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Sobre caracterizaciones estructurales de clases de
grafos relacionadas con los grafos perfectos

y la propiedad de Konig

Un grafo es balanceado si su matriz clique no contiene como submatriz ninguna ma-
triz de incidencia arista-vértice de un ciclo impar. Se conoce una caracterizacién para
estos grafos por subgrafos inducidos prohibidos, pero ninguna que sea por subgrafos
inducidos prohibidos minimales. En esta tesis probamos caracterizaciones por subgra-
fos inducidos prohibidos minimales para los grafos balanceados restringidas a ciertas
clases de grafos y mostramos que dentro de algunas de ellas conducen a algoritmos
lineales para reconocer el balanceo.

Un grafo es clique-perfecto si en cada subgrafo inducido el minimo ntimero de vérti-
ces que intersecan todas las cliques coincide con el mdximo ntimero de cliques disjun-
tas dos a dos. Contrariamente a los grafos perfectos, para estos grafos no se conoce una
caracterizacion por subgrafos inducidos prohibidos ni la complejidad del problema de
reconocimiento. En esta tesis caracterizamos los grafos clique-perfectos por subgrafos
inducidos prohibidos dentro de dos clases de grafos, lo que implica algoritmos de
reconocimiento polinomiales para la clique-perfeccién dentro de dichas clases.

Un grafo tiene la propiedad de Kénig si el minimo nimero de vértices que intersecan
todas las aristas iguala al maximo nimero de aristas que no comparten vértices. En
esta tesis caracterizamos estos grafos por subgrafos prohibidos, lo que nos permite
también caracterizar los grafos arista-perfectos por arista-subgrafos prohibidos.

Palabras clave. algoritmos de reconocimiento, grafos arco-circulares, grafos arista-perfectos,
grafos balanceados, grafos bipartitos, grafos clique-Helly hereditarios, grafos clique-perfectos,
propiedad de Kénig, grafos coordinados, grafos de linea, grafos K-perfectos hereditarios, grafos
perfectos, subgrafos prohibidos






On structural characterizations of graph classes
related to perfect graphs and the Konig property

A graph is balanced if its clique-matrix contains no edge-vertex incidence matrix of
an odd cycle as a submatrix. While a forbidden induced subgraph characterization of
balanced graphs was given, no such characterization by minimal forbidden induced
subgraphs is known. In this thesis, we prove minimal forbidden induced subgraph
characterizations of balanced graphs, restricted to graphs that belong to certain graph
classes. We also show that, within some of these classes, our characterizations lead to
linear-time recognition algorithms for balancedness.

A graph is clique-perfect if, in each induced subgraph, the minimum size of a set of
vertices meeting all the cliques equals the maximum number of vertex-disjoint cliques.
Unlike perfect graphs, neither a forbidden induced subgraph characterization nor
the complexity of the recognition problem are known for clique-perfect graphs. In
this thesis, we characterize clique-perfect graphs by means of forbidden induced sub-
graphs within two different graph classes, which imply polynomial-time recognition
algorithms for clique-perfectness within the same two graph classes.

A graph has the Kdnig property if the minimum number of vertices needed to meet
every edge equals the maximum size of a set of vertex-disjoint edges. In this thesis,
we characterize these graphs by forbidden subgraphs, which, in its turn, allows us to
characterize edge-perfect graphs by forbidden edge-subgraphs.

Keywords. balanced graphs, bipartite graphs, circular-arc graphs, clique-perfect graphs, co-
ordinated graphs, edge-perfect graphs, forbidden subgraphs, Kénig property, hereditary clique-
Helly graphs, hereditary K-perfect graphs, line graphs, perfect graphs, recognition algorithms
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Chapter 1

Introduction

In 1969, Berge defined a {0, 1}-matrix to be balanced [7] if it contains no edge-vertex
incidence matrix of any cycle of odd length as a submatrix. Balanced matrices have
remarkable properties studied in polyhedral combinatorics. Most notably, if A is a
balanced matrix, then A is perfect and ideal, meaning, respectively, that the fractional
set packing polytope P(A) = {x e R™ : Ax <1, 0 < x < 1} and the fractional set covering
polytope Q(A) = {x e R™ : Ax > 1, 0 < x < 1} are integral (i.e., all their extreme points
have integer coordinates) [58].

Perfect graphs were defined by Berge around 1960 [5] and are precisely those graphs
whose clique-matrix is perfect [36], where by a cligue we mean an inclusion-wise max-
imal set of pairwise adjacent vertices and by a clique-matrix we mean a clique-vertex
incidence matrix. Some years ago, the minimal forbidden induced subgraphs for per-
fect graphs were identified [34], settling affirmatively a conjecture posed more than
40 years before by Berge [5, 6]. This result is now known as the Strong Perfect Graph
Theorem and states that the minimal forbidden induced subgraphs for the class of per-
fect graphs are the chordless cycles of odd length having at least 5 vertices, called odd
holes, and their complements, the odd antiholes.

Balanced graphs were defined to be those graphs whose clique-matrix is balanced.
These graphs were already considered by Berge and Las Vergnas in 1970 [12] but the
name ‘balanced graphs’ appears explicitly in [11]. It follows from [12] that balanced
graphs form a subclass of the class of perfect graphs. Moreover, from [8] it follows
that balanced graphs belong to another interesting graph class, the class of hereditary
clique-Helly graphs [104]; i.e., the class of graphs whose induced subgraphs satisfy that
the intersection of any nonempty family of pairwise intersecting cliques is nonempty.
Prisner [104] characterized hereditary clique-Helly graphs as those graphs containing
no induced 0-, 1-, 2-, or 3-pyramid (see Figure 1.1). Hence, no balanced graph contains
an odd hole, an odd antihole, or any pyramid as an induced subgraph.
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Vo NN

O0-pyramid 1-pyramid 2-pyramid 3-pyramid

(or 3-sun)

Figure 1.1: The pyramids

A graph is bipartite if it has no cycle of odd length. The line graph L(G) of a graph G
has the edges of G as vertices and two different edges of G are adjacent in L(G) if and
only if they share an endpoint. Bipartite graphs, complements of bipartite graphs,
line graphs of bipartite graphs, and complements of line graphs of bipartite graphs
are well-known classes of perfect graphs. Their perfectness follows already from the
works of Kénig [76, 77]. Moreover, these four graph classes constitute four of the five
basic perfect graph classes in the decomposition of perfect graphs devised for the proof
of the Strong Perfect Graph Theorem [34]. The validity of the Strong Perfect Graph
Theorem within line graphs was first proved by Trotter [114]. Bipartite graphs and
line graphs of bipartite graphs are balanced [10], but their complements are not always
balanced. This is due to the fact that, contrary to perfect graphs, balanced graphs are
not closed under graph complementation. For example, the graphs in Figure 1.1 are
not balanced but have balanced complements.

The intersection graph of a finite family J is a graph whose vertices are the mem-
bers of 3 and in which two different members of J are adjacent if and only if they
have nonempty intersection. An interval graph [62] is the intersection graph of a finite
number of intervals on a line. The class of interval graphs is properly contained in the
class of strongly chordal graphs [54], which consists of all graphs whose clique-matrices
are totally balanced; i.e., whose clique-matrices contain no edge-vertex incidence matrix
of a cycle of length at least 3 as a submatrix [1]. As totally balanced matrices are bal-
anced by definition, strongly chordal graphs, and consequently also interval graphs,
are balanced. A circular-arc graph [79] is the intersection graph of a finite family of arcs
on a circle. Contrary to the case of interval graphs, not all circular-arc graphs are bal-
anced. Indeed, circular-arc graphs are neither perfect nor hereditary clique-Helly in
general as odd holes, odd antiholes, and pyramids are easily seen to be circular-arc
graphs. Perfectness of circular-arc graphs was addressed in [119], but the study of
balancedness of circular-arc graphs is still in order.

Balanced graphs were characterized by a family of forbidden induced subgraphs
known as extended odd sun [21]. Nevertheless, this characterization is not by minimal
forbidden induced subgraphs because there are some extended odd suns that contain
some other extended odd sun as a proper induced subgraph, as in the example given



Figure 1.2: On the left, an extended odd sun that is not minimal. Bold lines correspond to
the edges of a proper induced extended odd sun, depicted on the right.

in Figure 1.2.

In Chapter 3, we address the problem of characterizing balanced graphs by mini-
mal forbidden induced subgraphs, giving several partial solutions by restricting our-
selves to different graph classes. We prove structural characterization of balanced
graphs, including characterizations by minimal forbidden induced subgraphs, restrict-
ed to complements of bipartite graphs, line graphs of multigraphs, and complements
of line graphs of multigraphs. Asa consequence of our structural characterizations, we
show that the recognition problem of balanced graphs is linear-time solvable within
each of these graph classes. This is in contrast, for instance, with the fact that on?)
is the currently best time bound for algorithms deciding whether or not a given split
graph having n vertices is balanced. In addition, we prove minimal forbidden induced
subgraph characterizations of balanced graphs within three subclasses of circular-arc
graphs: a superclass of the class of Helly circular-arc graphs and the classes of claw-
free and gem-free circular-arc graphs.

Perfect graphs were originally defined by Berge in terms of a min-max type equal-
ity involving two important graph parameters: the cliqgue number and the chromatic
number. In many situations we are interested in knowing the minimum number of
different colors needed to color all the vertices of a certain graph G in such a way that
no two adjacent vertices receive the same color. This minimum number is called the
chromatic number of G and is denoted by x(G). The maximum size of a clique of a
graph G is called the clique number of G and is denoted by w(G). Clearly, w(G) is a
trivial lower bound for x(G); i.e., the min-max type inequality

w(G) < x(G) holds for every graph G.

Moreover, the difference between x(G) and w(G) can be arbitrarily large. Mycielski
presented in [102] a family of graphs G, such that w(Gn) = 2 and x(G,) = n for each
n > 2. In this context, Berge defined a graph G to be perfect if and only if the equality
w(G’) = x(G’) holds for each induced subgraph G’ of G.

An important property of perfect graphs is that the complement of a perfect graph
is also perfect. This fact was conjectured by Berge. The first proof was given by
Lovész [92] and there is an alternative proof due to Fulkerson based on the theory of
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antiblocking polyhedra [56]. The result is known as the Perfect Graph Theorem and im-
plies that a graph is perfect if and only if the clique number and the chromatic number
coincide in each induced subgraph of its complement. Let the stability number o(G)
of a graph G be the clique number of its complement G; i.e., a(G) is the maximum
number of pairwise nonadjacent vertices. Similarly, let the clique covering number 6(G)
be the chromatic number of G; i.e., (G) is the minimum number of cliques covering
all the vertices. So, the min-max type inequality

«(G) < 0(G) holds for every graph G

and, by the Perfect Graph Theorem, a graph G is perfect if and only if the equality
a(G’) = 0(G’) holds for each induced subgraph G’ of G.

There is an interesting connection between the equality «(G) = 6(G) and a prop-
erty of some families of sets known as the Kénig property. The transversal number of
a finite family J of nonempty sets with ground set X is the minimum number of el-
ements of X needed to meet every member of F and the matching number of J is the
maximum size of a collection of pairwise disjoint members of J. If these two numbers
coincide, the family J is said to have the Kdnig property (see [9, Chapter 2]). Given a
{0, 1}-matrix A with no null columns, we may interpret its columns as the character-
istic vectors of the members of some finite family F of nonempty sets. In this context,
we say that two columns are disjoint if they do not have a 1 in the same row. Similarly,
we say that a row meets a column if there is a 1 at the common entry of the row and
the column. So, the columns of A have the Kénig property if the maximum number of
disjoint columns equals the minimum number of rows meeting every column. If we
let G be a graph and A be a clique-matrix of G, then the maximum number of pair-
wise disjoint columns of A g is &(G) and the minimum number of rows meeting every
column of Ag is 6(G). Thus, the columns of A g have the Kénig property if and only
if x(G) = 0(G). Interestingly, Berge and Las Vergnas [12] proved that if a {0, 1}-matrix
is balanced and has no null columns then its columns have the Kénig property, from
which they deduced that x(G) = 6(G) holds for every balanced graph G. Moreover,
as the class of balanced graphs is hereditary, they concluded that balanced graphs are
perfect.

The Kénig property has its origins in the study of matchings and transversals in
bipartite graphs. The matching number v(G) of a graph G is the maximum size of a
set of vertex-disjoint edges and the transversal number ©(G) is the minimum number
of vertices necessary to meet every edge. Clearly, the min-max type inequality

v(G) < 1(G) holds for every graph G.

In 1931, Kénig [77] and Egervary [52] proved that every bipartite graph B satisfies
v(B) = t(B). This result is known as Kénig’s matching theorem. The theorem of Berge



and Las Vergnas in [12] was originally conceived as a generalization of Kénig’s match-
ing theorem in the following sense. As the transpose of a balanced matrix is also
balanced, the result of Berge and Las Vergnas is equivalent to the fact that if A is a
balanced {0, 1}-matrix with no null rows, then the rows of A have the Kénig property;
i.e., the maximum number of disjoint rows equals the minimum number of columns
meeting every row. Let G be a graph and let Ag be a clique-matrix of G. On the one
hand, the maximum number of pairwise disjoint rows of Ag is the cligue-independence
number o.(G), which is the maximum number of vertex-disjoint cliques of G. On the
other hand, the minimum number of columns meeting every row of Ag is the cligue-
transversal number t.(G), which is the minimum number of vertices meeting every
clique of G. Clearly, the min-max type inequality

o(G) < 1(G) holds for every graph G.

What follows from the theorem of Berge and Las Vergnas is that «.(G) = 1.(G) holds
for every balanced graph G; i.e., the cliques of a balanced graph have the Kénig prop-
erty. In particular, if G is bipartite, as x.(G) = v(G) + i(G) and 7.(G) = 1(G) + i(G)
where 1(G) denotes the number of isolated vertices of G, x.(G) = T.(G) reduces to
v(G) = 1(G), which is precisely the statement of Kénig’s matching theorem.

As the class of balanced graphs is hereditary, the equality «.(G) = T.(G) holds not
only for every balanced graph G but also for each of its induced subgraphs. Graphs
G such that «.(G’) = t.(G’) holds for each induced subgraph G’ of G were named
clique-perfect by Guruswami and Pandu Rangan [64] in 2000. It is important to men-
tion that clique-perfect graphs are not perfect in general and that perfect graphs are
not clique-perfect in general since, for instance, the antiholes that are clique-perfect are
those having number of vertices multiple of 3 (Reed, 2001, see [50]). Notice that if the
equality «.(G) = T.(G) holds for a graph G, the same equality may not hold for all its
induced subgraphs. For instance, every graph G in the class of dually chordal graphs [29]
satisfies the equality «.(G) = 7.(G), dually chordal graphs are not clique-perfect in
general; e.g., W5 is dually chordal but it is not clique-perfect because it contains an
induced Cs, for which «.(Cs) = 2 but 1.(C5) = 3. A set of vertex-disjoint cliques of a
graph is a clique-independent set and a set of vertices meeting all the cliques of a graph
is called a clique-transversal. So, x.(G) is the maximum size of a clique-independent
set of a graph G and 1.(G) is the minimum size of a clique-transversal of G. The dif-
ference between & (G) and t.(G) can be arbitrarily large. Durdn, Lin, and Szwarcfiter
presented in [50] a family of graphs G, such that &.(H,,) = 1 and t.(Hn) = n for
each n > 2, where the number of vertices of H,, grows exponentially on n. Later,
Lakshmanan S. and Vijayakumar [84] found another family of graphs H/ such that
ac(H}) = 2n + 1 and t(H}) = 3n + 1 for each n > 1, where HJ, has only 5n + 2

vertices.
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Apart from balanced graphs, some other well-known graph classes are known to
be clique-perfect: comparability graphs [2], complements of forests [15], and distance-
hereditary graphs [87]. Unlike perfect graphs, the class of clique-perfect graphs is
neither closed under graph complementation nor is a complete characterization of
clique-perfect graphs by forbidden induced subgraphs known. Nevertheless, partial
results in this direction were obtained; i.e., characterizations of clique-perfect graphs
by a restricted list of forbidden induced subgraphs within graphs that belong to cer-
tain graph classes [16, 17, 25]. For instance, in [16], a characterization of those line
graphs that are clique-perfect in terms of minimal forbidden induced subgraphs was
given and, in [17], clique-perfect graphs were characterized within Helly circular-arc
graphs also by minimal forbidden induced subgraphs. Another open question regard-
ing clique-perfect graphs is the time complexity of the recognition problem.

In Chapter 4, we give structural characterizations of clique-perfect graphs restricted
to two different graph classes. First, we characterize, by minimal forbidden induced
subgraphs, which complements of line graphs are clique-perfect and show that this
characterization leads to an O(n?)-time algorithm that decides whether or not a given
complement of line graph G having n vertices is clique-perfect and, if affirmative, com-
putes a minimum clique-transversal. Finally, we show that, within gem-free circular-
arc graphs, clique-perfect graphs coincide with perfect graphs and with two further
superclass of balanced graphs: coordinated graphs and hereditary K-perfect graphs.

Graphs G satisfying the thesis of Kénig’s matching theorem, v(G) = 1(G), but not
being necessarily bipartite, are called Kénig-Egerviry graphs or simply said to have the
Kénig property. In 1979, Deming [44] and Sterboul [111] independently gave the first
structural characterization of graphs having the Kénig property. Moreover, in [44],
also a polynomial-time recognition algorithm for graphs having the Kénig property
was devised. In 1983, Lovész [93] introduced the notion of nice subgraphs and charac-
terized graphs having the Kénig property by forbidden nice subgraphs within graphs
with a perfect matching. We will show that it is not possible to extend his result to a
characterization of all graphs having the Kénig property by forbidden nice subgraphs.
We introduce the notion of strongly splitting subgraphs, providing a suitable extension
of Lovész’s nice subgraphs, in the sense that all graphs having the Kénig property can
be characterized by forbidden strongly splitting subgraphs. Our result relies on a char-
acterization by Korach, Nguyen, and Peis [82] of graphs having the K&nig property by
means of what we call forbidden configurations (certain arrangements of a subgraph and
a maximum matching) which is itself an extension of Lovész’s characterization.

Imposing the Kénig property to each induced subgraph of a graph can be easily
seen to coincide with requiring the graph to be bipartite. Instead, Escalante, Leoni,
and Nasini defined a graph G to be edge-perfect [53] if each of its edge-subgraphs has



the Kénig property, where an edge-subgraph is any induced subgraph that arises by
removing a (possibly empty) set of edges together with their endpoints. Edge-perfect
graphs form a superclass of the class of bipartite graphs and a subclass of the class of
graphs having the Kénig property. The class of edge-perfect graphs cannot be charac-
terized by forbidden induced subgraphs because it is not closed under taking induced
subgraphs. Instead, our aim is to characterize them by forbidden edge-subgraphs.

In Chapter 5, we give a characterization of all graphs having the Kénig property by
forbidden strongly splitting subgraphs, which is a strengthened version of the charac-
terization due to Korach et al. by forbidden configurations. Using our characterization
of graphs having the Kénig property, we state and prove a simple characterization of
edge-perfect graphs by forbidden edge-subgraphs. Unfortunately, this result does not
lead to a polynomial-time recognition algorithm for edge-perfect graphs. In fact, al-
though the problem of recognizing edge-perfect graphs is known to be polynomial-
time solvable when restricted to certain graph classes [47], it is NP-hard for the general
class of graphs [48].






Chapter 2

Preliminaries

2.1 Basic definitions and notation

In this section, we give some general definitions; more specific definitions are intro-
duced as needed. Graphs in this thesis are finite, undirected, without loops, and with-
out multiple edges. We will also deal with multigraphs, introduced near the end of
this section.

Let G be a graph. The vertex set of G is denoted by V(G), the edge set by E(G),
and the complement of G by G. A edge-vertex incidence matrix of G is a {0, 1}-matrix
having one row for each edge and one column for each vertex such that only two 1’s
of each row are in two columns corresponding to the endpoints of the edge the row
represents. A subgraph of G is a graph H such that V(H) < V(G) and E(H) < E(G).
A subgraph H of G is spanning if V(H) = V(G). If H; and H, are two subgraphs of
G, we say that H; and H; fouch if they share exactly one vertex of G. Moreover, if
V(Hi1) n V(H2) = {v}, we say that H; and Hy touch at v. If W < V(G), the subgraph
of G induced by W is the subgraph G|W| whose vertex set is W and whose edge set
is {ww € E(G) : vyw e W}. If W # V(G), G[W] is a proper induced subgraph of G. By
G — W, we denote the subgraph of G induced by V(G)\W. If W = {v}, we denote
G — W simply by G — v. If G is a graph and e is any edge of G, G — e denotes the
graph that arises from G by making the endpoints of e nonadjacent. If v and w are
two nonadjacent vertices of G, then G + vw denotes the graph that arises from G by
making v and w adjacent. If F € E(G), G\F denotes the graph that arises from G by
removing the edges in F from the edge set of G. By contracting a subgraph H of G we
mean replacing V(H) with a single vertex h and making each vertex v € V(G)\V(H)
adjacent to h if and only if v was adjacent in G to some vertex of H. For any set S, |S|
denotes its cardinality. For any sets X and Y, X A Y denotes the symmetric difference
(X\Y) U (YAX).
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A vertex v of a graph G is universal if it is adjacent to every other vertex of G, pendant
if it is adjacent to exactly one vertex of G, or isolated if it is adjacent to no vertex of G.
An edge is pendant if it has at least one pendant endpoint. The neighborhood of vin G is
the set consisting of all vertices of G adjacent to v and is denoted by N (v), or simply
N(v) if G is clear from context. The closed neighborhood of vis Ng|v] = Ng u {v}. The
common neighborhood of an edge e = vwis Ng(e) = Ng(v) nNg(w) and, in general, the
common neighborhood of a nonempty set W < V(G) is Ng (W) = (),,ew NG (W), whereas
Ng (&) = V(G). Two vertices v and w of G are false twins if Ng(v) = Ng(w) and true
twins if Ng[v] = Ng|[w]. Two vertices are twins if they are either false or true twins.
We denote by E¢ (v) the set of edges of G incident to v. The degree dg(v) of a vertex v
of G is the number of different neighbors of vin G. The maximum degree of the vertices
of G is denoted by A(G) and the minimum degree by 5(G).

A graph is complete if its vertices are pairwise adjacent and the complete graph on
n vertices is denoted by K,,. A complete of a graph is a set of pairwise adjacent vertices
and a cligue is an inclusion-wise maximal complete set. A cligue-matrix of a graph is
a clique-vertex incidence matrix; i.e., a {0, 1}-matrix having one row for each clique
and one column for each vertex and such that there is a 1 in the intersection of a row
and a column if and only if the clique corresponding to the row contains the vertex
corresponding to the column. A complete on 3 vertices is called a triangle. A stable set
of a graph is a set of pairwise nonadjacent vertices. A set A < V(G) and a vertex v
of V(G) are complete to each other if A € Ng(v), and anticomplete if Ng[v] n A = .
The set A < V(G) is complete (resp. anticomplete) to the set B < V(G) if A and b are
complete (resp. anticomplete) for each b € B.

Paths and cycles are simple; i.e., have no repeated vertices aside from the starting
and ending vertices in the case of cycles. Trivial paths consisting of only one vertex
(and no edges) will be allowed, but cycles must have at least three vertices. An n-path
(resp. n-cycle) is a path (resp. cycle) on n vertices. The starting and ending vertices of
a path are called the endpoints of the path. The cycles on three vertices are also called
triangles. Let Z be a path or a cycle of a graph G. By the edges of Z we mean those
edges of G joining two consecutive vertices of Z. We denote by V(Z) the set of vertices
of Z and by E(Z) the set of edges of Z. The length of Z is |E(Z)|. The distance between
two vertices in a graph is the minimum length of a path in the graph having them
as endpoints. A chord of Z is an edge joining two nonconsecutive vertices of Z and
Z is chordless if Z has no chords. The chordless n-path and the chordless n-cycle are
denoted by P,, and C,,, respectively. For eachn > 4, W,, denotes the graph that arises
from C,, by adding a universal vertex. A chord ab of Z is short if there is some vertex ¢
of Z which is consecutive to each of aand b in Z. If so, c is called a midpoint of the chord
abin Z. Three short chords of Z are consecutive if they admit three consecutive vertices
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of Z as their midpoints. A chord of Z that is not short is called long. Two chords ab and
cd of a cycle C such that their endpoints are four different vertices of C that appear
in the order a,c, b, d in C are called crossing. A cycle is odd if it has an odd number of
vertices, and is even otherwise. A hole is a chordless cycle of length at least 4 and an
antihole is the complement of a hole of length atleast 5. A cycle of a graph is Hamiltonian
if it visits every vertex of the graph. If P = vivy...v, and P’ = wiwy ... wy, are
two paths (where the vi’s and the wj’s are vertices) and their only common vertex
is v, = wy, then PP’ denotes the concatenated path vivo...vawows ... wp. Ifvisa
vertex outside V(P) adjacent to v, vP denotes the path vwiva ... vy.

A graph is connected if every two of its vertices are the endpoints of some path. A
component of a graph is a containment-wise maximal connected subgraph. A compo-
nent is nontrivial if it has at least two vertices, and is trivial otherwise. A connected
graph without cycles is a tree. A graph is a forest if all its components are trees. A
cutpoint is a vertex whose removal increases the number of components. A graph is
nonseparable if it is connected, has at least two vertices, and has no cutpoints. A block of
a graph is a containment-wise maximal nonseparable subgraph. An edge e of a graph
G is a bridge if G — e has more components than G.

A dominating set of a graph G is a set A € V(G) such that each v € V(G)\A is
adjacent to at least one element of A. We say that a subset W of the vertex set of a graph
H is edge-dominating if each edge of H has at least one endpoint in W. A path or cycle
Z is dominating (resp. edge-dominating) if V(Z) is dominating (resp. edge-dominating).

Let G and H be two graphs. We say that G contains H if H is isomorphic to a sub-
graph (induced or not) of G and that G contains an induced H if H is isomorphic to an
induced subgraph of G. A class G of graphs is called hereditary if, for every graph G
of G, each induced subgraph of G belongs to §. We say that G is H-free to mean that G
contains no induced H. If H is a collection of graphs, we say that G is J{-free to mean
that G contains no induced H for any H € 3. A graph H is a forbidden induced subgraph
for a graph class G if no graph of G contains an induced H. Moreover, if G is a hereditary
class, H is said a minimal forbidden induced subgraph for the class G or a minimally not G
graph if H does not belong to G but each proper induced subgraph of H belongs to .

Let G; and Gy be two graphs and assume that V(G1) n V(G2) = . The join
of G; and G is the graph G; + G, having vertex set V(G1) u V(Gz) and edge set
E(G1) UE(G2) u{vw:ve V(G1),we V(Gy)}.

A graph H is bipartite if its vertex set can be partitioned into two stable sets X and
Y. If so, {X, Y} is called a bipartition of H. If, in addition, every vertex of X is adjacent
to every vertex of Y, the graph is called complete bipartite.

A matching of a graph G is a set of vertex-disjoint edges of G. Let M be a match-
ing of G. The endpoints of the edges belonging to M are called M-saturated and the
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Figure 2.1: Some small graphs

remaining vertices of G are called M-unsaturated. M is maximal if it is inclusion-wise
maximal and maximum if it is of maximum size; i.e., if [M| = v(G) (where v(G) denotes
the matching number defined in the Introduction). M is perfect if it saturates every ver-
tex of G and near-perfect if it saturates all but one vertex of G. Clearly, graphs with a
perfect matching have an even number of vertices, while graphs with a near-perfect
matching have an odd number of vertices. Perfect and near-perfect matchings are triv-
ially maximum. A path is M-alternating if, for each two consecutive edges of the path,
exactly one of them belongs to M. An M-augmenting path is an M-alternating path
starting and ending in M-unsaturated vertices. Notice that if P is an M-augmenting
path then M’ = M A E(P) is also a matching and |[M’| = [M| + 1. Indeed, a matching
M is maximum if and only if it has no M-augmenting paths [4]. The following is a
well-known result about matchings in bipartite graphs.

Theorem 2.1 (Hall’s theorem [66]). Let H be a bipartite graph with bipartition {X, Y}. Then,
there is a matching M of H that saturates each vertex of X if and only if

‘UGGA NH(a)‘ > |A| foreach A < X.

Some small graphs to be referred in what follows are depicted in Figure 2.1. We
will call any of the graphs in Figure 1.1 a pyramid. The center of a bipartite-claw is its
vertex of degree 3.

