cn. La longitud de un camino
o ciclo es su número de aristas. La cintura de un grafo G es la longitud de un ciclo
de longitud mı́nima en G. La distancia de un vértice u a un vértice v en G, denotada
dG(u, v) es la longitud de un camino de longitud mı́nima de u a v. Si no existe un
camino como se pide, entonces dG(u, v) = ∞. El diámetro de un grafo G, denotado
diam(G) es maxu,v∈V (G)d(u, v).

Un grafo G es conexo si existe un camino entre dos vértices cualquiera de G y no conexo
sino. Una componente conexa de un grafo G es un subgrafo conexo maximal de G.

Si V ′ ⊆ V y G = (V,E), escribimos G−V ′ para G[V \V ′]. Si V ′ = {v} es un conjunto
de un único elemento, escribimos G− v. Si G− v tiene más componentes conexas que
G, entonces v es un vértice de corte de G. Un bloque de un grafo G es un subgrafo
conexo maximal de G sin vértices de corte. Un bloque hoja es un bloque que contiene
exactamente un vértice de corte de G.

Un grafo conexo sin ciclos es un árbol. Un grafo sin ciclos es un bosque.

Un coloreo (válido) de vértices de G es una asignación de colores (representados por
números naturales) de los vértices de G, tal que dos vértices adyacentes cualquiera
tengan asignados colores diferentes. El número t más chico tal que G admite un coloreo
de vértices con t colores se llama número cromático de G y es denotado como χ(G). Un
coloreo de vértices que utiliza k colores es un k-coloreo. Un k-coloreo es una partición
de vértices en k conjuntos independientes; cada uno de ellos es una clase color.

Un coloreo (válido) de aristas de un (multi)grafo G es una aplicación del conjunto de
aristas E a un conjunto de colores de manera tal que aristas incidentes reciban colores
diferentes. Aqúı, una clase color es un matching de G. El mı́nimo número de colores
en un coloreo de aristas de G es denominado ı́ndice cromático χ′(G).

Salvo expĺıcitamente especificado, cuando nos referimos simplemente a un coloreo, debe
entenderse un coloreo de vértices.

Dado un k-coloreo, un vértice v (resp. arista e) es dominante si en N [v] (resp. N [e])
se pueden encontrar vértices (resp. aristas) de los k colores del coloreo. Un vértice
dominante v (resp. arista dominante e) de color i se denomina color i dominante;
decimos también que el color i se realiza en v (resp. e).
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Programación lineal y algoritmos branch and cut

Damos en esta sección una introducción a terminoloǵıa poliedral. Seguimos aqúı ma-
yormente las definiciones de [90], y remitimos a este libro al lector para un tratamiento
más extensivo del tema.

Un subconjunto C de Rn es convexo si λx+ (1−λ)y pertenece a C para todo x, y ∈ C
y cada λ con 0 ≤ λ ≤ 1. Entonces C es convexo si para dos puntos cualquiera de C el
segmento que los conecta pertenece en su totalidad a C.

La cápsula convexa de un conjunto X ⊆ Rn, denotada por conv(X), es el conjunto
convexo más pequeño que contenga a X.

Un subconjunto P de Rn es llamado un poliedro si existe una matrix A de m× n y un
vector b ∈ Rm (para algún m ≥ 0) tal que P = {x | Ax ≤ b}. Un subconjunto P de
Rn es llamado un poĺıtopo si es la cápsula convexa de una cantidad finita de vectores
en Rn. Se puede mostrar que un subconjunto P de Rn es un poĺıtopo si y sólo si es un
poliedro acotado.

Sea P = {x | Ax ≤ b} un poliedro no vaćıo. Si c es un vector distinto de cero para el
cual δ = max{cx | x ∈ P} es finito, entonces {x | cx = δ} es un hiperplano de soporte
de P . Una cara de P es o bien P mismo o bien la intersección de P con un plano
soporte de P . Un punto x para el cual {x} es una cara se llama un vértice de P . Una
faceta de P es una cara maximal F de P con F 6= P . Se dice de una desigualdad que
determina una faceta que define faceta.

Una desigualdad lineal c>x ≤ t es llamada válida para P si c>x ≤ t vale para cada
x ∈ P .

Sea P un poĺıtopo e y un punto dado. La tarea de decidir si este punto pertenece a P ,
y en caso de que no sea aśı, encontrar una desigualdad para P que es violada por y se
llama el problema de separación para el poĺıtopo P .

La programación lineal se ocupa del problema de maximizar o minimizar una función
lineal c>x sobre un poliedro P = {x | Ax ≤ b}, A ∈ Rm×n y vectores b ∈ Rm, c ∈ Rn.
Un problema de programación lineal (PL) será denotado por

maximizar(minimizar) c>x

sujeto a Ax ≤ b
o bien como max(min){c>x | Ax ≤ b}. c>x es la función objetivo y las desigualdades
Ax ≤ b son las restricciones. Frecuentemente un PL también es llamado modelo de
programación lineal. Se puede mostrar que un problema de minimización puede ser
transformado en uno de maximización, con lo cual consideraremos a partir de ahora
únicamente el caso de maximización.

Decimos que x es un vector entero si x ∈ Zn. Varios problemas de optimización com-
binatoria pueden ser formulados como una instancia de un problema de programación
lineal, donde buscamos optimizar una función objetivo sobre los vectores enteros de un
poliedro P . Estos problemas son llamados problemas de programación lineal entera,
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o PLIs. Mientras la resolución de problemas PL es polinomial [70], resolver PLIs es
NP-Completo (el problema de satisfacibilidad puede ser transformado en un PLI donde
todas las variables son binarias) [69].

Notar que la siguiente desigualdad es válidamax{c>x | Ax ≤ b, x integer} ≤ max{c>x |
Ax ≤ b}. Este abandono de la restricción de integralidad se denomina relajación lineal.
El PL resultante puede ser utilizado como una cota superior para el PLI.

Un enfoque computacional standard para resolver PLIs son los algoritmos branch and
cut. Estos son algoritmos exactos que consisten en una combinación de un método de
planos de corte con la técnica de branch and bound. A continuación damos una breve
descripción de ambos.

Un algoritmo de generación de planos de corte recibe como entrada la formulación en
programación lineal entera del problema, max{c>x | Ax ≤ b, x integer}. Utilizando un
algoritmo para PL, obtiene una solución óptima x∗ a la relajación lineal max{c>x |
Ax ≤ b}. Si x∗ es entero, entonces también es una solución óptima para nuestro
problema combinatorio. Sino se inspeccionan las desigualdades para encontrar alguna
que sea violada por x∗. La desigualdad violada es entonces agregada a las restricciones
de la relajación lineal. En este punto, se busca una nueva solucion óptima x∗∗ y el
procedimiento se repite.

En el mejor escenario, encontramos de esta manera una solución entera para una de
las relajaciones lineales y resolvemos aśı el problema combinatorio. Pero, dependiendo
de la función objetivo y nuestras clases de desigualdades válidas, el procedimiento que
busca violaciones podŕıa no encontrar ninguna. En este caso, el procedimiento termina
sin encontrar una solucion entera óptima. De todas formas, el valor óptimo para cada
relajación lineal provee una cota superior para el óptimo del problema combinatorio
entero, que usualmente mejora la cota previa que teńıamos.

El método de branch and bound es una técnica para simular una enumeración completa
de todas las posibles soluciones sin tener que considerarlas una a una. Para varios pro-
blemas de optimización combinatoria que son NP-hard, es el mejor esquema conocido
para obtener una solución óptima. Consiste en la aplicación iterativa de un proceso
que divide el espacio de soluciones en dos o más subespacios, para aplicar luego un
algoritmo que obtenga una cota superior en ambas partes. El objetivo de este trabajo
de partición es que la estructura adicional que aporta cada parte puede permitir al
algoritmo de cotas un mejor resultado que sobre el espacio total de soluciones.

Los algoritmos branch and cut usan procedimientos de planos de corte como mecanismo
para acotar en un esquema de branch and bound. La técnica de branching puede variar.
Un esquema común consiste en elegir una variable xi que toma un valor fraccionario x∗i
en la solución óptima de la relajación lineal actual, y crear un subproblema nuevo con
la restricción adicional xi ≤ bx∗i c y un segundo subproblema con la restricción adicional
xi ≥ dx∗i e.



CHAPTER 2

On the (k, i)-coloring problem of cacti and complete graphs

A k-tuple coloring of a graph G is an assignment of k colors to each vertex in such
a way that adjacent vertices are assigned different colors. The minimum number of
colors needed for a k-tuple coloring of G will be noted χk(G). This problem was
introduced independently by several authors. Hilton, Rado and Scott [50] used this
coloring as an auxiliary concept for studying the so called fractional chromatic number
on planar graphs. Stahl [92] studied general properties for k-tuple colorings and found
χk for bipartite, complete n-partite graphs and cycles. Bollobás and Thomason [13]
showed new relations between χk(G) and χ(G), namely that min{χk(G) : χ(G) = j} =
2k + j − 2 and that min{χk(G) : G is uniquely j-colorable} = 2k + j − 1.

Brigham and Dutton [18] generalized the concept of k-tuple coloring by introducing
the concept of k : i-coloring, in which the sets of colors assigned to adjacent vertices
intersect in exactly i colors. The k : i-coloring problem consists into finding the min-

imum number of colors in a k : i-coloring of a graph G, which we denote by χ
(i)
k (G).

Note that χ
(0)
k (G) = χk(G). In this work, the authors gave χ

(i)
k (G) for bipartite graphs

and odd cycles. Partial results were also shown for complete graphs.

Another generalization, known as (k, i)-coloring, was introduced by Méndez-Dı́az and
Zabala in [83], in which the sets of colors assigned to adjacent vertices intersect in at
most i colors. Formally, let G be a graph and let k, i, j be non-negative integers, with
0 ≤ i ≤ k ≤ j. Then a (k, i)-coloring of G with j colors consists into assigning to each
vertex v of G a set c(v) ⊆ {1, . . . , j} of size k such that each pair of adjacent vertices
u, v verifies |c(v) ∩ c(u)| ≤ i. These sets are called color sets. The minimum positive
integer j such that G admits a (k, i)-coloring with j colors is called the (k, i)-chromatic
number and is denoted by χik(G). Note that for k = 1, i = 0, we have the classical
coloring problem and thus χ0

1(G) = χ(G) for any graph G. For arbitrary k and i = 0,

16
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we have the k-tuple coloring.

Méndez-Dı́az and Zabala solved in [83] the (k, i)-coloring problem for some values of
k and i on complete graphs, studied the notion of perfectness and criticality for the
(k, i)-coloring problem and gave general bounds for the (k, i)-chromatic number. The
authors proposed also an heuristic approach and a linear programming model for the
problem, which they further developed and generalized in [84].

Note that χik(G) ≤ χ
(i)
k (G), since every k : i-coloring is in particular a (k, i)-coloring,

but they are not necessarily equal, even for complete graphs. We will provide an
example in Section 2.4.

We begin this chapter by introducing new bounds on χik. Next, we present a linear
time algorithm to compute the (k, i)-chromatic number of cycles and generalize the
result in order to derive a polynomial algorithm for this problem on cacti. We also
show that these results hold for the k : i-chromatic number of cycles and cacti. Next,
we study the (k, i)-chromatic number for some cartesian products. Finally, we present
a relation between the (k, i)-coloring problem on complete graphs and weighted binary
codes. The results in this chapter were submitted for publication in [15].

2.1 New bounds for the (k, i)-chromatic number

We start the discussion in this section by listing the few existing general bounds for
the (k, i)-chromatic number, all of them due to Méndez-Dı́az and Zabala:

Proposition 2.1.1. [83] The following bounds hold for any graph G:

i) χik(G) ≤ k(max{δ(H)/H induced subgraph of G}+ 1)− i.

ii) χik(G) + χik(G) ≤ k(n+ 1)− 2i, n ≥ 3.

iii) χik(G)χik(G) ≤
(k(n+1)−2i

2

)2
for n ≥ 3.

We contribute here with some new bounds, presented in the following paragraphs.

As an immediate corollary of Theorem 2 of [92], we have that if G has an edge, then

χ
(0)
k (G) ≤ χ(0)

k+1(G). This property does not hold in general for the k : i- coloring prob-

lem. As a counterexample, Brigham and Dutton [18] give 8 = χ
(1)
2 (K7) > χ

(1)
3 (K7) = 7.

We found computationally another counterexample on a smaller graph: it does also

hold that 8 = χ
(2)
3 (K6) > χ

(2)
4 (K6) = 7. Curiously, the strict version of this inequality

becomes valid again for (k, i)-colorings, as we show in the next easy proposition.

Proposition 2.1.2. χik(G) < χik+1(G).

Proof. Let c be any (k+1, i)-coloring of G. We will transform c into a (k, i) coloring that
uses (at least) one less color. For this, remove some color c1 from every assignment
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c(v), v ∈ V (G). After this operation, some vertices might still have assignments of
cardinality k + 1. For those vertices, simply remove one arbitrary color from their
assignments. It is clear that the result is a valid (k, i)-coloring, since all assignments
have size k and since removal of colors leaves intersections either unchanged or smaller
in size.

The reader might wonder from the proof above whether χik(G) and χik+1(G) may indeed
differ in more than one. This is effectively the case. An an example, we have χ1

3(K3) =
6, but χ1

4(K3) = 9 (see Theorem 2.4.1 for a formula that guarantees correctness of these
examples).

Brigham and Dutton [18] conjectured that χ
(i+1)
k (G) ≤ χ

(i)
k (G) for 0 ≤ i ≤ k − 1. For

i = 0 this is true. Their conjecture was disproved two years later by Kelladi and Payan
in [71]. Interestingly, the inequality does hold again when shifting to the (k, i)-coloring
problem, as in the previous proposition, and it is strict. We prove this statement below.

Let G be a graph G and c a (k, i)-coloring of G. Let j be a color used in c, and
Cj ⊆ V (G) the subset of vertices such that v ∈ Cj if j ∈ c(v). Further, for a subset
S ⊂ V (G), define the operation repc(S, j, j

′) that performs a replacement of color j
with color j′ in every c(v), v ∈ S.

Lemma 2.1.1. Let c be a (k, i + 1)-coloring of G. Let j be a color such that |c(v) ∩
c(w)| ≤ i,∀v ∈ Cj , w ∈ V (G), vw ∈ E(G). Let S ⊂ Cj and j′ a color such that
j′ /∈ ⋃v∈S c(v). Then repc(S, j, j

′) transforms c into another valid (k, i+ 1)-coloring c′

of G. Moreover, c′ verifies |c′(v) ∩ c′(w)| ≤ i,∀v ∈ C ′j , w ∈ V (G), vw ∈ E(G).

Proof. We prove first that c′ is a valid (k, i + 1)-coloring. All color sets of c′ have
cardinality k, since no rep operation was performed on a color set c(v) having j, j′ ∈
c(v). We verify now the intersection size. Suppose we have an edge vw in G such that
|c′(v)∩ c′(w)| > i+ 1. Since c was a valid (k, i+ 1)-coloring of G, either v or w must be
one of the vertices affected by the rep operation. Let v ∈ S, without loss of generality.
We have |c(v) ∩ c(w)| ≤ i,∀w ∈ V (G) by hypothesis, so in c′ this intersection couldn’t
have grown larger than i+ 1.

Let vw ∈ E(G), with v ∈ C ′j , w ∈ V (G). We show now that |c′(v) ∩ c′(w)| ≤ i,∀v ∈
C ′j , w ∈ V (G). This condition holds for v ∈ C ′j , w ∈ V (G) \ S, because we had by
hypothesis |c(v) ∩ c(w)| ≤ i,∀v ∈ Cj , w ∈ V (G) for every edge vw, and C ′j ⊂ Cj . Let
now v ∈ C ′j , w ∈ S. Then |c′(v) ∩ c′(w)| ≤ |c(v) ∩ c(w)| ≤ i. To see this, note that
c(v) and c(w) shared color j in c, and do not share it in c′. With the replacement of
color j with color j′, c′(v) and c′(w) could possible share now j′, so the cardinality of
c′(v) ∩ c′(w) is at most the size of c(v) ∩ c(w).

Proposition 2.1.3. Let G be a graph with at least one edge, and let k < i. Then
χi+1
k (G) < χik(G).

Proof. Let c be a (k, i)-coloring of G. We will transform c into a (k, i + 1) coloring
that uses one less color. Our strategy will be to remove an arbitrary color j of c by
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repeatedly applying Lemma 2.1.1. For this purpose, find first a subset S ⊂ Cj and j′

a color such that j′ /∈ ⋃v∈S c(v). If such S and j′ cannot be found, it would mean that
every color j′ is present in

⋃
v∈S c(v), for every possible subset S ⊂ Cj . This would

imply that only k colors are present in the coloring. If this is the case, c could only be a
valid coloring if G has no edges, or if k = i. Both situations contradict our hypothesis.
Let thus be S and j′ as asked. Perform now repc(S, j, j

′). It is easy to see that we
are in the hypothesis of Lemma 2.1.1, so the result is a valid (k, i + 1)-coloring, such
that C ′j ( Cj and such that the hypothesis of the Lemma still holds. Repeat these two
steps while possible. The argument for the existence of S and j′, along with C ′j being
strictly contained in Cj guarantees that the procedure stops when color j is effectively
eliminated from all color sets, and the proposition is proven.

The following proposition is straightforward for k : i colorings, and extends also easily
to (k, i)-colorings.

Proposition 2.1.4 (From Lemma 1 in [18]). Let G be a graph. Then
χik(G) ≤ χi−rk−s(G) + χrs(G).

A Corollary for this proposition can also be found in the same article. The proof given
there works also for (k, i)-colorings.

Corollary 2.1.1.1 (From Corollary 1 in [18]). Let G be a graph with n vertices. Then
χik(G) + χik(G) ≤ k(n+ 1)− i(n− 1).

Note that this improves the similar bound given in Proposition 2.1.1, item ii.

2.2 The (k, i)-coloring problem as graph homomorphism

We’ll briefly examine in this section the (k, i)-coloring problem under another point
of view. A graph G is t-colorable if and only if there is a graph homomorphism from
G to the complete graph on t vertices Kt, where an homomorphism from a graph G
to a graph H is an edge preserving map between G and H. Denley [31] introduced
the generalized Kneser graphs K(j, k, i) as follows. Let i, j, k be integers such that
0 ≤ i ≤ k ≤ j. Define the graph K(j, k, i) as the graph having as set of vertices the
family of k-subsets of {1, . . . , j}, and where two k-subsets A and B are adjacent if and
only if |A∩B| ≤ i. When i = 0, the graphs K(j, k, 0) are the well known Kneser graphs
[39]. It is not difficult to see that a graph G admits a (k, i)-coloring with j colors if
and only if there is a graph homomorphism from G to K(j, k, i).

As a natural generalization of a theorem due to Harary, Hedetniemi and Prins [47] on
the chromatic number, we provide the following

Theorem 2.2.1. If γ : G→ H is a homomorphism, then χik(G) ≤ χik(H).

Proof. Let j = χik(H). Then there exists a homomorphism α fromH toK(j, k, i). Since
the composition (denoted by ◦) of two homomorphisms is again a homomorphism, we
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have an homomorphism γ ◦ α from G to K(j, k, i). Hence it follows that χik(G) ≤ j =
χik(H).

Corollary 2.2.1.1. If graphs G and H have homomorphisms α : G→ H and β : H →
G, then χik(G) = χik(H)

Stahl provided similar results for k-tuple colorings in [92].

2.3 (k, i)-coloring of cycles

Multicycles are cycles in which we can have parallel edges between two consecutive
vertices. A multigraph is k-uniform if the number of parallel edges between any two
adjacent vertices is exactly k.

Let G be a (multi)cycle on n vertices, m ≥ n edges and maximum degree equal to ∆. It
is well known that χ′(G) = ∆ if n is even. In fact, it follows from König’s Theorem on
edge-coloring of bipartite (multi)graphs. When n is odd, we have the following result
due to Berge.

Theorem 2.3.1. [10] Let G = (V,E) be a multicycle on n vertices with m edges and
maximum degree ∆. Let τ = bn2 c denote the maximum cardinality of a matching in G.
Then

χ′(G) =

{
∆ if n is even,

max{∆, dmτ e} if n is odd

Let G be a k-uniform multicycle on n vertices. It is not difficult to see that the line
graph L(G) of G can be seen as the cycle Cn where each vertex is replaced by a clique
of size k and all edges between two disjoint copies of Kk associated with two adjacent
vertices in Cn are added. Therefore, we can rephrase Theorem 2.3.1 for k-uniform
multicycles in terms of a vertex coloring problem of L(G) as follows.

Corollary 2.3.1.1. Let L(G) be the line graph of a k-uniform multicycle G on n
vertices. Let α = bn2 c denote the maximum cardinality of an independent set in L(G).
Then

χ(L(G)) =

{
2k if n is even,

max{2k, dnkα e} if n is odd

Corollary 2.3.1.1 has been obtained independently by Stahl [92].

By using a theorem of Stahl ([92], p.193), Brigham and Dutton obtain the following
result on cycles:

Theorem 2.3.2. [18] Let Cn be a cycle, with n = 2t+ 1. Then,

χ
(i)
k (Cn) =

{
2k − i if k ≤ i(t+ 1),

2k − i+ 1 + bk−i(t+1)−1
t c = dn(k−i)t e if k > i(t+ 1).
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However, it is not so evident how to construct efficiently a k : i-coloring of an odd cycle

Cn with χ
(i)
k (Cn) colors in polynomial time.

It was already noticed in [83] that a bipartite graph has (k, i)-chromatic number at most
2k − i, and that this is also the trivial lower bound for the (k, i)-chromatic number of
any graph with at least one edge. Since even cycles are bipartite, this case is solved,
and we will turn our attention to the odd case. In this section, we obtain a similar
result as the one found by Brigham and Dutton [18] on odd cycles (Theorem 2.3.2).
We prove that the (k, i)-chromatic number and the k : i-chromatic number are equal
on odd cycles. Furthermore, we derive a simple linear time algorithm to (k, i)-color
an odd cycle with the minimum number of colors, and we adapt it also for k : i-coloring.

We will compute first a lower bound for the (k, i)-chromatic number of Cn as follows.

Lemma 2.3.3. Let Cn be a cycle on n = 2t+ 1 vertices. Then, for any non-negative
integers i, k with 0 ≤ i ≤ k, we have that : χik(Cn) ≥ max{2k − i, dn(k−i)t e}.

Proof. Notice that 2k− i is a trivial lower bound for any graph with at least one edge.
So, we only need to prove that χik(Cn) ≥ dn(k−i)t e, where n = 2t+ 1. Assume that the
vertices of Cn are labeled consecutively by v0, . . . , vn−1. Arithmetic operations will be
taken modulo n. Let c be an optimum (k, i)-coloring of the vertices of Cn, that is, for
each vertex vi we have that |c(vi)| = k; for each pair of adjacent vertices vi, vi+1 we
have that |c(vi) ∩ c(vi+1)| ≤ i; and the maximum color used by c is equal to χik. Now,
for each vertex vi in Cn, let c′(vi) = c(vi)\ (c(vi)∩ c(vi+1)). Notice that the size of each
set c′(vi) is at least k− i, and that c′(vi)∩c′(vi+1) = ∅ for every i = 1, . . . , n. Therefore,
it is not difficult to deduce that the sets c′ can be used in order to color the vertices of
the line graph of a multicycle on n vertices having at least k− i parallel edges between
each pair of adjacent vertices. By Corollary 2.3.1.1, the result follows.

Now, in order to compute an upper bound for the (k, i)-chromatic number of cycles,
we will construct a (k, i)-coloring for these graphs. First, we need the following lemma.

Lemma 2.3.4. Let n, n′ be two odd integers, with n′ > n ≥ 3. Then any (k, i)-coloring
of Cn can be extended to a (k, i)-coloring of Cn′ without using additional colors.