Multigraphs are an extension of graphs obtained by allowing different edges to have
the same pair of endpoints. Multigraphs are still finite, undirected, and without loops.
Two edges joining the same pair of vertices are called parallel. We denote the vertex
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Figure 2.2: Some special multigraphs

set of a multigraph H by V(H) and its edge set by E(H). If H is a multigraph, the
underlying graph of H is the graph H having the same vertices as H and two vertices
of H are adjacent if there is at least one edge in H joining them. If v is a vertex of a
multigraph H, we denote by dj;(v) the degree of v in the underlying graph H. A vertex
of a multigraph is pendant if it has exactly one neighbor; i.e., if it is a pendant vertex of
the underlying graph. Notice that there may be many edges joining a pendant vertex
to its only neighbor.

Let H and H be two multigraphs. We say that H' is a submultigraph of Hif V(H’)
V(H) and, for each pair of adjacent vertices v and w of H’, there are at least as many
edges in H joining them as there are in H’. We say that H' is contained in H or that
H contains H' if and only if H' is isomorphic to a submultigraph of H. Two submulti-
graphs touch at vertex v if v is their only common vertex. A multigraph is connected if its
underlying graph is connected and a component of a multigraph is a containment-wise
maximal connected submultigraph.

The paths and cycles of a multigraph are the paths and cycles of its underlying
graph. A multitree is a connected multigraph without cycles; i.e., a multigraph whose
underlying graph is a tree. Some multigraphs needed in what follows are displayed
in Figure 2.2. Notice that we denote the multigraph consisting of two vertices and two
parallel edges joining them by C», despite not being a cycle under our definition.

Two edges are incident if they share at least one endpoint, so that parallel edges
are considered incident. If R is a graph or multigraph, the line graph L(R) of R has the
edges of R as vertices and two different edges e, e> of R are adjacent in L(R) if and
only if e; and e; are incident. A graph G is a line graph of a multigraph if there exists
some multigraph R such that G = L(R). If R can be chosen to be a graph, G is simply
said to be a line graph and R is called a root graph of G. A matching of a multigraph H is
any set M of pairwise non-incident edges of H and M is maximal if it is inclusionwise-
maximal.

Let H; and H; be two vertex-disjoint graphs or multigraphs. The disjoint union
Hi U Ho of Hy and H; has vertex set V(H1) u V(Hy), two vertices v and w are adjacent
in H if and only if they are adjacent in H; for some i € {1,2}, and there are exactly as
many edges joining u and v in H as there are in H;. If t is a nonnegative integer and
H is a graph or multigraph, tH denotes the disjoint union of t copies of H.
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2.2 Some special graph classes and the modular decomposition

In this section, we give some background about some special graph classes and the
modular decomposition. Some results already stated in the Introduction are formally

restated for future reference.

2.2.1 Perfect graphs

In the 1960’s, Berge posed two conjectures regarding the structure of perfect graphs,
the weaker of which is now known as the the Perfect Graph Theorem and states that
the class of perfect graphs is closed by graph complementation.

Theorem 2.2 (Perfect Graph Theorem [92]). A graph is perfect if and only if its complement
is perfect.

The stronger conjecture posed by Berge, concerning the minimal forbidden in-
duced subgraph characterization for the class of perfect graphs, was proved only some

years ago.

Theorem 2.3 (Strong Perfect Graph Theorem [34]). A graph is perfect if and only if it has
no odd holes and no odd antiholes.

In addition, an O(n”)-time algorithm was devised in [33] that decides whether or
not a given graph G having n vertices has an odd hole or an odd antihole.

The following result characterizes perfect graphs by means of the integrality of
their fractional set packing polytopes.

Theorem 2.4 ([36]). A graph is perfect if and only if its clique-matrix is perfect.

2.2.2 Helly property and hereditary clique-Helly graphs

A family J of sets has the Helly property if every nonempty subfamily of J of pairwise
intersecting members has nonempty intersection. A graph is clique-Helly if the family
of its cliques has the Helly property. So, a hereditary clique-Helly graph is a graph
such that each of its induced subgraphs is clique-Helly. Prisner characterized hered-
itary clique-Helly graphs both by forbidden submatrices of their clique-matrices and
by minimal forbidden induced subgraphs, as follows.

Theorem 2.5 ([104]). A graph is hereditary clique-Helly if and only if its clique-matrices
contain no edge-vertex incidence matrix of C3 as a submatrix or, equivalently, if and only if it

does not contain any of the graphs in Fiqure 1.1 as an induced subgraph.

Prisner also gave a recognition algorithm for hereditary clique-Helly graphs.
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Figure 2.3: Some forbidden induced subgraphs for the class of circular-arc graphs

Theorem 2.6 ([104]). It can be decided in O(n*m) time whether or not a given graph having
N vertices and m edges is hereditary clique-Helly.

Moreover, he proved that if G is a connected hereditary clique-Helly graph, then G
has at most m cliques and concluded that all the cliques of G can be found in O(m?n)
time by means of the algorithm devised in [116] that enumerates the cliques of G, one
after the other, in O(mn) time per clique. Therefore, the following holds.

Theorem 2.7 ([104, 116]). In O(m?n) time, it can be decided whether or not a given a con-
nected graph G having n vertices and m edges is hereditary clique-Helly and, if affirmative,
output a clique-matrix of G, which has at most m rows.

2.2.3 Circular-arc graphs and Helly circular-arc graphs

A circular-arc graph is the intersection graph of a finite family of arcs on a circle. Such
a family of arcs is called a circular-arc model of the graph. The structure of circular-
arc graphs was first studied by Tucker [117, 118, 119, 120] and these graphs can be
recognized in linear time [100]. Some minimal forbidden induced subgraphs for the
class of circular-arc graphs are K, 3, G2, G3, domino, Gs, Gg, Ce, net U K, Cr, U K for
eachn > 4, and Gy [115] (see Figure 2.3).

Since Cy, U Ky is not a circular-arc graph for any n > 4, if G is a circular-arc graph
and H is a hole of G, then V(H) is dominating in G. We state the following slightly
more general result for future reference (see [18]).

Lemma 2.8. Let G be a circular-arc graph and H be a hole of G. If v € V(G)\V(H), then
either v is adjacent to every vertex of H or Ng (v) n V(H) induces a path in G.

A Helly circular-arc graph [61] is a circular-arc graph admitting a circular-arc model
having the Helly property. We call any circular-arc model A having the Helly property
a Helly circular-arc model of the graph. The class of Helly circular-arc graphs contains all
interval graphs because every set of intervals of a line has the Helly property [72]. Let
G be a Helly circular-arc graph and let us denote by A, the arc of A that corresponds
to vertex v € V(G). For a clique Q of G, we call any point p € [),cq Av an anchor of

Q. Since Q is an inclusion-wise maximal complete, for each anchor p of Q and each
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v € V(G), it holds that p € A, if and only if v € Q. In [75], a linear-time recognition
algorithm for Helly circular-arc graphs was given, as well as a characterization by
forbidden induced subgraphs of Helly circular-arc graphs within circular-arc graphs
(see Theorem 3.46 on page 64).

2.2.4 Cographs and modular decomposition

Let G be a graph. A set M of vertices of G is a module if every vertex outside M is
either adjacent to all vertices of M or to none of them. The empty set, the singletons
{v} for each v € V(G), and V(G) are the trivial modules of G. A nonempty module
M of G is strong if, for every other module M’ of G, either M n M’ = ¢, M, or M.
The modular decomposition tree T(G) of a graph G is a rooted tree having one node for
each strong module of G and such that a node h representing a strong module M
has as its children the nodes representing the inclusion-wise maximal strong modules
of G properly contained in M. Therefore, the root of T(G) is V(G) and the leaves of
T(G) are the singletons {v} for each v € V(G). We will identify the module {v} with
the vertex v and say that the leaves of T(G) are the vertices of G. For each node h of
T(G), we denote by M(h) the strong module of G represented by h. By definition,
M(h) is the set of vertices of G having h as their ancestor in T(G). For each node h
of T(G), we denote G[M(h)]| by G[h]. Each internal node of T(G) is labeled P, S, or
N, according to whether G[h] is disconnected, G[h] is disconnected, or both G[h] and
W are connected, respectively. Nodes labeled P, S, or N are called parallel, series, or
neighborhood, respectively. Therefore, if h is an internal node of T(G) and hy,..., hy
are the children of h in T(G), the following conditions holds:

(i) If G[h]is disconnected, then h is labeled P and G|hy], ..., G|hx] are the compo-
nents of G.

(ii) If G[h]is disconnected, then h is labeled S and G[hy], ..., G[hk] are the compo-
nents of G.

(iii) If G[h] and G[h] are both connected, then h is labeled N and G[h], ..., G[hk] is

the set of inclusion-wise maximal proper submodules of G[h].

There are linear-time algorithms for computing the modular decomposition tree of
any given graph [40, 41, 101, 113].

A cograph if a P4-free graph. The following result implies that a graph is a cograph
precisely when each internal node of its modular decomposition tree is either a parallel

or a series node.

Theorem 2.9 ([108]). If G is a cograph having at least two vertices, then either G or G is
disconnected.
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Seinsche [108] used this fact to prove that cographs are perfect since K; is perfect
and the disjoint union and the join of two perfect graphs are perfect.






Chapter 3
Balanced graphs

In this chapter, we address the problem of characterizing balanced graphs by minimal
forbidden induced subgraphs within different graph classes. The chapter is organized
as follows:

e In Section 3.1, we give some background about balanced graphs.
e In Section 3.2, we prove basic properties about minimally not balanced graphs.

e In Section 3.3, we show that there is a strong tie between the time complexities
of the problem of recognizing balanced graphs and that of recognizing balanced
matrices.

e In Sections 3.4 to 3.6, we give structural characterizations of balanced graph, in-
cluding minimal forbidden induced subgraphs characterizations, within each
of the following graph classes: complements of bipartite graphs, line graphs of
multigraphs, and complements of line graphs of multigraphs. These characteri-
zations lead to linear-time algorithms for recognizing balancedness within each
of these graph classes. This is in contrast with the fact that the currently best
bound on the running time of an algorithm that recognizes balanced graphs
within split graphs is O(n”), where n denotes the number of vertices of the in-
put graph.

e In Section 3.7, we present a minimal forbidden induced subgraph characteri-
zation of balanced graphs within a superclass of the class of Helly circular-arc
graphs. In Sections 3.8 and 3.9, we prove analogous characterizations within the
classes of claw-free circular-arc graphs and gem-free circular-arc graphs, respec-
tively.

The main results of this chapter appeared in [22] and [23].

19
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3.1 Background

Recall that a {0, 1}-matrix A is balanced if and only if it contains no edge-vertex inci-
dence matrix of an odd cycle as a submatrix. Notice that if A contains the edge-vertex
incidence matrix of an odd cycle, then A contains the edge-vertex incidence matrix
of an odd chordless cycle. Equivalently, A is balanced if and only if it contains no odd
square submatrix with exactly two 1’s per row and per column. Notice that any matrix
that arises by permuting the rows and/or columns of a balanced matrix is balanced
and that the transpose of a balanced matrix is also balanced.

In [12], Berge and Las Vergnas reported to have found a new class of perfect graphs
in an attempt to prove a conjecture about perfect graphs. In fact, they concluded the
following.

Theorem 3.1 ([12]). A graph G has a balanced clique-matrix if and only if every odd cycle in
G contains at least one edge with the property that every maximal clique containing this edge
contains a third vertex of the cycle. Moreover, any such graph G is perfect.

In [8], Berge gave a more detailed characterization of these graphs, which we repro-
duce below. For each graph G, each W < V(G), and each subfamily D of the family
of cliques of G, let Gy p be the graph that arises from G by deleting the vertices of
V(G)\W and the edges that do not belong to a clique in D.

Theorem 3.2 ([8]). Let G be a graph. Then, the following assertions are equivalent:
(i) The clique-matrix of G is balanced.
(ii) w(Gw,p) = X(Gw.p) for each W and each D.
(iil) x(Gw,p) = 0(Gw,p) for each W and each D.

(iv) Every odd cycle in G contains at least one edge with the property that every maximal
clique containing this edge contains a third vertex of the cycle.

So, a balanced graph is any graph satisfying all of the above assertions. The name
‘balanced graphs’ for these graphs appears in [11]. As Berge [8] also proved that the
rows (resp. columns) of a balanced matrix have the Helly property, we have the fol-
lowing.

Theorem 3.3 ([8]). Balanced graphs are hereditary clique-Helly.

Theorem 3.1 characterizes balanced graphs by means of the absence of unbalanced
cycles; i.e., the absence of odd cycles C such that, for each edge e € E(C), there ex-
ists a (possibly empty) complete subgraph W, of G such that W, < N(e)\V(C) and
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N(W.) n N(e) n V(C) = &. More recently, balanced graphs were characterized by
forbidden induced subgraphs, called extended odd suns. An extended odd sun [21] is
a graph G with an unbalanced cycle C such that V(G) = V(C) U [Jeeg(c)y We and
|[We| < |N(e) n V(C)| for each edge e € E(C). The extended odd suns with the small-
est number of vertices are Cs and the pyramids in Figure 1.1. The characterization of
balancedness by forbidden induced subgraphs is as follows.

Theorem 3.4 ([21]). A graph is balanced if and only if it contains no induced extended odd
sun.

As already noted in [21], extended odd suns are not necessarily minimal forbid-
den induced subgraphs because some extended odd suns may contain some others as
proper induced subgraphs.

A graph is chordal [65] if every cycle of length at least 4 has some chord. For each
t > 3, a t-sun, or simply sun, is a chordal graph G on 2t vertices whose vertex set can
be partitioned into two sets, W = {wq,..., w¢}and U = {uy,...,u}, such that Wis a
stable setand, foreachi =1,2,...,t, Ng(w;) = {ui, w1} (Where ui,; stands for uy).
Such a sun is odd if t is odd and complete if U is a complete. We denote the complete
t-sun by S;. For instance, S3 coincides with the graph 3-sun of Figure 1.1. The graph
S4 is depicted in Figure 2.1. Clearly, extended odd suns contain odd suns as a special
case.

Strongly chordal graphs, which we mentioned in the Introduction as one example
of balanced graphs, are precisely the sun-free chordal graphs [54]. More generally,
the following characterization of those chordal graphs that are balanced was proved
in [88].

Theorem 3.5 ([88]). Let G be a chordal graph. Then, G is balanced if and only if it contains
no induced odd sun.

Notice that the extended odd suns in Figure 1.2 are also odd suns and, conse-
quently, not all odd suns are minimal forbidden induced subgraphs for balancedness.
Indeed, characterizing balanced graphs by minimal forbidden induced subgraphs is
unresolved even when the problem is restricted to chordal graphs.

Notice, however, that the problem is easily settled within the class of split graphs,
which is a subclass of the class of chordal graphs. A graph is split [55] if its vertex
set can be partitioned into a complete and a stable set. In [55], it was shown that
split graphs are precisely those graphs that are chordal and whose complement is
also chordal, and also that they coincide with the {2K5, C4, Cs}-free graphs. A pseudo-
split graph [13, 98] is a {2K,, C4}-free graph. So, the class of pseudo-split graphs is a
superclass of the class of split-graphs, but not of the class of chordal graphs. The fol-
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lowing corollary of Theorem 3.5 gives the characterization of balanced graphs within
pseudo-split graphs by minimal forbidden induced subgraphs.

Corollary 3.6. Let G be a pseudo-split graph. Then, G is balanced if and only if it contains
no induced Cs and no induced odd complete sun.

Proof. Let H be a pseudo-split graph that is minimally not balanced. We must show
that H is either Cs or a complete odd sun. If H contains an induced Cs, then the mini-
mality of H implies that H is Cs. Therefore, assume, without loss of generality, that H
is Cs-free. So, as H is pseudo-split, H is a split graph. Then, by Theorem 3.5, H is an
odd sun and let {U, V} be a partition of the vertex set of H as in the definition of odd
sun. If there were two nonadjacent vertices in U, say u; and u;, then {u;, wi, uj, wj}
would induce 2K; in H, a contradiction with the fact that H is split. So, U is a complete

and H is an odd complete sun. O

3.2 Some properties of minimally not balanced graphs

The aim of this section is to prove some basic properties of minimally not balanced
graphs; i.e., those graphs that are not balanced but such that each of their induced
subgraphs are balanced.

Lemma 3.7. If H is a minimally not balanced graph, then each of the following holds:
(i) H is connected.
(if) H has no pendant vertices.
(iii) H has no true twins.
(iv) H has no universal vertices.
(v) H has no cutpoints.

Proof. (i) Suppose, by the way of contradiction, that H is not connected. Let H =
H1 UH; for some graphs H; and Hj having at least one vertex each and let A1 and
Aj be clique-matrices of H; and Hy, respectively. Then, A = (%1 /gz ) is a clique-
matrix of H. As H is not balanced, there is some submatrix A’ of A which is the
edge-vertex incidence matrix of an odd chordless cycle. As A’ cannot intersect
both A; and A, in A, A’ is a submatrix of either Aj or A,. But then, H; or H, is
not balanced, contradicting the minimality of H. This contradiction proves that

H is connected.
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(ii) Suppose, by the way of contradiction, that H has some pendant vertex v. Then,
a clique-matrix of H — v arises from the clique-matrix of H by first removing a
column with exactly one 1 (which is the column corresponding to vertex v) and
then removing a row with exactly one 1 (which is the row corresponding to the
clique Ny [v]). Since an edge-vertex incidence matrix of a chordless cycle has
two 1’s per row and per column, H is balanced if and only if H — v is balanced.
This contradicts the minimality of H and proves that H has no pendant vertices.

(iii) Suppose, by the way of contradiction, that there are two true twins v and w in
H. Then, a clique-matrix of H — v arises from a clique-matrix of H by removing
the column corresponding to vertex v, which is identical to the column corre-
sponding to vertex w. Since an edge-vertex incidence matrix of a chordless cycle
contains no two identical columns, H is balanced if and only if H —v is balanced.
This contradicts the minimality of H and proves that H has no true twins.

(iv) Suppose, by the way of contradiction, that there is some universal vertex v in H.
Then, a clique-matrix of H — v arises from a clique-matrix of H by removing a
column with all its entries equal to 1. Since an edge-vertex incidence matrix of a
chordless cycle contains no columns with all entries equal to 1, H is balanced if
and only if H — v is balanced. This contradicts the minimality of H and proves

that H has no universal vertices.

(v) As H is minimally not balanced, Theorem 3.4 implies that H is an extended odd
sun. Let C and {We}ecg(c) be as in the definition of extended odd sun. It is
clear that neither the vertices of C nor the vertices of the W,’s are cutpoints of
H. Since H = V(C) U Ueeg ¢y We, H has no cutpoints. O

We will now establish necessary and sufficient conditions for the join of two graphs
to be balanced. They involve the notion of trivially perfect graphs, introduced by
Golumbic [63]. A graph is trivially perfect if each induced subgraph H has a stable
set meeting all the cliques of H. Trivially perfect graphs coincide with {P4, C4}-free
graphs [63] and also arise as the comparability graphs of trees, which means that triv-
ially perfect graphs are those in which the closed neighborhoods of any two adjacent
vertices are nested (see [124, 125] or [126]). The latter characterization can also be
phrased in terms of clique-distinguishability: we say that two vertices u and v of a
graph are clique-distinguishable if there is a clique containing u and not containing v
and vice versa. As two vertices are clique-distinguishable if and only if their closed
neighborhoods are not nested, we have the following.

Theorem 3.8 ([124]). A graph is trivially perfect if and only if every two clique-distinguishable
vertices are nonadjacent.
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This also means that a graph is trivially perfect if and only if a clique-matrix of it
contains no submatrix that arises by permuting the rows of 11). This immediately
means that trivially perfect graphs are balanced. Moreover, we have the following.

Lemma 3.9. Let G be a graph that is the join of two graphs Gy and Gy. Then, G is balanced
if and only if at least one of the following assertions holds:

(i) Omneof G1 and Gy is complete and the other one is balanced.
(ii) Both Gy and G are trivially perfect.

Proof. Suppose that G is balanced. Since G and G; are induced subgraphs of G,
they are balanced too. Therefore, if at least one of G; and G, were complete, then
(i) would hold. Suppose, on the contrary, that none of G; and G, is complete. Then,
G is trivially perfect; otherwise G; would contain an induced P4 or C4 and, since G,
is not complete, G = G1 + G2 would contain an induced P4 + 2K; = 2-pyramid or
C4 + 2Ky = 3-pyramid, respectively, contradicting the fact that G is balanced. Sym-
metrically, G» is also trivially perfect. Thus, (ii) holds.

Now suppose that G is not balanced. If G; were complete, then the clique-matrix
of G, would arise from the clique-matrix of G by removing some columns all whose
entries are 1’s and, as G is not balanced, necessarily G, would not be balanced. Sym-
metrically, if G, were complete, then G; would not be balanced. We conclude that
(i) does not hold. Assume now that none of Gy and G; is complete. Since G is not
balanced, there exist some cliques Qj, ..., Q2¢+1 of G and some pairwise different ver-
tices vy, ..., var4+1 of G for some t > 1 such that Q; N {vy,va,...,Vors1} = {Vi,vi 1} for
eachi =1,...,2t + 1 (where v stands for vq). In particular, C = viva... Vo411
is an odd cycle of G. Since C is odd, there are two consecutive vertices of C that be-
long both to G or both to G,. Without loss of generality, assume that v; and v, both
belong to G1. As Q; is a clique of G, Q] = Qi n V(Gy) is a clique of G; for each
i=1,2,...,2t + 1. By construction, Q5,1 N {x1,x2} = {x1}, Q] N {x1, %2} = {x1, %2},
and Q} nm {x1,x2} = {x2}. Therefore, x; and x, are two adjacent clique-distinguishable
vertices and, by Theorem 3.8, G is not trivially perfect and (ii) does not hold. O

The above lemma implies the following fact about minimally not balanced graphs.

Corollary 3.10. The only minimally not balanced graphs whose complements are disconnected
are the 2-pyramid and the 3-pyramid.

Proof. Let H be a minimally not balanced graph whose complement H is disconnected.
Since H is disconnected, H is the join of two graphs H; and H, with at least one vertex
each. Therefore, as H is minimally not balanced, H; and H; are balanced. Neverthe-
less, as H is not balanced, Lemma 3.9 implies that H; or Hy is not trivially perfect.
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Without loss of generality, assume that H; is not trivially perfect; i.e., H; contains an
induced P4 or an induced C4. Since H = H; + H, is not balanced and H; is bal-
anced, Lemma 3.9 implies that H, is not complete. Thus, H, contains an induced
2K;. Finally, H = H; + Hj contains an induced P4 4 2K; = 2-pyramid or an induced
C4 + 2Ky = 3-pyramid. By minimality, H is the 2-pyramid or the 3-pyramid. ]

By Lemma 3.9, the join of two trivially perfect graphs is balanced. Below, we state
a generalization of this fact for future reference. Notice that, in the result below, G|X]
and G[Y] are trivially perfect by Theorem 3.8.

Lemma 3.11. If the vertex set of a graph G can be partitioned into two sets X and Y such that
every two clique-distinguishable vertices in G that belong both to X or both to Y are nonadjacent,
then G is balanced.

Proof. Suppose, by the way of contradiction, that G is not balanced. Then, there is
some submatrix A of a clique-matrix Ag of G such that A is an edge-vertex incidence
matrix of an odd chordless cycle. Notice that no row of A has two 1’s in columns corre-
sponding to vertices of X; otherwise, these two columns would correspond to adjacent
vertices of X which, by hypothesis, are not clique-distinguishable in G, meaning that
one of these columns would dominate the other in Ag, contradicting the fact that A
has no dominated columns. Similarly, no row of A contains two 1’s in columns corre-
sponding to vertices of Y. So, as each row of A has exactly two 1’s, each row of A has
exactly one 1 in a column corresponding to a column corresponding to a vertex of X
and exactly one 1 in a column corresponding to a vertex of Y, which contradicts the fact
that A is an edge-vertex incidence matrix of an odd chordless cycle. This contradiction
arose from assuming that G was not balanced. O

We close this section with the following reformulation of Lemma 3.9, also for fu-

ture reference.

Lemma 3.12. A graph G is balanced if and only if exactly one of the following assertions holds:
(i) G has only trivial components.
(ii) G has only one nontrivial component and the complement of this component is balanced.

(iii) G has exactly two nontrivial components and the complements of these two components
are trivially perfect.

Proof. If G has only trivial components, then G is a complete graph and, in particular,
balanced. If G has only one nontrivial component H, then G is the join of a (possibly
empty) complete and H and, by Lemma 3.9, G is balanced if and only if H is balanced.
Suppose now that G has two nontrivial components H; and Hy. Then, G is the join of
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a (possibly empty) complete with the join of H; and Hy, where none of Hy and Hy is a
complete graph. Therefore, by Lemma 3.9, G is balanced if and only if H; and H, are
trivially perfect. Finally, notice that if G has 3 or more nontrivial components, then G
is not balanced because it contains an induced 3K, = 3-pyramid. O

3.3 Recognition of balanced graphs and balanced matrices

As noted in [42], a polynomial-time algorithm for recognizing balanced graphs fol-
lows from Theorem 2.7 and the fact, first proved in [37], that balanced matrices can be
recognized in polynomial time. The purpose of this section is to show that there is a
stronger tie between the recognition of balanced graphs and of balanced matrices.

In [128], Zambelli devised a recognition algorithm for balanced {0, 1}-matrices,
which has the currently best time bound.

Theorem 3.13 ([128]). There is a O((r + c)°)-time algorithm that decides whether or not a
given v x ¢ {0, 1}-matrix is balanced.

It is easy to see that the above result immediately implies that whether or not a
given graph G having n vertices and m edges is balanced can be decided in O(m’ +n)
time. Indeed, as it takes only O(m+n) time to compute the components of G, it suffices
to show that if G is connected then it can be decided in O(m’) time whether or not G
is balanced. Indeed, if G is connected, then Theorem 2.7 ensures that in O(mZn) time
it can either be detected that G is not hereditary clique-Helly (and, consequently, not
balanced) or a clique-matrix of G be computed. In the latter case, such a clique-matrix
of G has at most m rows and at most m columns and Zambelli’s algorithm is able to
determine whether or not the clique-matrix of G is balanced in O(m’) time.

We observe that for graphs having the number of cliques bounded from above
by a linear function on the number of vertices, like chordal graph [57], pseudo-split
graphs [13], planar graphs [105], and Helly circular-arc graphs [61], the same analysis
shows that deciding their balancedness can be completed in O(n”) time. One might be
tempted to consider the O(ng) time bound too loose, for instance, for chordal graphs,
given that, in order to decide the balancedness of chordal graphs, there is no need to
test for balancedness of arbitrary {0, 1}-matrices, butjust those that are clique-matrices
of chordal graphs. The lemma below shows that it is not the case, as any improvement
on the O(n?)-time bound for the recognition of balanced graphs within split graphs
is tied to the existence of recognition algorithms for balanced matrices asymptotically
faster than that of Zambelli, and vice versa. The reduction we apply here was used in
[32] to prove the NP-completeness of determining «. and T for split graphs.
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Lemma 3.14. Let p > 2. Then, there exists an O(nP)-time algorithm for deciding the bal-
ancedness of any given split graph having n vertices if and only if there exists an O((r + c)P)-
time algorithm for deciding the balancedness of any given r x c {0, 1}-matrix.

Proof. Suppose that there is an O(nP)-time algorithm for deciding the balancedness
of split graphs having n vertices and let A = (ai;) be a given r x ¢ {0, 1}-matrix.
Without loss of generality, assume that no row of A is full of 1’s, as such rows can be
ignored when deciding the balancedness of A. Consider the graph G(A) with vertex
set {s1,...,8r,ki,...,kc}, where {s1,...,s;} is a stable set, {kq,...,kc} is a complete,
and such that s; is adjacent to k; if and only if aj; = 1. Clearly, G(A) can be constructed
in O((r + ¢)?) time and a clique-matrix of G(A) is A’ = (IO* /1\) where [, denotes the
identity matrix of order r, 0 a row of r entries equal to 0’s, and 1 denotes a row of
c entries equal to 1’s. Clearly, A’ is balanced if and only if A is balanced. So, A is
balanced if and only if G(A) is balanced, which, by hypothesis, can be decided in
O((r +¢c)P) = O(nP) time.

Conversely, suppose that there is an O((r + c)P)-time algorithm that decides the
balancedness of r x ¢ {0, 1}-matrices and let G be a split graph. Let {S, K} be a partition
of V(G) such that S = {sq,...,sx} is a stable set and K = {ky,..., ky} is complete of
G, and let A = (ayj) be the x x y {0,1}-matrix such that aj; = 1 if and only if s; is
adjacent to k;. Reasoning as in the preceding paragraph, G is balanced if and only if
A is balanced, which, by hypothesis, can be decided in O(nP) time once the matrix A
is constructed in O(n?) time, where n = x + y is the number of vertices of G. O

Notice that if p > 2 and there were an O((r + c)P)-time recognition algorithm
for balanced matrices, then, by reasoning as we did with Zambelli’s algorithm, one
concludes that there would be an O(mP + m?n)-time algorithm for deciding the bal-
ancedness of any given graph having n vertices and m edges. Notice also that above
proof of the lemma leads to an alternative derivation of Corollary 3.6.

3.4 Balancedness of complements of bipartite graphs

Recall from the Introduction that bipartite graphs are balanced, but also that the class
of balanced graphs is not self-complementary. In particular, it turns out that the com-
plements of bipartite graphs are not necessarily balanced. In this section, we charac-
terize those complements of bipartite graphs that are balanced by minimal forbidden
induced subgraphs. In fact, we show that the complement of a bipartite graph is bal-
anced if and only if it is hereditary clique-Helly.

Theorem 3.15. Let G be the complement of a bipartite graph. Then, the following statements
are equivalent:
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(i) G is balanced.

(ii) A cliqgue-matrix of G has no edge-vertex incidence matrix of Cz as a submatrix.
(iii) G is hereditary clique-Helly.
(iv) G contains no induced 1-pyramid, 2-pyramid, or 3-pyramid.

Proof. The implication (i) = (ii) follows by definition and (ii) = (iii) = (iv) follows
from Theorem 2.5. In order to prove that (iv) = (i), assume that G contains no induced
1-pyramid, 2-pyramid, or 3-pyramid, and we will prove that G is balanced. Since G
is the complement of a bipartite graph, its vertex set can be partitioned into red and
blue vertices such that any two vertices of the same color are adjacent. Suppose, by the
way of contradiction, that G is not balanced. Let C = viv; ... v2¢41v1 be an unbalanced
cycle in G and let the W,’s for each e € E(C) be as in the corresponding definition.
Since the 3-sun is not the complement of a bipartite graph, G is pyramid-free and, by
Theorem 2.5, t > 1.

Since C is odd, there exist consecutive vertices vx and v in C having the same
color (here, and all along the proof, subindices should be understood modulo 2t +
1). Either, there is another vertex vy in V(C)\{vk,Vvik41} of this color, or all vertices
in V(C)\{vk, Vk+1} have the other color. In any case, as t > 1, C has three pairwise
different vertices vi, vi;1, and v; of the same color, say red. Thus, vi, vi;1, and vj
induce a triangle and v; € Ng(vivi41) n V(C) follows.

Next, we shall construct a blue triangle uj, uy, and uz in G. By the definition of
an unbalanced cycle, N(W,,.,,
such that 1, is nonadjacent to vj. Since vj is red, u; is blue. If vi_; is

) N N(viviz1) n V(C) = & and there exists some
u € Wy,
nonadjacent to vi;1, we let uy = v;_1; otherwise, vi11 € N(vi_1vi) n V(C) and we let

up be any vertex of W, nonadjacent to vi.1. In both cases, u, is blue because it

i—1Vi

is nonadjacent to the red vertex vi;1. Similarly, if vi. is nonadjacent to vi, we define

uz = vi4z; otherwise, we let usz be any vertex of W, nonadjacent to v;. In both

i+1Vi42
cases, uz is blue because it is nonadjacent to vi. By construction, uy, uy, and usz are pair-
wise different because Ng (1) N {vi, vit1} = {vi,vit1}, Ng(w2) n {vi,vit1} = {vi},
and Ng(u3) N {vi,vit1} = {vi+1}. Since uy, uy, and uz are blue, they induce a triangle
in G. Therefore, {uy,vi, vi+1,Vj, U2, u3} induces a 1-pyramid, 2-pyramid, or 3-pyramid
in G, a contradiction. This contradiction arose from assuming that G was not balanced.
Hence, G is balanced, which concludes the proof of (iv) = (i) and of the theorem. [J

As a consequence of the equivalence between (i) and (iii) of the above theorem, de-
ciding if the complement of a bipartite graph is balanced is equivalent to determining
whether it is hereditary clique-Helly. The currently best known time bound for recog-
nizing hereditary clique-Helly graphs is O(m? + n) where m is the number of edges
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of the input graph [91]. Notice that if the input graph is the complement of a bipartite
graph with n vertices and m edges, then m? = @(n*), which means that O(m? + n)
is not a linear-time bound. In fact, the algorithm in [91] ‘as is’ takes Q(n?) time when
applied to the complement of a bipartite graph with n vertices because its main loop
runs over all the triangles of the input graph. We will show that there is a simple
linear-time recognition algorithm for hereditary clique-Helly graphs (or, equivalently,
balanced graphs) when the input graph is known to be the complement of a bipartite
graph.

As a consequence of Theorem 3.15, Lemma 3.12 becomes the following when spe-
cialized to complements of bipartite graphs.

Corollary 3.16. Let G be the complement of a bipartite graph. Then, G is balanced if and only
if one of the following assertions holds:

(i) G has only trivial components.
(ii) G has exactly one nontrivial component and this component is {E, Py U P2, 3Ky }-free.

(iii) G has exactly two nontrivial components and these two components are complete bipar-
tite graphs.

Proof. The results follows from Lemma 3.9 by noticing that if H is a connected bipar-
tite graph then: (1) H is balanced if and only if H is {E, P4 U P, 3K;}-free, and (2) H
is trivially perfect if and only if H is a complete bipartite graph. Assertion (1) follows
immediately from Theorem 3.15. When considering (2), it is clear that, if H is a com-
plete bipartite graph, then H is trivially perfect because the endpoints of any pair of
non-incident edges in H induce C4 in H. Conversely, suppose that H is trivially per-
fect. In particular, H is P4-free, which means that any two nonadjacent vertices u and
v belonging to a same component of H are at distance 2 in H. So, since we are assum-
ing that H is a connected bipartite graph, any two nonadjacent vertices of H are on
the same set of the bipartition of H. This proves that H is complete bipartite, which
completes the proof of (2) and of the corollary. O

Let G be the complement of a bipartite graph H and let n and m be the number
of vertices and edges of G. We will show that there is a simple O(n?)-time algorithm
that decides whether or not G is balanced. Notice that, in this case, O(n?) is a linear-
time bound because, being G the complement of a bipartite graph, m = ®(n?). Since
conditions (i) and (iii) of Corollary 3.16 can be clearly verified in O (n?) time, it suffices
to show that it is easy to decide in O(n?) time whether or not a connected bipartite
graph having n vertices is {E, P4 U Py, 3Ky }-free.

If H is any bipartite graph, we write H = (X, Y; F) to mean that {X, Y} is a biparti-
tion of H and F = E(H). The bipartite complement of a connected bipartite graph H =
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(X,Y;F) is the bipartite graph P = (X,Y; (X x Y)\F). For instance, P3P = 2K, UK.
The recognition algorithm for {E, P4 U Py, 3K, }-free bipartite graphs follows from the
study of E-free bipartite graphs in [95]. In particular, we make use of the following
result.

Theorem 3.17 ([95]). Let H be a connected bipartite graph. Then, the following assertions
are equivalent:

(i) His {E, P7}-free.
(ii) His PP free.
(iii) Each component of HP is 2Kp-free.
We have the following immediate consequence.

Corollary 3.18. Let H be a connected bipartite graph. Then, His {E, P4 U P2, 3Ky }-free if and
only if each component of P is 2Kp-free.

Proof. In fact, if His {E, P4 U Py, 3K, }-free, then, in particular, H is {E, P7}-free (because
P7 contains an induced P4 U P;) and, by Theorem 3.17, each component of ﬁbip is 2K5-
free.

Conversely, suppose that each component of P s 2Ky-free. Then, by Theorem
3.17, His PT—,bip -free. Since each of E, P4 u P, and 3K, contains an induced P75bip, His
{E, P4 U Pz, 3K2}—free. ]

Bipartite 2K,-free graphs are known as chain graphs [127] or difference graphs [67].
It is well-known that a linear-time recognition for these graphs follows from the fact
that, in any bipartite chain graph H = (X, Y; F), the neighborhoods of the vertices of X
(resp. Y) are nested. (For a detailed account, the reader may consult [71].) Therefore, as
a consequence of Corollary 3.18, given a connected bipartite graph H with n vertices,
it can be decided whether or not H is {E, P4 U K, 3K, }-free in O(n?) time, as follows:
H™P can be clearly computed in O(n?) time and, since bipartite chain graphs can be
recognized in linear time, we can decide whether each of the components of P s
2K,-free also in O(n?) time.

Altogether, we have a simple O(n?)-time algorithm to decide whether or not a
given complement of bipartite graph with n vertices is balanced. Recalling that an
O(n?)-time algorithm is linear-time if its input is the complement of a bipartite graph,
we conclude the following.

Corollary 3.19. It can be decided in linear time whether or not the complement of a bipartite
graph is balanced (or, equivalently, hereditary clique-Helly).
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3.5 Balancedness of line graphs of multigraphs

The first characterization of perfect line graphs appeared in [114] and an alternative
algorithmic proof was given in [43]. This characterization was later extended in [97]. It
is known that line graphs of bipartite graphs are balanced [10]. In this subsection, we
prove structural characterizations of those line graphs that are balanced, including
a characterization by minimal forbidden induced subgraphs. Near the end of this
subsection, we show how these structural results naturally extend to line graphs of
multigraphs.

In order to state our results we need to introduce some definitions. First, we note
that the cliques in the line graph L(R) of a given graph R correspond to the inclusion-
wise maximal sets of pairwise incident edges in R, called by us the L-cligues of R, which
are the edge sets of the triangles of R, called triads, and the stars Eg(v) (v € V(R)) that
are not contained in another star or triad.

A t-bloom {v;v1,...,v¢} in a graph is a set of t > 0 different pendant vertices
V1, ...,V all being adjacent to vertex v. By identifying two nonadjacent vertices u and
v, we mean replacing them by a new vertex w with N(w) = N(u) u N(v). If Gy
and Gy are two vertex-disjoint graphs, A = {a;ay,...,at} is a t-bloom in G, and
B = {b;by,..., bt} is a t-bloom in Gy, then G; Aap G2 denotes the graph that arises
from G; U G, by adding the edge ab and identifying a; with b; foreachi=1,...,t.

The following result characterizes which line graphs are balanced, including a
characterization by minimal forbidden induced subgraphs.

Theorem 3.20. Let G be a line graph and let R be a graph such that G = L(R). Then, the
following assertions are equivalent:

(i) G is balanced.

(ii) G is perfect and hereditary clique-Helly.
(iii) G has no odd holes and contains no induced 3-sun, 1-pyramid, or 3-pyramid.
(iv) R has no odd cycles of length at least 5 and contains no net, kite, or K.

(v) Each component of R belongs to the graph class 8§ which is the minimal graph class sat-
isfying the following two conditions:
(a) All connected bipartite graphs belong to 8.

(b) If G1, Gy € 8 and the sets A and B are t-blooms of Gy and G, respectively, then
G1 Aap G2 belongs to 8.
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Proof. The implication (i) = (ii) follows from Theorems 3.1 and 3.3 and (ii) = (iii)
from Theorem 2.5. That (iii) = (iv) follows from the definition of line graph.

We prove that (iv) = (v) by induction on the number n of edges of R. Assume that
R has no odd cycles of length at least 5 and contains no kite, net, or K4. If n = 1, (v)
holds trivially. Let n > 1 and assume that (v) holds for graphs with less than n edges.
Let S be any component of R and assume that S is not bipartite. In order to prove that S
belongs to §, we need to show that S = S; Aap S, for some Sy, S, € 8 and some blooms
A and B. Since S is not bipartite and has no odd cycles of length at least 5, there is some
triangle T in S. Since S contains no net, kite, or K4, there is some vertex of T of degree
2in S. Let T = {a,b,c1} where ds(c1) = 2. Let ¢y, cy,...,ct be all the vertices of S
with {a, b} € Ng(ci). Since S contains no Ky, {c1, ..., c¢} is a stable set of S. Moreover,
we have {a, b} = Ngs(c;), foreachi = 2,...,t, because S contains no kite. Let S’ be
the graph that arises from S by removing the edge ab and the vertices cy,...,c¢; ie.,
S’ = (S—ab)—{cy,...,ct}. Since S has no odd cycles of length atleast 5, there is no path
joining a and b in S’. Nevertheless, S’ + ab = S — {cy,..., c¢} is connected because
S is connected. Consequently, S’ consists of two components S; and S} such that a
belongs to S{ and b belongs to S;. Let S be the graph that arises from S by adding t
pendant vertices ay, ..., a; adjacent to a. Analogously, let S, be the graph that arises
from S/ by adding t pendant vertices by, ..., by adjacentto b. Then, A = {a; ay, ..., at}
and B = {b;by,..., b} are t-blooms of S; and S,, respectively, and S = S; Aap Sa.
Moreover, S1 and S; satisfy (iv) because they are subgraphs of S. Therefore, as S; and
S, are connected and have less edges than S, by induction hypothesis, S1, S, € 8. This
completes the proof of (iv) = (v).

Let us now turn to the proof of (v) = (i). Assume that every component of R
belongs to 8. We will prove that G = L(R) is balanced by induction on the number n
of edges of R. Without loss of generality we can assume that R has no isolated vertices.
If n =1, then G = K; is balanced. Let n > 1 and assume that (i) holds when R has less
than n edges. If R is disconnected, each component S of R has less than n edges and, by
induction hypothesis, each L(S) is balanced, which implies that G = L(R) is balanced,
as desired. So, without loss of generality, we assume that R is connected. Suppose,
by the way of contradiction, that G is not balanced; i.e, there exist some L-cliques
Ei, ..., Er and some pairwise differentedges ey, ..., er of Rsuch that Ein{ey, ..., er} =
{ei, ei+1} (from this point on, all subindices should be understood modulo r) for some
odd r > 3.

Recall from the Introduction that line graphs of bipartite graphs are balanced.
Hence, R is not bipartite and, since R € 8§ by hypothesis, R = Ry Aap Ry where
Ri,R2 €8, A ={a;ay,...,a¢} is a t-bloom of R, and B = {b;by,..., b} is a t-bloom
of Ry. Since Ry and R; have less edges than R, the induction hypothesis implies that
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L(R1) and L(R;) are both balanced. If Eg(a) is an L-clique of R, we will identify Er(a)
with Eg, (a) and say that Egx(a) is an L-clique of Ry. Similarly, if Egr(b) is an L-clique of
R, we will identify Egr(b) with Eg,(b) and say that Er(b) is an L-clique of R,. With
this conventions, the L-cliques of R are the L-cliques of Ry and Ry, plus the triads
Tk = {ab,acy,bck} for each k = 1,...,t, where cy is the vertex that results from
identifying ay with by. If r = 3, Theorem 2.5 implies that G contains an induced
pyramid, which means that R contains net, kite, or K4; and consequently, by defini-
tion of A\, either Rj or R, contain net, kite or Ky4, a contradiction with L(R;) and L(R)
balanced. Hence, we have r > 5 and suppose that at least one of Ey,...,E, is an L-
clique of Ry. Since L(R;) is balanced, notall of Ey, ..., E; are L-cliques of Ry. Therefore,
there exists some i € {1,..., 1} such that E; is an L-clique of Ry, but E;; is not. Since
Ei n Eit1 # O, necessarily, E; = Eg(a). Similarly, there is some j € {1,...,1} such
that Ej is an L-clique of Ry and Ej_; is not, and necessarily E; = Er(a). Hence, every
block of consecutive L-cliques of R; in the circular ordering E{E; ... E;E; starts and
ends with Eg(a). Since Ey, ..., E; are r pairwise different L-cliques of R, Er(a) is the
only L-clique of R; that may belong to Ey, ..., E;. Similarly, Er(b) is the only L-clique
of Ry that may belong to Ey, ..., E;.

Since r > 5 and among Ey, ..., E, there are at most one L-clique of R; and at
most one L-clique of Ry, there are two consecutive elements in the circular ordering
E1E; ... ExEq that are triads Ty for some values of k. Without loss of generality, E; = Tq
and E; = T,. Therefore, e; € E; n E; = {ab}. But then, e = ab belongs to each of
Ei, ..., Ey, a contradiction. This contradiction arose from assuming that G was not
balanced. So, G satisfies (i), as desired. O

As a corollary of the above theorem, we now prove another characterization of
those line graphs that are balanced which leads to a linear-time recognition algorithm
for balanced graphs within line graphs.

Corollary 3.21. Let G be a line graph and let R be a graph such that G = L(R). Let U be the
set of vertices of R of degree 2 that belong to some triangle of R and let ' be the set of edges
of R whose both endpoints are the two neighbors of some vertex of U. Then, G is balanced if
and only if R — W is a bipartite graph and every edge of R — U that belongs to €' is a bridge of
R—-U

Proof. Suppose that G is balanced. By assertion (iv) of Theorem 3.20, R contains no
kite, net, or K4. Thus, every triangle of R has at least one vertex of degree 2 and,
therefore, R — U has no triangles. Since, in addition, R has no odd cycles of length at
least 5, R — U is bipartite. Let ab be an edge of R — U that belongs to E’ and suppose,
by the way of contradiction, that ab is not a bridge of R — U. Thus, ab is an edge of
some cycle C of R — U. Since R — U is bipartite, C = abvy...vyxa for some k > 1.
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Since ab € E’, there exists some vertex ¢ € R such that Ng(c) = {a,b}. But then,
C’ = acbvy...vyrais a cycle of R of length 2k + 3 with k > 1, a contradiction since R
has no odd cycles of length at least 5.

Conversely, assume that R — U is bipartite and every edge of R — U that belongs
to E’ is a bridge of R — U. We will prove that assertion (iv) of Theorem 3.20 holds. R
contains no kite, net, or K4 (otherwise, R—U would contain a triangle, in contradiction
with R — U bipartite). It only remains to prove that R has no odd cycles of length at
least 5. Suppose, by the way of contradiction, that R has a cycle C = viv,...v,v; of
odd length at least 5. Let wq, Wy, ..., W, be the sequence of vertices that arises from
the sequence vy, vy, ..., v, by removing all the vertices that belong to U. Notice that, if
vi € U, then each of vi_1 and vi 1 has degree atleast 3 in R and, therefore, none of vi _4
and vi 41 belongs to U and vi_1vi 41 is an edge of R—U. Therefore, C' = wiw; ... wswy
isa cycle of R—U. Since C is an odd cycle and R—U is bipartite, C’ # C. So, necessarily,
there is at least one vertex of C that belongs to U. Without loss of generality assume
that v, € U. By construction, w; = vi, wo = v3, viv3 € E/, and vyv3 is an edge of the
cycle C"in R — U. Therefore, vivs is an edge of R — U that belongs to E’ but is not a
bridge of R — U, a contradiction. This contradiction proves that R has no odd cycles of
length at least 5. Hence statement (iv) of Theorem 3.20 holds and, consequently, G is
balanced. O

From Corollary 3.21, we deduce the following.
Corollary 3.22. It can be decided in linear time whether a given line graph G is balanced.

Proof. Let n and m be the number of vertices and edges of G. A graph R without
isolated vertices such that L(R) = G can be computed in O(m + n) time [89, 107].
Additionally, the neighborhoods of the vertices of R can be easily sorted, consistently
with some fixed total ordering of V(R), in O(n) time (see, e.g., [80, p. 115]). Notice that
O(n) time means linear time of R because R has n edges and no isolated vertices. We
now show that U and E’ defined as in Corollary 3.21 can also be computed in O(n)
time. Let H be an auxiliary multigraph whose vertex set is V(R) and having each of its
edges labeled with a vertex of R defined as follows: two vertices vand w of H are joined
by one (and exactly one) edge labeled with x if and only if Ng(x) = {v,w}. Clearly, H
can be computed in O(n) time and, as we did with R, we can sort the neighborhoods
of H (ignoring the edge labels), consistently with the total ordering of V(R) used for
the neighborhoods of R, also in O(n) time. Now, as both Ng(v) and N (v) are sorted
consistently for each v € V(R), we can find, in overall O(n) time, the set D of all triples
(v, w,x) that satisfy both that w € Ng(v) n N (v) and that there is an edge joining v
and w labeled with x. Then, U consists of all vertices x such that there is some triple
(v,w,x) € D and E’ consists of all edges vw such that there is some triple (v, w, x) € D.
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This shows that indeed U and E’ can be computed in O(n) time. Finally, we can also
decide in O(n) time whether R — U is bipartite and whether the edges of R — U that
belong to E’ are bridges of R — U, because the bridges of a graph can be determined
in linear time by depth-first search [112]. O

In the above proof, the sets U and E’ can also be computed in O(m + n) time by
enumerating all triangles of R using the approach sketched in [80, p. 115], which leads
to an alternative linear-time algorithm to decide the balancedness of G. Neverthe-
less, our procedure has the advantage that it takes only linear time of R to decide the
balancedness of L(R) if R is given as input.

We will now briefly comment on how the above results for line graphs naturally
extend to line graphs of multigraphs. Since two edges of a multigraph H are adjacent
in L(H) if and only if they have at least one endpoint in common, every two parallel
edges of H are true twins in L(H). This means that the line graph of the multigraph H
arises from the line graph of its underlying graph H by adding true twins. As adding a
true twin to a graph only duplicates one column of its clique-matrix, its balancedness
is not affected. Therefore, L(H) is balanced if and only if L(H) is balanced. Moreover,
adding true twins affects neither perfectness nor the fact of being hereditary clique-
Helly (as follows, for instance, from Theorems 2.3 and 2.5 because no odd hole, no odd
antihole, and no pyramid has true twins). Therefore, L(H) is perfect and hereditary
clique-Helly if and only if L(H) is so. Asa consequence, Theorem 3.20 extends to line
graphs of multigraphs as follows.

Theorem 3.23. Let G be the line graph of a multigraph H. Then, the following assertions are
equivalent:

(i) G is balanced.

(ii) G is perfect and hereditary clique-Helly.
(iii) G has no odd holes and contains no induced 3-sun, 1-pyramid, or 3-pyramid.
(iv) H has no odd cycles of length at least 5, and contains no net, kite, or K.

(v) Each component of the underlying graph of H belongs to the class 8 (as defined in the
statement of Theorem 3.20).

Finally, also the linear-time recognition algorithm for balanced graphs within line
graphs can be extended to line graphs of multigraphs.

Corollary 3.24. Given the line graph G of a multigraph, it can be decided in linear time
whether or not G is balanced.
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Proof. In[80], an algorithm is proposed that, given a graph G, computes in linear time
the representative graph R(G) of G, which is the graph that arises from G by successively
removing one vertex of some pair of true twins, as long as this is possible. It is easy
to see that R(G) is unique up to isomorphisms. Indeed, a representative graph of G
is any induced subgraph of G induced by a set of representatives of the equivalence
classes of the relation “is a true twin of” on the vertices of G. As G = L(H) arises from
L(H) by adding true twins, R(G) is also the representative graph of L(H). Thus, R(G)
is an induced subgraph of L(H) and, in particular, R(G) is a line graph. In addition,
as adding true twins does not affect balancedness, G is balanced if and only if R(G)
is balanced. We conclude that the algorithm for computing the representative graph
in [80] reduces the problem of deciding the balancedness of the line graphs of multi-
graphs G to that of deciding the balancedness of the line graphs R(G), which, as we
have seen, is linear-time solvable. ]

3.6 Balancedness of complements of line graphs of multigraphs

We say that a multigraph H is L-balanced if the complement of its line graph is balanced.
In this subsection, we will characterize those complements of line graphs of multi-
graphs that are balanced by determining which multigraphs are L-balanced. As com-
pletes in L(H) correspond to matchings in H, the clique-matrices of L(H) are the max-
imal matching vs. edge incidence matrices of H, which we call the matching-matrices

of H. Consequently, H is L-balanced if and only if its matching-matrix is balanced.

3.6.1 Families of L-balanced multigraphs

The main result of this subsection is Theorem 3.28 which establishes that certain multi-
graph families are L-balanced. The proof of this theorem splits into two parts. The first
part will follow from a sufficient condition for L-balancedness given in Lemma 3.27,
near the end of this subsection. The second part is postponed to Subsection 3.6.4. In
order to prove the aforesaid sufficient condition, we introduce three multigraph fami-
lies: A1, A, and As. In Figure 3.1, a generic member of each of these families is shown,
where light lines represent single edges, bold lines one or more parallel edges, p is any
positive integer, and ay, ..., ap are pairwise false twins.

Our next lemma shows that the multigraph families A4, A, and Aj3 arise naturally

when characterizing those multigraphs H such that L(H) is trivially perfect.

Lemma 3.25. Let G be the line graph of a multigraph H. Then, the following assertions are
equivalent:

(i) G is trivially perfect.



3.6. Balancedness of complements of line graphs of multigraphs 37

[¢5] S I
ar .

$ % (lp .

Aq Az Az

Figure 3.1: Multigraphs families A1, Ay, and Aj. Light lines represent single edges,
whereas bold lines represent one or more parallel edges. Parameter p varies over all pos-
itive integers and ay, ay, ..., a, are pairwise false twins

(ii) H contains no Ps, 2P3, P3 u Cy, or 2Co.

(iii) Some component of H is contained in some member of A1, A, or Az, and each of the
remaining components of H has at most one edge.

Proof. The equivalence between (i) and (ii) follows immediately from the definitions
of trivially perfect graphs and line graphs of multigraphs. It is also clear, by simple
inspection, that each of the members of the families A1, A>, and A3 contains no Ps,
2P3, P3 U Cy, or 2C,. Therefore, the same holds also for any submultigraph of them,
which proves that (iii) implies (ii). To complete the proof, we prove that (ii) implies
(iii). Recall that di;(v) denotes the degree of v in the underlying graph H and that a
vertex v of H is pendant if and only if dy(v) = 1.

Suppose that H satisfies (ii) and let S be any component of H. First assume that S
is a multitree and let P = v1v; ... v be a longest path in S. Since S contains no P5 and
P is maximal, necessarily t < 4, v; and v are pendant vertices, and each neighbor of
V2,...,vi—1 outside P is a pendant vertex. If t < 3, S is contained in some member of
Az, as desired. So, lett = 4. Since S contains no P3 u C; or 2C;, we can assume, by
symmetry, that there is a single edge joining v; to v, and ds(v2) = 2. We conclude
that S is contained in some member of A3z, as desired. So, from now on, we assume,
without loss of generality, that S is not a multitree and let { be the length of the longest
cycle of S. Since S contains no P5, { =3 or { = 4.

Suppose that { = 3 and let T = viv,v3v| be some triangle of S. Since S contains no
Ps or bipartite claw and £ = 3, at most one vertex of T has some neighborv € V(S)\V(T)
and each of these neighbors v is a pendant vertex. Without loss of generality, we as-
sume that dg (v1) = dsg (vp) =2. If ds (v3) > 3 or v3 is joined to some pendant vertex
through two or more parallel edges, then there is a single edge joining v; to v, (be-
cause S contains no P3 u C, or 2C;) and S is contained in some member of Aj. If
ds (v3) < 3 and there are no two parallel edges joining v3 to a pendant neighbor, then
S is contained in some member of Aj.

Finally, suppose that { = 4 and let C be a 4-cycle of S. Since C contains no Ps or
2Cy, V(S) = V(C) and S has no two non-incident pairs of parallel edges. Therefore, S
is some member of A; or A,.
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We conclude that H satisfies (iii), which completes the proof. ]

We say that two edges e; and e; of a multigraph H are matching-distinguishable
if there is some maximal matching of H that contains e; but not e; and vice versa.
Equivalently, e; and e; are matching-distinguishable in H if and only if they are clique-
distinguishable as vertices of L(H). Notice that every two parallel edges are always
matching-distinguishable. It is easy to see that, for each member of A4, A>, and A3, any
two matching-distinguishable edges are incident. Indeed, in each of the multigraphs
represented in Figure 3.1, the edges in bold are pairwise incident and each light edge is

not matching-distinguishable from any edge that is non-incident to it. (Alternatively,

the result follows by applying Theorem 3.8 to L(H) for each multigraph H in Figure 3.1,

as we know that L(H) is trivially perfect.)

Let F be a submultigraph of a multigraph H. We say that F is a fragment of H if
there is an embedding of F in some of the multigraphs represented in Figure 3.1 such
that the edges of F corresponding, under the embedding, to light edges in Figure 3.1
are incident in H to edges of F only. We observe the following.

Lemma 3.26. If Fis a fragment of H, then any pair of edges of F matching-distinguishable in
H are incident.