Proof. Let v1, . . . , vn be the vertices of Cn and let c be a (k, i)-coloring of Cn. Let
v′1, . . . , v

′
n′ be the vertices of Cn′ and define c′ as c′(v′i) = c(vi) for i = 1, . . . , n; c′(vn+j) =

c(vn−1) if j is odd, c′(vn+j) = c(vn) if j is even, for j = 1, . . . , n′−n. It is easy to check
that c′ is a (k, i)-coloring of Cn′ .

Based on this, we propose the following simple algorithm.

Lemma 2.3.5. Let n = 2t + 1 with t ≥ 1. Then, χik(Cn) ≤ max{2k − i, dn(k−i)t e}.
Moreover, a (k, i)-coloring of Cn with max{2k − i, dn(k−i)t e} colors can be obtained by
Algorithm 1.
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Algorithm 1

Input: A cycle Cn, n = 2t + 1, with vertices v1, v2, . . . , vn, integers k and i with
0 ≤ i < k.

Output: An assignment c of k colors from [1,max{2k− i, dn(k−i)t e}] to each vertex of
Cn.

1: Let N = max{2k− i, dn(k−i)t e}; ` = 1. Let t′ be the minimum positive integer value

such that d (2t′+1)(k−i)
t′ e = dn(k−i)t e, i.e., either t′ = 1 or t′ > 1 and d (2t′−1)(k−i)t′−1 e >

dn(k−i)t e. (This value can be obtained by binary search.)
2: For j = 1 to 2t′ + 1 do:

If `+ k − 1 ≤ N then
c(vj) = [`, `+ k − 1]

else
c(vj) = [`,N ] ∪ [1, `+ k − 1−N ]

end if
If `+ k − i ≤ N then
` = `+ k − i

else
` = `+ k − i−N

end if
end for

3: For j = t′ + 1 to t do:
c(v2j) = c(v2t′)
c(v2j+1) = c(v2t′+1)

end for

Proof. Let us see that the assignment c obtained by Algorithm 1 on C2t+1 defines a
(k, i)-coloring.

Note that the algorithm assigns circular intervals of size k (i.e., either intervals of k
consecutive numbers or intervals formed by the last d and the first k − d numbers)
in such a way that c(v1) = {1, 2, . . . , k} and for 2 ≤ j ≤ 2t′ + 1, c(vj) is the circular
interval whose first i colors are the last i colors of c(vj−1). As we have at least 2k − i
colors, the intersection of c(vj) and c(vj−1) are exactly those i colors. The property
|c(vj) ∩ c(vj−1)| = i holds also for 2t′ + 2 ≤ j ≤ 2t + 1, when t′ < t, since they
use alternately c(v2t′) and c(v2t′+1). Therefore, in order to ensure that c is a valid
(k, i)-coloring of C2t+1, we just need to check that |c(v2t′+1) ∩ c(v1)| ≤ i.

By construction, the first number in the circular interval c(v2t′+1) is the number d in
[1, N ] that is congruent to 2t′(k − i) + 1 modulo N . We should prove

k − i+ 1 ≤ d ≤ N − (k − i) + 1.

If t′ = 1, then 2t′(k − i) + 1 = 2(k − i) + 1 and it holds k − i+ 1 ≤ 2(k − i) + 1. Also,

2(k− i)+1 ≤ N − (k− i)+1 if and only if 3(k− i) ≤ N , but N = max{2k− i, dn(k−i)t e}
and dn(k−i)t e = d (2t′+1)(k−i)

t′ e = 3(k − i), so d = 2(k − i) + 1 and this finishes the case



Chapter 2. On the (k, i)-coloring problem of cacti and complete graphs 23

v1

1

2

. . .

N = max{2k − i, ⌈n(k−i)
t ⌉}

v2

v3

...

v2t′+1

3

k

k − i+ 1

2k − i

2k − 2i+ 1

Figure 2.1: Illustration of the (k, i)-coloring algorithm. We assume colors {1, 2, . . . , N}
arranged consecutive around the circle. Recall that from vertices v2t′+2 onwards we
repeat alternatively the assignments of v2t′ and v2t′+1. The dashed lines represent an
intersection of i colors in all arcs except possibly v2t′+1 with v1.

t′ = 1. Assume from now on that t′ > 1 and dn(k−i)t e = d (2t′+1)(k−i)
t′ e but dn(k−i)t e <

d (2t′−1)(k−i)t′−1 e, so dn(k−i)t e < (2t′−1)(k−i)
t′−1 . We will split now the proof into two cases,

depending on the value of N .

Case 1: N = 2k − i. Note that dn(k−i)t e = d (2t+1)(k−i)
t e = d2tk−2ti+k−it e = 2k − i +

d (k−(t+1)i)
t e. So, dn(k−i)t e ≤ 2k − i ⇔ (k−(t+1)i)

t ≤ 0 ⇔ k ≤ (t+ 1)i. In particular, this

will not be the case if i = 0. Thus, max{2k − i, dn(k−i)t e} = 2k − i if and only if i > 0

and k
i ≤ t + 1 ⇔ dki e − 1 ≤ t. By our assumption about t′ and as we have discarded

the case t′ = 1, it should be t′ = dki e − 1.

But 2t′(k−i)+1 = t′(2k−i)−t′i+1 ≡ 2k−i−t′i+1 (mod 2k−i). Since t′i < k ≤ (t′+1)i,
it holds k− i+1 < k− i+k− t′i+1 = k+k− (t′+1)i+1 ≤ k+1, so d = 2k− i− t′i+1
and this closes Case 1.

Case 2: N = dn(k−i)t e = d (2t′+1)(k−i)
t′ e. By the analysis in Case 1, that means

(k−(t′+1)i)
t′ > 0. Let b = d (k−(t′+1)i)

t′ e, thus N = 2k − i + b. By our assumption

about t′ and as we have discarded the case t′ = 1, it should be (k−t′i)
t′−1 > b.

In this case, 2t′(k − i) + 1 = t′N − t′i− t′b+ 1 ≡ N − t′i− t′b+ 1 modulo N . On one
hand,
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N − t′i− t′b+ 1 ≤ N − (k − i) + 1 ⇔
−t′(i+ b) ≤ −(k − i) ⇔

k − (t′ + 1)i

t′
≤ b

and this is satisfied because b = d (k−(t′+1)i)
t′ e. On the other hand,

k − i+ 1 ≤ N − t′i− t′b+ 1 = (2k − i+ b)− t′(i+ b) + 1 ⇔
(t′ − 1)b ≤ k − t′i ⇔

b ≤ (k − t′i)
t′ − 1

and we have observed that this inequality already holds. So d = N − t′i− t′b+ 1 and
this ends the proof of this lemma.

By the proofs of Lemmas 2.3.3 and 2.3.5, we have the following result.

Theorem 2.3.6. Let Cn be a cycle on n = 2t+ 1 vertices. Then, χik(Cn) = max{2k−
i, dn(k−i)t e} and a (k, i)-coloring of Cn with χik(Cn) colors can be obtained in O(n) time.

For example, the (4, 1)-coloring of C3 obtained by Algorithm 1 is {1, 2, 3, 4}, {4, 5, 6, 7},
{7, 8, 9, 1}, the (4, 1)-coloring of C5 obtained by Algorithm 1 is {1, 2, 3, 4}, {4, 5, 6, 7},
{7, 8, 1, 2}, {2, 3, 4, 5}, {5, 6, 7, 8}, the (4, 1)-coloring of C7 obtained by Algorithm 1 is
{1, 2, 3, 4}, {4, 5, 6, 7}, {7, 1, 2, 3}, {3, 4, 5, 6}, {6, 7, 1, 2}, {2, 3, 4, 5}, {5, 6, 7, 1}, and the
(4, 1)-coloring of C11 obtained by Algorithm 1 is an extension of the coloring of C7,
namely, {1, 2, 3, 4}, {4, 5, 6, 7}, {7, 1, 2, 3}, {3, 4, 5, 6}, {6, 7, 1, 2}, {2, 3, 4, 5}, {5, 6, 7, 1},
{2, 3, 4, 5}, {5, 6, 7, 1}, {2, 3, 4, 5}, {5, 6, 7, 1}.

2.3.1 Extension to the k : i-coloring problem

Note that an optimal (k, i)-coloring of C2t is always a k : i-coloring, since it uses 2k− i
colors, but for odd cycles this is not always the case. Indeed, the (4, 1)-coloring of C5

obtained by Algorithm 1 is not a 4 : 1-coloring, since c(v5) ∩ c(v1) = ∅.

Note also that an analogous to Lemma 2.3.4 can be proved for the k : i-coloring problem.
We will show now that, if a (k, i)-coloring c of C2t+1 is obtained by Algorithm 1, one
can modify the set c(v2t+1) by a simple procedure, in order to obtain a k : i-coloring
of C2t+1 with the same number of colors.

First notice that |c(vi) ∩ c(vi+1)| = i for i = 1, . . . , 2t, and |c(v2t+1) ∩ c(v1)| ≤ i.
Assume |c(v2t+1)∩ c(v1)| < i, otherwise we are done. We have to show how to increase
|c(v2t+1) ∩ c(v1)| without decreasing |c(v2t+1) ∩ c(v2t)|.
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Figure 2.2: Diagram for the definition of color sets.

Let us define the following sets: A = c(v1)∩c(v2t)\c(v2t+1), B = c(v1)∩c(v2t)∩c(v2t+1),
C = c(v1)\(c(v2t)∪c(v2t+1)), D = c(v2t)\(c(v1)∪c(v2t+1)), E = c(v2t)∩c(v2t+1)\c(v1),
F = c(v1) ∩ c(v2t+1) \ c(v2t), G = c(v2t+1) \ (c(v1) ∪ c(v2t)) (see Figure 2.2), and let
x = |X| for X = A, . . . , G.

If g > 0 and c > 0, we can replace in c(v2t+1) a color from G by a color from C, and if
e > 0 and a > 0, we can replace in c(v2t+1) a color from E by a color from A. In both
cases, we are increasing |c(v2t+1) ∩ c(v1)| without decreasing |c(v2t+1) ∩ c(v2t)|.

If c = 0, the total number of colors used by v1, v2t, and v2t+1 is 2k − i, so |c(v2t+1) ∩
c(v1)| ≥ i, a contradiction to our assumption. So, c > 0. If g = 0 then e > 0, otherwise
|c(v2t+1)| = b + f < i ≤ k, a contradiction. Therefore, we only have to show that if
g = 0 then a > 0. Suppose g = a = 0. Then c > k− i, d = k− i, and b+ e+ f = k. So,
the total number of colors used by v1, v2t, and v2t+1 is strictly greater than 3k−2i. We
will show that, instead, the number of colors used by Algorithm 1 is at most 3k − 2i.
It is clear that 2k− i ≤ 3k−2i since i ≤ k, so we will assume that the number of colors
used is 2k − i+ d (k−(t+1)i)

t e.

2k − i+ d(k − (t+ 1)i)

t
e ≤ 3k − 2i ⇔ d(k − (t+ 1)i)

t
e ≤ k − i ⇔

(k − (t+ 1)i)

t
≤ k − i ⇔ 0 ≤ (t− 1)k + i

And this completes the argument.

In the previous example, the (4, 1)-coloring of C5 obtained by Algorithm 1 would be
modified as to obtain, for instance, the following 4 : 1-coloring: {1, 2, 3, 4}, {4, 5, 6, 7},
{7, 8, 1, 2}, {2, 3, 4, 5}, {5, 6, 7, 1}.
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It may be interesting to characterize in general the graphs G such that χik(G) = χ
(i)
k (G),

or those graphs G such that χik(H) = χ
(i)
k (H) for each induced subgraph H of G.

2.3.2 Generalization to cacti

These results can be easily generalized for cacti. A graph G is a cactus if it does not
contain two cycles that share an edge. It is a known fact that every block of a cactus
is either an edge or a chordless cycle. We will base our proof on the following easy
lemma, that holds for many coloring problems.

Lemma 2.3.7. Let G be a graph. The (k, i)-chromatic number of G is the maximum
of the (k, i)-chromatic numbers of its blocks.

Proof. Clearly, it is enough to prove it for connected graphs. We proceed by induction
on the number of blocks m of G. If G has only one block, the result trivially holds. For
the inductive case, suppose the lemma holds for all graphs with fewer than m blocks.
Let B be an end-block of G and let v be the cut-vertex of G that belongs to B. Let
G′ be the subgraph of G induced by (V (G) \ B) ∪ {v}. By inductive hypothesis, the
(k, i)-chromatic number of G′ is the maximum of the (k, i)-chromatic numbers of its
blocks.

Let f ′ be a (k, i)-coloring of G′ with the minimum number of colors, and f ′′ be an
optimal (k, i)-coloring of the subgraph of G induced by B. By renaming the colors in
f ′′ in such a way that f ′′(v) = f ′(v), we can combine f ′ and f ′′ in order to obtain a
(k, i)-coloring of G without adding any new colors. This proves the lemma.

By Theorem 2.3.6 and Lemma 2.3.7, we obtain directly the following result.

Corollary 2.3.7.1. Let G be a cactus. Then, a (k, i)-coloring of G with χik(G) colors
can be computed in linear time.

Note that Lemma 2.3.7 and Corollary 2.3.7.1 can be proved analogously for the k : i-
coloring problem.

2.3.3 Cartesian product of cycles

The cartesian product of two graphs G and H, denoted by G2H, is the graph with
vertex set V (G) × V (H) specified by making (u, v) adjacent to (u′, v′) if and only if
u = u′ and vv′ ∈ E(H), or v = v′ and uu′ ∈ E(G). Given a vertex v ∈ V (H), the
subgraph Gv of G2H induced by {(u, v) : u ∈ V (G)} is called a G-fiber ; H-fibers are
defined similarly. See Figure 2.3 for an illustration on the cartesian product of two
cycles.

A well known theorem due to Vizing settles the chromatic number for the cartesian
product of two graphs:
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(v1, w1) (v1, w4)

(v5, w1) (v5, w4)

Figure 2.3: Cartesian product C52C4. The first column of vertices, the subgraph C5w1

is a C5-fiber and the first row, the subgraph C4v1
is a C4-fiber.

Theorem 2.3.8. [97] χ(G2H) = max{χ(G), χ(H)}

We tried to produce a similar result for the (k, i)-coloring problem, but were not able
to prove or disprove the general case. Instead, we offer below versions of the theorem
for some particular products.

Proposition 2.3.1. If G and H are bipartite graphs, then χik(G2H) = max{χik(G), χik(H)}.

Proof. Immediate from the fact that the cartesian product of two bipartite graphs is
bipartite. Clearly, if one of H and G has at least one edge, then χik(G2H) = 2k−i.

Proposition 2.3.2. If χ(G) = j, then χik(G2Kj) = max{χik(G), χik(Kj)}.

Proof. Let c be a classic coloring of G using j colors, and c′ a (k, i)-coloring of Kj with
χik(Kj) colors. For notational simplicity, we will consider colors starting from 0, as
well as labels on vertices. Denote by J the j color sets of c′ (there must be indeed j
different color sets unless k = i, but in this case the proposition holds trivially). Let
f : {0, 1, . . . , j − 1} → J be a bijective function from each color ci in c to a color set in
c′. Observe that f(c(v)), v ∈ V (G) configures a valid (k, i)-coloring of G using χik(Kj)
colors, so χik(G) ≤ χik(Kj). Let also Fj = {f0, f2, . . . , fj−1} be a family of bijections,
ft : {0, 1, . . . , j − 1} → {0, 1, . . . , j − 1}, 0 ≤ t < j, defined by:

ft(n) = (n+ t) (mod j)

Observe that no two bijections in Fj map an n to the same value. To see this, suppose
that 0 ≤ t < t′ < j and that ft(n) = ft′(n). Hence, (n + t) ≡ (n + t′) (mod j). But
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this implies that t ≡ t′ (mod j), and this cannot hold since 0 ≤ t < t′ < j.
Perform now for each vertex w of each fiber Gt of G2Kj the assignment c′′(w) =
f(ft(c(w))). We will show that c′′ is a valid (k, i)-coloring of G2Kj by examining
the possible edges. Let (u, v)(u′, v) ∈ E(G2Kj). Notice that uu′ ∈ E(G), and vertices
(u, v) and (u′, v) belong to the same G-fiber Gv. Since uu′ ∈ E(G), c(u) 6= c(u′). fv and
f are both injective, so we have fv(c(u)) 6= fv(c(u

′)) and f(fv(c(u))) 6= f(fv(c(u
′))).

Thus (u, v) and (u′, v) are assigned different color sets of J , and hence their intersection
size is i or less.
Let now (u, v)(u, v′) ∈ E(G2Kj). We have vv′ ∈ Kj and (u, v) and (u, v′) belong to
different G fibers, namely Gv′ and Gv respectively. Since fv and fv′ map all colors
to different values, we have fv′(c(v)) 6= fv(c(v)). Again by injectivity of f , we have
f(fv′(c(v))) 6= f(fv(c(v))). This way (u, v) and (u, v′) are assigned different color sets
of J , and thus |c′′((u, v)) ∩ c′′((u, v′))| ≤ i.
It remains to be shown that c′′ is optimal. We have clearly χik(G2Kj) ≥ max{χik(G), χik(Kj)}.
Since χik(G) ≤ χik(Kj) and since c′′ uses χik(Kj) colors, it is indeed optimal and the
proof is completed.

We show now an analogous result for the product of two cycles using a similar proof
technique.

Proposition 2.3.3. Let C and D be two cycles, and let |C| = r, |D| = s. Then
χik(C2D) = max{χik(C), χik(D)}.

Proof. Let V (C) = v0, . . . , vr−1 and V (D) = w0, . . . , ws−1. We start numbering colors
and vertex labels from 0, as before. We will analyze three subcases, depending on the
parity of r and s. In all cases, we will construct a k, i-coloring with max{χik(C), χik(D)}.
Since χik(C2D) ≥ max{χik(C), χik(D)}, this is enough to prove the proposition.
Case 1: Both r and s are even. Then C and D are bipartite and this case is solved by
Proposition 2.3.1.
Case 2: Both r and s are odd. Without loss of generality, let r ≥ s. This means
χik(C) ≤ χik(D), by Theorem 2.3.6. Let c be a (k, i)-coloring of D with χik(D) col-
ors. Let Fs be the same family of bijections as in the previous proof, now on the
set {0, 1, . . . , s− 1}. For each vertex v of each C-fiber Cw, define the following (k, i)-
coloring c′:

c′((v, w)) =


c(fw(v)) if v < s

c′((s− 1, w)) if v ≥ s and v odd

c′((s, w)) if v ≥ s and v even

In words, the coloring c′ assigns to the first s vertices of each C-fiber the color sets
defined by c, successively rotating these color sets by one position for each fiber. For
the remaining r − s vertices in each fiber, assign the color set assigned to the s and
s− 1 vertex of that fiber.
We have to show now that c′ is a valid (k, i)-coloring of C2D. If this is the case,
then it is optimal, since it employs χik(D) colors. Let (v, w), (v′, w) ∈ V (C2D), (v, w)
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adjacent to (v′, w). In this case, the two vertices belong to the same C-fiber Cw. By
the proof of Lemma 2.3.4, c′ is a valid (k, i)-coloring when restricted to a C-fiber, so
this case is settled.
Let now (v, w), (v, w′) ∈ V (C2D), (v, w) adjacent to (v, w′). Thus (v, w) belongs to
the Cw-fiber and (v, w′) to the Cw′-fiber. We only need to analyze the case v < s,
because for v ≥ s we merely repeat the last two values. Note that since w,w′ ∈ E(D),
we may assume without loss of generality that w′ ≡ (w + 1) (mod s). We have hence:

w′ ≡ (w + 1) (mod s)

(w′ + v) ≡ (w + v + 1) (mod s)

(w′ + v) (mod s) ≡ (w + v + 1) (mod s)

fw′(v) ≡ (w + v + 1) (mod s)

On the other hand, by the definition of modular addition, we have

(w + v + 1) (mod s) = (1 (mod s) + (w + v) (mod s)) (mod s)

= (1 + fw(v)) (mod s)

So we have finally that fw′(v) ≡ (1 + fw(v)) (mod s). This means that c′((v, w)) and
c((v, w′)) are assigned color sets of c that correspond to (circularly) consecutive vertex
labels in D, and hence to adjacent vertices. Thus it holds |c′((v, w)) ∩ c((v, w′))| ≤ i,
and this case is finished.
Case 3: r is odd and s is even. Hence it holds that χik(C) ≥ χik(D). Color first the
C-fiber C0 with an optimal coloring c. Now color the fiber C1 with a (k, i)-coloring c′′

defined by c′′((v, 1)) = c((v+1) mod s). It is easy to see that c′′ is a valid (k, i)-coloring
of C1. Finally, construct coloring c′ for each fiber Cj as follows: color Cj like fiber C0 if j
is even and like fiber C1 if j is odd. As c and c′′ are valid colorings for any fiber Cj , it only
remains to be shown that two adjacent vertices (v, u) and (v, w) belonging to different
fibers Cu and Cw intersect in less than i colors. Since uw ∈ E(D) and r is even, u and
w must have different parity. Assume that u even, without loss of generality. Then
c′((v, u)) = c(v) and c′((v, w)) = c((v + 1) mod s). As before, (circularly) correlative
indices j and j+1 mean that the color sets cj and cj+1 are assigned to adjacent vertices
in the coloring c, so we have immediately |c′((v, u)) ∩ c′((v, w))| ≤ i. This case is also
solved, since coloring c′ uses only χik(C) colors.

2.4 (k, i)-coloring of cliques

Brigham and Dutton proved the next partial results on the k : i-coloring of cliques:

Theorem 2.4.1. [18]

(a) If n ≤ k
i + 1 then χ

(i)
k (Kn) = kn− n(n−1)i

2 .

(b) If n ≥ k2 − k + 2 then χ
(i)
k (Kn) = kn− (n− 1)i.

Part (a) of Theorem 2.4.1 also holds for χik(Kn). This was proved by Méndez-Dı́az and
Zabala in [83]. Part (b), however, does not. For a counterexample, let n = 4, k = 2 and
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i = 1. We have that χ
(1)
2 (K4) = 5, but χ1

2(K4) = 4. Indeed, by Theorem 2.4.1 part (b),

we have that χ
(1)
2 (K4) = 5 and {{1, 2}, {1, 3}, {1, 4}, {1, 5}} is a proper 2 : 1 coloring of

K4. On the other hand, {{1, 2}, {1, 3}, {1, 4}, {3, 4}} is a proper (2, 1)-coloring of K4,
and thus χ1

2(K4) ≤ 4. By Proposition 2.4.1 below, we obtain that χ1
2(K4) ≥ 4.

The general problem of (k, i)-coloring cliques is still open, and it is also closely related
to one of the central concerns in coding theory. We give now some definitions we need
to present this relation. A binary code (or just a code, for brevity) is a set of binary
vectors (or codewords) of length j. If a position in a binary vector contains a one, it will
be called a 1-position and a 0-position otherwise. The size of a code is its cardinality.
The Hamming distance of two codewords a and b is the number of positions in which
they differ. The distance dC of a code C is the smallest Hamming distance between
any two codewords of C. A (j, d, k)-constant weight code is a set of codewords of length
j and exactly k ones in each of them, with Hamming distance at least equal to d.
Given j, d and k, the question of determining the largest possible size A(j, d, k) of a
(j, d, k)-constant weight code has been studied for almost forty years, and remains one
of the most basic questions in coding theory. The general answer is not known, but
several upper and lower bounds on A(j, d, k) have been found (see [1, 40] and references
therein). We study now the relation between A(j, d, k) and the k, i-coloring of cliques
in the following Theorem:

Theorem 2.4.2. A (k, i)-coloring for Kn with j colors does exist if and only if
A(j, 2(k − i), k) ≥ n.