Proof. Indeed, the edges of F corresponding under the embedding to bold edges are
pairwise incident and, if M is a maximal matching of H that does not contain some
edge e of F corresponding to a light edge, then M must contain some edge e’ of F that is
incident to e and it follows that M cannot contain any edge e” of F that is non-incident
to e (because the edges e” of F that are non-incident to e turn out to be necessarily
incident to e’). O

In Figure 3.2, we introduce multigraph families B1, B,, ..., Bi by presenting a
generic member of each family: light lines represent single edges, bold lines represent
one or more parallel edges, p is any positive integer, and aj, ..., a, are pairwise false
twins. Notice, for instance, that for each member of B;, B3, and By, its edge set can
be partitioned into the edge sets of two fragments. Our next result shows that this
condition is sufficient for L-balancedness.

Lemma 3.27. If the edge set of a multigraph H can be partitioned into the edge sets of two
fragments of H, then H is L-balanced.

Proof. Let Fy and F, be two fragments of H such that {E(F;), E(F2)} is a partition of
E(H). Let G = L(H) and let X = E(F;) and Y = E(F;). Then, {X, Y} is a partition of the
vertex set of G and, by Lemma 3.26, any two vertices clique-distinguishable in G that

belong both to X or both to Y are nonadjacent. So, by Lemma 3.11, G is balanced, as
desired. 0
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Figure 3.2: Multigraph families By, By, ..., Bie. Light lines represent single edges,
whereas bold lines represent one or more parallel edges. Parameter p varies over the positive

integers, and ay, ay, ..., a, are pairwise false twins

In Figure 3.2, we introduce the multigraph families By, Bo, ..., Bis by presenting
a generic member of each family. If follows, by direct application of the above lemma,
that the families By, B3, B4, Bo, B1o, B11, B1z, and By are L-balanced; i.e., each of their
members are L-balanced. In Subsection 3.6.4, we provide separate proofs of the L-
balancedness of each of the remaining families displayed in Figure 3.2. As a result, we

conclude the following.

Theorem 3.28. The families By, By, ..., B1g are L-balanced.

3.6.2 Characterizing balanced complements of line graphs of multigraphs

In this subsection, we characterize those complements of line graphs of multigraphs
that are balanced, including a characterization by minimal forbidden induced sub-
graphs.

Theorem 3.29. Let G be the complement of the line graph of a multigraph H. Then, the
following assertions are equivalent:

(i) G is balanced.
(ii) A clique-matrix of G has no edge-vertex incidence matrix of C3, Cs, or Cy as a submatrix.

(iii) G contains no induced 3-sun, 2-pyramid, 3-pyramid, Cs, Cy, Uy, or Vs.
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(iv) H contains no bipartite claw, Ps u P3, Ps U Cg, 3P3, 2P3 U Ca, P3 U 2C, 3Cy, Cs, C7,
6-pan, braid, 1-braid, or 2-braid.

(v) One of the following conditions holds:

(a) Each component of H has at most one edge.

(b) H has exactly one component with more than one edge, which is contained in a
member of By, By, ..., or Bie

(c) H has exactly two components with more than one edge each, each of which is con-
tained in a member of A1, Az, or As.

Proof. The implication (i) = (ii) follows by definition. The implication (ii) = (iii)
follows from the fact that a clique-matrix of each of 3-sun, 2-pyramid, 3-pyramid, Cs,
Cy, Uy, and V7 contains an edge-vertex incidence matrix of Cs, Cs, or C7 as a submatrix.
The implication (iii) = (iv) follows by definition of the line graph of a multigraph.
The implication (v) = (i) can be proved as follows. If (a) holds, then G = L(H) isa
clique and, in particular, G is balanced. So, assume that (b) or (c) holds. Without loss
of generality, H has no isolated vertices. Moreover, we can also assume that H has no

component with only one edge because removing these components from H amounts

to removing the universal vertices from L(H), which does not affect the balancedness
of L(H) (because each universal vertex corresponds to a column full of 1’s in the clique-
matrix). Therefore, we can assume that H is contained in a member of B4, B, ..., or

B16 or H has two components, each of which is contained in a member of A4, A, or

Ajz. If the former holds, L(H) is balanced by Theorem 3.28, if the latter holds, L(H) is
balanced by Lemma 3.27. This concludes the proof of (v) = (i).

The rest of the proof is devoted to showing that (iv) = (v). In order to do so,
assume that H satisfies (iv). Suppose first that H has two or more components with
two or mores edges each. Since H contains no 3Pz, 2P3 U C, P3 U 2Cy, or 3C, H
has exactly two components S; and S, with at least two edges each. In particular, S,
contains P3 or C, which means that S; contains no Ps, 2P3, P3 u Cy, or 2C; and, by
Lemma 3.25, S1 is contained in some member of Aj, A;, or A3. By symmetry, S; is
also contained in some member of Aj, A, or Asz. This proves that if H has at least two
components with two or more edges each, (c) holds. If each component of H has at
most one edge, (a) holds. Therefore, we assume that H has exactly one component S
having at least two edges. We will prove that S is contained in some member of B4,
Bo, ..., Bis and, consequently, (b) holds, concluding the proof of the theorem.

We split the proof into four main cases. In the first case S is a multitree. In the other
cases, we assume that S is not a multitree and we let { be the length of the longest cycle
in S. Since S contains no Cs, C7, or P5s U P3, necessarily { = 3, 4, or 6.
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Along this proof, we adopt the following convention: Given any two adjacent ver-
tices uwand v of S, we will say that uv is a simple edge if there is exactly one edge joining
u to v; otherwise, we say that uv is a multiple edge. Recall that we say that a vertex v
of S is pendant if and only if d(v) = 1 (where ds(v) denotes the degree of v in the
underlying graph S).

Case 1. S is a multitree.
2.
7

because S contains no Ps U P3. By maximality of P and since S contains no bipartite

Let P = viv,...v¢ be a path of S of maximum length. As S is not edgeless, t >
Moreover, since S is a multitree, the endpoints of P are pendant vertices and t <

claw, the neighbors of v, ..., v¢_1 outside P are pendant vertices of S.
1la t < 4. Then, S is contained in some member of Bis.

1b t = 5. If ds(v3) < 3and any edge joining v; to a pendant neighbor is simple, then
S is contained in some member of Bis. If dg (v3) > 3 or there is a multiple edge
joining v3 to a pendant neighbor, then either ds (v2) = 2 and vyv; is simple, or
ds (v4) = 2 and v4vs is simple (otherwise S would contain 3P3, 2P3 U Cp, P3L2C;,
or 3C»). In either case, S is contained in some member of Bg.

1c t = 6. If dg (V) = ds (vs) = 2 and viv2 and vsvg are simple, then S is contained
in some member of Bi. By symmetry, assume, without loss of generality, that
ds(va) > 2 or viv is multiple. Then, ds(v3) = 2 follows since S contains no
P5s U P3 and no P5s U Cp. In addition, dg (vs) = 2 and vsve is simple, because S
contains no braid, 1-braid, or 2-braid. Thus, also in this case, S is contained in

some member of Bg.

1d t = 7. Since S contains no Ps U P3 and no P5 U Cy, ds(v2) = ds(v4) = ds(ve) =
2 and the edges viv, and vgvy are simple. Therefore, S is contained in some
member of Byg.

Case 2. S has a longest cycle of length { = 3.

In each subcase, we assume that the previous subcases do not hold.

2a There is some triangle T such that all its vertices have some neighbor outside T. Let T =
vivav3vy be such a triangle in S. By hypothesis, S has no 4-cycle and S contains
no bipartite claw. Therefore, for each i = 1,2, 3, each vertex v e Ng(v;)\V(T) isa
pendant vertex of S. Since S contains no 3Pz, 2P3 U Cy, P3 U2Cy, or 3Cy, there are
at most two vertices of T having more than one pendant neighbor or joined to a
pendant neighbor by a multiple edge. Therefore, S is contained in some member
of 'Bl5.
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2b

2c

2d

There is a triangle T touching a 5-path P at an endpoint of P. Let T = vivov3vq touch
P = viwiwawswy at vi. As S contains no Ps U P3 or Ps U Cy and € = 3, dg (v2) =
as (V3) =2, Ns(wl) c {V1,W2,W3}, Ns (W3) c {Wl,WZ,W4}, NS(W4) - {Wz,Wg,},
each v € Ng(vi)\{v2,v3, w1, Wy} is pendant, each v € Ng(w2)\{vi, w1, w3, Wy} is
pendant, and the edges v,v3 and wswjy are simple. If wi and ws are nonadjacent,
then S is contained in some member of B1s. So, assume, without loss of general-
ity, that wy and w3 are adjacent. Then, w; is nonadjacent to v; and to w4 because
S has no 4-cycles, and dsg (wp) = 2 because S contains no P5 U P3. Therefore, S is
contained in some member of Bqg.

There are two touching triangles, say T = vivpvavy and T’ = viwiwyvy. By sym-
metry and since 2a does not hold, we assume, without loss of generality, that
ds(v2) = 2 and ds(w;) = 2. As S has no 4-cycles and no bipartite claw, each
v € Ns(vi)\{v2,v3, Wi, Wy} is a pendant vertex. Since S has no 4-cycles and 2b
does not hold, each v € Ns(v3)\V(T) is a pendant vertex. Symmetrically, each
v € Ns(wy)\V(T’) is also a pendant vertex.

If each of vi and w; is adjacent to some pendant neighbor, then v,v3 is simple
and dg (v3) = 2 (because S contains no P5 u C; or P5 U P3), which means that S

is contained in some member of Bqg.

So, if v1 is adjacent to some pendant neighbor, we can assume that ds(v3) =
ds (W) = 2 and, since S contains no P3 U 2C; or 3C;, one of the following con-
ditions hold:

e v; is adjacent to exactly one pendant neighbor and the edge joining v; to its
pendant neighbor is simple, which means that S is contained in B;.

o At least one of vov3 and wiw; is simple, which implies that S is contained

in a member of By.

So, without loss of generality, assume that v; is not adjacent to any pendant
neighbor. If w; is adjacent to at least two pendant neighbors or there is a multiple
edge joining w» to a pendant neighbor, then v,v3 is simple (because S contains
no 1-braid or 2-braid) and, as a result, S is contained in some member of B¢. If
wy is adjacent to at most one pendant neighbor and any edge joining w; to a pen-
dant vertex is simple, then, symmetrically, v3 is adjacent to at most one pendant
neighbor and any edge joining v3 to a pendant vertex is simple and we conclude
that S is contained in some member of B,.

There is an edge touching two different triangles. Since S has no 4-cycles and 2c does
not hold, any pair of different triangles of T in S are vertex-disjoint. Let viw; be
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2e

2f

an edge touching the two triangles T = vivovzvi and T = wiwowswy in S. Since
S has no 4-cycle and 2b does not hold, ds(w;) = ds(w3) = ds(v2) = ds(v3) = 2.
As S contains no bipartite claw and 2c does not hold, each v € Ng(vi)\{v2, v3, w1}
is a pendant vertex and also each v € Ng(w1)\{wy, w3, v1} is a pendant vertex. If
none of the edges vov3 and wows is multiple, S is contained in some member of
B1e. If vavs is multiple, then wyows is simple (because S contains no 2-braid) and
ds (v1) = 3 (because S contains no P5 u C;), and we conclude that S is contained
in a member of By.

There is a triangle T touching a 4-path P at an endpoint of P. Let T = v1vpv3vq touch
P = viwiwows at v1. Since 2a does not hold, we assume, without loss of gen-
erality, that dsg (v2) = 2. As 2c does not hold, vi and w; are nonadjacent. Since
S has no 4-cycles, vi and w3 are nonadjacent. As 2d does not hold, w1 and w3
are nonadjacent. Since S has no 4-cycles and no 5-cycles, v3 is nonadjacent to wy,
wy, and wz. So, two vertices of V(T) u V(P) are adjacent only if they are adjacent
in T or in P. Since 2b does not hold, ws is a pendant vertex. As S contains no
P3 U Ps and { = 3, there is at most one vertex v € Ng(v3)\{vi,v2} and, if so, vis a
pendant vertex and vvs is simple. Since S has no 4-cycles, 2c does not hold, and
S contains no bipartite claw, each v € Ns(vi)\{v2,v3, w1} is a pendant vertex. As
2d does not hold and S contains no bipartite claw, each v € Ng(wq)\{vi, wa} is
a pendant vertex. Since 2b does not hold, each vertex v e Ng(wy)\{wy, w3} is a
pendant vertex.

If w; has a pendant neighbor or wows is multiple, then ds (wy) = ds (v3) = 2and
Vo3 is simple (otherwise S contains Ps u P3, Ps u Cp, braid, 1-braid, or 2-braid)
and, therefore, S is contained in some member of B1s. Hence, we can assume

that dg (w2) = 2 and wowy is simple.

If ds(v3) = 3 or vyv3 is multiple, then ds(v1) = 3 (because S contains no P5 U P3
or P; U Cy) and S is contained in some member of B1y. Otherwise, S is contained
in some member of B1g.

None of the previous subcases holds. Let T = v1vov3vy be triangle of S. Suppose, by
the way of contradiction, that vi has two non-pendant neighbors different from
v and v3. Let wi, wa € Ng(v1)\{v2,v3} such that w; and w, are non-pendant.
Since w; is non-pendant, there exists some vertex w3 € Ng(w1)\{v1}. As S has
no 4-cycles and 2c¢ does not hold, wz ¢ V(T) U {wy,wy}. Similarly, there is a
vertex wg € Ng(Wp)\{v1} and wy ¢ V(T) U {w1, Wy, w3}. But then, S contains a
bipartite claw, a contradiction.

Hence, each vertex of T is adjacent to at most one non-pendant vertex notin V(T).
Since S has no 4-cycles, 2c and 2e do not hold, and { = 3, if w is a non-pendant
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neighbor of v; for some i € {1,2,3}, then each v € Ng(w)\{v;} is a pendant
vertex.

Suppose that v; is adjacent to some non-pendant vertex wy such that wy is adja-
cent to two pendant neighbors or there is a multiple edge joining w; to a pendant
neighbor. Since S contains no P5 U P3, P5s u Cy, 3P3, 2P3 U Cp, P3 U 2Cy, or 3Cy, if
ds(v1) = 4, then ds(v2) = ds(v3) = 2 and one of the following holds:

e ds(v1) = 4 and the edge joining v; to a pendant vertex is simple and, con-
sequently, S is contained in some member of By3.

e V,v3 is simple and S is contained in some member of Bye.

So, we assume that dg (v1) = 3. Since 2a does not hold, we assume, without loss
of generality, that ds (v3) = 2. Since S contains no P5 u P3, P5 u Cp, braid, 1-braid,
or 2-braid, ds(v2) < 3 and if there is v € Ns(v2)\{v1,Vv3}, then v is pendant and
oV is simple. We conclude that S is contained in some member of Bo.

So it only remains to consider the case in which each non-pendant vertex w of v;
for some i € {1,2, 3} satisfies that ds(w) = 2 and that, for each w’ € Ns(w)\{vi},
ww’ is simple. Since 2a does not hold, S is contained in some member of B1g.

Case 3. S has a longest cycle of length { = 4.

In each subcase, we assume that the previous subcases do not hold.

3a There are two touching 4-cycles in S, say C = vivavzvavy and C' = viwoawzwyvy.

3b

Since S has no 5-cycle and contains no P3 u P5, V(S) = V(C) u V(C’). Since S
contains no P5 U Cy, the edges vyv3, v3v4, wiwy, and wows are simple. If vyvy
is multiple, then there is no edge v1v3. Symmetrically, if wyws is multiple, then

there is no edge viw,. We conclude that S is contained in some member of B,,
Bg , Or 'B4.

Thereis a triangle T touching a 4-cyclein S. Let C = vivovavgvy touch T = viwiwovy.
As S has no 5-cycle and contains no bipartite claw, we have Ns(v2) S {v1,v3,v4},
Ns(va) € {v1,v2,v3},and Ng(v3)n{wi, wy} = . This also means that Ng(w1)n
V(C) = Ns(wz2) nV(C) = {v1}. Since S contains no Ps u P3 and 3a does not hold,
ds(w1) < 3 and we assume, without loss of generality, that ds(wy) = 2.

Let us consider the case when dg (w1) = 3 or wiw, is multiple. Since S contains
no Ps U P3 or Ps U Cp, Ng(v1) € V(C) u V(T), Ns(v3) € V(C), and if there is
some w3 € Ng(w1)\{vi, w2} then ws is a pendant vertex of S and wyws is simple.
In addition, v,v3 and v3v4 are simple because S contains no 1-braid or 2-braid.
If vovy4 is not a multiple edge of S, then S is contained in some member of Bs.
Otherwise, vivs is not an edge of S (because S contains no 1-braid or 2-braid)
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and S is contained in some member of B;,. So, from now on, we assume that
dg (wy) = dg (W) = 2 and wiw; is simple.

Suppose that v, and v4 are adjacent. Since S contains no bipartite claw, each
v e Ns(vi)\(V(T) u V(C)) is a pendant vertex of S. So, if Ns(v3) < V(C), then
S is contained in some member of B1,. Therefore, we can assume that there is
some w3 € Ng(v3)\V(C). Since S contains no bipartite claw, P5s U P3, or P5s u Ca,
vivzisnotanedgeof S, |[Ns(v3)\V(C)| = 1, w3 is a pendant vertex of S, and v3ws
is simple. We conclude that S is contained in some member of B1;.

It only remains to consider the case when v, and v, are nonadjacent. Due to the
first remarks of this subcase, Ns(v2) = Ng(v4) = {v1,v3}. Notice that each v €
Ns(vi)\(V(T) u V(C)) satisfies Ns(v) < {v1,v3} because S contains no bipartite
claw. If each v € Ng(v3)\{v1} satisfies that Ns(v) S {v1,v3}, then S is contained
in some member of B14. So, we can assume that there is some w3 € Ng(v3)\{v1}
and some wy € Ns(ws)\{v1,v3}. By construction, wz, ws ¢ V(C) u V(T). Then,
Ns(wsz) = {v3, w4} and wzwy is simple since S contains no braid or 1-braid. In
addition, Ns(wyg) S {v3, w3} because S contains no P3 u P5. Since S contains
no bipartite claw, each v € Ng(v3)\{v1, V2, v4, W3, Wy} satisfies Ns(v) < {vi,v3}.
Thus, S is contained in some member of Be.

S contains Ky 3. Equivalently, suppose that there are two vertices vi,v3 € V(S)
such that Ns(v1) n Ns(v3) consists of at least three vertices. Let v, be a vertex
of Ns(v1) n Ng(v3) of maximum degree in S and let v4 and vs be any two other
vertices of Ns(v1) " Ng(v3). Since S has no 5-cycle and contains no bipartite claw,
{va,V4,Vs} is a stable set, ds(v4) = ds(vs) = 2, and each v € Ns(v2)\{v1,v3} is a
pendant vertex.

Suppose that each vertex v e (Ns(vi) U Ns(v3))\{vi,v2,v3} is such that Ng(v) <
{v1,v3}. If v, is adjacent to at most one pendant vertex and any edge joining v,
to a pendant vertex is simple, then S is contained in some member of Bys. So,
assume, on the contrary, that v, is adjacent to at least two pendant vertices or v,
is joined to a pendant vertex by a multiple edge. Then, Ns(v1) S {v2,V3, V4, V5}
and Ns(v3) € {v1,v2,v4,V5} (because S contains no Ps U P3), each of the edges
V1V4, V1V5, V3V4, V3Vs is simple (because S contains no 1-braid and no 2-braid) and,
consequently, S is contained in some member of Bi4. So, we can assume that
there is some vertex wy € Ng(v1)\{v2,v3} such that Ng(w1) & {vi,v3} and let
wy € Ng(wq)\{v1,v3}. Since S contains no P3 u Ps, ds (v2) = 2. Notice that,
by construction, w; is nonadjacent to vs; otherwise, wi € Ns(vi) n Ns(v3) and
ds(wq) > 2 = ds(v2), contradicting the choice of v,. Since S contains no braid
or 1-braid, dg (w1) = 2 and wyw, is simple. Notice that w; is a pendant vertex
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because S has no 5-cycle, contains no Ps U P3, and 3b does not hold. Since S
contains no bipartite claw, wy is the only vertex v € Ng(v1)\{v2,v3} such that
Ns(v) is not contained in {v,v3}. By symmetry, there is at most one vertex
w3 € Ns(v3)\{v1,v2} such that Ns(ws3) & {vi,v3} and, if so, dsg (w3) = 2, the
vertex wy = Ng(wz)\{vs} is a pendant vertex, and wzwy is simple. Since, by
construction, all vertices v € (Ng(v1) u Ng(v3))\{v1,v3, w1, w3} are such that
Ns(v) € {v1,v3}, S is contained in some member of B1.

There is a 4-cycle C = vivovavyvy such that each vertex vi of C has a neighbor w; ¢
V(C). Since S has no 5-cycle and 3c does not hold, Ns(vi) n Ns(v;) < V(C) for
all i and all j. In particular, w1, wy, w3, and wy are pairwise different. Since S
contains no Ps U P3 or P5 U Ca, wj is the only vertex in N (v;)\V(C) and viwj is
simple for each i = 1,2, 3,4. Moreover, wi, wy, w3, and wy are pendant vertices
as S has no 6-cycle and contains no bipartite claw. Finally, since S contains no
bipartite claw, C is chordless and we conclude that S is a member of Bs.

There is a 4-cycle C touching a 4-path P at an endpoint of P. Let C = vivovavgvy
touch P = viwiwows in vq. Since { = 4, S contains no P5 u P3 or P5 u Cy,
and 3a does not hold, Ns(w3) < {w1,w,} and wows is simple. Similarly, and
since 3b does not hold, Ns(wy) = {w1,ws}. Since S has no 5-cycles and 3c does
not hold, Ns(w1) n V(C) = {v1}. Since { = 4 and S contains no Ps5 u P3, each
v € Ng(wq)\{vi,wp, w3} is a pendant vertex of S, Ns(v1) € V(C) u {w}, and
Ns(v2), Ns(v3), Ns(v4) € V(C). Notice also that v,v3 and vs3vs are simple be-
cause S contains no Ps u Cy. Therefore, if vov4 is not a multiple edge of S, then
S is contained in some member of Bg. If, on the contrary, vov4 is multiple, then
v1 and v3 are nonadjacent (because S contains no Ps U Cz) and S is contained in
some member of B1p.

There is a 4-cycle C = vivavavavy such that three of its vertices have a neighbor outside
C, say, v; has a neighbor w; ¢ V(C) for each i = 1,2,3. Then, Ng(v1)\V(C),
Ns(v2)\V(C), and Ns(v3)\V(C) are pairwise disjointand eachw € Ng(v;)\V(C),
for some i € {1, 2,3}, is a pendant vertex because 3¢ does not hold and S has no
5-cycles or 6-cycle and contains no Ps U P3. Since 3d does not hold and S contains
no bipartite claw, Ns(vs4) = {v1,v3}. Finally, w; is the only pendant neighbor of
vz and vowy is simple because S contains no Ps u P3 or Ps U C;. We conclude that

S is a contained in some member of B1s.

There is a 4-cycle C = vivyv3vav1 where vy is adjacent to a non-pendant vertex wy ¢
V(C). Let wy be any vertex of Ng(w1)\{v1}. Then, w, ¢ V(C) because S contains
no 5-cycle and 3c does not hold. As S has no 5-cycle or 6-cycle and 3b does
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not hold, Ns(wz) n V(C) = . Therefore, w; is a pendant vertex as 3e does
not hold. Notice that Ns(v2), Ns(v4) S V(C) because S contains no bipartite
claw. Since w, is an arbitrary vertex of Ng(w1)\{v1}, each w € Ng(wy)\{v1} is
a pendant vertex. Since wy is an arbitrary non-pendant vertex in Ng(v1)\V(C),
for every non-pendant vertex wi in Ng(v1)\V(C), each w € Ng(wj)\{v1} is a
pendant vertex. Thus, since S contains no P; u Ps, wy is the only non-pendant
vertex in Ng(v1)\V(C); i.e., each v € Ng(v1)\{v2,v3,v4, W1} is a pendant vertex.

Suppose first that dsg (w1) > 2 or wiwy is multiple. Since S contains no Ps u P3 or
P50U Cy, vi has no pendant neighbors and N (v3) € V(C). If vov4 is not a multiple
edge, then S is contained in some member of By, but if vov4 is a multiple edge,
then v1v3 is not an edge of S (because S contains no 1-braid or 2-braid) and S is
contained in some member of B1y. So, from now on, we assume that dg (w1) =2
and wiw; be simple.

Suppose that v, and v4 are adjacent. If v3 is adjacent to some v € V(S)\V(C),
then v is a pendant vertex and v3v is simple (because S contains no Ps u P3 or
Ps U C2) and vy is not adjacent to v3 (because S contains no bipartite claw), so S
is contained in some member of B1;. Otherwise, S is contained in some member
of B1z. So, from now, we assume that v, and v4 are nonadjacent.

If v3 also has some non-pendant neighbor wz € V(S)\V(C), then, reasoning with
w3 as we did with wy, we prove that each v € Ng(v3)\V(C) different from ws
is pendant and we can assume that dg (w3) = 2 and, if wy is the only vertex of
Ns(w3)\{vs}, then wawy is simple. Thus, S is contained in some member of By,
even if v3 has no non-pendant neighbor.

None of the previous subcases holds. Since { = 4, there exists some 4-cycle C =
Vivav3vgvy in S. Since 3g does not hold, each v € Ng(v;)\V(C) is pendant, for
eachi = 1,2,3,4. Since 3f does not hold, there are at most two vertices of C
that are adjacent to pendant vertices. If there are less than two vertices of V(C)
adjacent to pendant vertices, S is contained in some member of B3. Therefore,
we assume that there are two vertices of V(C) adjacent to pendant vertices, say
vy and vj, where j = 2 or j = 3.

If each of the vertices vi and vj is adjacent to two pendant vertices or joined to
some pendant vertex through a multiple edge, then j = 3 and v; is nonadjacent
to v3 (because S contains no braid, 1-braid, or 2-braid). We conclude that S is

contained in some member of Bg.

Finally, if v; is adjacent to only one pendant vertex through a simple edge, then

S is contained in some member of Bqs.
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Case 4. S has a longest cycle C of length { = 6,

Let C = vivav3v4vs5Vevy. Since S is connected and contains no 6-pan, the vertices of
C are the only vertices of S. As S contains no 5-cycle, C has no short chords.

Suppose first that C has two multiple chords, say viv4 and vovs are multiple edges.
Since S contains no 2-braid, there is no edge v3vs in S and each of v,v3, v3vy, vsve, and
VeV is simple. This means that S is a member of B;. So, from now on, we can assume
that C has at most one multiple chord.

Since C has at most one multiple chord, S would belong to Bg if no edge of C were
multiple. Therefore, from now on, we assume that viv; is multiple. As S contains no
2-braid, none of v3v4 and vsve is multiple and at most one of vivgs, Vo3, V5Ve is multiple.
In its turn, this means that, if C has no multiple chords, then S is a member of B or
Bg. So, from now on, let C have exactly one multiple chord.

Since S contains no 2-braid, if v3ve were the only multiple chord of S, then v4vs
would not be multiple, vi would be nonadjacent to v4, vo would be nonadjacent to vs,
and, as a result, S is a member of Bg, By symmetry, we assume that the only chord of
S is viv4. Recall that the only possible multiple edges of C are vivg, vov3, and v4vs and
that at most one of them is multiple. If vivs is multiple, then S is a member of Bg. If
45 is multiple, then there is no edge v3ve in S (because S contains no 2-braid) and,
consequently, S is a member of By. If vyv3 is multiple, then v,vs and vave are not edges
of S (because S contains no 2-braid) and, consequently, S is a member of Be. Finally, if
none of v4vs, v1ve, and vov3 is multiple, then S is a member of Bs.

In each of the Cases 1 to 4 above, we proved that the component S of H is contained
in some member of By, By, ..., or Bis. Consequently, case (b) of assertion (v) holds,
which completes the proof. O

3.6.3 Recognizing balanced complements of line graphs of multigraphs

We will derive, from the above theorem, the existence of a linear-time recognition
algorithm for balanced graphs within complements of line graphs of multigraphs.

Given a graph G, we define a pruned graph of G as any maximal induced subgraph
of G having no three pairwise false twins and no universal vertices. Let V1, V3, ..., Vq
be the equivalent classes of the relation “is a false twin of” on the set of vertices of
G. We say that the equivalent class V; is universal if some vertex of V; is a universal
vertex of G. Clearly, if V; is universal, then |V;| = 1. The pruned graphs of G are those
subgraphs of G induced by some set Vj UV, u...UV{ such that V{ € V; and |V{| = B4,
foreachi=1,2,...,q, where

min(|V;|,2) if V; is not universal

L=
0 otherwise.
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Since any two vertices that belong the same V; are nonadjacent and have the same
neighbors, the pruned graphs of G are unique up to isomorphisms and we denote
any of them by P(G).