Proof. We start with the proof of necessity. Let f be a (k, i)-coloring of Kn with j
colors. Construct a set B = {b1, b2, . . . , bn} of n binary vectors, each of length j, such
that every vector is the characteristic function of the set of colors associated with each
vertex of Kn. That is, for every vertex vs of Kn we have vector bs = (b1s, b

2
s, . . . , b

j
s),

where bts = 1 if and only if color t belongs to f(vs). We will show that dB ≥ 2(k − i).
Let vx and vy be any two vertices of Kn, and bx and by their associated binary vectors
in B. Since |f(vx)∩f(vy)| ≤ i, bx and by have at most i 1-positions in common. Vector
bx has k 1-positions in total, so at least (k − i) 1-positions of bx must be distributed
along positions where by holds a 0. Analogously, vector by must also accommodate at
least (k − i) 1’s along positions that store a 0 in bx. This means that they differ in at
least 2(k−i) positions, so d(bx, by) ≥ 2(k−i). Since vx and vy are two arbitrary vertices
of Kn, we have by definition of distance that dB ≥ 2(k − i), so A(j, 2(k − i), k) ≥ n.
We prove now sufficiency. Suppose A(j, 2(k − i), k) ≥ n. Let B be a code that realizes
A(j, 2(k− i), k). Choose any n-subset of B. We have now only to interpret each binary
vector b ∈ B as a color set Sb, where a color c belongs to Sb if and only if bc = 1. We
obtain n color sets, each of cardinality k. By the same argument as before, no two of
them have more than i colors in common, otherwise their corresponding binary vectors
would be at a distance smaller than 2(k − i). Assign each set to a vertex of Kn. This
is a valid (k, i)-coloring f that uses no more than j colors.

By Theorem 2.4.2, we can rephrase the definition of the (k, i)-chromatic number of a
complete graph Kn as the minimum positive integer j such that A(j, 2(k − i), k) ≥ n.
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This fact is used in the following straightforward corollary.

Corollary 2.4.2.1. If A(j, 2(k − i), k) ≤ n and m > n, then χik(Km) > j.

Thanks to Corollary 2.4.2.1, any upper bound on A(j, d, k) for an even number d,
can be used for generating new lower bounds for the (k, k − d

2)-chromatic number of
complete graphs. We will do so with the well known Johnson bound, presented in the
next theorem:

Theorem 2.4.3. [67] A(j, 2r, k) ≤ b rj
k2−kj+rj c, if the denominator is positive.

Let j be an integer such that k2

i > j (1). By Theorem 2.4.3 applied to A(j, 2(k− i), k),

we have that A(j, 2(k− i), k) ≤ b (k−i)j
k2−ij c. Note that by our choice of j, the denominator

is a positive number. Corollary 2.4.2.1 applied on this bound yields χik(Kn) > j, if

n > b (k−i)j
k2−ij c (2). We are interested in the largest possible lower bound on χik(Kn), so

we will find the maximum value for j that meets the given inequalities (1) and (2). For
(2), we may write:

n > b(k − i)j
k2 − ij c

n >
(k − i)j
k2 − ij (If x ∈ R, n ∈ N, n > x ⇐⇒ n > bxc)

nk2 > (k − i)j + nij

nk2

(n− 1)i+ k
> j

For any real number x and any natural number j, we have x > j ⇐⇒ dxe > j, so

the largest possible value for j is d nk2

(n−1)i+ke− 1. We show now that this value of j also

meets (1):

d nk2

(n− 1)i+ k
e − 1 ≤ d nk2

(n− 1)i+ i
e − 1 (Because k ≥ i)

= dk
2

i
e − 1 <

k2

i

The second line holds since for all x ∈ R, dxe − x < 1.
We have thus calculated our maximum possible j. Replacing this value of j in χik(Kn) >
j gives rise to the following new lower bound on χik(Kn):

Proposition 2.4.1. χik(Kn) > d nk2

(n−1)i+ke − 1

We may as well take advantage of results on specific values of A(j, d, k) found in the
literature for achieving bounds on χik(Kn), for some values of n, k and i. We choose as
an example a theorem due to Hanani:
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Theorem 2.4.4. [43, 44, 45, 46]

(a) A(j, 6, 4) = j(j−1)
12 , if and only if j ≡ 1 or 4 (mod 12).

(b) A(j, 8, 5) = j(j−1)
20 , if and only if j ≡ 1 or 5 (mod 20).

Proposition 2.4.2. Let j ≡ 1 or 4 (mod 12). Then

(a) χ1
4(Kn) > j, if n > j(j−1)

12 .

(b) χ1
4(Kn) ≤ j, if n ≤ j(j−1)

12 .

Proof. Part (a) is a direct consequence of Theorem 2.4.4 (a) and Corollary 2.4.2.1. Part
(b) follows from Theorem 2.4.4 (a) and Theorem 2.4.2.

Proposition 2.4.3. Let j ≡ 1 or 5 (mod 20). Then

(a) χ1
5(Kn) > j, if n > j(j−1)

20 .

(b) χ1
5(Kn) ≤ j, if n ≤ j(j−1)

20 .

Proof. The proof is analogous to Proposition 2.4.2, using now Part (b) of Theorem
2.4.4.
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2.5 Resumen del caṕıtulo

Un coloreo por k-uplas de un grafo G es una asignación de k colores a cada vértice
de manera tal que vértices adyacentes tengan asignados colores diferentes. El mı́nimo
número de colores necesario para un coloreo por k-uplas de G será denotado χk(G).
Este problema fue planteado de manera independiente por varios autores. Hilton, Rado
y Scott [50] utilizaron este coloreo como un concepto auxiliar para estudiar el denomi-
nado número cromático fraccionario en grafos planares. Stahl [92] estudió propiedades
generales para coloreos por k-uplas y determinó χk para grafos bipartitos, grafos n-
partitos completos y ciclos. Bollobás y Thomason [13] mostraron nuevas relaciones
entre χk(G) y χ(G), en particular que min{χk(G) : χ(G) = j} = 2k + j − 2 y que
min{χk(G) : G tiene un único j-coloreo} = 2k + j − 1.

Brigham y Dutton [18] generalizaron el concepto de coloreos por k-uplas al introducir el
concepto de k : i-coloreo, donde los conjuntos de colores asignados a vértices adyacentes
deben intersecar en exactamente i colores. El problema de k : i-coloreo consiste en
encontrar el mı́nimo número de colores en un k : i-coloreo de un grafo G, que denotamos

χ
(i)
k (G). Notar que χ

(0)
k (G) = χk(G). En este trabajo, los autores determinaron χ

(i)
k (G)

para grafos bipartitos y ciclos impares. Se obtuvieron también resultados parciales para
grafos completos.

Otra generalización, conocida como (k, i)-coloreo, fue introducida por Méndez-Dı́az y
Zabala en [83], en la cual los conjuntos de colores pueden intersecar en a lo sumo i
colores. Formalmente, sea G un grafo y sean k, i, j números no negativos, con 0 ≤ i ≤
k ≤ j. Entonces un (k, i)-coloreo de G con j colores consiste en asignar a cada vértice
v de G un conjunto c(v) ⊆ {1, . . . , j} de cardinalidad k tal que cada par de vértices
adyacentes u, v verifica |c(v)∩c(u)| ≤ i. El mı́nimo número positivo j tal que G admite
un (k, i)-coloreo con j colores es llamado número (k, i)-cromático y es denotado χik(G).
Notar que para k = 1, i = 0, tenemos el coloreo clásico, entonces χ0

1(G) = χ(G) para
cualquier grafo G. Para k arbitrario e i = 0, tenemos el coloreo por k-uplas.

Méndez-Dı́az y Zabala resolvieron en [83] el problema de (k, i)-coloreo para algunos
valores de k e i en grafos completos, estudiaron la noción de perfección y criticidad para
el problema de (k, i)-coloreo y dieron cotas generales para el número (k, i)-cromático.
Las autoras propusieron además un enfoque heuŕıstico y un modelo de programación
lineal para el problema, que continuaron desarrollando y generalizando en [84].

Notar que χik(G) ≤ χ(i)
k (G), ya que cada k : i-coloreo es en particular un (k, i)-coloreo,

pero no son necesariamente iguales, aún para grafos completos.

En este caṕıtulo, damos las siguientes nuevas cotas generales para χik:

Proposición: χik(G) < χik+1(G).

Proposición: Sea G un grafo con por lo menos una arista, y sea k < i. Entonces
χi+1
k (G) < χik(G).

Presentamos además un algoritmo lineal para computar el número (k, i)-cromático de
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los ciclos:

Teorema: Sea Cn un ciclo, con n = 2t+ 1. Entonces χik(Cn) = max{2k− i, dn(k−i)t e}
y se puede obtener un (k, i)-coloreo de Cn con χik(Cn) colores en tiempo O(n).

Un grafo G es un cactus si no contiene dos ciclos que compartan una arista.

Teorema: Sea G un cactus. Entonces, un (k, i)-coloreo de G con χik(G) puede ser
computado en tiempo lineal.

Mostramos además que estos resultados valen para el número k : i-cromático de ciclos
y cactus.

Estudiamos luego el número (k, i)-cromático de algunos productos cartesianos:

Proposición: Si χ(G) = j, entonces χik(G2Kj) = max{χik(G), χik(Kj)}.

Proposición: Sean C y D dos ciclos, y sea |C| = r, |D| = s. Entonces χik(C2D) =
max{χik(C), χik(D)}.

Finalmente, presentamos una relación entre el problema de (k, i)-coloreo en grafos
completos y códigos binarios pesados. Un código de peso constante (j, d, k) es un
conjunto C de vectores binarios de longitud j, con exactamente k unos en cada vector,
tal que dos vectores cualquiera difieran en al menos d posiciones. Dados j, d and k,
determinar la cardinalidad máxima de un código de peso constante (j, d, k) es uno de
los problemas abiertos más importantes en teoŕıa de códigos. Denotamos una instancia
de este problema A(j, d, k).

Teorema: Existe un (k, i)-coloreo para Kn con j colores si y sólo si A(j, 2(k−i), k) ≥ n.

Los resultados en este caṕıtulo fueron enviados para su publicación en [15].
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On the b-coloring of P4-tidy graphs

A b-coloring of a graph is a coloring such that every color class admits a vertex adjacent
to at least one vertex of every other color class. The b-chromatic number of a graph
G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with
t colors. The b-coloring parameter was introduced by R. W. Irving and D. F. Manlove
[56] by considering proper colorings that are minimal with respect to a partial order P
defined on the set of all partitions of the vertex set of G. The authors proved in that
work that determining the b-chromatic number of a graph G is NP-hard, but polyno-
mially solvable for trees. Kratochv́ıl, Tuza and Voigt showed in [77] that determining
χb(G) is NP-hard even if G is a connected bipartite graph, but can be solved in poly-
nomial time for some families of bipartite graphs. Bonomo et al. also proved that the
problem remains NP-hard on co-bipartite graphs, but polynomially solvable on tree-
cographs [17]. Corteel et al. [30] showed that the problem is also hard to approximate
in polynomial time within a factor of 120

113 − ε, for any ε > 0 unless P = NP .

Since the seminal paper by Irving and Manlove, much effort has been devoted to solving
the problem for specific graph classes, both deriving exact solutions and bounds on χb.
The b-chromatic number of power graphs of complete caterpillars was studied in [32],
of power graphs of paths and power graphs of cycles in [33], and of power graphs of
complete k-ary trees in [34]. Javadi and Omoomi [64] determined χb(G) for Kneser
graphs K(n, k) for some values of n and k. It was proven in [57] that the b-chromatic
number of cubic graphs is 4, except for four particular graphs (the Petersen graph,
K3,3, the prism over K3,3 and a 10 vertex graph). The same authors solved χb(G)
for cartesian products of paths and cycles with complete graphs and cartesian product
of two complete graphs in [65]. Kouider and Mahéo present in [75] lower bounds for
the b-chromatic number of the cartesian product of two graphs. Jakovac and Peterin
[59] determine some upper and lower bounds for the b-chromatic number of the strong

35
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Figure 3.1: The smallest non b-continuous graph G (see [2]). Note that G has a
b-coloring with 2 and with 4 colors, but none with 3 colors.

product, the lexicographic product and the direct product. They also give some exact
values for products of paths, cycles, stars, and complete bipartite graphs. The b-
chromatic number of regular graphs were studied in [12, 35, 20]. Central graphs of
some complete bipartite graphs, cycles and paths were analyzed in [93], as well as
middle graphs of cycles, paths, wheel graphs and fan graphs in [96]. In [95] the central,
middle and total graph of a star K1,n is studied. Campos, Linhares Sales, Maffray
and Silva studied χb(G) for cacti [23], and Havet, Linhares Sales and Sampaio for
the so called tight graphs [48]. In [22] Campos et al. showed how to compute in
polynomial time the b-chromatic number of a graph of girth at least 9, generalizing a
previous result from [81] on outerplanar graphs of large girth. Bounds for χb(G) for
the Mycielskian of some families of graphs was studied in [7], for the graph G − v in
[6], and for generalized Hamming graphs in [25]. In turn, upper bounds for K1,s-free
graphs, graphs with given minimum clique partition and bipartite graphs were given
in [76]. General upper bounds for the b-chromatic number were determined in [2].

The behavior of the b-chromatic number can be surprising. In contrast with classic
coloring, the values of k for which a graph admits a b-coloring with k colors do not
necessarily form an interval of the set of integers; in fact any finite subset of N≥2 can
constitute the set of these values for some graph [9]. A graph G is b-continuous if it
admits a b-coloring with t colors, for every t = χ(G), . . . , χb(G). In Figure 3.1 we show
a non b-continuous graph. In [68] it is proved that chordal graphs and some planar
graphs are b-continuous.

Another atypical property is that the b-chromatic number can increase when taking
induced subgraphs. A graph G is defined to be b-monotonic if χb(H1) ≥ χb(H2) for
every induced subgraph H1 of G, and every induced subgraph H2 of H1 [16]. See Figure
3.2 for an example of a non b-monotonic graph.
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v

Figure 3.2: A non b-monotonic graph. Note that χb(G) = 3, but removal of vertex v
makes χb(G− v) = 4

Recall that in Chapter 1 we motivated the definition for the b-chromatic number with
an heuristic that started from a given coloring and tried to decrease the number of
colors by eliminating color classes. But when does this heuristic actually produce an
exact result for χ(G)? Hoáng and Kouider introduced for this the notion of b-perfect
graphs in [52]. A graph G is b-perfect if χb(H) = χ(H) for every induced subgraph
H of G, so b-perfect graphs are indeed optimally colored by the heuristic. b-perfect
bipartite and P4-sparse graphs were characterized in [52]. In the same article, it is also
proved that every 2K2-free and P5-free graph is b-perfect. In [53], Hoàng, Linhares
Sales and Maffray presented the following conjecture: A graph is b-perfect if and only
if does not contain any one of twenty-two forbidden subgraphs. The conjecture was
shown to be true for diamond free graphs, 3-colorable graphs [53] and some chordal
graphs [80]. Recently, Maffray, Hoáng and Mechebbek proved it correct for general
graphs in [54], leading to polynomial recognition of b-perfect graphs.

A cograph is a graph that does not contain P4 as an induced subgraph. This class of
graphs has been discovered independently by many authors. Corneil et al. proposed
a linear recognition algorithm based on a unique decomposition of the cograph [27].
Several generalizations of cographs have been defined in the literature, such as P4-
sparse [51], P4-lite [60], P4-extendible [62] and P4-reducible graphs [61]. A graph class
generalizing all of them is the class of P4-tidy graphs [38]. Let G be a graph and
A a P4 in G. A partner of A is a vertex v in G − A such that A ∪ {v} induces at
least two P4s in G. A graph G is P4-sparse if no induced P4 has a partner and P4-
tidy if every induced P4 has at most one partner (see Figure 3.3 for an example graph).
Another generalization of P4-sparse graphs are (q, q−4)-graphs. A graph is a (q, q−4)-
graph if no set of at most q vertices induces more than q − 4 distinct P4’s [4]. In [24]
Campos, Linhares Sales, Maia and Sampaio obtain a polynomial time algorithm for
the b-chromatic number of (q, q − 4)-graphs, for a fixed q. There is no containment
relationship between the classes P4-tidy and (q, q − 4)-graph.

We prove in this chapter that P4-tidy graphs are b-continuous and b-monotonic. Fur-
thermore, we describe a polynomial time algorithm to compute the b-chromatic number
for this class of graphs. We extend thus the results presented in [16] for the class of
P4-sparse graphs. The results given in this chapter were published in [11].
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Figure 3.3: A P4-tidy graph

3.1 Definitions and preliminary results

Two vertices will be said to be true twins if they are adjacent and have the same
neighborhood, and false twins if they are non-adjacent but have the same neighbors.
A vertex is simplicial if its neighbors induce a complete subgraph. A vertex v controls
a vertex w if v and w are non-adjacent and all the neighbors of w are neighbors of v.

Lemma 3.1.1. [53] Let G be a graph and ϕ a coloring of G. If v and w are false twins
in G, then either none of them is dominant, or ϕ(v) = ϕ(w).

This can be extended straightforwardly to the following one.

Lemma 3.1.2. Let G be a graph and ϕ a coloring of G. If v controls w, then if w is
dominant, so is v and ϕ(v) = ϕ(w).

Lemma 3.1.3. [53] Let G be a graph and ϕ a coloring of G with more than χ(G)
colors. Then no simplicial vertex of G is dominant.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1∩V2 = ∅. The union of
G1 and G2 is the graph G1∪G2 = (V1∪V2, E1∪E2). The union is clearly an associative
operation and, for each nonnegative integer t, we will denote by tG the union of t disjoint
copies of G. The join of G1 and G2 is the graph G1∨G2 = (V1∪V2, E1∪E2∪V1×V2).
That is, the vertex set of G1 ∨ G2 is V1 ∪ V2 and its edge set is E1 ∪ E2 plus all the
possible edges with an endpoint in V1 and the other one in V2.

Cographs can be built from isolated vertices by using these two operations.

Theorem 3.1.4. [27] Every non-trivial cograph is either union or join of two smaller
cographs.
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Thus, the chromatic number of a cograph can be recursively calculated due to the
following result.

Theorem 3.1.5. [28] If G is the trivial graph, then χ(G) = 1. Let G1 = (V1, E1) and
G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. Then,

i. χ(G1 ∪G2) = max{χ(G1), χ(G2)}
ii. χ(G1 ∨G2) = χ(G1) + χ(G2).

A similar result holds for the b-chromatic number, but the relation between the b-
chromatic number of two graphs and the b-chromatic number of their union is weaker.

Theorem 3.1.6. [73] If G is the trivial graph, then χb(G) = 1. Let G1 = (V1, E1) and
G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. Then,

i. χb(G1 ∪G2) ≥ max{χb(G1), χb(G2)}
ii. χb(G1 ∨G2) = χb(G1) + χb(G2).

P4-tidy graphs have also a useful decomposition theorem. We will use it extensively in
this work to inductively prove our results. A brief description of the theorem follows.

Let G = (V,E) be a graph. Let F = {e ∈ E | e belongs to an induced P4 of G}.
Let Gp = (V, F ). A connected component of Gp having exactly one vertex is called a
weak vertex. Any connected component of Gp distinct from a weak vertex is called a
p-component of G. A graph G is p-connected if it has only one p-component and no
weak vertices [5].

A p-connected graph G = (V,E) is p-separable if V can be partitioned into two sets
(C, S) such that each P4 that contains vertices from C and from S has its midpoints in
C and its endpoints in S. We will call it a p-partition. If such a partition there exists,
then it is unique [63].

An urchin (resp. starfish) of size k, k ≥ 2, is a p-separable graph with p-partition (C, S),
where C = {c1, . . . , ck} is a clique; S = {s1, . . . , sk} is a stable set; si is adjacent to ci
if and only if i = j (resp. i 6= j).

A quasi-urchin (resp. quasi-starfish) of size k is a graph obtained from an urchin (resp.
starfish) of size k by replacing at most one vertex by K2 or S2. Note that the new
vertices result on true or false twins, respectively, and they are in the same set of the
new p-partition (C∗, S∗). The elements of S∗ are called the legs and C∗ is called the
body of the quasi-starfish or quasi-urchin.

Note that there are five possible quasi-starfishes of size two, and they are also the five
possible quasi-urchins of size two: P4, P , P , fork and kite (see Figure 3.4). To avoid
ambiguity, we will consider these five graphs as quasi-starfishes, while quasi-urchins
will be always of size at least three.

When considering quasi-urchins and quasi-starfishes, we have ten kinds of them. We
will call type 1 (resp. type 2 ) the urchins (resp. starfishes); type 3 (resp. type 4 ) the
urchins (resp. starfishes), where a vertex in the body was replaced by K2; type 5 (resp.
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Figure 3.4: Possible quasi-starfishes of size two. From left to right: P4, fork, P , P and
kite.

type 6 ) the urchins (resp. starfishes), where a vertex in the body was replaced by S2;
type 7 (resp. type 8 ) the urchins (resp. starfishes), where a leg was replaced by K2; and
type 9 (resp. type 10 ) the urchins (resp. starfishes), where a leg was replaced by S2.
Recall that graphs of odd type have always size at least three and, with this condition,
the ten types form a partition over the family of quasi-urchins and quasi-starfishes.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = ∅, such that G1 is
p-separable with partition (V 1

1 , V
2
1 ). Consider the graph with vertex set V1 ∪ V2 and

edge set E1 ∪ E2 ∪ {xy | x ∈ V 1
1 , y ∈ V2}. We shall denote this graph by G1 YG2.

Theorem 3.1.7. [63] Every graph G either is p-connected or can be obtained uniquely
from its p-components and weak vertices by a finite sequence of ∪, ∨ and Y operations.

Proposition 3.1.1. [38]A graph G is P4-tidy if and only if every p-component is iso-
morphic to either P5 or P5 or C5 or a quasi-starfish or a quasi-urchin. Quasi-starfishes
and quasi-urchins are the p-separable p-components of G.

Remark 3.1.1. Let G1 be a quasi-urchin or a quasi-starfish, and G2 be a graph. If G1

is type 7 or 8, all the legs are simplicial vertices both in G1 and in G1 YG2. Otherwise,
both in G1 and in G1 YG2, each leg of G1 is controlled by a vertex in the body of G1.
Then, by Lemmas 3.1.2 and 3.1.3, for every coloring of G1 (resp. G1 YG2) with more
than χ(G1) (resp. χ(G1YG2)) colors, if there is a dominant vertex of color c in V (G1),
then there is a dominant vertex of color c in the body of G1.

Lemma 3.1.8. Let G be a quasi-starfish or quasi-urchin of size k. Then,

i. If G is type 1,2,5,6,7,9 or 10, then χ(G) = k.
ii. if G is type 3,4 or 8, then χ(G) = k + 1.

iii. χb(G) = χ(G).

Proof. Items i. and ii. are easy to prove, since a coloring of the maximum clique of
G can be extended to the whole graph without increasing the number of colors. Let
(C∗, S∗) be the p-partition of G. To prove item iii., suppose on the contrary that we
have a b-coloring ϕ of G with more than χ(G) colors. By Remark 3.1.1, if there is a
dominant vertex of color c in G, then there is a dominant vertex of color c in C∗. If
G is neither type 5 nor type 6, then |C∗| ≤ χ(G), a contradiction. If G is type 5 or 6,
then there is a pair of false twins in C∗, so by Lemma 3.1.1, at most |C∗| − 1 different
colors can have dominant vertices and |C∗| − 1 ≤ χ(G), a contradiction.



Chapter 3. On the b-coloring of P4-tidy graphs 41

Lemma 3.1.9. Let G1 = (V1, E1) be a p-separable P4-tidy graph, and G2 = (V2, E2) a
graph such that V1 ∩ V2 = ∅. Then,

i. If G1 is not type 8, then χ(G1 Y G2) = χ(G1) + χ(G2); if G1 is type 8, then
χ(G1 YG2) = χ(G1) + χ(G2)− 1.

ii. If G1 is not type 8, then χb(G1 Y G2) = χb(G1) + χb(G2); if G1 is type 8, then
χb(G1 YG2) = χb(G1) + χb(G2)− 1.