Lemma 3.30. A pruned subgraph of a graph G can be computed in linear time.

Proof. In order to compute P(G), we first construct the modular decomposition tree
T(G) of G. Then, two vertices u and v of G are false twins if and only if the leaves of
the modular decomposition tree representing them are children of the same parallel
node. This means that we can find a subset of vertices inducing a pruned graph of G
by marking for exclusion all universal vertices of G and by performing a breadth-first
search on the modular decomposition tree of G in order to mark for exclusion also the
third, fourth, fifth, and so on, leaf children of each parallel node. Since the modular
decomposition tree can be computed in linear time, P(G) can also be computed in
linear time. O

The following fact about P(G) is crucial for our purposes.

Corollary 3.31. Let G be the complement of the line graph of a multigraph. Then, G is bal-
anced if and only if P(G) is balanced.

Proof. If G is balanced, then clearly P(G) is also balanced (because P(G) is an induced
subgraph of G). In order to prove the converse, we assume that G is not balanced and
we will prove that P(G) is not balanced. Let W be a subset of vertices inducing a min-
imal induced subgraph of G that is not balanced. By Theorem 3.29, the subgraph of
G induced by W is isomorphic to 3-sun, 2-pyramid, 3-pyramid, Cs, C7, Uy, or V7. In
particular, there are no three pairwise false twins of G in W and there is no universal
vertex of G in W. Therefore, if the equivalent classes V1, V3, ..., Vy and ; are as de-
fined earlier and W; = W Vi, then |Wj| < i foreachi=1,2,...,q. So, it is possible
to find Vl',Vz’,...,V(’] such that W; € V! € Vj and |V{| = B; foreachi = 1,2,...,q.
Then, G’ = G[VjuV;u---UV(]isapruned graph of G and G’ is not balanced because
W < V(G’) and G’[W] = G[W] is not balanced. O

Let G be the complement of the line graph of a multigraph and let k be a fixed
integer. According to Corollary 3.31, if P(G) has at most k vertices, we can decide
whether G is balanced in linear time by computing P(G) in linear time and then de-
ciding whether P(G) is balanced in constant time. (Indeed, the obvious O(n”)-time
recognition algorithm for balancedness among complements of line graphs of multi-
graphs that follows from assertion (iii) of Theorem 3.29 becomes constant-time when
n = O(1).) In what follows, we will fix k = 40 and the remainder of this subsection is
devoted to proving that we can decide in linear time whether P(G) is balanced even
if P(G) has more than 40 vertices.
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Figure 3.3: Multigraph family B1,. Light lines represent single edges, whereas bold lines
represent one or more parallel edges. Parameter p varies over the positive integers, and
ai, ay, ..., Qp are pairwise false twins

We denote by L~1(G) any multigraph H without isolated vertices such that L(H) =
G and whose underlying graph H satisfies L(ﬁ) = R(G), where R(G) is the represen-
tative graph of G as defined in Section 3.5. Given a graph G, a multigraph L }(G) can
be computed in linear time of G (see [78, p. 67-68]). We say that two incident edges e;
and e; of a multigraph H are twins if they are incident to the same edges of E(H). We
say that a multigraph H is reduced if each pair of twin edges are parallel. By construc-
tion, H = L 1(G) is reduced. In Figure 3.3 we introduce the multigraph family B{,.

Corollary 3.32. Let G be the complement of the line graph of a multigraph and suppose that
P(G) has more than 40 vertices. If H = L~Y(P(G)), then the following conditions are equiva-
lent:

(i) G is balanced.
(ii) H is a connected submultigraph of some member of B1s or Bi,.

(iii) H is connected, has exactly two vertices vi and v, that are incident to at least six edges
each, and, for each i = 1,2, there is at most one vertex w; that is adjacent to v; and
such that there is some xi € Ny (wi)\{v1,v2} and, if so, each of the following holds:
Nu(wi) € {xi,Vv1,v2}, there is exactly one edge e; joining wy to xi, and e; is the only
edge incident to x;. (It is possible that w1 = wy.)

Proof. Suppose that G is balanced and let H = L~1(P(G)). As H has no isolated vertices
and P(G) has no universal vertices, each component of H has at least two edges. Since
G is balanced, P(G) is balanced; i.e., H is L-balanced. So, by Theorem 3.29, either
H is a connected submultigraph of some member of By, B», ..., Bis or H has two
components, each of which is contained in a member of A;, A;, or A3. But, as P(G) has
more than 40 vertices, H has more than 40 edges. Since, by construction, P(G) has no
three pairwise true twins, H has no three pairwise parallel edges. Since, in addition, H
is reduced, H is necessarily a connected submultigraph of Bq5 or B{,. Conversely, if H
is a submultigraph of some member of Bys or B, then P(G) is balanced by Theorem
3.29 and, then, G is also balanced by Corollary 3.31. This concludes the proof of the

equivalence between (i) and (ii).
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Since clearly (iii) implies (ii), it only remains to show that (ii) implies (iii). So, as-
sume that H is is a connected submultigraph of some member of By5 or B{,. Since
H = L 1(P(G)), H has no three pairwise parallel edges. Therefore, H has at most two
vertices incident to at least six edges. Moreover, since H has at least 40 edges, H has
exactly two vertices incident to at least six edges each, and (iii) clearly holds. ]

The next result implies that if P(G) has more than 40 vertices, then we can either

detect that G is not balanced or compute L~!(P(G)) efficiently.

Corollary 3.33. Let G be the complement of the line graph of a multigraph. Let np and msyp
be the number of vertices and edges of P(G) and suppose that ny > 40. If

mp > %(ny _ 3)(np — 36) 3.1)

does not hold, then G is not balanced. On the other hand, if (3.1) holds, then H = L=1(P(G))
can be computed from G in linear time.

Proof. Suppose first that G is balanced and let H = L~1(P(G)). Then, H has np edges
and satisfies condition (iii) of Corollary 3.32. Let A be the set of vertices a of H such
that Ny(a) € {v1,v2}. Since ﬁ has no three pairwise true twins, H has no three
pairwise parallel edges. Moreover, as H is reduced, there are at most two edges joining
vi to pendant vertices in A, for each i = 1,2. Let E; be the set of edges joining v; to
non-pendant vertices in A, for each i = 1,2. Since H is a submultigraph of a member
of By5 or B, and Hisreduced, |Eq|+|Ez| = np—12. Without loss of generality, assume
that |E1] > |Ez|. Then, %(Tlg) —-12) < ||| < %ng: because each non-pendant vertex of
A is joined to v1 by at most two edges and joined to v, by at least one edge. So, since

each edge of E; is incident to at most two edges of E; and P(G) = L(H),
2
my = [B2|([B1] —2) = (np — 12— [E1])([E1] = 2) = 5 (ng — 3)(ny — 36).

This proves that if (3.1) does not hold, then G is not balanced.

Suppose now that (3.1) holds. We have seen that P(G) can be computed in O(m+n)
time, where n and m are the number of vertices and edges of G. The complement of
P(G) can obviously be computed in O(n?) time. In addition, H = L~!(?(G)) can be
computed from P(G) in linear time of P(G), which is again O(n3). Notice that since
mp < m and we are assuming that (3.1) holds, O(n3) is O(m). We conclude that H

can be computed from G in O(m + n) time, as desired. O

Let G be the complement of the line graph of a multigraph. We know that if P(G)
has at most 40 vertices, we can decide whether G is balanced in linear time. So, sup-
pose that P(G) has more than 40 vertices and let np and myp be the number of vertices
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and edges of P(G). If (3.1) does not hold, we know that G is not balanced. Otherwise,
we can decide whether G is balanced in linear time by first computing H = L~1(P(G))
and then checking the validity of condition (iii) of Corollary 3.32. As a conclusion, we
have the following.

Corollary 3.34. Given a graph G that is the complement of the line graph of a multigraph, it
can be decided whether or not G is balanced in linear time.

3.6.4 Lemmas for the proof of Theorem 3.28

This subsection is devoted to prove that each of the multigraph families B1, Bs, B,
By, Bs, B1z, B1s, and Bq5 is L-balanced.

A bicoloring of a {0, 1}-matrix is a partition of its columns into red and blue columns
such that every row with two or more 1’s contains at least a 1 in a red column and at
least a 1 in a blue column. Clearly, the edge-vertex incidence matrix of an odd cycle
cannot be bicolored. Interestingly, a {0, 1}-matrix is balanced if and only if each of
its submatrices is bicolorable [8]. Let A be a submatrix of the matching-matrix of a
multigraph H and let M and € be the sets of maximal matchings and edges of H corre-
sponding to the rows and columns of the submatrix A, respectively. In this context, we
say that a partition {1, 2} of € is a bicoloring of A if for each M € M either M n €| < 1
or M intersects both &1 and &,.

We will make repeated use the following lemma.

Lemma 3.35. Let H be a multigraph that is not L-balanced. Then, a matching-matrix of H
has some submatrix A which is an edge-vertex incidence matrix of an odd chordless cycle and
let € be the set of edges of H corresponding to the columns of A. If X is a set of pairwise
incident edges of H, there must be some maximal matching M of H such that M.~ €| = 2 and
MnéEnX=¢.

Proof. Let M be the set of maximal matchings of H corresponding to the rows of the
submatrix A. Since A is an edge-vertex incidence matrix of an odd chordless cycle,
IM n €| = 2 for each M € M. Since X consists of pairwise incident edges of X, |[M n
€ n X| < 1 for every matching M of X. As [M n €| = 2 for each M € M, it follows
that [[M n €)\X)| = 1 for each M € M. Since A is not bicolorable, {X n €, E\X} isnot a
bicoloring of A and, necessarily, there is some M € M such that M n X n €[ =0. O

If u, v, w are three pairwise adjacent vertices of H of a multigraph, we denote by
Tr(u, v, w) the set of all edges of H joining any two of the vertices u, v, and w. Recall
that E(v) denote the set of edges of H incident to v.

Lemma 3.36. The family B is L-balanced.
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b bg by b_5 b1 b2 b.é b1 ba b1 b2 b1 b2
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Figure 3.4: Vertex labeling of the multigraph H for the proofs of Lemmas 3.36 to 3.43.
Light lines represent single edges, whereas bold lines represent one or more parallel edges.
Parameter p varies over the positive integers, and ay, ay, .. ., ap, are pairwise false twins

Proof. By the way of contradiction, consider a not L-balanced multigraph H € B.
Label its vertices as in Figure 3.4 and let A and € be as in Lemma 3.35.

We claim that by b € €. By Lemma 3.35 applied to X = Ty(b1, by, b3), there is some
maximal matching M of H such that M n €] = 2but M n € n X = . Necessarily,
bibs € M n € and, in particular, b1bg € &, as claimed.

By Lemma 3.35 applied to X = Ep(by), there is some maximal matching M of H
such that M n & = 2but M n € n X = &. Necessarily, M n € consists of one edge
joining b, to bz and one edge joining by to bs and, by the maximality of M, b1bs € M.
So, as we proved that b1 b € £, we conclude that bybg € M n € n X, which contradicts
M n € n X = . Hence, any member of B is L-balanced. ]

Lemma 3.37. The family Bs is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H € Bs.
Label its vertices as in Figure 3.4 and let A and € be as in Lemma 3.35.

By Lemma 3.35 applied to X = Ey(b2), there is a maximal matching M of H such
that M n €| = 2but M n € n X = &. So, necessarily, M n € contains at least one of
bibs and bzby. Symmetrically, M n € contains at least one of bybs and bsbg. So, we
assume, without loss of generality, that b;bs, baobg € €.

We claim that from bibs, bobg € € it follows that bsby, bybg € €. By Lemma 3.35
applied to X = E}(b1), there is some maximal matching M of H such that M n €| = 2
but MnénX = . Asbibs € EnX, it follows that bibs ¢ M. Thus, by the maximality
of M, M contains an edge joining by to either b, or bs. Then, as M n € consists of two
non-incident edges and is disjoint from Ep(b;), necessarily bsb; € M n € and, in
particular, b3b; € €. Symmetrically, bybg € €.
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Let R = (En(bz) U {bsbg}) n € and B = E\R. Then, {R, B} is a partition of €
and we claim that {R, B} is bicoloring of A. Let M the set of maximal matchings of
H corresponding to the rows of A and let M € M. As A is an edge-vertex incidence
matrix of an odd chordless cycle, [M n €| = 2. Suppose, by the way of contradiction,
that M n R = . This meas that M n € is disjoint from Ey(b2) u {bsbg}. So, since
IM n €| =2, M n € consists of one edge incident to by and one edge incident to bz but
none of them incident to b, and, by the maximality of M, bobs € M. Consequently,
babs € MNR, a contradiction. This contradiction arose from assuming that MnR = ¢.

Suppose now that M n B = . This means that M n € consists of two edges
contained in Ep(bz) U {bsbg}. Since M is a matching, M n € consists of bybg and one
edge incident to by. Then, the maximality of M implies that M n {b1bs, b3by} # &
and, consequently, (M n B) n {b1bs, bsby} # J, a contradiction. This contradiction
arose from assuming that M n B = (.

So, we have proved that foreach M € M, MnR # and MnB # ¢, which proves
that {R, B} is a bicoloring of A, contradicting the choice of A. Hence, any member of
Bs is L-balanced. O

Lemma 3.38. The family By is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H € Bs.
Label its vertices as in Figure 3.4 and let A and € be as in Lemma 3.35.

We claim that bybs € €. Suppose, by the way of contradiction, that bybs ¢ €. By
Lemma 3.35 applied to X = E(b3), there is some maximal matching M of H such
that M n €| =2but M n € n X = . Necessarily, M n € consists of the edge bsbg
and an edge joining b to by. In particular, bsbe € €. Similarly, by Lemma 3.35 applied
to X = Ey(bs), there is some maximal matching M of H such that M n €] = 2 and
M n & nX = & Necessarily, M n € consists of bsbs and an edge joining b; to bo.
Hence, the maximality of M implies that bsbg € M and, since bsbg € &, it follows
that bsbg € M n € n X, contradicting M n € n X = F. This contradiction arose from
assuming that bsbs ¢ € and completes the proof of the claim.

Moreover, we claim that no edge joining bs to bs belongs to €. Suppose, by the way
of contradiction there is some edge e € € joining b3 to be. Let M be the set of maximal
matchings of H corresponding to the rows of A. As A is an edge-vertex incidence
matrix of an odd chordless cycle, there are two different maximal matchings M, M’ €
M such that M n €] = [M n €| =2 and e e M, M. Since every maximal matching of
H containing e also contains bsbs, we conclude that M n € = M/ n € = {e, bybs}. This
means that rows and columns of A corresponding to M, M’ and e, bybs determine a
2 x 2 submatrix of A full of 1’s, which contradicts the choice of A. This contradiction

arose from assuming that e € £ and completes the proof of the claim.
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We also claim that bsbg € €. Suppose, by the way of contradiction that bsbg ¢ &,
by Lemma 3.35 applied to X = Ey(by), there is some maximal matching M of H such
that Mn €| =2and M nEnX = J. Asbsbe ¢ €, M n € consists of bjbg and an edge
joining b, to b3 and the maximality of M implies that bybs € M. Thus, since bsbs € €,
it follows that bybs € M n & n X, which contradicts M n € n X = ¢&. This contradiction
arose from assuming that bsbg ¢ €. This concludes the proof of the claim.

We further claim that b3by, b1bg € €. By Lemma 3.35 applied to X = Ey(bs), there
is some maximal matching M of H such that [Mn €| = 2and MnENX = F. Reasoning
as in the preceding paragraph, b3bs € M N &; otherwise, the maximality of M would
imply that bybs € M and, since bsbs € &, it would follow that bybs e M nEn X, a
contradiction. Suppose, by the way of contradiction, that bjbg ¢ M n €. Then, M n &
consists of bzbs and an edge joining b1 b, and, by maximality of M, bsbs € M. But then,
since bsbg € &, it follows that bsbg € M n € n X, a contradiction. This contradiction
arose from assuming that b1bg ¢ M n €. As we proved that bzbs, bibg € M 1 €, in
particular bsby, bibg € &, as claimed.

LetR = (En(b3) U {bsgbs}) n € and B = E\R. Then, {R, B} is a partition of £ and we
claim that {R, B} is a bicoloring of A. Recall that M is the set of maximal matchings of
H corresponding to the rows of A and let M € M. Since A is an edge-vertex incidence
matrix of an odd chordless cycle, [M n €| = 2. Suppose, by the way of contradiction,
that M n R = . This means that M n € is disjoint from E}(b3) U {bsbs}. So, since
IM N €| = 2, necessarily M n & consists of bsbe plus an edge joining by to b, and, by
the maximality of M, bzbs € M, which implies bsby € M N R, a contradiction. This
contradiction arose from assuming that M n R = .

Suppose now that M n B = . This means that M n € consists of two edges
that belong to E(bz) u {bsbs}. Since there is no edge in € joining bz to bg, M N €
consists of bybs and an edge joining b, to bs. Then, the maximality of M implies that
bibg € M and, as bibg € €, b1bg € M n B, a contradiction. This contradiction arose
from assuming that M n B = (.

So, we have proved that {R, B} is a partition of € such that, foreach M € M, MnR #
@and M n B # (; i.e, {R, B} is a bicoloring of A, which contradicts the choice of A.
Hence, any member of B is L-balanced. O

Lemma 3.39. The family By is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H € By.
Label its vertices as in Figure 3.4 and let A and € be as in Lemma 3.35.

By Lemma 3.35 applied to X = Ey(bz), there is some maximal matching M such
that MnE| =2and M nEnX = . Since M n € is a matching of size 2 disjoint from
X, necessarily at least one of b1 bg, b3bs, or bsbg belongs to M n € and, in particular, to
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€. By symmetry, we assume, without loss of generality, that b1bg € €.

We now show that our assumption that bibs € € implies that bsbs € € and, more-
over, that bybz € € or bzby € €. By Lemma 3.35 applied to X = Ey(by), there is some
maximal matching M of H such that M n €| =2and M n € n X = &. Suppose, by
the way of contradiction, that bsbs ¢ M n €. Then, M n € consists either of b,bs and
one edge joining by to bs, or of b3by and one edge joining b to bs. In either case, the
maximality of M implies that bjbs € M and, since we are assuming that b1bg € &, it
follows that bibg € M n € n X, which contradicts M n & n X = ¢F. This contradiction
arose from assuming that bsbg ¢ €. As M n € is a matching of size 2, disjoint from X,
and containing bsbg, necessarily bobs € M n € or bgby € M n €. This completes the
proof of the claim. As we are assuming that b bg, we assume further, without loss of
generality, that bybs, bsbg € €.

Reasoning as in the previous paragraph, from the assumption that bobs € € we
can derive that bsby € €. We conclude that &1 = {b1bg, babs, b3by, bsbg} is contained
in €. LetR = (En(b2) u{bsbe}) n €, and B = E\R. We claim that {R, B} is bicoloring of
A. Let M be a maximal matching of H corresponding to a row of A. By construction,
IM €| =2.If M n &| =2, necessarily M has an edge in R and an edge in B. Notice
that if [M n €4 # 2, necessarily M n &1 = J and, since M n € is a matching of size 2,
M also has one edge in R and one edge in B. This shows that {R, B} is a bicoloring of
A, which contradicts the choice of A. Hence, any member of By is L-balanced. O

Lemma 3.40. The family Bg is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H € Bs.
Label its vertices as in Figure 3.4 and let A and € be as in Lemma 3.35.

By Lemma 3.35 applied to X = E(bs), there is some maximal matching M of H
such that [ M n €| =2and M n € n X = J. By symmetry, we assume, without loss of
generality, that M n € = {b1by, bsbs} and, in particular, b1by, bsbs € E.

We claim that no edge joining bz to bg belongs to €. Suppose, by the way of
contradiction, that there is some edge e € £ joining bz to bs. Since A is an edge-
vertex incidence matrix of an odd chordless cycle, there are two different maximal
matchings M and M’ of H such thate € M,M'and M n &| = M’ n €| = 2. But
{e,b1by, bybs} and {e, biby, bybs} are the only maximal matchings of H containing e
and |{e, b1by, bybs} n €| = 3, a contradiction. This contradiction proves the claim.

We now show that our assumption that b1b,, bybs € € implies that bibs € € or
bsbe € €. By Lemma 3.35 applied to X = E(b2), there is some maximal matching M
of Hsuch that Mn €| = 2and MnEnX = F. Necessarily, M n € consists of one edge
incident to by and one edge incident to b and, since no edge joining bz to bg belongs
to &, it follows that M n € contains bybg or bsbg. In particular, bibs € € or bsbg € €.
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By symmetry, we assume, without loss of generality that b1bs € €.

We further claim that bsbg € €. By Lemma 3.35 applied to X = Ey(by1), there is
some maximal matching M of H such that M n €| =2and M n € n X = . Suppose,
by the way of contradiction, that bsbg ¢ €. In particular, bsbs ¢ M N €. As we proved
that no edge joining bs to bg belongs to £, we conclude that M n € consists either of
the edge bybs and an edge joining b3 to by, or of the edge bybs and an edge joining b,
to b3. In either case, the maximality of M implies that bjbs € M and, since bibe € €,
it follows that bybg € M n € n X, contradicting M n € n X = ¢. This contradiction
arose from assuming that bsbg ¢ €. This concludes the proof of the claim.

As biby, bsybs € € implies that bibg, bsbg € €, by symmetry, biby, bsbg € € implies
that biby € €. Similarly, from bibg, bybs € € follows that bobs € €. We infer that
En(b1) U En(bs) < €. Let R = En(by) and B = E\R. Then, {R, B} is a partition of £
and we claim that {R, B} is a bicoloring of A. Indeed, given any maximal matching M
of H, it contains one edge incident to by, one edge incident to bz, and one edge incident
to bs. As Eyy(b1) = Rand Ey(bs) < B, M contains one edge from R and at least one
edge from B. This proves that {R, B} is a bicoloring of A, contradicting the choice of
A. Hence, any member of By is T-balanced. O

Lemma 3.41. The family By is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H € B3.
Label its vertices as in Figure 3.4 and let A and € be as in Lemma 3.35.

We claim that bsby € €. By Lemma 3.35 applied to X = Ep(by), there is some
maximal matching of M of H such that M n €| =2but M n € n X = &. Necessarily
bsbs € M 1 € and, in particular, bzby € €.

By Lemma 3.35 applied to X = Ep(b3), there is some maximal matching of M
such that [ M n €| = 2but M n € n X = F. Necessarily, boby € M n € and, by the
maximality of M, b3bs € M. Hence, as bzbs € £, we conclude that b3by e M n €N X,
which contradicts M n € n X = . Hence, any member of B13 is L-balanced. O

Lemma 3.42. The family B4 is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H € Bys.
Label its vertices as in Figure 3.4 and let A and € be as in Lemma 3.35.

By Lemma 3.35 applied to X = Ep(b1), there is some maximal matching M of H
such that M n €| =2but M n € n X = J. Necessarily, bobz € M n € or boby € M n €.
By symmetry, we assume, without loss of generality, that bobs € M n €. Then, the
maximality of M implies that bjby € M and, necessarily b1bsy ¢ € (otherwise, b1by
would belong to M n € n X).

By Lemma 3.35 applied to X = E(b3), there is some maximal matching M such
that M n €| =2but M n € n X = . Since byby ¢ €, necessarily bjbz € M n €. Then,
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the maximality of M implies that bobs € M and, necessarily boby ¢ € (otherwise, boby
would belong to M n € n X.)

By Lemma 3.35 applied to X = Ty (b1, by, bs), there is some maximal matching M
of Hsuch that M n €] =2but M n € n X = . Necessarily, M n € contains an edge
incident to by and, in particular, bibg € € or baby € €, which contradicts the conclusion
of the preceding two paragraphs.

Hence, any member of By is L-balanced. O

Lemma 3.43. The family B1s is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H € Bjs.
Label its vertices as in Figure 3.4 and let A and € be as in Lemma 3.35.

We claim that b3by € €. By Lemma 3.35 applied to R = Ey(by), there is some
maximal matching M of H such that [ M n €| = 2but M n € n X = &. Necessarily
bszbs € M n € and, in particular, bzby € €.

By Lemma 3.35 applied to X = Ey(bs), there is some maximal matching M of H
such that M n €] = 2but M n € n X = J. Necessarily, M n € consists one edge
incident to by and one edge incident to by, but none of them incident to bs. Hence,
by the maximality of M, bzbs € M and, as we proved that bzbs € £, we conclude that
bszbgs € M n € n X, which contradicts M n &€ n X = (.

Hence, any member of B15 is L-balanced. O

3.7 Balancedness of a superclass of Helly circular-arc graphs

In this section, we give a minimal forbidden induced subgraph characterization of bal-
ancedness for a superclass of Helly circular-arc graphs. In order to do so, we introduce
the graph families below, which are schematically represented in Figure 3.5.

e Foreacht > 2 and each p even such that 2 < p < 2t, the graph V%t“ has vertex
set {V1,Vv2,...,Vat41, U1, U2}, ViV ... Vo411 is a cycle whose only chord is vivs,

N(u) = {v1,v2}, and N(up) = {VZ,Vg,...,Vp+1}.

e Foreacht > 2, let D?t*! be the graph with {v1,vy,...,V2t11, U1, U2, u3} as vertex
set such that viv;...vo¢11Vv1 is a cycle whose only chords are vy11v; and vyvs,

N(uw) = {vat+1,v1}, N(uz) = {v2,v3}, and N(uz) = {v1,v2}.

e Foreacht > 2 and each even p with4 < p < 2t, let X%t“ be the graph with ver-
tex set {vi,Vv2,...,Vot+1, U1, U, uz, ug} such that viva ... var41vy is a cycle whose
only chords are vy¢y1v2 and vivz, N(w1) = {varq1,vi}, N(u2) = {vo2,v3,us},
N(us) = {vor41,v1,v2, us}, and N(ug) = {vi,v2,v3,...,Vp, up, uz}.
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Figure 3.5: Families of minimally not balanced Helly circular-arc graphs: (a) Family VZ*+1:
The dotted paths joining v and vy, 11 resp. vpyo and vy represent chordless even paths, not
simultaneously empty. All vertices of the dotted path joining v3 to vy, 41 are adjacent to .
(b) Family D+ The dotted path joining vs and vay 1 represents a nonempty even path of
length 2t — 2. (c) Family X2'*+1: The dotted paths joining vy and vy, resp. vy 1 and va 1
represent any chordless even paths, both of them possibly empty, even simultaneously. The
vertices of the dotted path joining vy to vy, are all adjacent to ug.

In the three families of graphs above, C = viv,...Vvp¢41V1 is an unbalanced cycle and
consequently all their members are not balanced. In fact, we will see later that all these
graphs are minimally not balanced (see Corollary 3.45).

Our first result below is a minimal forbidden induced subgraph characterization

of balanced graphs restricted to Helly circular-arc graphs.

Theorem 3.44. Let G be a Helly circular-arc graph. Then, G is balanced if and only if G
has no odd holes and contains no induced 3-sun, 1-pyramid, 2-pyramid, C7, Vgt“, D2ttt op
X for any t = 2 and any valid p.

Proof. The ‘only if” part is clear because the class of balanced graphs is hereditary.
Conversely, suppose that G is not balanced. Then, G contains some induced subgraph
H that is minimally not balanced. Since G is a Helly circular-arc graph, His also so. The
proof will be complete as soon as we prove that H is a 3-sun, 1-pyramid, 2-pyramid,
Cy, V%t“, D2+l or X%,t“ for some t > 2 and some valid p.

Since H is not balanced, a clique-matrix of H contains some square submatrix that
is an edge-vertex incidence matrix of an odd chordless cycle. Therefore, there are
some cliques Q1, Q2, ..., Q2t+1 and some pairwise different vertices v, vy, ..., vo¢41 of
H such that {vi,vo,...,vot41} N Qi = {vi,vit1} foreachi =1,2,...,2t + 1 (all along
the proof, subindices are to be understood modulo 2t + 1) for some t > 1. It is easy to
verify that C = viv...Vvp¢41v1 is an unbalanced cycle by setting W := Qi\{vi, Vi41}
for each edge e = vivi.1 of C.