Proof. Let G = G1 YG2. By Proposition 3.1.1, G1 is a quasi-urchin or a quasi-starfish.
Let (C∗, S∗) be its p-partition. Then G contains G1[C

∗] ∨G2 as an induced subgraph,
thus χ(G) ≥ χ(G1[C

∗]∨G2). On the other hand, every coloring of G1[C
∗]∨G2 can be

extended to G without adding new colors, by giving to each vertex in S∗ either a color
used by a non-neighbor of it in C∗ or a color used in G2. Hence, χ(G) = χ(G1[C

∗]∨G2).
By Theorem 3.1.5, χ(G1[C

∗] ∨ G2) = χ(G1[C
∗]) + χ(G2). By Lemma 3.1.8, if G1 is

type 8 then χ(G1[C
∗]) = χ(G1)− 1, otherwise χ(G1[C

∗]) = χ(G1). This concludes the
proof of item i..

In order to prove item ii., we will show that χb(G) = χb(G2) + χ(G1[C
∗]). Any b-

coloring of G2 can be extended to a b-coloring of G by assigning χ(G1[C
∗]) new colors

to C∗ and giving to each vertex in S∗ either a color used by a non-neighbor of it in C∗

or a color used in G2. So, χb(G) ≥ χb(G2) + χ(G1[C
∗]).

If χb(G) = χ(G), by item i., χb(G) = χ(G2) + χ(G1[C
∗]) ≤ χb(G2) + χ(G1[C

∗]). So,
we may suppose χb(G) > χ(G). Let now ϕ be a b-coloring of G with more than χ(G)
colors. By Remark 3.1.1, if there is a dominant vertex of color c in G, then there
is a dominant vertex of color c in C∗ ∪ V (G2). Notice that the set of colors used
by vertices in G2 and the set of colors used in C∗ are disjoint, so C∗ should contain
dominant vertices for all the colors used in V (C∗). In particular, if G1 is type 5 or 6,
by Lemma 3.1.1, it follows that the two non-adjacent vertices in C∗ receive the same
color, thus C∗ is colored with χ(G1[C

∗]) colors. On the other hand, it is easy to see
that ϕ restricted to V (G2) is a b-coloring of G2. So χb(G) ≤ χb(G2) + χ(G1[C

∗]).

We have proved that χb(G) = χb(G2) + χ(G1[C
∗]). By Lemma 3.1.8, if G is type 8

then χ(G1[C
∗]) = χ(G1) − 1 = χb(G1) − 1, otherwise χ(G1[C

∗]) = χ(G1) = χb(G1).
This concludes the proof of item ii..

3.2 b-continuity in P4-tidy graphs

In [16], a family of cographs with arbitrarily large difference between their b-chromatic
number and their chromatic number was shown. Therefore, it makes sense to analyze
b-continuity in P4-tidy graphs. In this section we prove that P4-tidy graphs are b-
continuous, by using the decomposition theorem for this class of graphs.

Lemma 3.2.1. If G is P5, P5, C5, a quasi-urchin or a quasi-starfish, then G is b-
continuous.
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Proof. If G = P5, then χ(G) = 2 and χb(G) = 3 and, for the remaining cases, by
Lemma 3.1.8, χb(G) = χ(G). So, they are trivially b-continuous.

Lemma 3.2.2. [16] Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ∩ V2 = ∅. If G1 and G2 are b-continuous and G = G1 ∪G2, then G is b-continuous.

Lemma 3.2.3. [16] Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ∩ V2 = ∅. If G1 and G2 are b-continuous and G = G1 ∨G2, then G is b-continuous.

Lemma 3.2.4. Let G1 = (V1, E1) be a p-separable P4-tidy graph and G2 = (V2, E2)
be a graph such that V1 ∩ V2 = ∅. If G2 is b-continuous and G = G1 Y G2, then G is
b-continuous.

Proof. By Proposition 3.1.1, G1 is a quasi-starfish or a quasi-urchin. Let (C∗, S∗) be
the p-partition of G1. Suppose first that G1 is not type 8. Any b-coloring of G2 with
t colors {1, . . . , t} can be extended to a b-coloring of G with t + χ(G1) colors, in the
following way. If we color G1 using colors {t+ 1, . . . , t+ χ(G1)}, then every dominant
vertex in G2 will have now also neighbors with colors t + 1, . . . , t + χ(G1), and every
dominant vertex in C∗ will have now also neighbors with colors 1, . . . , t. Since C∗

contains dominant vertices of all colors in {t+ 1, . . . , t+χ(G1)}, the resulting coloring
is a b-coloring of G with t+ χ(G1) colors.

Suppose now that G1 is type 8. Any b-coloring of G2 with t colors {1, . . . , t} can be
extended to a b-coloring of G with t + χ(G1) − 1 colors, in the following way. If we
color G1 using colors {t, . . . , t + χ(G1) − 1} in such a way that C∗ uses colors from
t+ 1 to t+ χ(G1)− 1, then every dominant vertex in G2 will have now also neighbors
with colors t + 1, . . . , t + χ(G1) − 1, and every dominant vertex in C∗ will have now
also neighbors with colors 1, . . . , t. Since C∗ contains dominant vertices of all colors in
{t+ 1, . . . , t+ χ(G1)− 1}, this results in a b-coloring of G with t+ χ(G1)− 1 colors.

Since G2 is b-continuous, we can obtain b-colorings for G with each color t′, where
χ(G2) + χ(G1) ≤ t′ ≤ χb(G2) + χb(G1) in the first case, and χ(G2) + χ(G1) − 1 ≤
t′ ≤ χb(G2) + χb(G1)− 1 in the second case. By Lemma 3.1.9, χ(G) = χ(G2) + χ(G1)
and χb(G) = χb(G2) + χb(G1) in the first case, while χ(G) = χ(G2) + χ(G1) − 1 and
χb(G) = χb(G2) + χb(G1)− 1 in the second case, so G is b-continuous.

Theorem 3.2.5. P4-tidy graphs are b-continuous.

Proof. Immediate by an inductive argument using the decomposition Theorem 3.1.7,
Proposition 3.1.1, Lemmas 3.2.2, 3.2.3 and 3.2.4 and Lemma 3.2.1 for the base case of
the induction.

3.3 Computation of the b-chromatic number in P4-tidy graphs

The inequality in part i. of Theorem 3.1.6 can be strict, and this fact prevents us from
using this result for directly computing the b-chromatic number of P4-tidy graphs by
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using the decomposition Theorem 3.1.7. In fact, it is not difficult to build examples
showing that the b-chromatic number of the graph G1∪G2 does not depend only on the
b-chromatic numbers of G1 and G2. To overcome this problem, we follow the approach
in [16] in the definition of the dominance sequence domG ∈ ZN≥χ(G) of a graph G,
where dom[t] is the maximum number of distinct color classes that admit dominant
vertices in any coloring of G with t colors, for χ(G) ≤ t ≤ |V (G)|. We will compute
this sequence recursively on P4-tidy graphs by using the decomposition theorem. Then
we will obtain the b-chromatic number of G as the maximum t such that domG[t] = t.

Lemma 3.3.1. Let G be P5, P5, C5, a quasi-urchin or a quasi-starfish. The dominance
sequence for G can be obtained in linear time.

Proof. It is easy to see that domP5 [2] = 2, domP5 [3] = 3, and domP5 [t] = 0 for t ≥ 4;
domP5

[3] = 3, domP5
[4] = 1, and domP5

[5] = 0; domC5 [3] = 3, and domC5 [t] = 0 for
t ≥ 4. Now, let G = (C∗, S∗) be a quasi-urchin or quasi-starfish of size k. Let (C, S)
be the p-partition of the urchin or starfish, S = {s1, . . . , sk}, C = {c1, . . . , ck}. If a
vertex in S (resp. C) was replaced by two vertices, we will assume that the vertex was
s1 (resp. c1) and that it was replaced by vertices s′1, s

′′
1 (resp. c′1, c

′′
1). Recall that,

for every graph G, domG[χ(G)] = χ(G). Consider now colorings of G with more than
χ(G) colors. By Remark 3.1.1, if there is a dominant vertex of color c in G, then there
is a dominant vertex of color c in C∗. So, for t > χ(G), domG[t] ≤ |C∗|.

If G is type 1, then domG[k] = domG[k + 1] = k and domG[t] = 0 for t ≥ k + 2; if
G is type 2, then domG[k + s] = min{k, 2k − 2s} for 0 ≤ s ≤ k, and domG[t] = 0 for
t > 2k [16].

We start by analyzing the different kinds of quasi-urchins.

Claim 1. If G is type 3, then domG[k + 1] = domG[k + 2] = k + 1, domG[t] = 0 for
t ≥ k + 3.

In G there are k + 1 vertices of degree k + 1 and no vertex of degree at least k + 2, so
the upper bounds for each value of domG are clear (a dominant vertex in a coloring
with t colors must have degree at least t− 1). A coloring with k + 2 colors and k + 1
dominant vertices of different colors can be obtained by coloring all the vertices in S∗

with the same color, different from the colors used in C∗. ♦

Claim 2. If G is type 5, then domG[k] = domG[k + 1] = k, domG[k + 2] = k − 1,
domG[t] = 0 for t ≥ k + 3.

Since k ≥ 3, in G there are k − 1 vertices of degree k + 1, 2 vertices of degree k, and
no vertex of degree at least k + 2. So, the upper bounds on domG[t] for t ≥ k + 2 are
clear. The upper bound for domG[k+1] holds by Lemma 3.1.1. Two colorings attaining
the upper bounds for domG[k + 1] and domG[k + 2] are defined as follows. Vertices
c2, . . . , ck receive colors 1, . . . , k − 1; vertices s1, . . . , sk receive color k + 1; vertices c′1,
c′′1 receive both color k or colors k and k + 2, respectively. ♦

Claim 3. If G is type 7 or type 9, then domG[k] = domG[k + 1] = k, domG[k + 2] = 1,
domG[t] = 0 for t ≥ k + 3.
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Since k ≥ 3, in G there are k − 1 vertices of degree k, one vertex of degree k + 1, and
no vertex of degree at least k + 2. So, the upper bounds on domG[t] are clear. Two
colorings attaining the upper bounds for domG[k + 1] and domG[k + 2] are defined as
follows. Vertices c1, . . . , ck receive colors 1, . . . , k; vertices s′1, s2, . . . , sk receive color
k + 1; vertex s′′1 receives color 2 or k + 2, respectively. ♦

We will now analyze the different kinds of quasi-starfishes.

Claim 4. If G is type 4, then domG[k+ 1 + s] = min{k, 2k− 2s}+ 1 for 0 ≤ s < k, and
domG[t] = 0 for t > 2k.

Since χ(G) = k+1, then domG[k+1] = k+1. Since the maximum degree of G is 2k−1,
it is clear that domG[t] = 0 for t > 2k. Let t = k+1+s such that 1 ≤ s ≤ k−1 and let ϕ
be a coloring of G with t colors and maximum number of colors with dominant vertices.
At least one of c′1, c

′′
1 has a color different from ϕ(s1). Suppose without loss of generality

that ϕ(c′′1) 6= ϕ(s1), then ϕ(c′′1) 6= ϕ(v) for every v ∈ V (G). Let G′ = G−{c′′1}. Thus the
restriction of ϕ to G′ is a coloring with t−1 colors, and dominant vertices of G are still
dominant in G′, therefore domG[t] ≤ domG′ [t− 1] + 1. Conversely, let ψ be a coloring
of G′ with t−1 colors (namely, colors 1, . . . , t−1) and maximum number of colors with
dominant vertices. We can extend ψ to a t-coloring of G by defining ψ(c′′1) = t. Since
t−1 ≥ k+1, no vertex in S∗ was dominant in G′, so every dominant vertex of G′ is still
dominant in G. Besides, c′′1 is now dominant in G if and only if ψ(s1) = ψ(v) for some
vertex v of G′, different from s1, and this happens if and only if c′1 was dominant in
G′. By symmetry of G′, we may assume that if domG′ [t− 1] > 0 then c′1 was dominant
in G′. So, if domG′ [t − 1] > 0, we have that domG[t] = domG′ [t − 1] + 1. Since G′

is type 2, we already know that domG′ [k + s] = min{k, 2k − 2s}. Since s ≤ k − 1,
domG′ [t− 1] > 0, and domG[k + 1 + s] = min{k, 2k − 2s}+ 1. ♦

Claim 5. If G is type 6, then domG[k + s] = k for 0 ≤ s ≤ bk2c, domG[k + s] =

min{k − 1, 2k − 2s+ 2} for bk2c ≤ s ≤ k, and domG[k + s] = 0 for s > k.

Since χ(G) = k, then domG[k] = k. Since the maximum degree of G is 2k − 1, it is
clear that domG[t] = 0 for t > 2k. Let t = k+ s with 1 ≤ s ≤ k and let ϕ be a coloring
of G with t colors and maximum number of colors with dominant vertices.

Suppose first that ϕ(c′1) = ϕ(c′′1). Then the number of colors with dominant vertices
in G is the same as the number of colors with dominant vertices when restricting ϕ
to G′ = G − {c′′1}. Conversely, any coloring of G′ can be extended to a coloring of
G by giving to c′′1 the color used by c′1, thus preserving the dominant vertices. Then,
if ϕ(c′1) = ϕ(c′′1), it follows that domG[k + s] = domG′ [k + s] and, since G′ is type 2,
domG[k + s] = min{k, 2k − 2s}.

Suppose now that ϕ(c′1) 6= ϕ(c′′1). By Lemma 3.1.1, none of c′1, c
′′
1 is dominant. So,

in this case, the number of colors with dominant vertices is at most k − 1. We may
assume 2s > k, otherwise, by the arguments above, we can find a coloring ϕ′ of G with
ϕ′(c′1) = ϕ′(c′′1) and such that there are k colors with dominant vertices. Since k ≥ 2,
this implies s > 1, hence t > k + 1. Since ϕ(c′1) 6= ϕ(c′′1), at least one of them has a
color different from ϕ(s1). Suppose without loss of generality that ϕ(c′′1) 6= ϕ(s1), then
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ϕ(c′′1) 6= ϕ(v) for every v ∈ V (G). Let G′ = G−{c′′1}. Thus the restriction of ϕ to G′ is a
coloring with t−1 colors, and dominant vertices of G are still dominant in G′. Since c′′1
was not dominant in G, the number of colors with dominant vertices does not decrease.
Conversely, let ψ be a coloring of G′ with t− 1 colors (namely, colors 1, . . . , t− 1) and
maximum number of colors with dominant vertices. By Lemma 3.1.3, all the dominant
vertices are in C∗. We can extend ψ to a t-coloring of G by defining ψ(c′′1) = t. All
dominant vertices in {c2, . . . , ck} are still dominant. If there were less than k dominant
vertices, we may assume by symmetry of G′ that they were in {c2, . . . , ck}. If there were
k dominant vertices in G′, vertex c1 is no longer dominant, still c2, . . . , ck are dominant,
and we know that, if ϕ(c′1) 6= ϕ(c′′1), then in G there cannot be more than k − 1 colors
with dominant vertices. So, in that case, domG[k + s] = min{k− 1, domG′ [k + s− 1]}.
Since G′ is type 2, domG[k + s] = min{k − 1, 2k − 2s+ 2}.

So, if 2s ≤ k, then domG[k + s] = k and the optimum is attained by a coloring where
c′1 and c′′1 receive the same color. If 2s > k, then domG[k+ s] = min{k− 1, 2k− 2s+ 2}
and the optimum is attained by a coloring where c′1 and c′′1 receive different colors. ♦

Claim 6. If G is type 8, then domG[k + 1] = k + 1; then domG[k + s] = k for 2 ≤ s ≤
bk+1

2 c; domG[k + s] = k − 1 for s = k+2
2 (when k is even); domG[k + s] = 2k − 2s+ 2

for bk+3
2 c ≤ s ≤ k; and domG[t] = 0 for t > 2k.

Since χ(G) = k + 1, then domG[k + 1] = k + 1. Since the maximum degree of G is
2k − 1, it is clear that domG[t] = 0 for t > 2k. Let t = k + s with 2 ≤ s ≤ k and let
ϕ be a t-coloring of G with maximum number of colors with dominant vertices. For
i ≥ 2, vertex ci will be dominant if and only if color ϕ(si) is used by some other vertex
in G, and vertex c1 will be dominant if and only if colors ϕ(s′1) and ϕ(s′′1) are used
by some other vertices in (c1, s2, . . . , sk). We may assume without loss of generality
that ϕ(ci) = i, for i = 1, . . . , k, and that vertices in S∗ use colors k + 1, . . . , k + s.
If some vertex si uses a color at most k, we can always recolor it with a color from
k+ 1, . . . , k+ s that is already used in S∗. Since s ≥ 2, we can do it also for s′1 and s′′1.
If 2s ≤ k + 1, we can assign colors k + 1, . . . , k + s to vertices in S∗, repeating each of
them at least once, in such a way that all the vertices in C∗ are dominant. If 2s > k+1,
this is not possible. Since ϕ(s′1) 6= ϕ(s′′1) and all the colors k + 1, . . . , k + s are used
in S∗, we may assume without loss of generality that ϕ(s′1) = k + 1, ϕ(s′′1) = k + 2,
and ϕ(si) = k + 1 + i for i = 2, . . . , s − 1 (when s ≥ 3). To each of the k + 1 − s
remaining vertices we can assign different colors from k + 1, . . . , k + s. If we assign
color k + 1 + i to vertex sj , with s ≤ j ≤ k and 2 ≤ i ≤ s− 1, both ci and cj become
dominant. If we assign color k+ 1 (resp. k+ 2) to some vertex sj with s ≤ j ≤ k, then
cj will be dominant but c1 will be dominant only if some other vertex sj′ , s ≤ j′ ≤ k,
receives k+ 2 (resp. k+ 1). So, as we have less than s remaining vertices, the optimum
2(k + 1 − s) is attained by assigning to ss, . . . , sk different colors from k + 3 to k + s
when k + 1− s ≤ s− 2. The last case is when k + 1− s = s− 1, that is, k is even and
2s = k+2. In this case we can assign to ss, . . . , sk−1 different colors from k+3 to k+s
and to vertex sk color k + 1. In this case, all the vertices of C∗ but c1 are dominant,
and this is optimal. ♦

Claim 7. If G is type 10, then domG[k+ s] = k for 0 ≤ s ≤ bk+1
2 c; domG[k+ s] = k− 1
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for s = k+2
2 (when k is even); domG[k + s] = 2k − 2s + 2 for bk+3

2 c ≤ s ≤ k; and
domG[t] = 0 for t > 2k.

Since χ(G) = k, then domG[k] = k. A coloring with k + 1 colors and k dominant
vertices is obtained by giving colors 1, . . . , k to vertices in C∗ and color k + 1 to each
vertex in S∗. Since the maximum degree of G is 2k − 1, it is clear that domG[t] = 0
for t > 2k. The arguments for k + 2 ≤ s ≤ 2k are very similar to those in the proof of
Claim 6, and are omitted. ♦

In all the cases, given the type of the graph, the dominance sequence can be computed
in linear time. The type of the graph can be also determined in linear time [38].

Theorem 3.3.2. [16] Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ∩ V2 = ∅. Let G = G1 ∪G2 and t ≥ χ(G). Then

domG[t] = min{t,domG1 [t] + domG2 [t]}

Theorem 3.3.3. [16] Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1∩V2 = ∅. Let G = G1∨G2 and χ(G) ≤ t ≤ |V (G)|. Let a = max{χ(G1), t−|V (G2)|}
and b = min{|V (G1)|, t− χ(G2)}. Then a ≤ b and

domG[t] = maxa≤j≤b{domG1 [j] + domG2 [t− j]}

Theorem 3.3.4. Let G1 = (V1, E1) be a quasi-urchin or a quasi-starfish of size k and
G2 = (V2, E2) be a graph such that V1 ∩ V2 = ∅, V2 6= ∅. Let G = G1 YG2. Then, the
following statements hold.

i. If G1 is type 1,2,7,9 or 10, then
a. domG[k + r] = k + domG2 [r], for χ(G2) ≤ r ≤ |V2|;
b. domG[k + |V2|+ s] = domG1 [k + s], for 1 ≤ s ≤ |V1| − k.

ii. If G1 is type 3 or 4, then
a. domG[k + 1 + r] = k + 1 + domG2 [r], for χ(G2) ≤ r ≤ |V2|;
b. domG[k + 1 + |V2|+ s] = domG1 [k + 1 + s], for 1 ≤ s ≤ |V1| − k − 1.

iii. If G1 is type 5 or 6, then
a. domG[k + χ(G2)] = k + χ(G2);
b. domG[k+ r] = max{k+ domG2 [r], k− 1 + domG2 [r− 1]}, for χ(G2) < r ≤ |V2|;
c. domG[k + 1 + |V2|] = max{k, k − 1 + domG2 [|V2|]};
d. domG[k + |V2|+ s] = domG1 [k + s], for 2 ≤ s ≤ |V1| − k.

iv. If G1 is type 8, then
a. domG[k + r] = k + domG2 [r], for χ(G2) ≤ r ≤ |V2|;
b. domG[k + 1 + |V2|] = k;
c. domG[k + |V2|+ s] = domG1 [k + s], for 2 ≤ s ≤ |V1| − k.

Proof. Recall that dom[χ(G)] = χ(G), and that the chromatic number of each type
of quasi-starfish or quasi-urchin is described in Lemma 3.1.8. Let (C∗, S∗) be the p-
partition of G1. Notice first that in any coloring of G, the set of colors used by V2 and
C∗ are disjoint. Let ϕ be a coloring of G with t colors, t > χ(G). Vertices in S∗ are
either simplicial or have degree at most χ(G)− 1 (recall that V2 6= ∅). So no vertex in
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S∗ can be dominant. If some vertex of S∗ has a color that is used neither in V2 nor in
C∗, then no vertex in V2 is dominant. We start the case analysis. If G1 is type 1,2,7,9
or 10, then C∗ is a clique of size k. Every vertex in C∗ is dominant when the colors used
by S∗ are used also in C∗ ∪ V2, and they are still dominant if we consider ϕ restricted
to G[V2∪C∗]. By Theorem 3.3.3, domG[k+r] = k+domG2 [r], for χ(G2) ≤ r ≤ |V2|. If
t > k+ |V2|, at least some color must be used only in S∗. So the only candidates to be
dominant vertices are vertices in C∗. Since they are adjacent to all the vertices in V2,
we may assume that no vertex in S∗ uses a color used in V2, and each vertex of C∗ is
dominant if and only if it is dominant in G[V1], so domG[k + |V2|+ s] = domG1 [k + s],
for 1 ≤ s ≤ |V1| − k (∗). If G1 is type 3 or 4, the analysis is the same but taking into
account that C∗ is a clique of size k + 1. If G1 is type 5 or 6, then C∗ is not a clique.
We may assume that the original set was C = {c1, . . . , ck} and vertex c1 was replaced
by two false twins c′1, c

′′
1. Item iii.a holds because χ(G) = k + χ(G2). Most of the

observations for the previous cases still hold. So, when χ(G2) < t − k ≤ |V2| + 1, we
have two possibilities to color C∗: we can either use k colors, being ϕ(c′1) = ϕ(c′′1), and
in that case k vertices of different colors will be dominant in C∗, or use k + 1 colors
and, by Lemma 3.1.1, only k − 1 vertices in C∗ will be dominant. This leads to the
expressions iii.b and iii.c. Finally, when t > k + |V2| + 1, at least some color must be
used only in S∗. The analysis in (∗) leads to the expression iii.d. Finally, if G1 is type
8, then C∗ is a clique of size k but χ(G1) = k + 1. In this case, if χ(G2) ≤ r ≤ |V2|,
necessarily one color in V2 will be used also in S∗, but the analysis is the same as in
case i.a. Also the case iv.c is similar to i.b. The only difference is when t = k+1+ |V2|.
We cannot say that domG[k+ 1 + |V2|] = domG1 [k+ 1] = k+ 1, because we know that
we have dominant vertices only in C∗, so domG[k + 1 + |V2|] ≤ k. A coloring with k
dominant vertices in C∗ is attainable by giving colors 1, . . . , k to vertices in C∗, color
k + 1 to vertices in S∗ \ {s′′1}, color k + 2 to s′′1, and colors k + 2, . . . , k + 1 + |V2| to
vertices in V2.