If t = 1, Theorem 2.5 implies that H contains an induced pyramid. This implies that
H itself is a pyramid because H is minimally not balanced. So, if t = 1, then H equals
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the 3-sun, 1-pyramid or 2-pyramid (because the 3-pyramid is not a Helly circular-arc
graph). So, from now on, we assume, without loss of generality, that t > 2.

Let A be a Helly circular-arc model of H on a circle €. Denote by A; the arc
of A corresponding to the vertex v; for each i = 1,2,...,2t + 1. Fix an anchor p;
of the clique Qj for each j = 1,...,2t + 1. By construction, p; € A; if and only
if vi € Qj. Therefore, by hypothesis, {p1,p2...,p2t+1} N Ay = {pi—1,pi} for each
i=1,...,2t + 1. Since Ay, Ay, ..., Azty1 are arcs of C, there are only two possible or-
ders for the anchors when traversing € in clockwise direction, either p1,p2,..., P2t+1
Or P2t+1,.--,P2,P1. SO, we can assume, without loss of generality, that the anchors
P1,P2, ..., P2t+1 appear exactly in that order when traversing € in clockwise direction.
Hence, Ai n {p1,P2, ..., P2t+1} = {pi—1, pi} implies that A; is contained in the clock-
wise open arc of C that starts in p;_» and ends in p;; foreachi =1,...,2t + 1. We
now prove the following three claims about C.

Claim 1. All chords of C are short.

Proof of the claim. If t = 2, all possible chords of C are short. So, suppose that t > 3.
Since A; is contained in the clockwise open arc of € that starts in p;_» and ends in
pit+1 for each i € {1,...,2t 4 1}, it follows that if the arc A; intersects A; for some
jed{l,...,2t+1}theni=j—2,5—1,j,j+1,0rj+ 2 (modulo 2t + 1). We conclude
that each chord of C is short, as claimed. O

Claim 2. Any set of three vertices of C that induces a triangle in H consists of three consecutive
vertices of C.

Proof of the claim. Suppose, by the way of contradiction, that there is some set S of three
vertices of C that induces a triangle T in H but, nevertheless, S does not consist of
three consecutive vertices of C. Notice that if each vertex of S were consecutive in C
to some other vertex of S, then S would consist of three consecutive vertices of C. So,
necessarily, there must be some vertex s; of S such that s; is not consecutive in C to
any vertex of S\{s1}. By symmetry, we can assume that s; = v; and, since all chords
of C are short, S = {v1,v3,vz¢}. Being C odd and each of its chords short, necessarily
t = 2. Consequently, S = {v1,Vv3,v4} is contained in some clique of H, that should have
some anchor q. Nevertheless, since A; is contained in the clockwise open arc of C that
starts in p4 and ends in py, Az is contained in the clockwise open arc of € that starts
in p1 and ends in p4, and Ay is contained in the clockwise open arc of € that starts in
p3 and ends in p1, there is no suitable position in € for q. This contradiction proves
that indeed any set of three vertices of C that induces a triangle in H consists of three
consecutive vertices of C, as claimed. O

Claim 3. Every two chords of C are crossing.
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Proof of the claim. Suppose, by the way of contradiction, that C has two different chords
ei = Vi_1vi+1 and e; = vj_1vj1 that are not crossing. Notice that it is possible that
e; and e; share one endpoint. We will show that H — {v;,v;} is not balanced. Indeed,
consider the cycle C' = viVvo...Vi_1Vit1...Vj_1Vj41 ... Var41V1. For each edge e of C7,
define W} = ¢, if e = e; or ej; and W, = W,, otherwise. Since all the triangles of
C are induced by three consecutive vertices of C, by Claim 2, C’ and the W/’s satisfy
the definition of unbalanced cycle. Indeed, for each edge e of C, either W, = W, and
W, nN(e) nV(C") < WenN(e) nV(C) = F,ore = e fork € {i,j} and N(W/) n
N(e) n V(C’) < N(e) n (V(C)\{vk}) = I because, by Claim 2, the only vertex of C
with which vertices vk _1 and v 41 can form a triangle in H is vi.. Therefore, H—{vi,v;}
is not balanced, a contradiction with the minimality of H. This contradiction shows
that indeed every two chords of C are crossing, as claimed. O

With the help of the three previous claims, we complete the proof of Theorem 3.44.
Notice that if C has no chords, then, by the minimality of H, H = Cz¢41, as required.
Therefore, we will assume that C contains at least one chord. Since all chords of C are
short and crossing by Claims 1 and 3, either C has exactly one chord that is short or
C has two chords that are short and are crossing. We divide the remaining proof into
two parts corresponding to the former and the latter case.

Case 1. C has exactly one chord that is short.

Without loss of generality, let viv3 be the only chord of C. Since C is an unbal-
anced cycle, there exists u; € Ny (viv2)\V(C) such that u; is not adjacent to v3. Anal-
ogously, there exists u; € Ny(vov3)\V(C) such that u, is not adjacent to vi. By min-
imality, V(H) = V(C) u {uj,u2}. Letp = |[Ny(uz) n V(C)| and q = |[Nn(w) n
V(C)|. By construction, 2 < p,q < 2t. By Lemma 2.8 applied to the hole induced by
V(CON\{v2}, Ni(u2) nV(C) = {v2,v3,V4,...,Vp41} and, by symmetry, Ny (1) nV(C) =
{v2,V1, V2t 41, V2t, ..., Vot q+4} (Where for ¢ = 2, we mean that Ny (u;) n V(C) =
{V2 , V1 })

Suppose, by the way of contradiction, that u; is adjacent to u,. If u, were adjacent
to vo+1, then either {va¢11,V1,Vv2,v3,u1, U2} would induce a proper 2-pyramid in H or
{vat41,Vv1,v3,u1, u2} would induce a Ky 3 in H, depending on whether 1, is adjacent
V2141 Or not, respectively. Since H is a minimally not balanced circular-arc graph and
K»,3 is not a circular-arc graph, we conclude that u; is not adjacent to vo¢41. If ug were
adjacent to vyt 41, then {vo¢11,Vv1,Vv2,v3,u1, u2} would induce a proper 1-pyramid in H.
This contradiction shows that 1 is not adjacent to v+ 1, and this means that q = 2.
Symmetrically, p = 2. But then, {v1,v3,up,u1,vs} induces a C4 U K; in H, which is not
a circular-arc graph, a contradiction. This contradiction arose from assuming that u;
and u; were adjacent, so we conclude that u; is not adjacent to u,.

If p were odd, then uyvy (1vp42...V2t41v1vou2 would be an odd hole in H, con-



62 Chapter 3. Balanced graphs

tradicting the minimality of H. Thus, p is even and, by symmetry, q is also even. If
t = 2, then, up to symmetry, eitherp = q = 4and H = Cy,orq=2and H = Vg
for some p € {2,4}, as desired. So, without loss of generality, assume that t > 3. If
Ni(u1) n Ny (up) # {v2}, then, since p and q are even, there would exist some k such
that5 < k < 2tand vk € Ny (ug) n Ny (up); but then, {vi,uy, vk, uz,v3} would induce
a Cs in H, in contradiction with the minimality of H. This contradiction shows that
Np(u1) n Ny(up) = {v2}. If p # 2and q # 2, then upvp1vpi2... V2t gratlivouy
would be an odd hole in H, contradicting the minimality of H. Therefore, we can
assume that q = 2, and finally H = V%tH for some p even such that2 < p < 2t.

Case 2. C has exactly two chords that are short and are crossing.

Since the two chords are crossing, we assume, without loss of generality, that
the chords of C are viv3 and vo¢4+1v2. Since C is an unbalanced cycle, there is some
w1 € Ny (vae+1v1)\V(C) such that v is not adjacent to vo and there is some u, €
N (v2v3)\V(C) such that u; is not adjacent to vy.

Let r = [Ny (u2) n V(C)|. By construction, 2 < r < 2t and, by Lemma 2.8 ap-
plied to the hole induced by V(C)\{vi}, Nn(u2) n V(C) = {vo,v3,v4,...,vep1}. If
T = 2t, then {vo¢11,V1,V2,v3,u1, u2} would induce a proper 1-, 2- or 3-pyramid in H
(depending on the existence or not of the edges uju, and u;v3), a contradiction with
the minimality of H. If r is even and 2 < r < 2t, then UpVy11Vri2... Vot Vor41VoUn
would be a proper odd hole in H, a contradiction. If r were odd and r # 3, then
the cycle upvr41Vry2 ... V2t Var41v1vau would be a proper odd hole in H, a contradic-
tion. So, r = 2 or 3. Symmetrically, if s = |Ny(u1) n V(C)|, then s = 2 or 3 and, by
Lemma 2.8 applied to the hole induced by V(C)\{v2}, Ny (u1) n V(C) = {var41,v1} or
{vat, Vo141, Vv1}, respectively.

Suppose, by the way of contradiction, that u; and u, are adjacent. Then, the set
{u1,v1,v2,up} induces a C4 in H, which must be dominating because H is a circular-
arc graph. If t = 2, then at least one of u; and u, should be adjacent to v4 and
V(C) U {u1,12} would induce a proper V; or C7 in H. (Notice that indeed V(C) u
{u;,up} # V(H) because, by definition of unbalanced cycle, W,,,, < V(H)\V(C)
and Ny(Wy,v,) N {v3,va} = &, which implies W,,,, # & and, by construction,
Wy, 0 (V(C) U {u,up}) = &) If t > 3, then u; must be adjacent to vo¢ and
{vat, Vot +1,V1,V2,v3,u1, up} would induce a proper V;I’ in H. So, in all cases we reach a
contradiction with the minimality of H. These contradictions prove that u; and u, are
nonadjacent.

We claim that r = s = 2. Indeed, if r = s = 3, then v{vouyvgvs ... voupvy would
be an odd hole in H, a contradiction. Alternatively, if r = 3 and s = 2, then C’' =
VIVoUgV4Vs . .. o 11v1 would be a cycle whose only chord is vo¢1v2, Ny (ug) nV(C') =
{vot41,v1}, Nu(vz) n V(C’) = {v1,v2,up,v4} and, therefore, V(C) u {uy,u} would



3.7. Balancedness of a superclass of Helly circular-arc graphs 63

induce a proper V2! in H, a contradiction. (Recall that V(C) U {u;, us} # V(H) from
the discussion in the paragraph above.) The case r = 2 and s = 3 is symmetric. We
conclude that our claim, r = s = 2, is true; in other words, Ny (u1) nV(C) = {vo¢+1,v1}
and Ny (u2) n V(C) = {va,vs}.

Suppose that

there is some us € Nyy(v1v2)\V(C) such that uzva 41, usvs ¢ E(H). (3.2)

Then, by minimality, V(H) = V(C) u {u, uz, uz}. By Lemma 2.8 applied to the holes
induced by V(C)\{v1} and V(C)\{v2} , N (uz) n V(C) = {v1,v2}. If u; were adjacent
to ug, then either t = 2 and {v2, v3, v4, v5, 11, u3} would induce a domino, or t > 3 and
{u1,va41,v1,u3,vs} would induce C4 U Ky in H, which are not circular-arcgraphs, a
contradiction. So, u; is nonadjacent to uz and, symmetrically, u, is nonadjacent to us.
We conclude that, if (3.2) holds, H = D?'*!  as desired.

It only remains to consider the case when (3.2) does not hold. Since C is an un-
balanced cycle, this means that there are two adjacent vertices uz and u4 such that
uz, ug € Ny (viv2)\V(C), uz is adjacent to vo¢ 41 but not to v3, and uy is adjacent to v3
but not to vo¢. 1.

Suppose, by the way of contradiction, that Nyj(uz) n Ny (ug) n V(C) # {v1, 2}
Then, there exists some k such that 4 < k < 2t and vk € Nyj(uz) n Nyy(uwg). If k = 4,
then {vot41,Vv1,Vv3,v4, u3, us} would induce a proper 1- or 2-pyramid in H depending
on whether t > 3 or t = 2, respectively, contradicting the minimality of H. So, k # 4
and, symmetrically, k # 2t. But then, {va¢11,V1, V3, u3, ug, v } induces a proper 3-sun
in H, a contradiction. We conclude that Ny (uz) n Ny (ug) n V(C) = {v1,v2}.

Letp = [Nn(uws) nV(C)|and q = [N (uz) n V(C)|. By construction, 3 < p,q < 2t.
By Lemma 2.8 applied to the hole induced by V(C)\{v,}, it follows that N (ug) N
V(C) = {vi,v2,v3,...,vp} and Ny (u3z) n V(C) = {vo,v1,Vat41,...,Vot—q+4}. If p were
odd and p # 3, then viugvpvpi1...v2t41v1 would be a proper odd hole in H, a con-
tradiction. So, p = 3 or p is even. Symmetrically, ¢ = 3 or q is even. If p and q had
the same parity, then ugugvpvp1...v2t g14u3 would be a proper odd hole of H (re-
call that Ny (uz) n Ny (ug) n V(C) = {v1,v2}), a contradiction. By symmetry, we will
assume, without loss of generality, that p is even, p > 4, and q = 3. In particular, uy is
adjacent to vy.

Notice that u; is not adjacent to uz, since otherwise usvavy ... v 1usuy would be a
proper odd hole of H. This, in its turn, implies that u, is adjacent to u4, since otherwise
{v2,v3,v4,u3,u4, up} would induce a proper 3-sun in H. So, Ny(u2) = {v2,v3, us}.
(Recall that we already proved that u; and u; are nonadjacent.)

If u; were adjacent to uy, then {vo¢.1,v1,v2, U1, Uz, us} would induce a proper 1-
pyramid in H, contradicting the minimality of H. So, u; is nonadjacent to u4. Finally, if
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u; were adjacent to ug, then C’ = uzvpvs...vo¢11u3 would be a cycle whose only chord
is vor+1v2, N (ug) n V(C') = {vorq1,uz}, Nu(ug) n V(C’) = {uz, v, v3,...,vp} and,
therefore, since u; and uy are nonadjacent, V(C’) u {u1, us} would induce a proper
V%t“ in H, a contradiction. This contradiction shows that 1 is nonadjacent to uz and
we conclude that Ny (u1) = {vot+1,v1}. We proved that H = X%Hl where p is even
and 4 < p < 2t, as required. O

It is easy to see that among the forbidden induced subgraphs that characterize bal-
ancedness in Theorem 3.44 there are no two of them such that one is a proper induced
subgraph of the other. Therefore, Theorem 3.44 is indeed a characterization by minimal
forbidden induced subgraphs. In particular, we obtain the following result.

Corollary 3.45. The graphs V3t*!, D*'*1, and X3*+1 are minimally not balanced for any
t > 2 and any valid p.

We will extend Theorem 3.44 to a superclass of Helly circular-arc graphs; namely,
the class of {net,Uy,S4}-free circular-arc graphs (see Figure 2.1). This extension will
also serve as a basis for the characterizations in the following two sections.

For that, let us firstly present the forbidden induced subgraph characterization of
those circular-arc graphs that are Helly circular-arc graphs given in [75]. Let an obstacle
be a graph H containing a clique Q = {vi,Vy,...,v¢} where t > 3 and such that for each
i =1,...,1 at least one of the following assertions holds (where in both assertions,
Wi 11 Mmeans wy):

(01) N(wi) n Q = Q\{vi,vit1}, for some w; € V(H)\Q.

(O2) N(ui) n Q = Q\{vi} and N(zi) n Q = Q\{Vvit1}, for some adjacent vertices
ui,zi € V(H)\Q

With this definition, the characterization of those circular-arc graphs that are Helly
circular-arc graphs runs as follows.

Theorem 3.46 ([75]). Let G be a circular-arc graph. Then, G is a Helly circular-arc graph if
and only if G contains no induced obstacle.

Notice that obstacles are not necessarily minimal; i.e., there are obstacles that con-
tain proper induced obstacles. For instance, 2Cs is an obstacle and contains a proper
induced 2P4, which is also an obstacle. In addition, there are minimal obstacles that
are not circular-arc graphs; e.g., antenna and Ce are minimal obstacles that are not
circular-arc graphs. Our next result determines all the {1-pyramid,2-pyramid}-free
minimal obstacles that are circular-arc graphs. Recall that for each t > 3, S; denotes
the complete t-sun.
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Theorem 3.47. Let H be a {1-pyramid,2-pyramid}-free minimal obstacle which is a circular-
arc graph. Then, H is 3-pyramid, Uy, or St for some t > 3.

Proof. Let Q = {vi,...,v¢}, the wi’s, the u;’s, and the zi’s as in the definition of an
obstacle. All along the proof, subindices should be understood modulo t.

Let us consider first the case where t = 3. Suppose that (O;) holds for at least two
values of i, say i = 1 and i = 2. Then, {uy, 21,22} is a complete and {vi, vz, V3, u1, z1, 22}
induces a 3-pyramid, since otherwise {vi,Vv,Vv3,u1, 21,22} would induce a 1-pyramid
or a 2-pyramid. Hence, by minimality, H = 3-pyramid. Consider now the case where
(O2) holds for exactly one value of i, say i = 1, and, consequently, (01) holds for i = 2
and i = 3. We claim that {u,2;} is anticomplete to w,. Indeed, if w, were adjacent
to z1, then {v1, v, v3, Wy, 21, u1} would induce a 1-pyramid or a 2-pyramid in H, a con-
tradiction. In addition, if w, were adjacent to uy, then {v{,v2,uy, z;, Wy} would induce
a Ky3 in G, which is not a circular-arc graph. We proved that {u,z;} is anticomplete
to wy and, symmetrically, to wz. Also notice that w, and w3 are nonadjacent, since
otherwise {vi,v2, Wy, w3, 11,21} would induce a domino, which is not a circular-arc
graph. Then, by minimality, H = Uy, as desired. Finally, assume that (O1) holds for
each i = 1,2,3. Necessarily {w1, w, w3} is a stable set, since otherwise G would con-
tain an induced C4 U K1, G3 (see Figure 2.3), or Cg which are not circular-arc graphs.
By minimality, H = net = S, as desired.

From now on, we assume that t > 4. Suppose, by the way of contradiction, that
(O2) holds for some i, say i = 1. On the one hand, if (0;) held for i = 3, then
{v1,v2,v3,u1,21, w3} would induce a 1-pyramid, 2-pyramid, or a proper 3-pyramid in
H, a contradiction. On the other hand, if (0;) held for i = 3, then {vi,v2,v3, 11, 21, us}
would induce a 1-pyramid, 2-pyramid or a proper 3-pyramid in H, a contradiction.
These contradictions arose from assuming that (O;) held for some i. We conclude
that, if t > 4, then (O) does not hold forany i = 1, ..., t and, by definition of an obsta-
cle, (O1) holds for each i = 1, ..., t. By minimality, the vertices of H are Q U W where
W = {wq,wy,...,w}. We claim that W is a stable set and, consequently, H = S¢. We
divide the proof of the claim into two cases: t =4 and t > 5.

Assume that t = 4. Suppose, by the way of contradiction, that W is not a stable
set. Suppose first that w; is adjacent to w1 for some i, say w3 is adjacent to wy. Nec-
essarily wy is nonadjacent to wy, since otherwise {v1,v2,v3, w1, w3, w4} would induce
a 1-pyramid or a 2-pyramid in H (depending on the adjacency between w; and ws), a
contradiction. In addition, wy is nonadjacent to ws, since otherwise {w1, vi, wy, v3, w3}
would induce a K;3, which is not a circular-arc graph. Symmetrically, w; is nonadja-
cent to w3 and wy. On the one hand, if wi and w; are adjacent, {wa, vi, w3, Wy, v3, w1 }
induces a domino in G, which is not a circular-arc graph. On the other hand, if wy

and w; are nonadjacent, then {vi, vy, v3, Wi, W2, w3, Wy} induces a proper Uy in H, a
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contradiction with the minimality of H. These contradictions prove that w; is not ad-
jacent to wi 1 for any i. Notice that also w; and wj » are nonadjacent, since otherwise
{vi, Wi, Wit2,Viy3, wit3} would induce K4 U K; in G, which is not a circular-arc graph.
We conclude that W is a stable set and H = Sy, as claimed.

It only remains to consider the case where t > 5. Let S be any unordered pair of
vertices from W. Since t > 5, S can be extended to a set S’ = {w;, wj, wj;1} of three
vertices where 1 and j are not consecutive modulo t and neither are i and j + 1. Notice
that S’ is a stable set in H, since otherwise {vi,vj, vj4+2, Wi, wj, wj11} would induce a
1-pyramid, a 2-pyramid, or a proper 3-pyramid in H, a contradiction. Since S’ is a
stable set, so is S. Since S is any pair of vertices from W, W is a stable set and H = Sy,
as claimed.

Finally, notice that 3-pyramid, Uy and S¢ for t > 3 are obstacles, are circular-arc
graphs, and none of them is a proper induced subgraph of any of the others. ]

As a corollary of Theorems 3.46 and 3.47, we obtain a minimal forbidden induced
subgraph characterization of Helly circular-arc graphs within {1-pyramid,2-pyramid}-
free circular-arc graphs.

Corollary 3.48. Let G be a {1-pyramid,2-pyramid }-free circular-arc graph. Then, G is a Helly
circular-arc graph if and only if it contains no induced 3-pyramid, Uy, or S for any t > 3.

Since net, Uy, and S4 are obstacles, the class of {net,Uy4,S4}-free circular-arc graphs
is indeed a superclass of Helly circular-arc graphs. We now prove the main result of
this section, which is an extension of the characterization of Theorem 3.44 to the class
of {net,Uy,S4}-free circular-arc graphs.

Corollary 3.49. Let G be a {net,Uy,S4}-free circular-arc graph. Then, G is balanced if and
only if G has no odd holes and contains no induced pyramid, Cy, V%t“, D2+l o X%,Hl for

any t = 2 and any valid p.

Proof. If G is a Helly circular-arc graph, the result reduces to Theorem 3.44. So, as-
sume that G is not a Helly circular-arc graph. Then, by Corollary 3.48 and since G
is {net,Uy,S4}-free, G contains an induced 1-pyramid, 2-pyramid, or 3-pyramid or an
induced S; for some t > 5 (notice that S3 = net and S; = S4). Since S; contains an
induced 3-sun for every t > 5, we conclude that G is not balanced and contains an
induced pyramid. O

3.8 Balancedness of claw-free circular-arc graphs

In this section we will characterize, by minimal forbidden induced subgraphs, those
claw-free circular-arc graphs that are balanced. A proper circular-arc graph is a circular-

arc graph admitting a circular-arc model in which no arc properly contains another.
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The class of claw-free circular-arc graphs is a superclass of the class of proper circular-
arc graphs, as follows from the forbidden induced subgraph characterization of proper
circular-arc graphs in [118].

By Corollary 3.49, in order to characterize those claw-free circular-arc graphs that
are balanced, it will be enough to study the balancedness of those claw-free circular-arc
graphs containing an induced net (because claw-free graphs contain neither induced
Uy’s nor induced Sy’s). The following lemma will be of help in analyzing the structure
of claw-free circular-arc graphs containing an induced net.

Lemma 3.50 ([18]). Let G be a claw-free circular-arc graph containing a net induced by the
set W = {t, t2, 13,81, 52, 83}, where {t1, t2, t3} induces a triangle and s; is adjacent to t; for
i=1,2,3. Ifvisavertex of G — W, then Ng(v) n W is either {si, ti}, or {t1, 12, t3,s1}, or
{si+1,ti+1, tizo, Sit2}, for some i € {1,2,3} (subindices should be understood modulo 3).

A graph G is a multiple of another graph H if G arises from H by successively adding
true twins to H; i.e., if G arises from H by replacing each vertex x of H by a nonempty
complete graph M, and adding all possible edges between M, and M, if and only
if x and y are adjacent in H. In [18], a slightly stronger variant of the above lemma
is used to study the structure of chordal claw-free circular-arc graphs containing an
induced net. The proof in [18] can be easily adapted to prove the following related
result in which chordality is not required. For the sake of completeness, we give the
adapted proof.

Theorem 3.51 ([18]). If G is a claw-free circular-arc graph containing an induced net and
containing no induced 3-sun, then G is a multiple of a net.

Proof. The proof will be by induction on the number of vertices of G. If |V(G)| =
6, G equals a net, which is a trivial multiple of a net. So, assume that |[V(G)| > 6.
Then, there is some vertex v of G such that G — {v} contains an induced net. Since
G — {v} is also a claw-free graph containing an induced net and containing no induced
3-sun, by induction hypothesis, G — {v} is the multiple of a net; i.e., the vertices of
V(G — {v}) can be partitioned into nonempty completes S1, Sz, S3, T1, To, Tz such that
Ti, To, T3 are mutually complete and T; is complete to S; and anticomplete to Si g
and S, for each i = 1,2,3 (where subindices along the proof should be understood
modulo 3). By Lemma 3.50, Ng(v) n H = {si,ti} or Ng(v) n H = {t1,tp, t3,si} for
some i € {1,2,3}. (Notice that the fact that G contains no induced 3-sun prevents
Ng(v) nH = {tit1, si+1, ti+2, Si+2} from holding.)

Suppose first that Ng(v) n H = {ty,si} for some i € {1,2,3}. Letj € {1,2,3},
s]f € S5 and H’ be the net induced by {t1, t2, 3, 51, 841, Sj+2}. Applying Lemma 3.50
to H’, it follows that v is adjacent to sj if and only if i = j. Thus, v is complete to S;
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and anticomplete to Si ;1 and Si,>. Using the same strategy, we can prove that v is
complete to T; and anticomplete to T; ;1 and Ti;». Thus, we can obtain a partition of
the vertices of G showing that G as a multiple of a net by replacing S; by S;11.
Finally, consider that Ng(v) n H = {t1, t, t3, si}. Reasoning as in the above para-
graph, it follows that v is complete to Ty, To, T3, and S;, and v is anticomplete to S;1
and Si;». Thus, we obtain a partition of the vertices of G showing that G is a multiple
of a net by replacing T; by T; U {v}. O

Now, we state and prove the main result of this section.

Theorem 3.52. Let G be a claw-free circular-arc graph. Then, G is balanced if and only if G
has no odd holes and contains no induced pyramids and no induced Cs.

Proof. The ‘only if’ part is clear. In order to prove the ‘i’ part, suppose that G is not
balanced. Then, G contains some induced subgraph H that is minimally not balanced.
Since G is a claw-free circular-arc graph, H also is so. The proof will be complete if we
prove that H is an odd hole, a pyramid, or C7. Suppose, by the way of contradiction,
that H is not net-free. By Theorem 3.51, H is a net, has true twins, or contains an
induced 3-sun. Since the net is balanced and since minimally not balanced graphs
have no true twins (Lemma 3.7), G contains an induced 3-sun. By minimality, H is a 3-
sun, a contradiction with the fact that H is not net-free. This contradiction proves that
H is net-free. Since U4 and S4 are not claw-free, H is {net,Uy4,S4}-free and Corollary 3.49
implies that H has an odd hole or contains an induced pyramid or C; (because each
of X%,t“, D2+l and X%,“rl contains an induced claw for each t > 2 and each valid
p). By the minimality of H, we conclude that H is an odd hole, a pyramid, or C7, as
required. O

As proper circular-arc graphs are claw-free, and the odd holes, the pyramids, and
Cy are all proper circular-arc graphs, the minimal forbidden induced subgraphs for
balancedness within proper circular-arc graphs are the same as those within claw-free
circular-arc graphs.

3.9 Balancedness of gem-free circular-arc graphs

In this section, we will give a minimal forbidden induced subgraph characterization
of those gem-free circular-arc graphs that are balanced.

Lemma 3.53. Let G be a gem-free circular-arc graph that contains an induced net or an in-
duced Uy. Then, G either has true twins or has a cutpoint.
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Proof. Assume that G has no true twins. We will prove that G has a cutpoint.

Consider first the case where G contains an induced Uy. That is, there is some
chordless cycle C = wjupuzuguy in G, some vertex z that is complete to V(C), and a
pair of nonadjacent vertices p1,p2 of G such that Ng(pi) n (V(C) U {z}) = {w} for
each i = 1,2. Since G is a circular-arc graph, V(C) is a dominating set of G. Let v be a
vertex of G not in V(C) u {p1, p2}. We will analyze the possibilities for the nonempty
set Ng(v) n V(C).

Suppose, by the way of contradiction, that the neighbors of v in C are two. Then,
they are consecutive vertices of C by Lemma 2.8. So, Ng(v) n V(C) = {ui,ui+1} for
some i € {1,2,3,4} (from now on, subindices should be understood modulo 4). If v
were not adjacent to z, then {v,ui, z, uiy2, ui+1} would induce a gem in G. If v were
adjacent to z, then {v,ui+1, ui+2, uit3,z} would induce a gem in G. Since G is gem-
free, we conclude that |[Ng(v) n V(C)| # 2.