Theorem 3.3.5. The dominance vector and the b-chromatic number of a P4-tidy graph
G can be computed in O(n3) time.

Proof. The previous results give a dynamic programming algorithm to compute the
dominance sequence of a P4-tidy graph from its decomposition tree, that can be com-
puted in linear time [38]. By Theorem 3.3.2, Theorem 3.3.3, Theorem 3.3.4, Theo-
rem 3.1.7, Proposition 3.1.1 and the fact that P4-tidy graphs are hereditary, we can
compute recursively the dominance vector and consequently the b-chromatic number
of G in O(n3) time. Indeed, if G = G1∪G2, by Theorem 3.3.2, the value for domG[t] is
obtained from domG1 [t] and domG2 [t] directly. By Theorem 3.3.4, the same case holds
for G = G1YG2. If G = G1∨G2, we must examine at most n values of j for each value
of t, by Theorem 3.3.3. We have at most n of these reduction steps, because in each case
we must compute two disjoint subgraphs. The base case, computing the dominance
sequence of the trivial graph and the five elementary subgraphs in the decomposition,
can be done in O(1) by Lemma 3.3.1. So the total computation time is O(n3). Once
we have computed the dominance sequence of G, we obtain the b-chromatic number
as the maximum value t such that domG[t] = t.
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3.4 b-monotonicity in P4-tidy graphs

In this section, we will show that P4-tidy graphs are b-monotonic. To this end, we will
prove the following property.

Theorem 3.4.1. For every P4-tidy graph G, every induced subgraph H of G and every
t ≥ χ(G), domH [t] ≤ domG[t] holds.

We first state some necessary results.

Lemma 3.4.2. Let G be a P5, a P5, a C5, a quasi-urchin or a quasi-starfish. Then,
for every t ≥ χ(G) and every vertex v of G, domG−{v}[t] ≤ domG[t] holds.

Proof. The cases P5, P5 and C5 are easy to verify. Let G = (C∗, S∗) be a quasi-
urchin or quasi-starfish of size k. Let (C, S) be the p-partition of the urchin or starfish,
S = {s1, . . . , sk}, C = {c1, . . . , ck}. If a vertex in S (resp. C) was replaced by two
vertices, we will assume that the vertex was s1 (resp. c1) and that it was replaced
by vertices s′1, s

′′
1 (resp. c′1, c

′′
1). Let t ≥ χ(G), and let v be a vertex of G. Let ϕ

be a t-coloring of G − {v} that maximizes the number of color classes with dominant
vertices. Suppose first that v is a leg of G and either G is not type 8 or v is different
from s′1, s

′′
1. Then ϕ can be extended to a t-coloring of G with the same number of

dominant vertices by giving to v the color of some vertex in the body non-adjacent to
it. If G is type 8 and v = s′1, since t ≥ χ(G) = k+1, we can give to s′1 either a color that
is not used in the body of G or the color ϕ(c1) (depending on whether ϕ(s′′1) = ϕ(c1)
or not). Now, suppose that v is a vertex in the body of G. If v has a false twin, we
can color v with the color used by its false twin. Otherwise, since t ≥ χ(G), there is
some color c that is not used in the body of G. We will extend ϕ to a t-coloring of G
with at least the same number of dominant vertices by setting ϕ(v) = c. If some leg
w of G adjacent to v was colored c, then all its neighbors are also neighbors of v, so
we can recolor w with the color of some vertex in the body non-adjacent to it, and all
dominant vertices will still be dominant. The only case in which we cannot do this is
when G is type 8, v is not c1, one of s′1, s

′′
1 uses color c and the other one uses color

ϕ(c1). But, in that case, since t ≥ χ(G) = k + 1, there are in fact at least two colors
c, c′ not used in the body of G. So we can give color c′ to v, and recolor as mentioned
above all the legs adjacent to it (note that neither s′1 nor s′′1 use c′ in the case we are
dealing with). Hence, domG−{v}[t] ≤ domG[t].

Lemma 3.4.3. Let G1 = (V1, E1) be a quasi-starfish or a quasi-urchin and G2 =
(V2, E2) be a b-continuous graph such that V1 ∩ V2 = ∅ and, for every t ≥ χ(G2) and
every induced subgraph H of G2, domH [t] ≤ domG2 [t]. Let G = G1 Y G2. Then, for
every t ≥ χ(G) and every vertex v of G, domG−{v}[t] ≤ domG[t] holds.

Proof. If t = χ(G) the statement is clearly true. Let t > χ(G), and let v be a vertex
of G. Let ϕ be a t-coloring of G − {v} that maximizes the number of color classes
with dominant vertices. We will extend ϕ to a t-coloring of G with the same number



Chapter 3. On the b-coloring of P4-tidy graphs 49

of color classes with dominant vertices. Let (C∗, S∗) be the p-partition of G1. Notice
that, since t > χ(G) ≥ χ(G− {v}), no vertex in S∗ is dominant.

Suppose first that v is a vertex of S∗. We can extend ϕ by giving to v a color not used
by any of its neighbors (it is always possible because t > χ(G)).

Suppose now that v is a vertex of V2. If |V2| = 1 then the lemma holds by Theorem 3.3.4
and the claims in the proof of Lemma 3.3.1. If |V2| > 1, let r be the number of colors
used by V2 −{v} in ϕ. If r ≥ χ(G2), since domG2 [r] ≥ domG2−{v}[r], we can replace ϕ
restricted to V2−{v} by an r-coloring of G2 with domG2 [r] color classes with dominant
vertices, thus obtaining a t-coloring of G with at least the same dominant color classes
as before. Otherwise, r = χ(G2 − {v}) = χ(G2) − 1. Since t > χ(G), it follows that
t − r ≥ χ(G1). Notice that the equality can hold only if G1 is type 8. Then we can
replace ϕ restricted to V2 − {v} by an (r + 1)-coloring of G2 and, by Lemma 3.3.1, ϕ
restricted to V1 by a coloring of G1 with at most t− r − 1 new colors and at least the
same dominant color classes as before (if G1 is type 8 and t− r = χ(G1), we can assign
to one of the true twin vertices in S∗ a color used in V2).

Finally, suppose that v is a vertex in C∗. If v has a false twin v′ in C∗ − {v}, we
are done by setting ϕ(v) = ϕ(v′). If there are two false twins w,w′ in C∗ − {v} using
different colors, we can assign to v color ϕ(w′) and to w′ color ϕ(w) (possibly recoloring
in a suitable way vertices in S∗), obtaining a t-coloring of G with at least the same
dominant color classes as before. Otherwise, v is adjacent to all vertices in C∗ − {v}
and they are colored with χ(G[C∗−{v}]) colors. Let r be the number of colors used by
V2 in ϕ. If ϕ restricted to V2 is not a b-coloring, we can eliminate one color class from
V2 without decreasing the number of color classes with dominant vertices, and give that
color to v, that will be adjacent to all the vertices that were dominant, thus obtaining
the desired t-coloring for G. If ϕ restricted to V2 is a b-coloring and r > χ(G2), since
G2 is b-continuous, we can replace ϕ restricted to V2 by a b-coloring of G2 with r − 1
colors, thus giving the remaining color to v as before. Finally, by Lemma 3.1.9 and
being t > χ(G), if r = χ(G2) then t− r ≥ χ(G1). In that case, it is easy to see that we
can replace ϕ restricted to V1 by a t− r-coloring of G1, maintaining or increasing the
number of color classes with dominant vertices, thus obtaining the desired t-coloring
of G.

Lemma 3.4.4. [16] Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that
V1 ∩ V2 = ∅, and let G = G1 ∪G2. Assume that for every t ≥ χ(Gi) and every induced
subgraph H of Gi we have domH [t] ≤ domGi [t], for i = 1, 2. Then, for every t ≥ χ(G)
and every induced subgraph H of G, domH [t] ≤ domG[t] holds.

Lemma 3.4.5. [16] Let G1 = (V1, E1) and G2 = (V2, E2) be two b-continuous graphs
such that V1 ∩ V2 = ∅, and let G = G1 ∨ G2. Assume that for every t ≥ χ(Gi) and
every induced subgraph H of Gi we have domH [t] ≤ domGi [t], for i = 1, 2. Then, for
every t ≥ χ(G) and every induced subgraph H of G, domH [t] ≤ domG[t] holds.

Lemma 3.4.6. [16] Let G be a graph. The maximum value of domG[t] is attained in
t = χb(G).
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Proof of Theorem 3.4.1. Let us consider a minimal counterexample for the theorem,
that is, a P4-tidy graph G and an induced subgraph H of G such that domH [t] >
domG[t] for some t ≥ χ(G), but such that domH2 [t] ≤ domH1 [t] for every induced
subgraph H1 of H, every induced subgraph H2 of H1 and every t ≥ χ(H1). By
Lemmas 3.4.4 and 3.4.5, G is neither the union nor the join of two smaller graphs.
Let W = V (G) \ V (H), namely, W = {w1, . . . , ws}. If we consider the sequence of
graphs defined by G0 = G, Gi = Gi−1 − {wi} for 1 ≤ i ≤ s, it turns out that Gs = H.
Since domH [t] > domG[t], for some i ≥ 1, it holds domGi [t] > domGi−1 [t]. Since
the counterexample was minimal, it should be i = 1, thus H = G − {w} for some
vertex w of G. By Lemma 3.4.2, Theorem 3.2.5 and Lemma 3.4.3, Theorem 3.1.7 and
Proposition 3.1.1, such a counterexample does not exist. 2

Corollary 3.4.6.1. P4-tidy graphs are b-monotonic.

Proof. Since P4-tidy graphs are hereditary, it suffices to show that given a P4-tidy
graph G, χb(G) ≥ χb(H) for every induced subgraph H of G. Let G be a P4-tidy
graph, and let H be and induced subgraph of G. If χb(H) < χ(G), then χb(H) <
χb(G). Otherwise, by Theorem 3.4.1, χb(H) = domH [χb(H)] ≤ domG[χb(H)] and, by
Lemma 3.4.6, domG[χb(H)] ≤ domG[χb(G)] = χb(G) implying that χb(G) ≥ χb(H).
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3.5 Resumen del caṕıtulo

Un b-coloreo de un grafo es un coloreo tal que cada clase color admite un vértice
adyacente a por lo menos un vértice de cada una de las demás clases color. El número
b-cromático de un grafo G, denotado por χb(G), es el máximo número t tal que G
admite un b-coloreo con t colores. El problema de b-coloreo fue introducido por R.
W. Irving y D. F. Manlove [56] al considerar coloreos válidos que fueran minimales
con respecto a un orden parcial definido sobre el conjunto de todas las particiones del
conjunto de vértices de G. Los autores demostraron en ese trabajo que determinar
el número b-cromático de un grafo G es NP-hard, pero puede resolverse en tiempo
polinomial para árboles. Kratochv́ıl, Tuza y Voigt mostraron en [77] que determinar
χb(G) es NP-hard aún si G es un grafo bipartito conexo, pero puede ser resuelto en
tiempo polinomial para algunas familias de grafos bipartitos. Bonomo et al. mostraron
que el problema es NP-hard también para grafos co-bipartitos, pero polinomial para
tree-cographs [17]. Corteel et al. [30] mostraron que el problema es también dif́ıcil de
aproximar en tiempo polinomial con un factor de 120

113 − ε, para cualquier ε > 0, salvo
que P = NP .

El comportamiento del número b-cromático puede ser sorprendente. A diferencia del
coloreo clásico, los valores de k para los cuales el grafo admite un b-coloreo con k
colores no necesariamente forman un intervalo en el conjunto de los enteros. De hecho,
cualquier subconjunto finito de N≥2 constituye el conjunto de valores para los cuales
existe un b-coloreo en algún grafo [9]. Un grafo G es b-continuo si admite un b-coloreo
con t colores, para cada t = χ(G), . . . , χb(G). En [68] se demuestra que los grafos
cordales y algunos grafos planares son b-continuos.

Otra propiedad at́ıpica es que el número b-cromático puede incrementarse al tomar
subgrafos inducidos. Un grafo G es b-monótono si χb(H1) ≥ χb(H2) para cada subgrafo
inducido H1 de G, y cada subgrafo inducido H2 de H1 [16].

Un cografo es un grafo que no contiene a P4 como subgrafo inducido. Esta clase de
grafos fue descubierta independientemente por varios autores. Corneil et al. pro-
pusieron un algoritmo lineal de reconocimiento basado en una descomposición única
del cografo [27]. Se definieron varias generalizaciones de cografos en la literatura, como
los grafos P4-sparse [51], P4-lite [60], P4-extensibles [62] y los grafos P4-reducibles [61].
Una clase de grafos que generaliza a todos ellos es la clase de los grafos P4-tidy [38].
Sea G un grafo y A un P4 en G. Un partner de A es un vértice v en G − A tal que
A ∪ {v} induce por lo menos dos P4s en G. Un grafo G es P4-sparse si ningún P4

inducido tiene un partner y es P4-tidy si cada P4 inducido tiene a lo sumo un partner.
Otra generalización de los grafos P4-sparse son los grafos(q, q−4). Un grafo es (q, q−4)
si ningún conjunto de a lo sumo q vértices induce más de q − 4 P4’s distintos [4]. En
[24] Campos, Linhares Sales, Maia y Sampaio obtuvieron un algoritmo polinomial para
computar el número b-cromático de los grafos (q, q − 4), para q fijo. No hay relación
de inclusión entre las clases P4-tidy y (q, q − 4).

A continuación enunciamos los principales resultados de este caṕıtulo.
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Teorema: El número b-cromático de un grafo P4-tidy puede ser computado en O(n3)
time.

Con este teorema extendemos los resultados presentados en [16] para la clase de grafos
P4-sparse.

Teorema: Los grafos P4-tidy son b-continuos.

Teorema: Los grafos P4-tidy son b-monótonos.

Los resultados en este caṕıtulo fueron publicados en [11].



CHAPTER 4

The b-chromatic index of the direct product of graphs

We continue in this chapter the study of the edge version of the b-vertex coloring and
the b-chromatic number introduced by Jakovac and Peterin in [58], namely the b-edge
coloring and the b-chromatic index, respectively. A b-edge coloring of a graph G is a
proper edge coloring of G such that each color class contains an edge that has at least
one incident edge in every other color class. The b-chromatic index of a graph G is the
largest integer χ′b(G) for which G has a b-edge coloring with χ′b(G) colors. We say that
that a b-edge coloring with χ′b(G) colors realizes χ′b(G).

Intuitively, for a b-edge coloring to be possible on a graph G, we need to have enough
edges of high enough degree, at least one in each color class. Let e1, . . . , en be a
sequence of edges, such that d(e1) ≥ · · · ≥ d(en) where d(ei) denotes the degree of
ei. Then m′(G) = max{i : d(ei) ≥ i − 1} is an upper bound for χ′b(G). In [58],
the authors determined the b-chromatic index of trees, and gave conditions for graphs
that have b-chromatic index strictly less than m′(G), as well as conditions for which
χ′b(G) = m′(G). They proved further that χ′b(G) = 5 for connected cubic graphs, with
only four exceptions: K4, K3,3, the prism over K3, and the cube Q3. The problem of
computing the b-chromatic index was shown to be NP-complete by Lima et al. in [78].

The direct product G × H of graphs G and H has vertex set V (G) × V (H); two
vertices (g, h) and (g′, h′) are adjacent in G × H if they are adjacent in both co-
ordinates, i.e. gg′ ∈ E(G) and hh′ ∈ E(H). See Figure 4.1 for an example. If
e = (g, h)(g′, h′) ∈ E(G × H), let pG(e) = gg′ and pH(e) = hh′ be the projection of
edge e over G and H, respectively. Unfortunately, it appears in the literature also
as tensor product, Kronecker product, cross product, and categorical product, among
other denominations. The direct product seems to be the most elusive among all four
standard products (Cartesian, strong, direct and lexicographic). The reason for this is

53
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Figure 4.1: Illustration of the graph P5 × C4.

the fact that each edge of G×H projects to an edge in both factors, which is not the
case on other products. Even basic graph properties, such as connectedness are non
trivial for the direct product. Indeed, G×H need not be connected, even if both factors
are. It can be shown that if both factors are bipartite and connected, then there are
exactly two components in the direct product (see [98]). Since its initial formulation
by Weichsel [98] in 1962, the direct product of graphs has been extensively studied in
the areas of graph coloring, graph recognition and decomposition, graph embeddings,
matching theory and stability in graphs (see the book [42] for a comprehensive survey).
There is a problem, though, that is regarded as the main open question for the direct
product, and is related to graph coloring. In 1966, Hedetniemi [49] conjectured that
for all graphs G and H, χ(G × H) = min{χ(G), χ(H)}. This famous conjecture has
resisted the efforts of researchers until the present day.

In this chapter, we describe bounds for the b-chromatic index of the direct product
of a graph G and a regular graph H admitting a partition of its edges into perfect
matchings. Further, we present exact results of χ′b for the direct product of some
connected regular graphs. Determining the b-chromatic index of a graph can be very
tedious already for small examples. For this reason we also develop a simple integer
linear programming model for the problem. With this method and all previous results
we were able to produce exact values of χ′b for the direct product of paths and for the
direct product of cycles. The results in this work were proposed in [74].

4.1 Bounds for χ′b(G×H)

A one-factor or a perfect matching of a graph G is a set of independent edges of G
that meet every vertex of G. Clearly, a graph with a one-factor has an even number
of vertices. A one-factorization of G is a partition of E(G) into one-factors. Thus,
in a one-factorization of G, every edge belongs to exactly one one-factor. Evidently
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G must be regular with an even number of vertices if it has a one-factorization. The
basic examples of graphs with one factorization are even cycles and hypercubes. Graph
products form a rich field for one factorizations, see for instance Section 30.1 of [42].

The following result shows a somewhat surprising connection between graphs with
one-factorizations and the b-chromatic index of direct products.

Theorem 4.1.1. Let G be a graph and H an r-regular graph. If H has a one-
factorization, then

χ′b(G×H) ≥ rχ′b(G).

Proof. Let G be a graph with χ′b(G) = k and let c′ : E(G)→ {1, . . . , k} be a b-edge
coloring that realizes χ′b(G). If H is an r-regular graph with a one-factorization, then
there are exactly r one factors that partition E(H). Let c′′ : E(H) → {1, . . . , r} be a
proper edge coloring where c(e) = i whenever e ∈ E(H) belongs to the ith one-factor
of H. We will show that c : E(G×H)→ {1, . . . , rk} defined by

c(e) = (c′(pG(e)), c′′(pH(e)))

is a b-edge coloring of G×H.

First we show that c is a proper edge coloring. Suppose, on the contrary, that for
two incident edges e, f ∈ E(G ×H) we have c(e) = c(f), where e = (g, h)(g′, h′) and
f = (g, h)(g′′, h′′). Clearly e 6= f implies that g′ 6= g′′ or h′ 6= h′′. Since c(e) =
(c′(gg′), c′′(hh′)) = (c′(gg′′), c′′(hh′′)) = c(f), we have c′(gg′) = c′(gg′′) and c′′(hh′) =
c′′(hh′′). If g′ 6= g′′, c′(gg′) = c′(gg′′) is a contradiction with c′ being a proper coloring
of E(G). Similarly, if h′ 6= h′′, c′′(hh′) = c′′(hh′′) is a contradiction with c′′ being a
proper coloring of E(H). Hence c is a proper coloring of E(G×H).

Next, let e = (g, h)(g′, h′) be an edge of G×H, where gg′ is (without loss of generality)
a 1-dominating edge in G for c′. We claim that e is a c(e) = (1, c′′(hh′)) dominating
edge in G × H for c. Let g1, . . . , gj be neighbors of g, such that ggp, p ∈ {1, . . . , j},
is assigned a color needed for e to be a 1-dominating edge. Similarly, let g′1, . . . , g

′
` be

neighbors of g′ such that g′g′t, t ∈ {1, . . . , `}, is also assigned a color needed for e to
be 1-dominating. (Notice that j + ` = k − 1.) Recall that coloring c′′ is generated
by a one-factorization of H, which yields for every vertex h ∈ V (H) that all colors
are present on edges incident with h. We may assume without loss of generality that
c′′(hh′) = 1. Denote by h2, . . . , hr neighbors of h where c′′(hhs) = s, s ∈ {2, . . . , r}, and
by h′2, . . . , h

′
s neighbors of h′ where c′′(h′h′i) = s, s ∈ {2, . . . , r}. Edges (g, h)(gp, hs) and

(g′, h′)(g′t, h
′
s), p ∈ {1, . . . , j}, t ∈ {1, . . . , `} and s ∈ {2, . . . , r}, are all incident with e

and they have all colors of the set {2, . . . , k}×{2, . . . , r}. Similarly, edges (g, h)(gp, h
′),

p ∈ {1, . . . , j}, and (g′, h′)(g′t, h), t ∈ {1, . . . , `}, have all colors of the set {2, . . . , k}×{1}.
Finally, edges (g, h)(g′, hs), s ∈ {2, . . . , r}, are assigned all colors from {1}×{2, . . . , r}.
(Notice that edges (g′, h′)(g, h′s), s ∈ {2, . . . , r}, are colored with the same colors.)
Hence e with c(e) = (1, 1) has all colors from {1, . . . , k}×{1, . . . , r}−{(1, 1)} on edges
incident to e, which yields that e is a (1, 1)-dominating edge, so the proof is completed.
2
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The lower bound of Theorem 4.1.1 seems to present its best when r is small. The
reason for this can be found in the last part of the proof where edges (g′, h′)(g, h′s),
s ∈ {2, . . . , r}, are colored with the same colors. Hence here we have r − 1 duplicated
colors and this may lead to strict inequality.

Corollary 4.1.1.1. Let n ≥ 2 be an integer. If G is an r-edge regular graph with
χ′b(G) = r + 1, then

2r + 2 ≤ χ′b(G× C2n) ≤ 2r + 3.

Proof. By Theorem 4.1.1 we get the lower bound, while the upper bound is the trivial
upper bound m′(G× C2n). 2

While the reader might find that this corollary holds only for a small number of graphs,
let us recall that there exists only a finite number of r-regular graphs with χb(G) <
m(G) (see [20]). If G is an r-edge regular graph, then L(G) is an r-regular graph.
“Usually” this means that χ′b(G) = r + 1; in particular, it holds for all r-edge regular
graphs with at least 2r3 edges (Theorem 2.2 in [20]). But even if the number of edges
is smaller than 2r3, one can expect that most problems will occur when the number
of edges is small. The computational results from [37] for the b-chromatic number of
small regular graphs indicate such a conclusion.

On the other hand, if one wishes to generalize Theorem 4.1.1 to all direct products, one
can observe from the proof that the one-factorization of a graph H was needed “only”
to obtain an edge coloring of H with the following property: there must exist an edge
e = uv, called symmetric, in every color class for which every endvertex has all colors
on edges incident to it. We call a proper coloring with this property an edge symmetric
coloring of H. Unfortunately, edge symmetric colorings do not exist for every graph H.
For this observe odd cycles. Since every edge symmetric coloring is a proper coloring,
we need at least χ′(C2k+1) = 3 colors. However this is not possible, since C2k+1 is
2-regular. More generally, an edge symmetric graph coloring of H can contain at most
∆(H) colors, since a symmetric edge e can have at most ∆(H)− 1 edges with different
colors incident to each endvertex plus the color of e. Thus no class 2 graph has an edge
symmetric coloring. Many class 1 graphs may also lack an edge symmetric coloring,
too, since we need for such a coloring at least ∆(H) edges in which all endvertices have
degree ∆(H).

Nevertheless, with the concept of edge symmetric colorings we can extend the bound
from Theorem 4.1.1 to many other direct products, in particular to products in which
both factors are non-regular. One example of graphs with an edge symmetric coloring
are paths Pn, n ≥ 5. Another small example is a path P6 with edges colored 3-2-1-3-2
in turn and in each inner vertex an additional edge attached, colored 1-3-2-1 in turn.

Theorem 4.1.2. Let G and H be graphs. If H contains an edge symmetric coloring,
then

χ′b(G×H) ≥ χ′b(G)∆(H).

Proof. The proof is the same as the proof of Theorem 4.1.1 in which we replace
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coloring c′′ generated by a one-factorization of H by an edge symmetric b-coloring c of
H. 2

4.2 On the b-chromatic index of direct products of some regular graphs

First we recall a result from [58] for graphs with diam(G) ≥ 4. For a vertex v of G, let
S2(v) be a set of all vertices of G that are at distance 2 from v. We say that a graph G
is of class 1 if χ′(G) = ∆(G) and of class 2 if χ′(G) = ∆(G) + 1. We define the graph
G[v] as the subgraph of G induced by N(v) ∪ S2(v).

Theorem 4.2.1. [58] Let G be an r-regular graph with diam(G) ≥ 4 and let u and
v be two vertices at distance at least 4. If G[u] and G[v] are class 1 graphs with
∆(G[u]) = ∆(G[v]) = ∆(G)− 1, then

χ′b(G) = 2r − 1.

The condition ∆(G[v]) = r − 1 implies that each vertex from S2(v) has a neighbor at
distance 3 from v. If this condition is not met in an r-regular bipartite graph G, then
there exists u ∈ S2(v) for which N(u) = N(v). However this is not necessarily the case
for nonbipartite graphs. Notice also that for every bipartite graph G and any vertex
v of G, the graph G[v] is bipartite (bipartition is induced with N(v) and S2(v)) with
∆(G[v]) = r−1. Recall that every bipartite graph is class 1 graph by König’s Theorem.
We will now deduce the conditions of Theorem 4.2.1 for the direct product with the
help of the following lemmas. We recall first the distance formula for the direct product
(see [72]),

dG×H((g, h), (g′, h′)) = min{max{deG(g, g′), deH(h, h′)},max{doG(g, g′), doH(h, h′)}}.

Here deG(g, g′) means the length of a shortest walk of even length between g and g′ in
G and doG(g, g′) the length of a shortest odd walk between g and g′ in G. If such a walk
does not exist, we set deG(g, g′) or doG(g, g′) to be infinite.

Lemma 4.2.2. Let G and H be connected graphs without triangles. If at least one of
G and H is nonbipartite, then diam(G×H) ≥ 4.

Proof. Since at least one factor is nonbipartite, G ×H is connected. Let g ∈ V (G)
and hh′ ∈ E(H). Clearly deG(g, g) = 0 and doH(h, h′) = 1. Since G has no triangle, the
shortest odd cycle has length at least 5. Even if g lies on such a cycle it holds that
doG(g, g) ≥ 5. Similarly, the shortest odd cycle of H has length at least 5. Even if both
h and h′ lie on such a cycle we have deH(h, h′) ≥ 4. By the distance formula we get
4 ≤ dG×H((g, h), (g, h′)) <∞ and hence the result. 2

If both graphs are bipartite we need a slightly different approach.

Lemma 4.2.3. Let G and H be connected bipartite graphs. If diam(G) ≥ 4 or
diam(H) ≥ 4, then both components of G×H have diameter at least 4.
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Proof. Let g ∈ V (G) and hh′ ∈ E(H). Vertices (g, h) and (g, h′) belong to different
components of G × H. Suppose without loss of generality that diam(G) ≥ 4 and
that dG(g, g′) = 4 for a vertex g′ ∈ V (G). Clearly deG(g, g′) = 4, doG(g, g′) = ∞ and
deH(h, h) = 0. By the distance formula we get dG×H((g, h), (g′, h)) = 4. The proof for
the component of (g, h′) is analogous, and hence the result follows. 2

The second condition of Theorem 4.2.1 is that for vertices u and v with dG(u, v) ≥ 4,
graphs G[u] and G[v] must be class 1 graphs. The next lemma settles this problem.
For this we need one of the well known facts about direct products, namely

NG×H(g, h) = NG(g)×NH(h) (4.1)

where NG(v) denotes the subgraph induced by the neighborhood of vertex v in a graph
G. Moreover, it is also easy to see that

SG×H2 (g, h) ∪ {(g, h)} = (SG2 (g) ∪ {g})× (SH2 (h) ∪ {h}) (4.2)

holds for any graphs G and H without triangles.

Lemma 4.2.4. Let G and H be connected graphs without triangles and let (g, h) ∈
V (G × H). If no five cycle contains g, then G × H[(g, h)] is a class 1 graph. In
particular if G has no five cycles, then G×H[(g, h)] is a class 1 graph.

Proof. If G × H is bipartite, then G × H[(g, h)] is bipartite as it is an induced
subgraph of G × H and hence a class 1 graph by König’s Theorem. Suppose that
G × H is nonbipartite. Edges of an odd cycle of G × H project to edges in both
factors, which yields an odd closed walk in both factors. Therefore both G and H are
nonbipartite.

Let (g, h) be an arbitrary vertex of G×H. The direct product of triangle free graphs
is triangle free again. Hence NG×H(g, h) induces an empty graph. Suppose that g is
not on a five cycle in G. By expression (4.2) above, vertices of SG×H2 (g, h) project to
vertices in SG2 (g) ∪ {g}. But vertices of SG2 (g) ∪ {g} induce a graph without edges,
since there are no triangles in G and g is not on a five cycle. Therefore also SG×H2 (g, h)
induces an empty graph, G×H[(g, h)] is bipartite and thus a class 1 graph. (Notice that
if h is not on a five cycle in H we can exchange the role of g and h by commutativity
of the direct product and we are done again.) 2

Notice that this lemma can also be true when both graphs contain five cycles. The
smallest example is C5 × C5, where G[(g, h)] is isomorphic to a graph obtained from
K4 by a 1-subdivision of each edge on some fix four cycle and a 2-subdivision of the
remaining two edges. Such a graph is easily colored by 3 colors and is hence a class 1
graph.

Finally we discuss the last condition of Theorem 4.2.1, which says that in an r-regular
graph ∆(G[v]) = r− 1 = ∆(G[u]). With this additional lemma we close the discussion
on the conditions of Theorem 4.2.1 for the direct product.
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Lemma 4.2.5. Let G and H be connected graphs, rG- and rH-regular, respectively,
and let (g, h) ∈ V (G×H). If rG, rH > 0 and ∆(G[g]) = rG − 1 or ∆(H[h]) = rH − 1,
then ∆(G×H[(g, h)]) = rGrH − 1.

Proof. Clearly G×H is an rGrH -regular graph. Let g be a vertex of G that verifies
∆(G[g]) = rG−1. Every vertex from NG×H(g, h) has degree rGrH−1 in G×H[(g, h)],
since (g, h) is not in G × H[(g, h)] (for arbitrary h ∈ V (H)). Every vertex g′ from
SG2 (g) has a neighbor outside of G[g] because ∆(G[g]) = rG−1. Therefore every vertex
(g′, h′) from SG×H2 (g, h) has at least rH > 0 neighbors outside of G×H[(g, h)], which
yields ∆(G × H[(g, h)]) = rGrH − 1. By commutativity of the direct product we are
done also when h is such a vertex in H, that ∆(H[h]) = rH − 1. 2

Unfortunately the above lemmas differ in their assumptions, so that we need to be
careful stating the following results.

Theorem 4.2.6. Let G and H be connected graphs, rG- and rH-regular, respectively,
and without triangles. Let additionally gg′ ∈ E(G), where g and g′ do not lie on any
five cycle and ∆(G[g]) = rG−1 = ∆(G[g′]). If at least one of G and H is nonbipartite,
then

χ′b(G×H) = 2rGrH − 1.

Proof. Let gg′ ∈ E(G), such that g and g′ do not lie on any five cycle. By Lemma 4.2.2
we have diam(G×H) ≥ 4. Moreover (g, h) and (g′, h) are at distance at least 4 for any
h ∈ V (H). Lemma 4.2.4 implies that G×H[(g, h)] and G×H[(g′, h)] are class 1 graphs
and Lemma 4.2.5 that ∆(G×H[(g, h)]) = rGrH−1 and ∆(G×H[(g′, h′)]) = rGrH−1.
By Theorem 4.2.1 the result follows. 2

Theorem 4.2.7. Let G and H be connected bipartite graphs, and rG- and rH-regular,
respectively. Let diam(G) ≥ 4. If there exists g, g′ ∈ V (G) with dG(g, g′) ≥ 4 and
∆(G[g]) = rG − 1 = ∆(G[g′]), then

χ′b(G×H) = 2rGrH − 1.

Proof. Graph G × H has two components, since both G and H are bipartite. By
Lemma 4.2.3 we have diam(G × H) ≥ 4 (in every component). Let g, g′ ∈ V (G) be
with dG(g, g′) = k ≥ 4 and ∆(G[g]) = rG − 1 = ∆(G[g′]). If k is even, then (g, h) and
(g′, h) are in the same component of G × H at distance k, by the distance formula.
If k is odd, then (g, h) and (g′, h) are in different components, so their distance is ∞.
Every induced subgraph of a bipartite graph is also bipartite. Hence G×H[(g, h)] and
G×H[(g′, h)] are bipartite and therefore class 1 graphs by König’s Theorem. Moreover
∆(G×H[(g, h)]) = rGrH − 1 and ∆(G×H[(g′, h)]) = rGrH − 1 by Lemma 4.2.5. By
Theorem 4.2.1 the result follows. 2

Notice that all lemmas and both theorems of this section have a symmetric version
with respect to the second factor H.
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4.3 Computing the b-chromatic index by integer linear programming

By Theorems 4.2.6 and 4.2.7 we are able to tell the exact value of the b-chromatic index
for many direct products of regular graphs. It seems that with the growth of diam(G)
the chances of χ′b(G) being equal to m′(G) do grow as well. In particular, in view of
Corollary 4.1.1.1 one would expect for an r-regular graph G that its b-chromatic index
is always equal to m′(G × C2k) = 2r + 3 for some relatively small k onwards. (Recall
that such a k always exists by the results of [20].) Hence one would “only” need to
check some small examples to describe the b-chromatic index of some families of direct
products.

Unfortunately, even this can be a difficult, hard work, since up to now no tools have
been developed to check small instances (other than brute force). This can be a chal-
lenging task for the direct product, which can become quickly a large graph even when
the factors considered are small. For this reason we introduce an integer linear program-
ming (ILP) model based on the standard formulation of the vertex coloring problem, to
help producing b-colorings of a graph G. Since this is an NP-hard problem, we cannot
expect that the solutions obtained by this method lead always to exact values of χ′b(G)
within reasonable time bounds. Still, every solution produced gives a lower bound for
χ′b(G). This approach turned out to be quite useful; we present it below.

Let c be an upper bound of χ′b(G), and n,m be the number of vertices and edges of G,
respectively. We consider the following binary variables:

for every color j ∈ {1, . . . , c} :

wj =

{
1 : if color j was assigned to some edge

0 : otherwise
;

for every edge e ∈ {1, . . . ,m} and for every color j ∈ {1, . . . , c} :

xej =

{
1 : if color j is assigned to edge e

0 : otherwise
;

for every edge e ∈ {1, . . . ,m} and for every color ∈ {1, . . . , c} :

zej =

{
1 : if edge e is dominant of color j

0 : otherwise
.
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With these variables we introduce the following ILP model:

maximize
∑c

j=1wj

subject to:

every edge receives exactly one color∑m
j=1 xej = 1 for every edge e ∈ {1, . . . ,m};

two incident edges do not get the same color

xe1j+xe2j ≤ 1 for every pair of incident edges e1 and e2 and for every color j ∈
{1, . . . , c};

wj has to be 1 if and only if color j was assigned to any edge

xej ≤ wj for every edge e ∈ {1, . . . ,m} and for every color j ∈ {1, . . . , c}∑m
e=1 xej ≥ wj for every color j ∈ {1, . . . , c}.

For every color, there must be a dominant edge. We accomplish this with help of the
next three constraints:

for every edge e, zej is equal to 1 if color j is indeed used and there is an edge
incident to e of every other color.

zej ≤ 1− (wj1 −
∑

e1∈N(e) xe1j1) for every edge e ∈ {1, . . . ,m},
and every pair of colors j, j1 ∈ {1, . . . , c}, j1 6= j;

there is a dominant edge for every color used∑m
e=1 zej ≥ wj for every color j ∈ {1, . . . , c};

edge e can only be dominant of color j if j is assigned to it

zej ≤ xej for every edge e ∈ {1, . . . ,m} and for every color j ∈ {1, . . . , c}.

Further, the following classic constraint was used to reduce symmetry:
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n m density(%) ∆(G) m(G) ILP solution

7 4 20 3 3 3
7 8 40 3 4 4
7 12 60 5 6 6
7 16 80 6 8 7
7 21 100 6 11 9

9 7 20 3 3 3
9 14 40 6 6 6
9 21 60 6 9 8
9 28 80 8 12 10
9 36 100 8 15 12

12 13 20 5 5 5
12 26 40 6 10 9
12 39 60 10 14 12
12 52 80 10 18 12
12 66 100 11 21 11

15 21 20 5 7 7
15 42 40 10 13 12
15 63 60 11 18 14
15 84 80 14 23 16
15 105 100 14 27 17

30 87 20 11 15 14
30 174 40 17 28 17
30 261 60 22 38 22
30 348 80 26 49 26
30 435 100 29 57 29

Table 4.1: Results for the b-edge chromatic number for some graphs.

use all colors sequentially

wj ≤ wj1 for all colors j, j1 ∈ {1, . . . , c} , j1 < j.

It is easy to see from the above constraints that the model produces a b-edge coloring
for a graph G (and thus a lower bound for χ′b(G)), and that a b-edge coloring realizing
χ′b(G) is obtained when the objective function is maximized.

We have made extensive computational tests with the Cplex technology for linear
programming. The model was able to produce optimal solutions only for small/sparse
instances of the problem, but achieved nevertheless solutions for all instances within
reasonable time limits. We have also run tests on families of graphs for which its
b-chromatic index is known from [58] and the obtained results where very accurate.

For the purpose of the computational experience, we use a family of randomly generated
graphs with different number of vertices and edge densities. In Table 4.1 we show:
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the number of vertices

the number of edges

the percentage of edge’s density

the trivial upper and lower bounds

the solution obtained by ILP.

Boldface in the ILP solution column indicates that the b-chromatic index was obtained
since we got the same value by ILP as is m′(G). Notice that also other values may
equal to χ′b(G) since m′(G) is an upper bound. In particular for density 100% we have
a complete graph Kn and for them it holds that χ′b(G) < m′(G), as we know from
[58]. Also recall that if a regular graph G has enough vertices, then χ′b(G) = m′(G),
which follows from the vertex version of the coloring in [20]. But with the increase of
the number of vertices of G its density decreases as well. Hence we can expect lower
values than m′(G) for less dense graphs. The same can be deduced from the computer
experiments of an evolutionary algorithm for χb(G) in [37].

The integer linear integer problem was solved using CPLEX 12.5, running on a Pentium
i5 processor, with a 64 bit operating system and 4Gb of available memory.

4.4 Direct products of special graph classes

Recall that for a bipartite graph G we have G×K2
∼= 2G [41]. Hence we immediately

get the following

Corollary 4.4.0.1. For a bipartite graph G with χ′b(G) = 2∆(G)− 1 we have

χ′b(G×K2) = χ′b(G).

Notice that the condition χ′b(G) = 2∆(G)−1 cannot be avoided in the above corollary.
Namely, graph 2G has twice more edges of high degree than G and this means that
we can have m′(2G) > m′(G), which could also lead to χ′b(2G) > χ′b(G). The smallest
example for this is G ∼= P5, where m′(P5) = χ′b(P5) = 2, but m′(2P5) = χ′b(2P5) = 3.

Next we consider the product of two paths, where a similar situation may arise. Indeed,
it could happen that χ′b(Pm×Pn) is strictly greater than the b-chromatic index of one
or both of its components. See for instance P3 × P3 or P4 × P6, respectively.

Theorem 4.4.1. For any integers n ≥ m ≥ 3 we have

χ′b(Pm × Pn) =



4 : m = 3, n < 6 (1)
5 : m = 3, n ≥ 6 (2)
5 : m = 4, n < 6 (3)
6 : m = 4, n = 6 (4)
7 : m = 4, n > 6 (5)
6 : m = 5, n = 5 (6)
7 : m ≥ 5, n > 5 (7)
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Proof. It is easy to see that m′(Pm × Pn) equals to the expression for χ′b(Pm × Pn)
as stated above, with the only exception of P3 × P5, where we have m′(P3 × P5) = 5.
For this case, notice that one component of P3 × P5 is isomorphic to two fourcycles
which share a common vertex; while the other component is isomorphic to a fourcycle
in which each of two fixed opposite vertices have two additional leaves attached. It is
easy to see that in every component we can have at most two color dominating edges
if we try to find a 5-b-coloring of P3 × P5. This yields altogether 4 color dominating
edges, which is a contradiction in a 5-b-coloring. Hence χ′b(P3 × P5) < 5. The upper
bound is now clear for all cases.

With help of the ILP model (but it is also easy to verify by hand) we obtained the
same values for χ′b(Pm × Pn) in cases (1), (3), (4) and (6), which settle them. For
case (2) we did this only for the smallest representative, namely P3 × P6. Again we
obtained m′(P3 × P6) = 5 = χ′b(P3 × P6) computationally (and again it is not hard
to do so by hand). Now if n is greater than 6, we can color any subgraph P3 × P6

of P3 × Pn with the same coloring we obtained. The remaining edges can be colored
by the greedy algorithm since degrees of all edges are strictly less than m′(P3 × P6).
The remaining cases (5) and (7) are analogous to (2), with representatives P4×P7 and
P5 × P6, respectively. 2

Next we concentrate on the direct product of two cycles.

Theorem 4.4.2. For any integers m ≥ n ≥ 3 we have

χ′b(Cm × Cn) =

{
6 : (m,n) = (3, 3)
7 : otherwise

Proof. If both m and n are even and m ≥ 8, then diam(Cm) ≥ 4 and by Theorem 4.2.7
χ′b(Cm×Cn) = 7. If one or both of them are odd different that 3, then χ′b(Cm×Cn) = 7
by Theorem 4.2.6. The remaining cases are

{m,n} ∈ {{3, 3}, {4, 3}, {5, 3}, {6, 3}, {7, 3}, {4, 4}, {6, 4}, {5, 5}, {6, 6}}.

We have run them on the ILP model introduced in the previous section and obtained
7-b-colorings for all of them with exception of C3×C3 for which we got a 6-b-coloring.
Since m′(Cm × Cn) = 7 we only need to show that there exists no 7-b-coloring of
C3 × C3.

In order to obtain a contradiction we may assume that χ′b(C3×C3) = 7. By Lemma 4.1
from [58], at most two edges of any C4 or any C3 in C3 × C3 can be color dominating
in a 7-b-edge coloring. We will use this result to analyze the subgraph H of C3 × C3

induced by seven color dominating edges. Suppose that H contains a vertex v of degree
4. By symmetry, v could be any vertex of C3 × C3, and all edges incident to it would
be in H. Notice that all but four edges of C3 × C3 lie on a C3 or C4 with two of its
edges incident to v. By the above mentioned Lemma 4.1, only these four edges would
be allowed to be color dominating in C3×C3. However, the four edges induce in turn a
C4, so by the same lemma again, only two of them can be color dominating. Thus, only
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six color dominating edges are possible, this is a contradiction with C3 × C3 having a
7-b-edge coloring. So H does not contain a vertex of degree 4.

By a tedious case analysis one can show that H cannot contain a vertex of degree 3 or
2, either. This leads to the conclusion that no 7-b-edge coloring can exist for C3 ×C3.
The details are left to the reader. 2
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4.5 Resumen del caṕıtulo

Continuamos en este caṕıtulo con el estudio de la versión sobre aristas del problema
de b-coloreo, introducida por Jakovac y Peterin en [58]. Un b-coloreo de aristas de
un grafo G es un coloreo válido de aristas de G tal que cada clase color contiene una
arista incidente a por lo menos una arista en cada una de las demás clases color. El
ı́ndice b-cromático de un grafo G es el entero más grande χ′b(G) para el cual G tiene un
b-coloreo de aristas con χ′b(G) colores. Decimos que un b-coloreo de aristas con χ′b(G)
colores realiza χ′b(G).

Intuitivamente, para que un b-coloreo de aristas sea posible en un grafo G, se necesitan
suficientes aristas de grado lo suficientemente grande, por lo menos una para cada clase
color. Sea e1, . . . , en una secuencia de aristas, tal que d(e1) ≥ · · · ≥ d(en), donde d(ei)
denota el grado de ei. Entonces m′(G) = max{i : d(ei) ≥ i− 1} es una cota superior
para χ′b(G). En [58], los autores determinaron el ı́ndice b-cromático para árboles, y
dieron condiciones para grafos que poseen ı́ndice b-cromático estrictamente menor a
m′(G), aśı como condiciones para las cuales χ′b(G) = m′(G). Demostraron además que
χ′b(G) = 5 para grafos cúbicos conexos, con únicamente cuatro excepciones: K4, K3,3,
el prisma sobre K3, y el cubo Q3. El problema de computar el ı́ndice b-cromático es
NP-completo; este resultado fue mostrado por Lima et al. en [78].

El producto directo G×H de grafos G y H tiene conjunto de vértices V (G)×V (H); dos
vértices (g, h) y (g′, h′) son adyacentes en G ×H si son adyacentes en ambas coorde-
nadas, i.e. gg′ ∈ E(G) y hh′ ∈ E(H). Si e = (g, h)(g′, h′) ∈ E(G×H), sea pG(e) = gg′

and pH(e) = hh′ la proyección de una arista e sobre G y H, respectivamente. El pro-
ducto directo parece ser el más dif́ıcil de trabajar entre los cuatro productos estándar
(Cartesiano, strong, directo and lexicográfico). La razón de esto es el hecho que cada
arista de G×H proyecta a una arista en ambos factores, propiedad que no se verifica
en los demás productos. Aún propiedades básicas de grafos como la conexidad son no
triviales para el producto directo. Por ejemplo, G × H no necesariamente es conexo,
aún si ambos factores lo son. Se puede demostrar que si ambos factores son bipartitos
y conexos, el producto directo tiene exactamente dos componentes conexas (see [98]).
Desde su formulación inicial por Weichsel [98] en 1962, el producto directo de grafos
fue intensamente estudiado en las áreas de coloreo de grafos, reconocimiento y descom-
posición de grafos, embedding de grafos, teoŕıa de matching y estabilidad en grafos (ver
el libro [42] para más detalles). Existe un problema, sin embargo, que es considerado el
principal interrogante abierto para el producto directo, y está relacionada con coloreo
de grafos. En 1966, Hedetniemi [49] conjeturó que para todo par de grafos G y H,
χ(G×H) = min{χ(G), χ(H)}. Esta famosa conjetura ha resistido los esfuerzos de los
investigadores hasta el d́ıa de hoy.

En este caṕıtulo, describimos una nueva cota para el ı́ndice b-cromático del producto de
un grafo G y un grafo regular H que admite una partición de sus aristas en matchings
perfectos (esta partición se denomina one-factorization).

Teorema: Sea G un grafo y H un grafo r-regular. Si H tiene una one-factorization,
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entonces
χ′b(G×H) ≥ rχ′b(G).

Además, presentamos resultados exactos para χ′b para el producto directo de algunos
grafos conexos regulares.