Now, for each i = 1,...,4, let V; be the set of vertices not in V(C) whose only
neighbor in C is u;. In particular, p; € V; for each i = 1,2. Let Z be the set of vertices
not in V(C) that are complete to V(C), so z € Z. Finally, foreachi =1,...,4, let V; be
the set of vertices not in V(C) whose only non-neighbor in C is u;.

Claim 1. V; is anticomplete to Vj for every i # j.

Proof of the claim. Indeed, if vi € V; and v; € V; were adjacent, then V(C) U {vi,vj}
would induce either a domino or the graph G, in Figure 2.3, which are not circular-
arc graphs, a contradiction. ]

Claim 2. V; is anticomplete to Z for every 1 < i < 4.

Proof of the claim. Indeed, if vi € V; were adjacent to w € Z, then {vi, ui, Uit1, Uit2, W}
would induce a gem in G, a contradiction. O

Claim 3. Z is a complete.

Proof of the claim. Indeed, if w,w’ in Z were nonadjacent, then, by the previous claim,
both of them would be nonadjacent to p, and {u1, w, uz, w’, po} would induce C4 U K
in G, which is not a circular-arc graph, a contradiction. O

Claim 4. V; is a complete and is complete to Z for every 1 <1 < 4.

Proof of the claim. Indeed, if Vi,V in V; were nonadjacent, then {Vi, V], wi, wi_1,ui41}
would induce K3 in G, which is not a circular-arc graph, a contradiction. And, if
v; € V; and w € Z were nonadjacent, then {Vi, Wi+2, W, ui, uiy1} would induce a gem
in G, also a contradiction. O

By the previous claims, all the vertices in Z are true twins. So, since G has no true
twins, we conclude that Z = {z}.
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Claim 5. V; is complete to Vi1 and anticomplete to Viio forevery1l <i<4.

Proof of the claim. Let v € V; and vi41 € Vii1. By Claim 4, z is adjacent to both of
them. So, if ¥; and V;;1 were nonadjacent, then {V;, uiy1,ui,Vi4+1,z} would induce
a gem in G, a contradiction. Now, let Vi, € Viio. If i,p were adjacent to vy, then

{ui, Vito, Vi, Uit2, Ui+1} would induce a gem in G, a contradiction. a

Claim 6. V; is anticomplete to V; for every j # i + 2.

Proof of the claim. Let v; € V; and v; € V; and suppose, by the way of contradiction,
they are adjacent. If j = i, then {Ui,\_Ji,u1+1,u1'_+3,Vj} induces a K3 in G, that is not a
circular-arc graph, a contradiction. If j = i + 1, then {vj, ui4+1, Ui42, ui43,Vi} induces
a gemin G, also a contradiction. These contradictions prove that v; and v; are nonad-

jacent unless j = i + 2. O

Claim 7. V; is empty for every 1 <1 < 4.

Proof of the claim. Suppose, by the way of contradiction, that V; is nonempty for some
i€ {1,2,3,4} and let v; € V;. Since v; is not a true twin of vi 5, by the previous claims,
there must be a vertex vi 1, in Vi1, nonadjacent to v;. But then, {Vi, wiy3, Ui, Wit+1, Vig2}
induces a C4 U K1 in G, that is not a circular-arc graph, a contradiction. O

By the above claims, u; and u; are cutpoints of G, as required. This completes the
proof when G contains an induced Uy.

It only remains to consider the case where G contains no induced U4 but a net
induced by H = T U S where T = {tj, t2, t3} is a complete, S = {s1, s, s3} is a stable
setand Ng(si) n T = {t;} foreachi = 1,2,3. Let v be a vertex of G not in H. Then,
Ng (v) nH is nonempty because netu K is not a circular-arc graph. If [Ng(v)nH| = 5,
then G would contain an induced gem, so [Ng(v) n H| < 4.

Suppose that [Ng (v)nH| = 4. If [Ng (v)nS| = 3 then G would contain the graph G3
in Figure 2.3 as induced subgraph, which is not a circular-arc graph. If [Ng (v)nS| = 2,
then G would contain an induced gem. So, if [INg(v) n H| = 4, then [Ng(v) n S| = 1.

Suppose, by the way of contradiction, that [Ng(v) n H| = 3. If [INg(v) n S| = 3,
then G would contain the graph Gg in Figure 2.3 as induced subgraph, which is not a
circular-arc graph. If [Ng (v) n S| = 2, then G would contain either C5 U K; or C4 U K;
as induced subgraph, and none of them is a circular-arc graph. If [INg(v) n' S| =1,
then G would contain either a gem or C4 UKj as induced subgraph. If [Ng(v)nS| =0,
then G would contain the graph G¢ in Figure 2.3 as induced subgraph, which is not a
circular-arc graph. We conclude that [Ng(v) n S| # 3.

Suppose now that [Ng(v) n H| = 2. If [Ng(v) n S| = 2, then G would contain
Cs u Kj as induced subgraph, which is not a circular-arc graph. If [Ng(v) n S| = 1 and
the neighbors of v in H were nonadjacent, then G would contain C4 U K; as induced
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subgraph. So, if [Ng(v) n H| = 2, then either Ng(v) nH < Tor Ng(v) n H = {tj, s}
for some i€ {1,2,3}.

Finally, if [Ng(v) n H| = 1, then the neighbor of v in H belongs to T; since other-
wise G would contain the graph Gs in Figure 2.3 as induced subgraph, and it is not a
circular-arc graph.

Let S; be the set of vertices in G — H whose only neighbor in T is t; (i.e., the set
of neighbors in H is either {ti} or {ti,si}), Ti be the set of vertices in G — H whose
neighbors in H are {t1, t2, t3, si}, and Z; be the set of vertices in G —H whose neighbors
in Hare T — {t;}. Since G is gem-free, at most one of the Z;’s is nonempty. So, without
loss of generality, assume that Z; and Z3 are empty.

Claim 8. S; is anticomplete to S; for i # j.

Proof of the claim. Indeed, ifv € S; wereadjacenttow € Sjandi # j, {v, ti, tj, W, se_i—j}
would induce a C4 U K1 in G, which is not a circular-arc graph, a contradiction. O

Claim 9. For eachi = 1,2,3, S; is complete to Ty and anticomplete to T; for every j # 1i.

Proof of the claim. If v e S; and w € T; were nonadjacent, then (H\{s1}) u {v, w} would
induce the graph Gg in Figure 2.3, which is not a circular-arc graph, a contradiction.
If v e S; were adjacent tow € T and j # i, then {sj, t;, t;, v, w} would induce a gem in
G, a contradiction. O

Claim 10. For eachi = 1,2,3, T; is a complete and T; is complete to T; for every j # 1.

Proof of the claim. Indeed, if w,w’ € T; were nonadjacent, then {w, si, w’, ti 11, si;2}
would induce C4 U Kj in G, which is not a circular-arc graph, a contradiction. Also, if
w; € T; were nonadjacent to wj € Tj and j # 1, then {s;, wj, t;, wi, tj;} would induce a

gem in G, a contradiction. O

Claim 11. Foreachi =1,2,3, S is anticomplete to Z,.

Proof of the claim. Indeed, if v € S; were adjacent to z; € Z1, then either i = 1 and
{v, t1, 12,21, s3} would induce C4UK;in G, ori # 1and {ty, t5_,21,V, t;} would induce
gem in G, and in both cases we would reach a contradiction. O

Claim 12. T, is anticomplete to Z;.

Proof of the claim. Indeed, if wi € T; were adjacent to z; € Z;, then {sq, 1, t2, 21, w1}

would induce a gem in G, a contradiction. O
By the previous claims, every vertex in T is a true twin of t; and, since there are no

true twins in G, Ty is empty. Since the claims also prove that S; U {s;} is anticomplete
to V(G — {t1})\(S1 U {s1}), t1 is a cutpoint of G, as required. O

Now we are ready to characterize balanced graphs among gem-free circular-arc
graphs.
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Theorem 3.54. Let G be a gem-free circular-arc graph. Then, G is balanced if and only if G
has no odd holes and contains no induced 3-pyramid.

Proof. The “only if” part is clear. In order to prove the ‘if’ part, suppose that G is not
balanced. Then, G contains some induced subgraph H that is minimally not balanced.
Clearly, H is a gem-free circular-arc graph because G is so. The proof will be com-
plete as soon as we prove that H is an odd hole or a 3-pyramid. Suppose, by the way
of contradiction, that H is not {net,Uy4,S4}-free. Since H is gem-free, H contains an in-
duced net or an induced Uy. By Lemma 3.53, H has true twins or has a cutpoint, a
contradiction with the minimality of H (Lemma 3.7). This contradiction proves that
H is {net,Uy4,S4}-free and Corollary 3.49 implies that H has an odd hole or contains an
induced 3-pyramid (because each of 3-sun, 1-pyramid, 2-pyramid, Cy, X%”l, D2+l
and X%t“, for each t > 2 and each valid p, contains an induced gem). The minimality
of H ensures that H is an odd hole or 3-pyramid, which concludes the proof. O



Chapter 4
Clique-perfect graphs

This chapter is organized as follows.

e In Section 4.1, we give some background about clique-perfect graphs and in-
troduce two further superclasses of balanced graphs: coordinated graphs and
hereditary K-perfect graphs. In Subsection 4.1.3, we give a brief account on the
connections between these four graph classes and with some notions studied in

hypergraph theory.

e In Section 4.2, we characterize clique-perfect graphs by minimal forbidden in-
duced subgraphs within complements of line graphs. This characterization leads
to an O(n?)-time algorithm for deciding whether or not a given complement of
line graph having n vertices is clique-perfect and, if affirmative, finding a mini-
mum clique-transversal. Our results follows from a characterization by minimal
forbidden subgraphs of matching-perfect graphs, which we define to be those
graphs such that, in each of its subgraphs, the maximal matchings have the
Kénig property (i.e., the minimum number of edges needed to meet every max-
imal matching equals the maximum number of edge-disjoint maximal match-
ings). On the way to the proof, we also describe a simple linear and circular struc-
ture for graphs containing no bipartite claw that help us give a structural char-
acterization of all Class 2 graphs with respect to edge-coloring within graphs

containing no bipartite claw.

The results of this section appeared in [24].

e In Section 4.3, we show that a gem-free circular-arc graph is clique-perfect if and
only if it has no odd holes. This means that clique-perfect graphs coincide with
perfect graphs within gem-free circular-arc graphs. Moreover, we show that,

73
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within gem-free circular-arc graphs, clique-perfect graphs coincide also with co-
ordinated graphs and hereditary K-perfect graphs.

4.1 Background

4.1.1 Clique-perfect graphs

A graph G is clique-perfect if and only if x.(G’) = t.(G’) for each induced subgraph G’
of G, where . and 1. are the cligue-independence number and . is the clique-transversal
number defined in the Introduction. While the name ‘clique-perfect’ was introduced
in 2000 by Guruswami and Pandu Rangan [64], the equality between . and 1. was
studied long before. Recall from the Introduction that Kénig’s matching theorem
[52, 77] is easily seen to be equivalent to the fact that a.(G) = 7.(G) holds for ev-
ery bipartite graph G and that Berge and Las Vergnas [12] generalized this result by
proving that «.(G) = 1.(G) remains true for all balanced graphs G. In [2], the equality
oc(G) = 1.(G) was shown to hold for all comparability graphs G, which form another
superclass of bipartite graphs [59]. As the classes of balanced graphs and comparabil-
ity graphs are hereditary, all the graphs in these classes are clique-perfect. Recall from
the Introduction that dually chordal graphs G defined in [29] satisfy «.(G) = Tc(G)
but are not clique-perfect in general because they are not closed under taking induced
subgraphs. More recently, it was shown that complements of forests and distance-
hereditary graphs are clique-perfect [15, 87]. Balanced graphs, comparability graphs,
complements of forests, and distance-hereditary graphs, are perfect. However, clique-
perfect graphs are not necessarily perfect and perfect graphs are not necessarily clique-
perfect, as the following result holds.

Theorem 4.1 ([64] and Reed (2001), see [50]). A hole is clique-perfect if and only if it is
even. An antihole is clique-imperfect if and only if its number of vertices is a multiple of 3.

So, the odd holes and the antiholes whose number of vertices are not multiples of
3 are forbidden induced subgraphs for the class of clique-perfect graphs. In fact, all
these graphs are minimal forbidden induced subgraphs for clique-perfectness [15].

Odd generalized suns [20] are a family of forbidden subgraph for the class of clique-
perfect graphs that properly contain the odd suns and the odd holes, and are defined
as follows. Let G be a graph and C be a cycle of G. An edge e € E(C) is non-proper (or
improper) if it forms a triangle with some vertex of C; i.e., if N(e) nV(C) # &J. For each
t > 3, a t-generalized sun, is a graph G whose vertex set can be partitioned into two sets:
a cycle C of t vertices whose set of non-proper edges is {e;}jej (] is permitted to be an
empty set) and a stable set U = {u;};¢j such that, for each j € ], u; is adjacent exactly
to the endpoints of e;. A t-generalized sun is odd if t is odd. A cycle is said proper if
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none of its edges is improper. By definition, proper odd cycles are odd generalized
suns. What interest us about odd generalized suns is that they are not clique-perfect.

Theorem 4.2 ([20]). Odd generalized suns are not clique-perfect.

Unfortunately, as the extended odd suns in Figure 1.2 are also odd generalized
suns, odd generalized suns are not necessarily minimal forbidden induced subgraphs
for the class of clique-perfect graphs. Some odd generalized suns that are minimally
not clique-perfect are the odd holes and the odd complete suns.

The following characterization of clique-perfect graphs within chordal graphs fol-
lows from Theorem 3.5 because balanced graphs are clique-perfect and because the
odd suns are not clique-perfect.

Theorem 4.3 ([12, 88]). Let G be a chordal graph. Then, G is clique-perfect if and only if it
contains no induced odd sun.

In other words, a chordal graph is clique-perfect if and only if it is balanced. So,
the situation regarding Theorem 4.3 is the same as that regarding Theorem 3.5: char-
acterizing clique-perfect graphs (or equivalently, balanced graphs) by minimal forbid-
den induced subgraphs is open even within chordal graphs. Moreover, Corollary 3.6
remains true if ‘balanced’ is replaced by ‘clique-perfect” and the resulting character-
ization of clique-perfect graphs within pseudo-split graphs is by minimal forbidden
induced subgraph. This also meas that Lemma 3.14 remains true if ‘balancedness
of any given split graph’ is replaced by ‘clique-perfectness of any given split graph'.
However, the problem of determining the complexity of the recognition problem of
clique-perfect graphs in general is still open, as balanced graphs and clique-perfect
graphs do not coincide in general (see Figure 4.3 on page 81).

A graph G is called cligue-complete [96] if each pair of its cliques has nonempty
intersection; i.e., if a.(G) = 1. In [96], the clique-complete graphs G without uni-
versal vertices (i.e., such that 7.(G) > 1) that are minimal with respect to taking in-
duced subgraphs were identified to be those graphs Q11 (n = 1) having 4n + 2 ver-
tices Wy, Uy, ..., Uan+1,V1,V2, - .., Vans1 such that Qon 11[{v1,Vv2,...,vn}] = Cont1 and
No, ., (ui) = V(Qn41)\{vi}, foreachi=1,2,...,2n + 1.

Theorem 4.4 ([96]). Foreachn > 1, &c(Qon+1) = 1 and ©(Qn41) = 2. Moreover, if G
is a graph such that «.(G) = 1 but ©.(G) > 1, then G contains an induced Qon 41 for some
nz= L

In [15], it was shown that Q5,41 is minimally clique-imperfect if and only if n =1
mod 3. Yet, forbidding induced odd generalized suns, clique-imperfect antiholes, and
clique-imperfect Qo1 graphs is not sufficient to ensure clique-perfectness in general.
For instance, the following holds.
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(b)

Figure 4.1: Four families of minimal forbidden induced subgraphs for the class of clique-
perfect graphs within the class of Helly circular-arc graphs. Dashed lines represent induced
paths of length 2t — 3 for each t > 2.

Theorem 4.5 ([17]). Let G be a Helly circular-arc graph. Then, G is clique-perfect if and only
if it has no odd holes and it contains no induced 3-sun, Cy, or any graph belonging to any of
the four families depicted in Fiqure 4.1.

Here, the graphs of the families (c) and (d) of Figure 4.1 are neither odd generalized
suns, nor antiholes, nor Q> 11 graphs for any n > 1. Although there is no known for-
bidden induced subgraph characterization of clique-perfect graphs in general, there
are some more graph classes within which clique-perfect graphs were characterized
by forbidden induced subgraphs [16, 17, 25]: diamond-free graphs, line graphs, hered-
itary clique-Helly claw-free graphs, paw-free graphs, and {gem,W,,bull}-free graphs
(see, for instance, Theorems 4.6 and 4.15). For each of the graph classes within which
clique-perfect graphs were characterized by forbidden induced subgraphs, also a poly-
nomial-time or even linear-time algorithm for the recognition of clique-perfectness
within the class was devised, with the only exception of diamond-free graphs. In [17],
the following characterization of those diamond-free graphs that are clique-perfect

was given.

Theorem 4.6 ([17]). Let G be a diamond-free graph. Then, G is clique-perfect if and only if
G contains no induced odd generalized sun.

In [17], also the question of whether there is a polynomial-time algorithm for de-
ciding whether a given diamond-free graph is clique-perfect was posed. Interestingly,
the answer can be shown to be affirmative by reducing the problem to that of deciding

balancedness, as follows.

Corollary 4.7. Let G be a diamond-free graph. Then, G is clique-perfect if and only if G is
balanced.

Proof. Since balanced graphs are clique-perfect, we only need to prove that diamond-
free clique-perfect graphs are balanced, or equivalently, that a diamond-free graph
that is not balanced is not clique-perfect. Let G be a diamond-free graph that is not
balanced. By Theorem 3.4, G contains an unbalanced cycle C, that is, an odd cycle C.
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Notice that if u and v are two consecutive vertices of C, then Ng(uv) n V(C) = .
Indeed, if Ng(uv) n V(C) # &, then, as Ng(Wyuy) n Ng(uv) n V(C) = &, for each
v € Ng(uv) there is some w € W, < Ng(e) such that w is nonadjacent to x and, in
particular, {u,v,x,w} induces a diamond in G. Since Ng(uv) n V(C) = J for each
two consecutive vertices uand v of C, V(C) induces an odd generalized sun in G and,
by Theorem 4.2, G is not clique-perfect, as desired. O

Notice also that if G is a diamond-free graph, the problem of deciding whether
G is a minimal odd generalized sun can be solved in polynomial time (it suffices to
verify that G is not clique-perfect but G — v is clique-perfect for every vertex v of G).
Rather surprisingly, the problem of deciding whether a graph is an odd generalized
sun (not necessarily minimal) is NP-complete even if G is a triangle-free graph [83].
Indeed, an odd cycle in a triangle-free graph cannot have improper edges. Hence, if G
is a triangle-free graph with an odd number of vertices, then G is an odd generalized
sun if and only if G has a Hamiltonian cycle, and the Hamiltonian cycle problem on
triangle-free graphs with an odd number of vertices is NP-complete [60, pp. 56-60].

4.1.2 Coordinated graphs and hereditary K-perfect graphs

Coordinated graphs and K-perfect graphs were introduced while looking for charac-
terizations of clique-perfect graphs and the three classes are strongly related [19, 20].

Let J be a family of nonempty sets. The chromatic index y(F) of F is the mini-
mum number of colors necessary to color the members of J such that any two in-
tersecting members are colored with different colors. For each x € | JJ, let ds(x) be
the number of members of F to which x belongs and let the maximum degree A(F) =
maxye| ) dg(x). Clearly, A(F) < y(J) and J is said to have the edge-coloring property
[9] if equality A(F) = y(F) holds. The edge coloring property has its origins in a cele-
brated theorem of Kénig [76] that states that the number of colors needed to color the
edges of a bipartite graph in such a way that incident edges receive different colors
equals the maximum degree of the graph. This result is known as Kénig’s edge-coloring
theorem.

Let the clique-chromatic index y.(G) of a graph G be the minimum number of col-
ors needed to assign different colors to intersecting cliques of G and let the maximum
clique-degree A.(G) be the maximum cardinality of a family of cliques having at least
one vertex of G in common. Then, A.(G) < v.(G) holds for every graph G and a
graph G is called coordinated [19] if A.(G’) = v.(G’) for each induced subgraph G’ of
G. Equivalently, a graph is coordinated if, in every induced subgraph, the rows of a
clique-matrix have the edge coloring property. Interestingly, the edge coloring prop-
erty is connected to the equality w = x in such a way that a graph is perfect if and only



78 Chapter 4. Clique-perfect graphs

N1 K(Nl)

Figure 4.2: The graph Ny and its clique graph

if, in every induced subgraph, the columns of its clique-matrix have the edge-coloring
property. Moreover, in [19], coordinated graphs were proved to form a subclass of
the class of perfect graphs. In [25] and [26], coordination was characterized by for-
bidden induced subgraphs within graphs belonging to different graph classes: line
graphs, paw-free graphs, {gem,W,,bull}-free graphs, and complements of forests. No
complete characterization of coordinated graphs by forbidden induced subgraphs is
known, but it is known that the recognition problem is NP-hard [110] and the number
of minimal forbidden induced subgraphs for the class grows exponentially with the
number of vertices and edges [109].

The clique graph K(G) of a graph G is the intersection graph of the family of cliques
of G. A graph G is called K-perfect [20] if K(G) is perfect. Notice that the class of K-
perfect graphs is not hereditary. For instance, the graph N1 of Figure 4.2 is K-perfect
but it contains an induced Cs and K(Cs) = Cs is imperfect. We introduce here the
following terminology: a graph will be said hereditary K-perfect graph if all its induced
subgraphs are K-perfect. It turns out that hereditary K-perfect graphs are perfect, as
implied by the Strong Perfect Graph Theorem (Theorem 2.3) together with the follow-

ing lemma.

Lemma 4.8. A hereditary K-perfect graph has no odd holes and has no antiholes with more
than 6 vertices.

Proof. Hereditary K-perfect graphs have no odd holes since odd holes are clearly K-
imperfect. Along the proof, C, will denote the graph such that V(C,,) = {0,1,.

1} and E(Cy,) = {01,12,23,...,(n — 1)0}. Assume thatn > 5and n # 6,7,9, 12 By
elementary number theory, n = 5a + 3b for some a > 1 and some b > 0. This implies
that there exists a sequence ay, ..., ax of integers taken from the set {2, 3} that satisfies
the following conditions: (1) aj + -+ + ax = n; (2) a; = 2 forsome i € {1,...,k};
and (3) for eachj = 1,...,k, a; = 2 implies aj;; = 3 (Where ay; stands for aj).
Assume that such a sequence {a;} is given and define b; equal to a; + - - - + a; modulo
nforeachi=1,..., k. In particular, by = 0. Let Q1 = {by,b2,..., by}, Q2 = Q1 + 2,
Q3 =Q14+4Q:1=0Q1+1,and Qs = Q1 +3, where A +p = {a+p:ace A}
and the sum is taken modulo n. Then, Q; is a clique of C,, fori = 1,2,...,5 and, by
construction, Q1Q: ... Q5Q1 is an odd hole in K(Cy,). Finally, observe that K(C7) Cy;
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thatif Q = {0,2,4,6} then {Q1,Q1+1,Q1 +2,...,Q1 + 8} induces a Cg in K(Cy); and
thatif Q1 = {0,2,5,7,9} and Qs = {1,3,5,7,10} then {Q1, Q1 +1, Q1 +2, Q1 +3, Q1 +
9,Q2,Q2 +1,Q2 +2,Q2 + 3} induces a Cg in K(Cp3). O

Interestingly, a careful reading of the proofs in [16, 17, 25] reveals that hereditary
K-perfectness was implicitly characterized when restricted to different graph classes:
line graphs, Helly circular-arc graphs, hereditary clique-Helly claw-free graphs, paw-
free graphs, and {gem,Wj,bull}-free graphs.

In the next subsection, we will show how coordinated and hereditary K-perfect
graphs relate to balanced and clique-perfect graph, with the help of some results in
hypergraph theory.

4.1.3 Connection with hypergraph theory

A hypergraph H is an ordered pair (X, £) where X is a finite set and € is a family of
nonempty subsets of X such that X = [ JE€. The elements of X are the vertices of H
and the elements of € are the hyperedges of H. If x1,...,x,, are the vertices of H and
Ei, ..., Em are the hyperedges of H, then a hyperedge-vertex incidence matrix of H is a
m x nmatrix A = (ayj) where ayj is 1if x; € E; and 0 otherwise. The dual hypergraph
H* of a hypergraph H = (X, €) has £ as vertex set and its hyperedges are the sets
Ex = {E € € : x € B} for each x € X. This means that a hyperedge-vertex incidence
matrix of H* is the transpose of one of H.

We will be mostly interested in clique hypergraphs of graphs. Namely, the cligue
hypergraph of a graph G is the hypergraph K(G) = (X, £) where X is the set of vertices
of G and € is the family of cliques of G. A hyperedge-vertex incidence matrix of X(G)
is a clique-matrix of G.

A hypergraph has the Kénig property if the family of its hyperedges have the Kénig
property. A hypergraph has the dual Kénig property if its dual has the Kénig property.
As discussed in the Introduction, for every graph G, «.(G) = t.(G) is equivalent to the
Kénig property for X(G) and 6(G) = «(G) is equivalent to the dual Kénig property
for K(G). Therefore, the following holds.

Remark 4.9. Let G be a graph. Then:

o G is perfect if and only if K(G') has the dual Kénig property for every induced subgraph
G'of G

e G is clique-perfect if and only if K(G') has the Kénig property for every induced sub-
graph G’ of G.

A hypergraph has the edge-coloring property if its hyperedges have the edge col-
oring property. A hypergraph has the dual edge-coloring property if its dual has the
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edge coloring property. It is easy to see that the equality w(G) = x(G) for a graph
G is equivalent to the dual edge coloring property for X(G). Therefore, the following
holds.

Remark 4.10. Let G be a graph. Then:

o G is perfect if and only if X(G') has the dual edge coloring property for every induced
subgraph G’ of G

e G is coordinated if and only if K(G') has the edge coloring property for every induced
subgraph G’ of G.

A partial hypergraph of a hypergraph H = (X, €) is any hypergraph having as hyper-
edge set a subset of €. A hypergraph has the Helly property if the family € of its hyper-
edges has the Helly property. So, a graph G is clique-Helly if and only if X(G) has the
Helly property. The line graph (or representative graph) of a hypergraph H = (X, £), de-
noted by L(H), is the intersection graph of the family £. The line graph relates clique
graphs and clique hypergraphs in the following way: K(G) = L(KX(G)). The Kénig
property, the edge coloring property, the Helly property, and perfectness are related
in the following way.

Theorem 4.11 ([36,92]). Let H be a hypergraph, Ay be the hyperedge-vertex incidence matrix
of H, and A, be its transpose. Then, the following assertions are equivalent:

(i) Every partial hypergraph of H has the K6nig property.

(ii) Every partial hypergraph of H has the colored edge property.
(iii) H has the Helly property and L(H) is perfect.
(iv) The matrix Al is perfect.

Lovéasz defined the hypergraphs satisfying the above assertions to be normal [92].
Since K(G) = L(X(G)) and recalling Remarks 4.9 and 4.10, Theorem 4.11 implies the
following.

Corollary 4.12. If G is hereditary-clique Helly and hereditary K-perfect, then G is clique-
perfect and coordinated.

Berge defined a hypergraph to be balanced [7] if its hyperedge-vertex incidence ma-
trix is balanced. So, a graph is balanced if its clique hypergraph is balanced. In [12],
Berge and Las Vergnas proved that balanced hypergraphs had the Kénig property and,
since the partial hypergraphs of a balanced hypergraph are balanced by definition, the
following holds.
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clique-perfect

perfect

coordinated

hereditary K-perfect

Figure 4.3: Containment and intersections among the classes of balanced, perfect, clique-
perfect, coordinated, and hereditary K-perfect graphs.

Theorem 4.13 ([12]). Every balanced hypergraph is normal.

In light of Theorem 4.11, the above theorem implies that every balanced graph is
clique-Helly and K-perfect. As the class of balanced graphs is hereditary, we have the
following.

Corollary 4.14 ([12, 92]). Balanced graphs are hereditary clique-Helly and hereditary K-
perfect. In particular, balanced graphs are clique-perfect and coordinated.

Figure 4.3 illustrates the containment relations and intersections among balanced,
perfect, clique-perfect, coordinated, and hereditary K-perfect graphs by exhibiting one
graph in each possible intersection.
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4.2 Clique-perfectness of complements of line graphs

In [16], clique-perfect graphs were characterized by minimal forbidden induced sub-
graphs within the class of line graphs, as follows.