Teorema: Sean G y H grafos conexos, rG- y rH -regulares, respectivamente, y sin
triángulos. Adicionalmente, sea gg′ ∈ E(G), donde g y g′ no se encuentran en ningún
ciclo de 5 vértices y ∆(G[g]) = rG− 1 = ∆(G[g′]). Si por lo menos uno de los grafos G
o H es no bipartito, entonces

χ′b(G×H) = 2rGrH − 1.

Teorema: Sean G y H grafos bipartitos conexos, y rG- y rH -regulares, respectiva-
mente. Sea diam(G) ≥ 4. Si existe g, g′ ∈ V (G) con dG(g, g′) ≥ 4 y ∆(G[g]) =
rG − 1 = ∆(G[g′]), entonces

χ′b(G×H) = 2rGrH − 1.

Determinar el ı́ndice b-cromático de un grafo puede ser muy tedioso, aún para ejemplos
pequeños. Por esta razón, desarrollamos también un sencillo modelo de programación
lineal entera para el problema. Con este modelo y los resultados anteriores, nos fue
posible determinar valores exactos para χ′b para el producto directo de caminos y el
producto directo de ciclos.

Teorema: Para dos enteros n ≥ m ≥ 3, se tiene

χ′b(Pm × Pn) =



4 : m = 3, n < 6 (1)
5 : m = 3, n ≥ 6 (2)
5 : m = 4, n < 6 (3)
6 : m = 4, n = 6 (4)
7 : m = 4, n > 6 (5)
6 : m = 5, n = 5 (6)
7 : m ≥ 5, n > 5 (7)

Teorema: Para dos enteros m ≥ n ≥ 3, se tiene

χ′b(Cm × Cn) =

{
6 : (m,n) = (3, 3)
7 : en otro caso

Los resultados de este trabajo fueron propuestos en [74].



CHAPTER 5

A general cut-generating procedure for the stable set polytope

5.1 Introduction

Given an undirected graph G, the maximum cardinality stable set problem (MSS) asks
for a stable set S in G of maximum cardinality. MSS is NP-hard, and has been ap-
proached in the literature through several techniques. A number of exact methods have
been developed to solve it, see [14] for a survey.

Although combinatorial methods for MSS (like those in [91, 94]) perform better than
branch and cut algorithms, it is of great interest to continue the search for efficient
polyhedral methods for this problem. This is due to the facts that (a) MSS frequently
appears as a sub-structure in many combinatorial optimization problems, (b) in many
situations MSS is solved as a sub-routine for generating valid inequalities for general
mixed integer programs (see, e.g., [3]), and (c) real applications may need specific
versions of MSS with additional constraints and in this context integer programming
often turns out to be effective.

Mannino and Sassano [82] introduced in 1996 the idea of edge projections as a spe-
cialization of Lovász and Plummer’s clique projection operation [79]. Many properties
of edge projections are discussed in [82] and, based on these properties, a procedure
computing an upper bound for MSS is developed. This bound is then incorporated
in a branch and bound scheme. Rossi and Smriglio take these ideas into an integer
programming environment in [88], where a separation procedure based on edge projec-
tion is proposed. This procedure iteratively removes and projects edges with certain
properties, and heuristically finds violated rank inequalities (i.e., inequalities of the
form

∑
v∈A xv ≤ α(G[A]), where A ⊆ V and G[A] is the subgraph of G induced by

A). Finally, Pardalos et al. [87] extend the theory of edge projection by explaining the

68
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facetness properties of the inequalities obtained by this procedure. The authors give
a branch and cut algorithm that uses edge projections as a separation tool, as well as
several known families of valid inequalities such as the odd hole inequalities (with a
polynomial-time exact separation algorithm), the clique inequalities (with heuristics),
and mod-{2, 3, 5, 7} cuts.

Edge projections are a special case of Lovász and Plummer’s clique projections [79].
Rossi and Smriglio propose in [88] to employ a sequence of edge projection operations
to reduce the original graph G and make it denser at the same time, allowing for a
faster identification of clique inequalities on the reduced graph G′. A key step for
achieving this is to be able to establish how α(G) is affected by these edge projections,
or, in other words, how exactly α(G) relates to α(G′). We aim at generalizing Rossi
and Smriglio’s procedure by projecting cliques instead of edges, so we also need to show
how α(G) changes as a result of this operation. Our method allows thus to establish a
more general relation between G and G′.

In this chapter we propose the use of clique projections as a general method for cutting
plane generation for the MSS, along with a new clique lifting procedure that leads
to stronger inequalities than those obtained with the edge projection method. The
proposed method is able to generate both rank and generalized rank valid inequalities
(to be defined below), by resorting to the general lifting procedure introduced in [100].
This approach allows to produce cuts of a quite general nature, including cuts from
the known families of valid inequalities for the MSS polytope. This approach departs
from the usual template-based paradigm for generating cuts, and seeks to unify and
generalize the separation procedures for the known cuts. In this sense, our main goal
is to provide a more complete understanding of the maximum stable set polytope,
which may help also in the solution of other combinatorial optimization problems. In
Section 5.2 we define the MSS polytope STAB(G) and state some useful properties.
Section 5.3 defines the operation of clique projection and explores some basic facts on
this operation. In Sections 5.4 and 5.5 we introduce our cut-generating method, by
applying the lifting method presented in [100]. Finally, in Section 5.6 we present some
preliminary computational experience on the DIMACS instances, which show that the
method is competitive. These results were submitted for publication in [29].

5.2 The maximum stable set polytope

Let n = |V | and S(G) ⊆ {0, 1}n be the set of all characteristic vectors of stable sets
of G. We will write simply S when G is clear from context. For W ⊆ V , S(G[W ])
stands for the characteristic vectors of stable sets of G involving vertices in W only.
The polytope of stable sets of G is denoted by

STAB(G) = conv{x | x ∈ S(G)}.

Note that the stability number of G is α(G) = max{∑v∈V xv | x ∈ STAB(G)}. If
c ∈ Rn, then the weighted stable number of G, according to c is α(G, c) = max{c>x |
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x ∈ STAB(G)}. The general form of a facet-inducing inequality of STAB(G) is

c>x ≤ α(G[H], c), (5.1)

where c ∈ Rn, c ≥ 0, and H = {v ∈ V | cv > 0}. Note that if c ∈ {0, 1}n then we have
the rank inequality mentioned in the Introduction.

The following is an upper bound for the weighted stable set number based on the
unweighted one.

Lemma 5.2.1. Let c ∈ Rn, c ≥ 0, and cmin = min{cv | v ∈ V, cv > 0}. If c̄ ∈ Rn is
such that c̄v = 0, if cv = 0, and c̄v = cv − cmin, otherwise, then α(G, c) ≤ cminα(G) +
α(G, c̄).

Proof. The weight of a stable set S containing exactly s nonnull weight vertices can be
written as ∑

v∈S
cv = scmin +

∑
v∈S

(cv − cmin) ≤ scmin + α(G, c̄).

The result follows from s ≤ α(G).

Suppose we have a heuristic H for computing α(G). With the help of Lemma 5.2.1
we can obtain a simple heuristic for the weighted maximum stable set problem α(G, c)
as follows. Subtract in step j the minimum element cminj−1 from every coefficient of
vector c̄j−1 (c̄0 = c), as in Lemma 5.2.1. Perform this operation until (say after k steps)
the number of non null elements remaining in vector c̄k allows for exact enumeration
of α(G, c̄k). Then an upper bound for α(G, c) is α(G)(

∑
1≤j<k cminj ) + α(G, c̄k)

We present this lemma here since it will be useful for our clique-lifting operation in
Section 5.4. This operation involves the problem of finding an upper bound for the
maximum weight of a stable set in a subgraph of G.

5.3 Clique projection

The edge projection operation as defined by Rossi and Smriglio involves the removal
of vertices in the common neighborhood of the endpoints of the edge being projected,
whereas the clique projection operation defined here does not remove these vertices.
Due to this fact, the clique projection defined here does not correspond to the standard
edge projection when the projected clique is an edge. The motivation for this variation
in the definition will become clear in the remainder of this chapter. Define NW =
∩w∈WN(w) and Nuv = N(u) ∩N(v).

Definition 5.3.1 (Clique projection [79]). Let W ⊆ V , |W | ≥ 2, be a clique in G.
The clique projection of W gives the graph G | W = (V,E | W ) in which E | W =
E ∪ {xy 6∈ E |W ⊆ N(x) ∪N(y)}.
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The edges in (E | W )\E (i.e., the added edges after the projection) are called false
edges. If W = {u, v} for some uv ∈ E and we remove the vertices in Nuv ∪{u, v} when
performing the projection, we have the edge projection explored in [87, 88].

Definition 5.3.2 ([88]). An edge uv ∈ E is projectable in G if and only if there exists
a maximum stable set S. in G such that S ∩ {u, v} 6= ∅.
Lemma 5.3.1 ([82]). If uv ∈ E is a projectable edge in G, then α(G) = α(H[V \
(Nuv ∪ {u, v})]) + 1, where H = G | {u, v}.
Definition 5.3.3. A clique W ⊆ V , |W | ≥ 2, is projectable in G if and only if there
exists a maximum stable set S in G such that S ∩W 6= ∅.
Lemma 5.3.2. If a clique W ⊆ V , |W | ≥ 2, is projectable in G, then α(G) = α(H[V \
(NW ∪W )]) or α(G) = α(H[V \ (NW ∪W )]) + 1, where H = G |W .

Proof. α(H[V \(NW∪W )]) ≤ α(G[V \(NW∪W )]) is a direct consequence of E ⊆ E |W .
Thus, α(G) is an upper bound for α(H). On the other hand, W being projectable and
E |W ⊆ E | {u, v}, for any edge uv such that u, v ∈W , imply α(H[V \ (NW ∪W )]) ≥
α(G)− 1 by Lemma 5.3.1, giving the desired lower bound.

Both cases of the above lemma may happen, as illustrated in the examples in Figure 5.1.

a

c

ed

h
b g

f

(a) α(G) = 3 and α(H[V \
(NW ∪W )]) = 2, where H =
G |W .

a

c

ed

h

f

b g

(b) α(G) = α(H[V \ (NW ∪
W )]) = 3, where H = G |
W .

Figure 5.1: Examples of the two cases of Lemma 5.3.2 with W = {f, g, h}. In (a),
α(G) = α(H[V \ (NW ∪W )]) + 1, whereas α(G) = α(H[V \ (NW ∪W )]) in (b), where
H = G |W .

Corollary 5.3.2.1. If a clique W ⊆ V , |W | ≥ 2, is projectable in G, then α(G[V \
(NW ∪W )]) = α(H[V \(NW ∪W )]) or α(G[V \(NW ∪W )]) = α(H[V \(NW ∪W )])+1,
where H = G |W .

Proof. The upper bound α(H[V \ (NW ∪ W )]) ≤ α(G[V \ (NW ∪ W )]) is a direct
consequence of E ⊆ E |W . For the lower bound, we use α(G[V \ (NW ∪W )]) ≤ α(G)
and Lemma 5.3.2 (since W is projectable) to write α(G[V \ (NW ∪W )]) ≤ α(H[V \
(NW ∪W )]) + 1.
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5.4 Clique-Lifting

In this section we lay the basic facts for the cut-generating procedure for the MSS
polytope. In particular, we are interested in applying the lifting procedure presented
by Xavier and Campêlo in [100], which is our main tool. We present this procedure
and show how it can be applied in the particular MSS setting for the well-known clique
inequalities.

We start with some preliminary definitions. Given a valid inequality∑
v∈W

πvxv ≤ β (5.2)

for STAB(G) with W ⊆ V , β ∈ R, and πv 6= 0 for all v ∈ W , we say that W is the
support of (5.2) and we denote by FW (β, πv∈W ) = {x ∈ STAB(G) |∑v∈W πvxv = β}
the face induced by W , β, and π, in STAB(G).

Lemma 5.4.1 (Lifting lemma [100]). Let U ⊆ V , β ∈ R and πv ∈ R, for all v ∈ U ,
such that

∑
v∈U πvxv ≤ β is a valid inequality for STAB(G). If c>x−d ≤ 0, c, x ∈ Rn

and d ∈ R, is a valid inequality for FU (β, πv∈U ), then

Lx,λ(U) = (c>x− d)− λ
(∑
v∈U

πvxv − β
)
≤ 0, (5.3)

with

λ ≤ min

{
c>x− d∑

v∈U πvxv − β
| x ∈ S,

∑
v∈U

πvxv < β

}
, (5.4)

is a valid inequality for STAB(G).

A value λ that satisfies (5.4) is said to be valid for a lifting of c>x− d ≤ 0 with respect
to U . Since λ appears with a negative sign in (5.3), it turns out that if λ1 and λ2 are
valid and λ1 < λ2, then

{x 6∈ STAB(G) | Lx,λ1(U) ≤ 0} ⊂ {x 6∈ STAB(G) | Lx,λ2(U) ≤ 0} .

Consequently, the greater the coefficient λ is, the stronger the inequality (5.3) becomes.
Sufficient conditions for (5.3) to be facet-defining for STAB(G) are stated next.

Theorem 5.4.2 ([100]). If FU (β, πv∈U ) is a facet of STAB(G), c>x ≤ d is facet-
defining for FU (β, πv∈U ) and λ satisfies (5.4) at equality, then (5.3) is facet-defining
for STAB(G).

Define 1v∈W as the binary size-n vector y such that y[v] = 1 if and only if v ∈ W . A
special case of Lemma 5.4.1 occurs when U is a clique in G such that U = W ∪ NW .
In such a case, if c>x − d ≤ 0 is a valid inequality for FW∪NW

(1,1v∈W∪NW
), then

the application of the lifting operation (5.3), for any valid λ, is called clique-lifting of
c>x− d ≤ 0 with respect to W . The following lemma establishes a sufficient condition
for a clique-lifting operation to result in a valid inequality for STAB(G).
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Lemma 5.4.3. Let W ⊆ V , |W | ≥ 2, be a clique in G and c>x− d ≤ 0, c, x ∈ Rn and
d ∈ R, be a valid inequality for STAB(G | W ). If W contains a vertex w such that
N(w) \W is a clique in G, then c>x− d ≤ 0 is also valid for FW∪NW

(1,1v∈W∪NW
).

Proof. If E | W = ∅, then there is nothing to prove since STAB(G | W ) = STAB(G)
and FW∪NW

(1,1v∈W∪NW
) ⊆ STAB(G |W ) in this case. Otherwise, let

x ∈ FW∪NW
(1,1v∈W∪NW

)∩S (x is an integer point in FW∪NW
(1,1v∈W∪NW

)) and uv be
a false edge in G |W . By definition of x, there exists z ∈W ∪NW such that xz = 1. We
consider two cases to show that {uz, vz}∩E 6= ∅. First, if z ∈W , then the claim holds
because W ⊆ N(u) ∪N(v) by definition of clique-projection. Second, z ∈ NW and, by
hypothesis, let w ∈W be such that N(w)\W is a clique in G. Since {u, v}∩N(w) 6= ∅
(again because W ⊆ N(u) ∪ N(v)), the claim follows. We conclude that xu = 0 or
xv = 0 and, consequently, x corresponds to a stable set of G | W , which means that
c>x − d ≤ 0 holds. The lemma stems from the fact that FW∪NW

(1,1v∈W∪NW
) is a

convex hull of the points in FW∪NW
(1,1v∈W∪NW

) ∩ S.

A clique-lifting operation involves the problem of finding an upper bound for the max-
imum weight of a stable set in a subgraph of G. The following lemma establishes one
such upper bound based on Lemma 5.2.1.

Lemma 5.4.4. Let W ⊆ V , |W | ≥ 2, be a clique in G and c>x − d ≤ 0, c, x ∈ Rn
and d ∈ R, be a valid inequality for STAB(G | W ) with support H. Moreover, let
cmin = min{cv | v ∈ H \ (W ∪ NW ), cv > 0}. If W contains a vertex w such that
N(w) \W is a clique in G, then

λ = d− cminα(G[H \ (W ∪NW )])−
max

x∈S(G[H\(W∪NW )])

∑
v∈H\(W∪NW )

max{0, cv − cmin}xv (5.5)

is valid for the clique-lifting of c>x− d ≤ 0 with respect to W .

Proof. Lemma 5.4.1, combined with Lemma 5.4.3, establishes that λ is valid for the
clique-lifting of c>x− d ≤ 0 with respect to W if

λ ≤ min

{
c>x−d∑

v∈W∪NW
xv−1 | x ∈ S,

∑
v∈W∪NW

xv = 0

}
= min

{
−c>x+ d | x ∈ S(G[H \ (W ∪NW )])

}
,

where H is the support of c>x− d ≤ 0, which means that

λ ≤ d−max
{
c>x | x ∈ S(G[H \ (W ∪NW )])

}
. (5.6)

Lemma 5.2.1 implies that the last two terms of the righthand side of (5.5) provide an
upper bound for the maximum weight of a stable set of G[H \ (W ∪NW )]. Thus, the
result holds due to (5.6).
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The following result is a particular case of Lemma 5.4.4 and the basis of the separation
procedure proposed in [88].

Corollary 5.4.4.1. If W ⊆ V is projectable in G[H ∪W ∪ NW ] and c>x − d ≤ 0 is
the rank inequality for the subgraph of G |W induced by H ∪W ∪NW , then λ = −1 is
valid for the clique-lifting of c>x− d ≤ 0.

Proof. Using (5.5) with cv = 1, for all v ∈ H \ (W ∪NW ), and α(G[H \ (W ∪NW )]) ≤
α(G |W [H \ (W ∪NW )]) + 1.

A remark in connection with this result is that α(G[H]) = α(G | W [H]) implies that
λ = 0 is valid for the clique-lifting of c>x − d ≤ 0. Such a situation is depicted in
Figure 5.2.

1

2
3

4

56

7

(a) Graph G = G(0), α(G) =
3. It generates the valid in-
equality x1 + x2 + x3 + x4 +
x5 + x6 + x7 ≤ 3, which is
the summation of the rank
inequality x3+x4+x5+x6+
x7 ≤ 2 with the clique one
x1 + x2 ≤ 1.

6 5

3

47

(b) Graph G(1),
α(G(1)) = 2, after
projecting edge (1, 2)
containing one false
edge ((3, 5)). It gen-
erates the inequality
x3+x4+x5+x6+x7 ≤
2, which is valid for G.

3

7 4

(c) Graph G(2),
α(G(2)) = 1, after
projecting edge (5, 6)
containing one false
edge ((4, 7)). It gen-
erates the inequality
x3 + x4 + x7 ≤ 1,
which is not valid for
G(1).

Figure 5.2: Example of a sequence of edge projections such that the final lifted in-
equality is weaker than an intermediary one. Deleting false edges from G(1) does not
increase the maximum size of a stable set.

5.5 The cut-separating procedure

Successive applications of the clique projection operation and the corresponding clique-
lifting operations according to Lemma 5.4.3, lead to stronger inequalities than those
that can be obtained with the edge projection method proposed in [88]. In fact, the edge
projection corresponds to a special case of Lemma 5.4.3 in which inequality c>x−d ≤ 0
is a rank inequality of a projected graph’s clique with empty intersection with W . As
an illustration, consider the structure in Figure 5.3(a) and W = {d, e, f}. The de
projection in this graph, followed by the antiprojection of the clique {a, b, c} of G | de,
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gives the rank inequality xa+xb+xc+xd+xe+xf ≤ 2. The same inequality is obtained
with Lemma 5.4.3 if we take as c>x−d ≤ 0 the clique inequality of G+de for {a, b, c}.
Nevertheless, even in this simple example, there is an inequality that cannot be derived
with the method in [88]. If we take {a, b, c, f} as the clique inducing set of vertices
associated with c>x−d ≤ 0 in Lemma 5.4.3, then we get xa+xb+xc+xd+xe+2xf ≤ 2
as a valid (indeed, facet-defining [21]) inequality for STAB(G).

a

c d

f

b e

(a) Not rank inequal-
ity.

a

c d

f

b e

(b) Rank inequality.

Figure 5.3: Structures leading to stronger inequalities than edge projection.

The structure in Figure 5.3(b) (assuming that it induces a rank inequality of G [8, 21])
also illustrates the fact that

∑
v∈W xv ≤ 1 being facet-defining for STAB(G) is not

necessary to derive another facet of STAB(G). To show this, we choose W = {d, e}
and still take the clique inequality of G + de associated with {a, b, c, f}. With such a
configuration, Lemma 5.4.3 gives the rank inequality xa + xb + xc + xd + xe + xf ≤ 2
as well. Observe that this inequality is not derived by the method in [88] if edge ae is
deleted before projecting de (xb + xc + xd + xe + xf ≤ 2 would be generated instead).

We are now in position of presenting the cut-generating procedure that is the main
contribution of this work. Algorithm 2 summarizes the proposed procedure: we gener-
ate and project a sequence of cliques until we find a violated clique inequality. At this
point, we antiproject the cliques in reverse order and apply the Lemma 5.4.1 in order
to get a valid inequality for the original graph.

Let 〈W (0), . . . ,W (k)〉 be the sequence of k ≥ 0 cliques W (i) ⊆ V , |W (i)| ≥ 2, generated
by the algorithm. Also, let G(0) = G, . . . , G(k) be the sequence of projected graphs
within the algorithm. For i ∈ {0, . . . , k}, there exists w(i) ∈ W (i) and R(i) a minimal
subset of NG(i)(w(i)) such that NG(i)(w(i)) \ (W (i) ∪ R(i)) is a clique in G(i). Put
differently, R(i) is a minimal subset of vertices such that the removal of all edges wiv,
v ∈ R(i), results in a graph G̃(i) in which NG̃(i)(w(i))\W (i) is a clique. Observe that this
is the sufficient condition stated in Lemma 5.4.4. In addition, W (i) has the following
property in G(i).

Lemma 5.5.1. Let W ⊆ V , |W | ≥ 2, be a clique in G. If there exists w ∈ W such
that N(w) \W is a clique, then W is projectable in every subgraph of G induced by
H ⊆ V such that W ⊆ H.

Proof. Let H ⊆ V such that W ⊆ H. If S is a maximum stable set of G[H] and
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Algorithm 2 Cut-generating procedure

1: Find a starting clique W (0) of G;
2: k := 0;
3: while x(W (k)) ≤ 1 do
4: Remove edges such that N(w)\W (k) is a clique, for some w ∈W (k);
5: Project the clique W (k), getting the graph G(k+1);
6: Find a clique W (k+1);
7: k := k + 1;
8: end while
9: Let π(k) be the characteristic vector of W (k) (so the inequality π(k)x ≤ γ(k) := 1 is

violated);
10: for i← k, . . . , 1 do
11: Apply Lemma 5.4.4 to π(k)x ≤ γ(k) and W (k) in graph G(k−1), obtaining a new

inequality π(k−1)x ≤ γ(k−1) valid for G(k−1);
12: end for
13: return π(0)x ≤ γ(0), if violated;

S∩W = ∅, then |S∩N(w)| = 1 since N(w)\W is a clique. Thus, S′ = (S\N(w))∪{w}
is a maximum stable set of G[H] such that W ∩ S′ 6= ∅.

Let us assume that x̄ 6∈ STAB(G(k)) be such that 1>
v∈W (i) x̄ ≤ 1, for all i ∈ {0, . . . , k−1},

and 1>
v∈W (k) x̄ > 1. Applying Lemma 5.4.3 with λ(k) obtained with Lemma 5.4.4, we

obtain the inequality

1>
v∈W (k−1)x− 1− λ(k)(1>

v∈W (k)x− 1) ≤ 0,

valid for STAB(G(k−1)). If the subgraph ofG(k−1) induced byW (k)\(W (k−1)∪NW (k−1))
does not increase its stability number with respect to G(k) (this happens if, for instance,
G(k) has no false edges), then λ(k) = 0 and 1>

v∈W (k)x ≤ 1 is valid for STAB(G(k−1)).

Otherwise, by the definition of clique-projection, α(G(k−1)[W (k)\(W (k−1)∪NW (k−1))]) =
2 and λ(k) = −1. Thus, the new inequality becomes

1>
v∈W (k−1)⊕W (k)x+ 2>

v∈W (k−1)∩W (k)x ≤ 2,

which is a rank inequality only if W (k−1) ∩W (k) = ∅. Since 1>
v∈W (k) x̄− 1 ≤ 0, this new

inequality may be violated by x̄.

Let us take Figure 5.2 as an example of a sequence of k = 2 clique-projections with
the point x̄ = 1/2v∈{1,...,7}. The corresponding sequence of cliques is W (0) = {1, 2}
(w(0) = 2), W (1) = {5, 6} (w(1) = 5), and W (2) = {3, 4, 7} (w(2) = 3). Inequality
x3 + x4 + x7 ≤ 1 is violated by x̄ since x̄3 + x̄4 + x̄7 = 1.5. Removing edge (4, 7) from
G(2) creates a stable set of size 2, and (5.5) gives λ(2) = −1, as expected. Thus, (5.3)
results in

x3 + x4 + x5 + x6 + x7 ≤ 2, (5.7)

which is valid for STAB(G(1)) and violated by x̄. The clique-lifting of (5.7) with
Lemma 5.4.4 gives λ(1) = 0.
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Instances Root subproblem
G = (V,E) |V | Dens. α(G) LB UB UB[88] UB[87] Time
brock200 2 200 0.50 12 10 21.67 22.01 20.99 48.54
brock200 4 200 0.34 17 15 30.69 30.87 29.93 59.56
c fat500-1 500 0.96 14 14 14.00 14.90 14.00 222.29
c fat500-2 500 0.93 26 26 29.32 57.78 26.97 ∗ ∗ ∗
C125.9 125 0.10 34 34 40.90 37.40 41.26 16.36
C250.9 250 0.10 44 43 69.56 58.30 69.76 245.10
keller4 171 0.35 11 11 14.81 14.95 14.83 14.57

san200 0.7 2 200 0.30 18 18 18.00 19.18 18.50 155.74
p hat300-2 300 0.51 25 25 34.07 34.19 33.81 145.00
p hat300-3 300 0.26 36 36 54.82 53.19 54.12 ∗ ∗ ∗
G(100, 0.10) 100 0.10 31.2 30.6 34.50 - - 4.43
G(100, 0.20) 100 0.10 20.2 19.6 25.70 - - 3.75

Table 5.1: Results with graphs selected from the DIMACS benchmark.

Instances Number of cuts
G = (V,E) Clique Rank Weighted
brock200 2 932 30 26
brock200 4 364 36 8
c fat500-1 1426 156 9
c fat500-2 1117 439 13
C125.9 27 194 1
C250.9 92 187 14
keller4 296 101 87

san200 0.7 2 1251 648 136
p hat300-2 1952 509 71
p hat300-3 656 149 29
G(100, 0.10) 1.6 131.8 2.8
G(100, 0.20) 42.4 98.8 20.8

Table 5.2: Results with graphs selected from the DIMACS benchmark (cont.).

In the general case, a nonempty intersection of W (i−1) and W (i) leads to an inequality
with coefficients greater than 1. This is the case in the example of Figure 5.3.

5.6 Preliminary computational experiments

In this section we provide preliminary computational experiments in order to explore
whether the proposed method is useful as a cut-generating tool or not. Our main
goal is not to provide a competitive algorithm for MSS, since combinatorial algorithms
are much more effective than cutting-plane algorithms for this problem. Anyway, we
intend to assess whether the proposed procedure is effective at generating generalized
rank cuts for the MSS polytope, and the nature of the obtained cuts.

To this end, we implemented the cut-generating procedure as a separation procedure
attached to Cplex 12.6’s branch and cut algorithm to compute a strengthened upper
bound for the root subproblem. Whenever a fractional solution is found, we execute the
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cut-generating procedure several times, each execution starting from a different clique.
In order to ensure that the initial cliques are not repeated, we employ a backtracking-
based enumeration that in principle enumerates all cliques in the graph. We employ
for this purpose Östergaard’s algorithm in [86]. We do not generate all cliques; instead,
we stop when a prespecified number of initial cliques is found.

For each initial clique, we generate a sequence of cliques with a greedy algorithm that
tries not to repeat too many vertices already belonging to a clique in the sequence.
We project each clique in the sequence, until a simple greedy heuristic finds a violated
clique inequality. When this happens, we apply the clique-lifting procedure and check
if the generated inequality (which is guaranteed to be valid) is violated.

The initial model contains only the constraint xi + xj ≤ 1 for every edge ij ∈ E.
We implement a simple greedy heuristic for calculating a lower bound at the root
node in the enumeration tree. We also implement the heuristic in Lemma 5.2.1 for
calculating a dual bound for λ within the cut-generating procedure. We first search for
rank inequalities (by projecting at each step a clique disjoint to the preceding cliques),
which include clique inequalities. If such inequalities are not found, then we allow
for projecting cliques with nonempty intersection with the preceding cliques, hence
generalized rank inequalities can be obtained in this case. The size s ∈ Z+ of the
analyzed cliques is a parameter of our implementation, and we try with 2 ≤ s ≤ 7 in
the experiments. In addition to the separation procedure, we also implemented the
rounding heuristic proposed in [87] and employed it to compute lower bounds.

Table 5.1 summarizes the preliminary experiments with some instances from the DI-
MACS benchmark and for random graphs with 100 vertices (last two rows). The
notation G(n, d) specifies random graphs with n vertices and a density of d ∈ [0, 1],
and for these instances we report the average results over five randomly-generated in-
stances. The experiments were performed on a 32-bit personal computer, with a time
limit of five minutes. The preprocessing, cut generation, and variable fixing procedures
from Cplex are turned off.

Following the approach used in [88], for each graph we choose the best parameters and
report the obtained results. The first four columns contain the instance name, the
number of vertices, the graph density, and its stability number. The following three
columns contain data for the root note in the enumeration tree: the column “LB”
contains the lower bound found by the rounding heuristic, the column “UB” contains
the upper bound after the last successful execution of the cut-generating procedure,
and the column “Time” reports the total time spent at the root node, in seconds. The
cells marked with ∗∗∗ specify that the computation has been aborted at the time limit.
The columns UB[88] and UB[87] contain the best upper bound attained in [88] and
[87], respectively.

Table 5.2 contains the number of generated clique cuts, violated rank inequalities, and
violated generalized rank inequalities, respectively. As this Table shows, the procedure
is able to generate a large number of cuts, and provides upper bounds that are com-
petitive with those generated in [87] and [88] for a representative sample of benchmark
graphs. Similarly to existing procedures, out cut-generating algorithm finds a large
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number of violated clique inequalities, and is also able to find many violated rank in-
equalities. The number of generalized rank inequalities generated by the procedure is
smaller, but nevertheless provides an interesting set of additional and non-trivial valid
inequalities.
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5.7 Resumen del caṕıtulo

Dado un grafo G, en el problema del conjunto independiente máximo (CIM) buscamos
un conjunto independiente S en G de cardinalidad máxima. CIM es NP-hard, y fue
analizado en la literatura utilizando diversas técnicas. Fueron diseñados varios métodos
exactos para resolverlo, ver [14] para un compendio de los mismos.

A pesar de que los métodos combinatorios para el CIM (como los de [91, 94]) son más
eficientes que los algoritmos branch and cut, es de gran interés continuar la búsqueda de
métodos poliedrales eficientes para este problema. Esto se debe a que (a) CIM aparece
frecuentemente como subestructura en varios problemas de optimización combinatoria,
(b) en varias situaciones CIM es resuelto como subrutina para generar desigualdades
válidas para modelos de programación entera (ver por ejemplo, [3]), y (c) aplicaciones
reales pueden necesitar versiones espećıficas de CIM con restricciones adicionales y en
este contexto la programación entera a menudo resulta efectiva.

Mannino y Sassano [82] introdujeron en 1996 la idea de proyecciones de aristas como
una especialización de la operación de proyección de cliques de Lovász y Plummer [79].
Varias propiedades de proyección de aristas fueron estudiadas en [82] y, basado en
estas propiedades, fue desarrollado un método para computar una cota superior para
CIM. Esta cota es utilizada luego en un esquema de branch and bound. Rossi y
Smriglio incorporan estas ideas en un entorno de programación lineal en [88], donde
propusieron un procedimiento de separación basado en proyecciones de aristas. Este
procedimiento elimina y proyecta en forma iterativa aristas con ciertas propiedades, y
encuentra en forma heuŕıstica desigualdades de rango violadas (i.e., desigualdades de
la forma

∑
v∈A xv ≤ α(G[A]), donde A ⊆ V and G[A] es el subgrafo de G inducido

por A). Pardalos et al. [87] extendieron la teoŕıa de proyección de aristas estudiando
las propiedades de facetitud obtenidas con este procedimiento. Los autores dan un
algoritmo branch and cut que utiliza proyecciones de aristas como una herramienta de
separación, aśı como varias familias de desigualdades conocidas, como las desigualdades
de ciclo impar (con un algoritmo polinomial exacto de separación), las desigualdades
clique (con heuŕısticas) y cortes mod-{2, 3, 5, 7}.

Las proyecciones de aristas son un caso especial de las proyecciones de cliques de Lovász
y Plummer [79]. Rossi y Smriglio proponen en [88] emplear una secuencia de proyec-
ciones de aristas para reducir el grafo original G y hacerlo más denso al mismo tiempo,
permitiendo de esta manera una identificación más rápida de desigualdades clique en
el grafo reducido G′. Un paso clave para lograr esto es establecer de qué manera α(G)
es afectada por estas proyecciones, o, en otras palabras, exactamente cómo α(G) se
relaciona con α(G′). Nuestro objetivo es generalizar el procedimiento de Rossi y Sm-
riglio proyectando cliques en lugar de aristas, y para ello necesitamos mostrar cómo
se modifica α(G) luego de esta operación. Nuestro método permite además establecer
una relación más general entre G y G′.

En este caṕıtulo proponemos el uso de proyecciones de cliques como método general
para la generación de planos de corte para el CIM, aśı como un nuevo procedimiento
de lifting de cliques que conduce a desigualdades más generales que las obtenidas con
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el método de proyección de aristas. El método propuesto es capaz de generar tanto de-
sigualdades de rango como desigualdades de rango generalizadas, recurriendo al proce-
dimiento general de lifting introducido en [100]. Este enfoque se aparta del paradigma
usual basado en templates para generar cortes, y procura unificar y generalizar el pro-
cedimiento de separación para los cortes conocidos. En este sentido, nuestro principal
objetivo es aportar una mejor comprensión del poĺıtopo del CIM, que puede contribuir
también a la solución de otros problemas en optimización combinatoria.

Sea n = |V | y S(G) ⊆ {0, 1}n el conjunto todos los vectores caracteŕısticos de conjuntos
independientes de G. Escribiremos simplemente S cuando G se sobreentienda por
contexto. Para W ⊆ V , S(G[W ]) denota los vectores caracteŕısticos de conjuntos
independientes de G que solamente involucren vértices de W . El poĺıtopo de conjuntos
independientes de G es denotado por

STAB(G) = conv{x | x ∈ S(G)}.

Definición (Proyección de cliques [79]): Sea W ⊆ V , |W | ≥ 2, una clique en G.
La proyección de cliques de W da como resultado el grafo G | W = (V,E | W ), donde
E |W = E ∪ {xy 6∈ E |W ⊆ N(x) ∪N(y)}.

Lema (Lema de lifting [100]): Sea U ⊆ V , β ∈ R y πv ∈ R, para todo v ∈ U ,
tal que

∑
v∈U πvxv ≤ β es una desigualdad válida para STAB(G). Si c>x − d ≤ 0,

c, x ∈ Rn y d ∈ R, es una desigualdad válida para FU (β, πv∈U ), entonces

Lx,λ(U) = (c>x− d)− λ
(∑
v∈U

πvxv − β
)
≤ 0, (5.8)

con

λ ≤ min

{
c>x− d∑

v∈U πvxv − β
| x ∈ S,

∑
v∈U

πvxv < β

}
, (5.9)

es una desigualdad válida para STAB(G).

Se define 1v∈W como el vector binario y de tamaño n tal que y[v] = 1 si y sólo
si v ∈ W . Un caso especial del Lema anterior ocurre cuando U es una clique en
G tal que U = W ∪ NW . En ese caso, si c>x − d ≤ 0 es una desigualdad válida
para FW∪NW

(1,1v∈W∪NW
), entonces la aplicación de la operación de lifting (5.8) para

cualquier λ válido es denominada lifting de clique de c>x − d ≤ 0 con respecto a W .
El siguiente Lema establece una condición suficiente para que una operación de clique
lifting resulte en una desigualdad válida para STAB(G).

Lema: Sea W ⊆ V , |W | ≥ 2 una clique en G y c>x − d ≤ 0, c, x ∈ Rn y d ∈ R una
desigualdad válida para STAB(G | W ) con soporte H. Sea además cmin = min{cv |
v ∈ H \ (W ∪NW ), cv > 0}. Si W contiene un vértice w tal que N(w)\W es una clique
en G, entonces

λ = d− cminα(G[H \ (W ∪NW )])−
max

x∈S(G[H\(W∪NW )])

∑
v∈H\(W∪NW )

max{0, cv − cmin}xv (5.10)
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es válida para el lifting de clique de c>x− d ≤ 0 con respecto a W .

Presentamos finalmente el algoritmo de generación de planos de corte, el principal
resultado de este caṕıtulo.

Algorithm 3 Procedimiento de generación de planos de corte

1: Encontrar un clique inicial W (0) de G;
2: k := 0;
3: while x(W (k)) ≤ 1 do
4: Eliminar aristas tales que N(w)\W (k) es una clique, para algún w ∈W (k);
5: Proyectar la clique W (k), obteniendo el grafo G(k+1);
6: Encontrar una clique W (k+1);
7: k := k + 1;
8: end while
9: Sea π(k) el vector caracteŕıstico de W (k) (tal que la desigualdad π(k)x ≤ γ(k) := 1

sea violada);
10: for i← k, . . . , 1 do
11: Aplicar el Lema anterior a π(k)x ≤ γ(k) y W (k) en el grafo G(k−1), obteniendo

una nueva desigualdad π(k−1)x ≤ γ(k−1) válida para G(k−1);
12: end for
13: return π(0)x ≤ γ(0), si es violada;



CHAPTER 6

Conclusions

We presented in Chapter 2 a simple linear time algorithm to compute the (k, i)-
chromatic number and an optimum (k, i)-coloring of cycles and cacti. We have also
adapted the algorithm in order to obtain an optimum k : i-coloring of cycles and cacti.
As a future line of work, we will explore the possible extension of these ideas to graph
subdivisions and graphs with large girth. We also studied in this chapter Vizing’s the-
orem χ(G2H) = max{χ(G), χ(H)} applied to (k, i)-colorings for some special graph
products. It would be interesting to know if this result does hold in general for two
arbitrary graphs G and H.

In Chapter 3, we analyzed the b-coloring problem on P4-tidy graphs. We showed
that these graphs are b-continuous and b-monotonic. We also described a polynomial
time algorithm to compute their b-chromatic number. The algorithm runs in O(n3)
time; further research on this might lead to improvements on the running time. Also,
there are already interesting generalizations of P4-tidy graphs defined in the literature,
such as graphs with a limited number of partners [89]. A next step for the work in
this chapter could be to analyze the generalization of the coloring algorithm and the
parameters of b-continuity and b-monotonicity for this graph class.

Chapter 4 was focused on the b-edge coloring problem for the direct product of graphs.
We gave bounds for the b-chromatic index of the direct product of a graph G and a
regular graph H admitting a partition of its edges into perfect matchings. Next, we
presented exact results of χ′b for the direct product of some connected regular graphs.
Finally, we developed a simple integer linear programming model for the problem.
With this method and all previous results we were able to produce exact values of χ′b
for the direct product of paths and for the direct product of cycles. We see potential
for improvement for the integer linear programming model given, in the following two

83
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directions: first, the feasibility of a cutting-plane procedure could be analyzed for
increasing performance of the model. Second, alternative models could be explored,
following the example of the several integer programming formulations for classic graph
coloring existing in the literature.

We presented in Chapter 5 a general cut-generating procedure for the standard formu-
lation of the maximum stable set polytope, which is able to generate both violated rank
and generalized rank inequalities. The main objective of this algorithm is to generalize
existing procedures based on edge projection, and employs a lifting procedure in order
to construct general valid inequalities from an initial clique inequality by undoing the
operation of clique projection in the original graph. The computational experiments
presented are of a preliminary nature, and show that the proposed procedure is effective
at generating general cuts, and may be competitive in a general setting. As a future
work, we intend to perform extensive computational experiments with the proposed
cut generating procedure in a full branch and cut algorithm. Additionally, this work
could be connected to the graph coloring problem by using the cutting plane procedure
proposed on the standard formulation for classic coloring, instead of the maximum sta-
ble set problem. All the inequalities generated by the procedure would be valid for the
coloring problem, since each color class constitutes a stable set. It would be interesting
to see if this approach is competitive.
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6.1 Resumen del caṕıtulo

Presentamos en el Caṕıtulo 2 un algoritmo sencillo para computar el número (k, i)-
cromático y un (k, i)-coloreo óptimo de ciclos y cactus. Adaptamos también el algoritmo
para obtener un k : i-coloreo óptimo de ciclos y cactus. Como una posible ĺınea de
trabajo futuro, exploraremos la posible extensión de estas ideas a subdivisiones de
grafos y grafos de cintura ancha. Estudiamos además en este caṕıtulo el teorema de
Vizing χ(G2H) = max{χ(G), χ(H)} aplicado a (k, i)-coloreos para algunos productos
de grafos. Seŕıa interesante saber si este resultado vale en general para dos grafos
arbitrarios G y H.

En el Caṕıtulo 3, analizamos el problema de b-coloreo en grafos P4-tidy. Mostramos
que estos grafos son b-continuos y b-monótonos. Describimos también un algoritmo
polinomial para computar el número b-cromático. El algoritmo tiene un orden de com-
plejidad de O(n3); una continuación del estudio del mismo podŕıa conducir a mejoras en
el tiempo de ejecución. Además, existen actualmente en la literatura generalizaciones
interesantes de los grafos P4-tidy, como los grafos con un número limitado de partners
[89]. Un paso siguiente para el trabajo en este caṕıtulo podŕıa ser intentar generalizar
el algoritmo de coloreo y estudiar los parámetros de b-continuidad y b-monotońıa para
esta clase de grafos.

El Caṕıtulo 4 se focalizó en el problema de b-coloreo de aristas para el producto di-
recto de grafos. Dimos cotas para el ı́ndice b-cromático del producto directo de un
grafo G y un grafo regular H que admite una partición de sus aristas en matchings
perfectos. Luego, presentamos resultados exactos para χ′b para el producto directo de
algunos grafos regulares conexos. Finalmente, desarrollamos un sencillo modelo de pro-
gramación lineal entera para el problema. Con este modelo y los resultados anteriores
nos fue posible calcular en forma exacta χ′b para el producto directo de caminos y el
producto directo de ciclos. Vemos potencial de mejora en el modelo, en los siguientes
sentidos: primero, el análisis de un procedimiento de planos de corte para mejorar la
eficiencia del modelo. Segundo, podŕıan ser explorados modelos alternativos, siguiendo
el ejemplo de las diversas formulaciones en programación lineal entera que existen en
la literatura para el problema del coloreo clásico de grafos.

Presentamos en el Caṕıtulo 5 un procedimiento general de generación de planos de
corte para el poĺıtopo del problema de conjunto independiente máximo, que es capaz
de generar desigualdades violadas, de rango y de rango generalizadas. El objetivo prin-
cipal de este algoritmo es generalizar los métodos existentes basados en proyección de
aristas. El algoritmo emplea un procedimiento de lifting para construir desigualdades
válidas generales a partir de una desigualdad clique inicial, deshaciendo la operación
de proyección de cliques del grafo original. Los experimentos computacionales pre-
sentados son de naturaleza preliminar, y muestran que el procedimiento propuesto es
efectivo generando cortes, y puede ser competitivo. En un trabajo futuro, realizaremos
experimentos computacionales extensivos, integrando el procedimiento de corte en un
esquema branch and cut completo. Adicionalmente, este trabajo puede relacionarse con
el problema de coloreo de grafos utilizando el procedimiento de cortes propuesto para
la formulación estándar de programación lineal entera para el coloreo clásico, en lugar
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del modelo para el problema del conjunto independiente máximo. Todas las desigual-
dades generadas por el procedimiento continuaŕıan siendo válidas para el problema de
coloreo, ya que cada clase color constituye un conjunto independiente. Seŕıa de interés
saber si este enfoque puede resultar competitivo.
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1432, Unité Mixte de Recherche 8623, CNRS-Université Paris Sud LRI, 2006.
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for the b-chromatic number , Manuscript 2013.

[38] V. Giakoumakis, F. Roussel, and H. Thuillier, On P4-tidy graphs, Discrete Math-
ematics & Theoretical Computer Science 1 (1997), 17–41.

[39] C. D. Godsil and G. Royle, Algebraic graph theory , Graduate Texts in Mathe-
matics, Springer, 2001.

[40] R. L. Graham and N. J. A. Sloane, Lower bounds for constant weight codes,
IEEE Transactions on Information Theory 26 (1980), 37–43.

[41] R. Hammack, A quasi cancellation property for the direct product, Discrete Math-
ematics 310 (2010), 1691–1696.

[42] R. Hammack, W. Imrich, and S. Klavžar, Handbook of product graphs, CRC
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Cn, see cycle
E(·), 8, 12
G2H, see cartesian product
G×H, see direct product
Kn, see complete graph
L(·), see line graph
N(·), see neighborhood
P4-sparse graph, 37
P4-tidy graph, 37
Pn, see path
Sn, see stable set
V (·), 8
∆(·), see maximum degree
α(G), see stability number
χ′(·), see chromatic index
χ(·), see chromatic number
χ′
b(·), see b-chromatic index
χb(·), see b-chromatic number
χi
k(·), see (k, i)-chromatic number

χ
(i)
k (·), 16
δ(·), see minimum degree
G, see complement graph
dG(u, v), see distance
diam(G), see diameter

b-continuous, 36
b-monotonic, 36
b-perfect, 37
bipartite graph, 8
block, 9
branch and bound, 11
branch and cut, 10

cactus, 26
cartesian product, 26
chromatic index, 9

b-chromatic index, 53
chromatic number, 9

(k, i)-chromatic number, 16
b-chromatic number, 35

class 1 graphs, class 2 graphs, 57
clique, 8
clique projection, 70
cograph, 37
color class, 9
coloring

(k, i)-coloring, 16
k : i-coloring, 16
b-coloring, 35
b-edge coloring, 53
edge coloring, 9
tuple coloring, 16
vertex coloring, 9

complement graph, 8
complete graph, 8
connected

component, 9
graph, 9

constraint, 10
convex hull, 10
convex set, 10
cut-vertex, 9
cutting plane algorithm, 11

degree, 8
diameter, 9
direct product, 53
distance, 9
dominant vertex, edge, 9

edge, 8
edge projection, 71
empty graph, 8
end-block, 9
endpoint, 8

face, 10
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facet, 10
defining inequality, 10

false edges, 71
fiber, 26
forest, 9

generalized Kneser graph, 19
girth, 9
graph, 8

homomorphism, 19

independent set, see stable set
induced subgraph, 8

line graph, 8
linear programming problem, 10

integer, 10

matching, 8
maximum degree, 8
maximum stable set problem, 68
minimum degree, 8
multicycle, 20
multigraph, 8

uniform, 20

neighborhood, 8
closed, 8

objective function, 10
one-factor, see perfect matching

partner, 37
path, 9
perfect matching, 54
polyhedron, 10
polytope, 10
projection of an edge, 53

regular graph, 8

simplicial, 38
stability number, 8
stable set, 8
subgraph, 8

tree, 9
twin

false, 38
true, 38

valid inequality, 10
vertex, 8
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