Theorem 4.15 ([16]). Let G be a line graph. Then, G is clique-perfect if and only if G contains
no induced 3-sun and has no odd hole.

Nevertheless, as clique-perfect graphs are not closed by complementation, this
result does not tell us which complements of line graphs are clique-perfect. Pre-
cisely, the main result of this section is the following characterization of clique-perfect
graphs within complements of line graphs by means of minimal forbidden induced
subgraphs.

Theorem 4.16. Let G be the complement of a line graph. Then, G is clique-perfect if and only
if G contains no induced 3-sun and has no antihole Cy for any k > 5 such that k is not a
multiple of 3.

Let G be the complement of the line graph of a graph H. In order to prove Theo-
rem 4.16, we profit from the fact that the cliques of G are precisely the maximal match-
ings of H. We call a matching-transversal of H any set of edges meeting all the maximal
matchings of H and matching-independent set of H any collection of edge-disjoint maxi-
mal matchings of H. We define the matching-transversal number T, (H) of H as the mini-
mum size of a matching-transversal of H and the matching-independence number oty (H)
of H as the maximum size of a matching-independent set of H. Clearly, x.(G) = om(H)
and 1.(G) = ™m(H). Finally, we say that H is matching-perfect if om(H’) = tm(H') for
every subgraph H’ (induced or not) of H. Hence, G is clique-perfect if and only if H is
matching-perfect, and Theorem 4.16 can be reformulated as follows.

Theorem 4.17. Let H be a graph. Then, H is matching-perfect if and only if H contains no
bipartite claw and the length of each cycle of H is at most 4 or is a multiple of 3.

Recall that “H contains no bipartite claw” means H contains neither induced nor
non-induced subgraphs isomorphic to the bipartite claw. To prove Theorem 4.17, it
suffices to show that, if H is a graph containing no bipartite claw and the length of
each cycle of H is at most 4 or is a multiple of 3, then oy, (H) = T (H). In addition, we
can assume that H is connected because clearly oy, (H) (resp. tm(H)) is the minimum
of am(H’) (resp. tTm(H’)) among the components H’ of H. The proof splits into two
parts according to whether or not H has some cycle of length at least 5. In both cases,
we obtain an upper bound on T, (H) and exhibit a collection of edge-disjoint maximal
matchings of the same size, which means that om(H) = T™w(H). To produce these
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collections of edge-disjoint maximal matchings, we ultimately rely on edge-coloring
(via Theorem 4.30) tailored subgraphs of H.

The structure of this section is as follows. In Subsection 4.2.1, we present a struc-
ture theorem for graphs containing no bipartite claw that is used all along this section.
In Subsection 4.2.2, we completely describe those graphs not containing bipartite claw
that are Class 2 with respect to edge-coloring. In Subsection 4.2.3, we prove the main
results of this section (Theorems 4.16 and 4.17). Finally, in Subsection 4.2.4, we show
a linear-time recognition algorithm for matching-perfect graphs and a quadratic-time
one for clique-perfect graphs that follow from our main results.

4.2.1 Linear and circular structure of graphs containing no bipartite claw

In this subsection, we present a structure theorem for graphs containing no bipartite
claw that will prove very useful to us all along this section. In [30], the linear and
circular structure of net-free nclaw-free graphs is studied. As the line graphs of graphs
containing no bipartite claw are the net-free n line graphs, the main result of this
subsection (Theorem 4.25 on page 93) can be regarded as describing a more explicit
linear and circular structure for the more restricted class of net-free n line graphs.

Our structure theorem will be stated in terms of linear and circular concatenations
of two-terminal graphs that we now introduce. A two-terminal graph is a triple I' =
(H,s,t), where H is a graph and s and t are two different vertices of H, called the
terminals of I'. We now introduce in some detail the two-terminal graphs depicted in
Figure 4.4. For each m > 0, the m-crown is the two-terminal graph (H, s, t) where
V(H) = {s,t,a1,az,...,am}and E(H) = {st} u {sa;: 1 <i<m}u{ta;: 1 <i<m}
The 0-crown and the 1-crown are called edge and triangle, respectively. For eachm > 2,
the m-fold is the two-terminal graph (H, s, t) where V(H) = {s,t,a1,az,...,am} and
EH) = {sa; : 1 <i<m}u{ta; : 1 <1< m}. The 2-fold is also called square. By
a crown we mean an m-crown for some m > 0, and by a fold we mean an m-fold for
some m > 2. Finally, K4 will also denote the two-terminal graph (Ky, s, t) for any two
vertices s and t of the K. We will refer to the crowns, folds, rhombus, and K4 as the
basic two-terminal graphs.

If ' = (H, s, t) is a two-terminal graph, H is called the underlying graph of T', s is its
source, and t its sink. If T1 = (Hy, sq,t1) and I = (Hy, s, t2) are two-terminal graphs,
the p-concatenation Ty &, I, is the two-terminal graph (H, s1, t2) where H arises from
Hi u Hp by identifying t; and s, into one vertex u and attaching p pendant vertices
adjacent to u. The 0-concatenation I'1 &g I3 is denoted simply by I'1 & I. If a two-
terminal graph ' = (H, s, t) is such that Ny[s] n Ny [t] = &, we define its p-closure,
denoted I' &, O, as the graph that arises by identifying s and t into one vertex u and
then attaching p pendant vertices adjacent to u. The O-closure of I" is simply denoted
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uA.<><I>-$-

edge triangle square rhombus
m-crown, m > m—fold m > 2

Figure 4.4: Basic two-terminal graphs with terminals s and t

@) (b)

Figure 4.5: A linear and a circular concatenation the sequence 1, T3, T3, Ty of two-terminal
graphs, where T is a square, T and Ty are rhombi, and T3 is a triangle: (a) Underlying graph
of 1 & T & T3 &1 Ty and (b) T1 & T &, T3 &1 Ty &3 ©. Concatenation vertices are circled.

by I' & O.

Let I, T>,..., I be a sequence of two-terminal graphs. A linear concatenation of
I, T2,..., Ty is the underlying graph of the two-terminal graph I'1 &, [2&p, - - -&p, _ Th
for some nonnegative integers p1,p2, ..., pn—1. The two-terminal graphs I, I3, ...,
are called the links of the linear concatenation. The concatenation vertices of such a
linear concatenation are the n — 1 vertices that arise by identifying the sink of I'; with
the source of i1 foreachi = 1,2,...,n — 1. The two links I'; and T are called
adjacent in the linear concatenation, for eachi =1,2,...,n — 1. The graph K; will be
regarded as the linear concatenation of an empty sequence of two-terminal graphs.
See Figure 4.5(a) for an example of a linear concatenation. A circular concatenation
of I, Iy,..., I is any graph Il &p, 2 &p, -+ - &p,_; T &y, O for some nonnegative
integers p1,p2,...,Pn—1. The two-terminal graphs I, I3, ..., Iy are called the links of
the circular concatenation. The concatenation vertices of such a circular concatenation
are the n — 1 vertices that arise by identifying the sink of I} with the source of I
foreachi =1,2,...,n — 1, as well as the vertex that arises by identifying the sink of
I'n with the source of I'1. The two links I and TG are called adjacent in the circular
concatenation, for eachi = 1,2,...,n — 1, as well as the links I, and I. See Figure
4.5(b) for an example of a circular concatenation. Each of the Ii’s is called a link of

either the linear or the circular concatenation.
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4.2.1.1 Structure of fat caterpillars

A caterpillar [69] is a connected graph containing no bipartite claw and having no cycle.
We call fat caterpillars to those connected graphs containing no bipartite claw and hav-
ing no cycle of length greater than 4. The fact that caterpillars have edge-dominating
paths gives them a very simple linear structure; namely, they are linear concatenations
(in our sense) of edge links [68]. We will show that fat caterpillars containing no A and
no net are linear concatenations of basic two-terminal graphs, like the graph depicted
in Figure 4.5(a). This result will be the last in the following sequence of three lemmas.

Lemma 4.18. Let H be a fat caterpillar containing no A and no net. Then, H has an edge-
dominating path P = uguy ... ug having no long chords and no three consecutive short chords,
and such that each vertex v € V(H)\V(P) satisfies one the following assertions:

(i) v is a pendant vertex and the only neighbor of v is neither an endpoint of P nor the
midpoint of any short chord of P.

(ii) v has degree 2 and is a false twin of u; for somej e {1,2,...,0 —1}.

(iii) v has degree 3 and is a true twin of u; for some j € {1,{ — 1} such that \;_y is adjacent
tO u]'+].

Proof. If H is the underlying graph of an m-crown for some m > 3, then the lemma
holds trivially by letting P be any path of H of length 2 whose endpoints are the two
vertices of H of degree m+1. Therefore, without loss of generality, we will assume that
H is not the underlying graph of an m-crown for any m > 3. Among the longest paths
of H without long chords, let us choose some path P = uguju; ... u, that maximizes
dn(up) + dn(ue) and, among those with maximal dy (ug) + dn(ue), we choose one
that minimizes min{dy(uo), dyi(ue)}. We will show that P satisfies the thesis of the
lemma. Notice that P has no long chords by construction and that P has no three
consecutive short chords simply because H has no 5-cycle. The lemma follows from
the following four claims.

Claim 1. P is edge-dominating.

Proof of the claim. Suppose, by the way of contradiction, that P is not edge-dominating.
Since H is connected, there is some edge vw of H such that none of v and w is a vertex
of P and v is adjacent to u; for some j € {0,1,2,...,£}. Since H contains no bipartite
claw,j € {0,1,€—1,¢}. Let us consider first the case j = 0. Then, the path vP must have
some long chord because it is longer than P. Since P has no long chords and H has no
cycle of length greater than 4, necessarily v is adjacent to u;. So, as H contains no A,
¢ = 2. Then, as P’ = ujupvw is a path longer than P, P’ must have some long chord;
i.e,, wis adjacent to uy. In addition, {uy, up, w} is a stable set because H has no 5-cycles.
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Moreover, N1 (up) = Ny (u2) = Ny(w) = {uy,v} because H containsno A. Now, P” =
uiugv is a path of the same length than P but the sum of the degrees of the endpoints
of P”is dn(u1) + dy(v) > 4 = dn(uo) + dn(uz), which contradicts the choice of P.
The contradiction arose from assuming that j = 0. So, j # 0 and, symmetrically, j # {.
Therefore, also by symmetry, we assume, without loss of generality, that j = 1. As
P” = wvuju, ... uy is longer than P, P” must have some long chord. So, as H is a fat
caterpillar containing no A and no net, this means that w is adjacent to u, and { = 2.
But then, we find ourselves in the case j = { by letting w play the role of v and vice
versa, which leads again to a contradiction. As this contradiction arose from assuming
that P was not edge-dominating, Claim 1 follows. O

Claim 2. Ifv e V(H)\V(P) is pendant, then (i) holds.

Proof of the claim. Suppose that v € V(H)\V(P) is pendant. As P is edge-dominating,
Nu(v) = {u;} for some j € {0,1,2,...,¢}. If j = 0, then vP would be a path longer
than P and without long chords, contradicting the choice of P. This contradiction
proves that j # 0 and, by symmetry, j # {. Suppose, by the way of contradiction,
that u; is the midpoint of some short chord of P;i.e., uj_; is adjacent to u;,;. Since H
contains no net and by symmetry, we assume, without loss of generality, that j = 1.
As vujupuoug. .. ug is longer than P, it must have some long chord; i.e., u; is adjacent
to uz. Then, as H contains no A and P has no long chords, { = 3 and dy(uy) =
dn(uz) = 2. So, P/ = vuquguy is a path of the same length that P without long chords
and such that dy(v) + du(u2) = 4 = du(uw) + du(uz) and min{dy(v), dn(u2)} =
1 < min{dy (up), dn(us)}, which contradicts the choice of P. This contradiction arose
from assuming that v was adjacent to the midpoint of some short chord of P. Now,
Claim 2 follows. O

Claim 3. Ifv e V(H)\V(P) has degree 2, then (ii) holds.

Proof of the claim. Let v € V(H)\V(P) of degree 2 and suppose, by the way of contra-
diction, that v is adjacent to two consecutive vertices of P; i.e.,, Ny (v) = {uj, uj1}
for some j € {0,1,2,...,{ —1}. If j = 0, then vP would be a path without long
chords and longer than P, contradicting the choice of P. Therefore, j > 1 and, by
symmetry, j < { — 1. The path ugu; ... ujvuj 14542 ... ue must have some long chord
because it is longer than P and, as P has no long chords, this means that uju;j,, or
Uj4+1Uj_1 is a chord of P. By symmetry, suppose, without loss of generality, that uju;.»
is a chord of P. Then, j = { — 2 since otherwise H would contain A. In addition,
Np(ug) = {u¢_»,u¢ 1} because P has no long chords and H contains no A. Hence,
dr(ue) = 2 < dp(ue—1). Now, P/ = upuy ... ug_pvug_1 is a path of the same length
than P but dyy(ug) + dn(uwe—1) > du(ug) + dru(ug). Because of the choice of P, P’

must have some long chord and, necessarily, u;1 is adjacent to u;_;. Asu; adjacent



4.2. Clique-perfectness of complements of line graphs 87

to uj o implies j = ¢ — 2 and dy(ue) = 2, uj41 adjacent to u;_q implies j = 1 and
dy(ug) = 2. Therefore, { = 3, dyy(up) = dp(ue) = 2, and Ny (v) = {u1, uz}. Hence, as
H is connected and P is edge-dominating, every vertex v e V(H)\V(P) is adjacent to
ug and/or to up only. If some vertex w € V(H)\V(P) were adjacent to 1y but not to up,
then P” = wujupu, would be a path without long chords of the same length than P
and such that dy(w) + dp(u2) > 4 = dn(uo) + dr(us), contradicting the choice of P.
This proves that each vertex w € V(H)\V(P) satisfies Ny (w) = {uy, uz}. We conclude
that H is the underlying graph of an m-crown for some m > 3, which contradicts our
initial hypothesis. This contradiction arose from assuming that v was adjacent to two
consecutive vertices of P. So, as P is edge-dominating and H has no cycle of length
greater than 4, necessarily Ny (v) = {vj_1,vj41} forsomej e {1,2,...,{ —1}. Suppose,
by the way of contradiction, that dj(u;) > 2 and let w be a neighbor of u; different
from u;_1 and u;;;. Then, as H contains no A and has no 5-cycle, { = 2and j = 1.
But then, wujuyv is a path longer than P and without long chords, contradicting the
choice of P. This contradiction arose from assuming that dy;(u;) > 2. Consequently,
u; is a false twin of v and (ii) holds. Hence, Claim 3 follows. O

Claim 4. Ifv e V(H)\V(P) has degree at least 3, then (iii) holds.

Proof of the claim. Let v e V(H)\V(P) of degree at least 3. As P is edge-dominating
and H has no cycles of length greater than 4, Ny (v) = {u;_1,uj,uj41} for some j €
{1,2,...,0=1}. Asupuy ... uj_1vuujoq ... ugand uply ... Uj_1UjVUj 41 . .. Ug are longer
than P, they have at least one long chord each. So, if u;_; were nonadjacent to u;1,
then u; would be adjacent to u;j_» and to u;, and, therefore, vu; 11y 215152151V
would be a 6-cycle of H, a contradiction. Therefore, uj_; is adjacent to uj 1. As H
containsno A, j = 1orj = {—1. By symmetry, assume that N (v) = {up, us, uz}. Sup-
pose, by the way of contradiction, that u; is not a true twin of v. Then, there is some
w € Ny (ur)\{v,up,u2} and, as P is edge-dominating and H has no cycle of length
greater than 4, w is pendant. Then, wujuguyus ... ue is a path longer than P and with-
out long chords, a contradiction with the choice of P. This contradiction proves that
v is a true twin of u; and (iii) holds. This completes the proof of Claim 4 and of the
lemma. O

Lemma 4.19. Let H be a fat caterpillar containing no A and no net, let P = uguy ... ug as
in the statement of Lemma 4.18, and suppose that £ > 1. Then, H is the underlying graph
of 1 &p, 12 &p, -+ &p,._, T for some basic two-terminal graphs T1,Ts,..., T and some
nonnegative integers p1,p2, - . ., Pn—1 such that the source of T is ug and the sink of T, is uy.

Proof. The proof will be by induction on {. If { = 1, H is the underlying graph of an
edge link with source up and sink 1. Let £ > 2 and assume that the claim holds when-
ever P has length less than {. We will define a two-terminal graph Iy by considering
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several cases. In each case, we assume that the preceding cases do not hold.

Case 1. wy is adjacent to some vertex v € V(H)\V(P) of degree 3.

Then, by assertions (i)—(iii) of Lemma 4.18, we have that v is a true twin of u; and
Np(up) = {v,us,uz}. We define I' to be the two-terminal graph with source ug and
sink up and whose underlying graph is the subgraph of H induced by Ny[v]. In par-
ticular, I7 is a K4.

Case 2. g is adjacent to some vertex in v € V(H)\V(P) of degree 2.

Then, by assertions (i)—(iii) of Lemma 4.18, we have that v is a false twin of
and each neighbor of uy in V(H)\V(P) is also a false twin of u;. We define I} as the
two-terminal graph with source uy and sink u,, and whose underlying graph is the
subgraph of Hinduced by Ny [ug]u{uz}. Notice that [ is a crown or a fold, depending
on whether or not 1y is adjacent to u,.

As (i)—(iii) of Lemma 4.18 imply that each neighbor of 1 in V(H)\V(P) has degree
2 or 3, in the cases below we are assuming that 1y has no neighbors in V(H)\V(P).

Case 3. wy is adjacent to up and wy is adjacent to us.

Then, by assertions (i)—(iii) of Lemma 4.18, di(up) = 2 and dp(u1) = dn(up) = 3.
Let I'1 be the two-terminal graph with source uy and sink usz, and whose underlying
graph is the subgraph of H induced by {ug, 11, uz, uz}. Then, I is a rhombus.

Case 4. wy is adjacent to up and wy is nonadjacent to us.

As uy is the midpoint of the short chord ugu, and we are assuming that uy has
no neighbors in V(H)\V(P), assertions (i)—(iii) of Lemma 4.18 imply that u; has no
neighbors in V(H)\V(P). Therefore, as u; is nonadjacent to uz, dy(u) = 2. Let I be
the two-terminal graph whose source is 19 and sink u,, and whose underlying graph
is the subgraph of H induced by {ug, u1, uz}. Then, I is a triangle.

Case 5. g is nonadjacent to uy.

In this case, we define I as the two-terminal graph with source ug, sink u;, and
whose underlying graph is the induced subgraph of H induced by {19, u1}. Then, I
is an edge.

Once defined 7 as prescribed in Cases 1 to 5 above, we let j be such that u; is
the sink of ', vi,Vvy, ..., Vp, be the pendant vertices adjacent to u;, P/ = ujujyq...ug,
and H' = H — ((V(I')\{w;}) u {v1,...,vp,}). By construction, H" and P’ satisfy the
statement of Lemma 4.18 by letting H’ and P’ play the roles of H and P, respectively.
If j = {, then H is the underlying graph of 1 with source uy and sink u; and the
lemma holds for H. If j < ¢, by induction hypothesis, H’ is the underlying graph of
some I &y, [3 &p, - - - &y, I'h where each T} is a basic two-terminal graphs and each
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pi = 0, the source of I is u;, and the sink of I, is ug. So, H is the underlying graph of
1N &p, 12 &p, 13 &p, - -+ &p,; T where uy is the source of I and uy is the sink of I,.
Now, Lemma 4.19 follows by induction. O

As a consequence of the two above results, we now prove a structural characteri-
zation for fat caterpillars containing no A and no net.

Lemma 4.20. Let H be a graph. Then, H is a fat caterpillar containing no A and no net if and
only if H is a linear concatenation of crowns, folds, rhombi, and K4's where the Ky links may
occur only as the first and/or last links of the concatenation.

Proof. Suppose that H is a linear concatenation of a sequence I7, ..., I, of basic two-
terminal graphs such that if I is a K4 then j € {1,n}. Then, H contains no A and
no net because each 4-cycle of H has two nonconsecutive vertices adjacent to vertices
of the 4-cycle only and each triangle of H has at least one vertex of degree 2. More-
over, H has no cycle of length greater than 4 because each cycle of H is contained
in one of the links and, by construction, the links are basic. Suppose, by the way of
contradiction, that H contains a bipartite claw B. Let by be the center of B and let
b1, by, and b3 be the neighbors of by in B. As by has degree at least 3 in H, by is a
concatenation vertex of H or a non-terminal vertex of a rhombus link. If by were the
non-terminal vertex of a rhombus links and, without loss of generality, b; were the
remaining non-terminal vertex of the same link, then Ny(b;) = {bg, by, b3}, which
contradicts the choice of by, by, by, and bs. Therefore, by is necessarily a concatena-
tion vertex of H. As each of by, by, and bj is a non-pendant vertex, at least two of them
belong to the same link of H. Hence, we assume, without loss of generality, that by is
a terminal vertex of I for some j € {1,2,...,n} and b; and b, are two other vertices of
5. By construction, by, by € Ny (bo), Np(b1)\{bo, b2} # &, N1 (b2)\{bo, b1} # &, and
|(NH(b1) U N (b2))\{bo, b1, b2}| > 2. So, since [j is basic, necessarily [ is a K4 and
either by or by is also a concatenation vertex of H. By symmetry, we assume, without
loss of generality, that j = 1, by is the source of I, by is the sink of I, and b; and bs
are the non-terminal vertices of H. Then, N [bz] = Ny[bs] = {bo, b1, bz, b3}, contra-
dicting the choice of by, by, by, and bs. This contradiction shows that H contains no
bipartite claw and we conclude that H is a fat caterpillar.

Conversely, let H be a fat caterpillar containing no A and no net. If H = K;, H
is the linear concatenation of an empty sequence of two-terminal graphs. Otherwise,
there is some path P = ugu; ... u¢ as in Lemma 4.18 and ¢ > 1. Then, by Lemma 4.19,
H is the linear concatenation of basic two-terminal graphs. Moreover, as H contains
no A, the Ky links, if any, occur as first and/or last links of the concatenation, which
completes the proof of Lemma 4.20. O
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The following two lemmas describe the structure of the remaining fat caterpillars;
i.e., those containing A or net.

Lemma 4.21. Let H be graph. Then, H is a fat caterpillar containing A if and only if H has
an edge-dominating 4-cycle C = vivovavyvy and two different vertices x1,x2 € V(H)\V(C)
such that x; is adjacent to v; for i = 1,2, each non-pendant vertex in V(H)\V(C) is a false
twin of v4 of degree 2, and one of the following holds:

(i) C is chordless.
(i) vyvs is the only chord of C and dyy(v4) = 2.
(iii) C has two chords and dp(v3) = dn(va) = 3.

Proof. The ‘if” part is clear. In order to prove the ‘only if’, suppose that H is a fat cater-
pillar containing A. Then, there is some 4-cycle C = vivov3vyvy and two different
vertices x1,x2 € V(H)\V(C) such that x; is adjacent to v; for i = 1,2. As H con-
tains no bipartite claw and H is connected, C is edge-dominating in H. Therefore,
as H has no 5-cycle, each vertex in V(H)\V(C) is pendant or has exactly two neigh-
bors which are nonconsecutive vertices of C. If there are two non-pendant vertices
wi, Wy € V(H)\V(C), then wy and w,, are false twins because H contains no bipartite
claw. Therefore, we assume, without loss of generality, that each non-pendant vertex
in V(H)\V(C) is adjacent precisely to v; and v3. Thus, if there is some non-pendant
vertex w € V(H)\V(C), then w is a false twin of v4 because H contains no bipartite
claw and has no 5-cycle. If C is chordless, then (i) holds. If C has two chords, then, as
H contains no bipartite claw, dy;(v3) = dyi(v4) = 3 and (iii) holds. Suppose that C has
exactly one chord and assume, without loss of generality, that viv3 is the only chord of
C. As H has no 5-cycle and contains no bipartite claw, di(v4) = 2 and (ii) holds. [

Lemma 4.22. Let H be a graph. Then, H is a fat caterpillar containing net but containing no
A if and only if H has some edge-dominating triangle C such that each vertex in V(H)\V(C)
is pendant.

Proof. The 'if’ part is clear. For the converse, suppose that H contains no bipartite
claw. Since H contains net, there are six different vertices v{, vy, v3, X1, X2, X3 such that
V1, V2, V3 are pairwise adjacent and v; is adjacent to x; for i = 1,2,3. As H contains no
bipartite claw and H is connected, C = viv,v3v; is edge-dominating in H. In addition,
as H contains no A, each vertex in V(H)\V(C) is pendant. O

We close this sub-subsection with the following result that summarizes the struc-
ture of fat caterpillars.
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Theorem 4.23. A graph H is a fat caterpillar if and only if exactly one of the following condi-
tions holds:

(i) H is a linear concatenation of crowns, folds, rhombi, and K4's where the Ky links may
occur only as the first and/or last links of the concatenation.

(ii) H is the circular concatenation edge &, edge &p, edge &, edge &p, O for some
nonnegative integers p1, p2, p3, p4 such that p1,p2 > 1.

(iii) H is the circular concatenation edge &p, edge &, m-fold &, O for some m > 2 and
some nonnegative integers p1, p2, p3, 4 such that p1,p2 = 1.

(iv) H is the circular concatenation edge &, edge &, m-crown &, O for some m > 1
and some nonnegative integers p1, p2, p3, P4 such that p1,p2 = 1.

(v) His the underlying graph of edge &, K4 &, edge for some nonnegative integers p1, p2.

(vi) His the circular concatenation edge &, edge &, edge &, O for some positive integers
P1,P2,P3.

4.2.1.2 Structure theorem for graphs containing no bipartite claw

To prove our structure theorem, we need to prove first the following lemma.

Lemma 4.24. Let H be a connected graph containing no bipartite claw and having some cycle
of length at least 5. Assume further that the 5-cycles of H are chordless and the 6-cycles of H
have no long chords and no three consecutive short chords. If C = ujuy ... uguy is a longest
cycle of H, then C has no long chords and no three consecutive short chords and, for each vertex
v e V(H)\V(C), one of the following assertions holds:

(i) v is pendant and its only neighbor is not the midpoint of any short chord of C.
(ii) v has degree 2 and is a false twin of u; for somej € {1,2,...,4}.
As a result, H is a circular concatenation of crowns, folds, and rhombi.

Proof. C has length at least 5 by hypothesis and C is edge-dominating in H because H
contains no bipartite claw. If C had a long chord, then C would have length at least
7 (because we are assuming that the 6-cycles have no long chords) and, as a conse-
quence, H would contain a bipartite claw. Hence, C has no long chords. If C had three
consecutive short chords, then C would have length at least 7 (because we are assum-
ing that the 5-cycles are chordless and the 6-cycles have no three consecutive short
chords) and would imply that H contains a bipartite claw. This means that C has no
three consecutive short chords.
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Let v e V(H)\V(C). As C is edge-dominating and H is connected, dy(v) > 1.
Assume first that v is pendant. If the only neighbor of v were the midpoint of some
short chord of C, then C should have length at least 6 (because we are assuming that 5-
cycles are chordless) and, therefore, H would contain a bipartite claw, a contradiction.
Therefore, if v is pendant, then (i) holds. Assume now that v is non-pendant. As C
is a longest cycle of H, no two consecutive vertex of C are adjacent to v. Moreover, as
H contains no bipartite claw, v has no two neighbors at distance larger than 2 within
C. This means that if v had at least three neighbors, then C would be a 6-cycle and v
would be adjacent to every second vertex of C, but then H would contain a bipartite
claw. We conclude that v has exactly two neighbors and that this two neighbors are at
distance 2 within C;i.e., Ny (v) = {uj_1,uj11} for somej € {1,..., ¢} (from this point
on, subindices should be understood modulo ¢) and, due to the fact that H contains
no bipartite claw and its 5-cycles are chordless, u; is a false twin of v. This proves that
if v is not pendant, then (ii) holds.

It only remains to prove that H is a circular concatenation of crowns, folds, and
rhombi. We claim that there is some k € {1,2,...,{} such that uy is neither the mid-
point of any short chord of C nor a false twin of any vertex outside V(C). Indeed, if no
vertex of C is a false twin of a vertex outside V(C), the existence of k is guaranteed by
the fact that C has no three consecutive short chords. Suppose that, on the contrary,
there is some j € {1,...,{} such that u; is a false twin of a vertex outside V(C). Then,
as C is a longest cycle of H, u;_; is not the midpoint of a short chord of C and u;_; is
not the false twin of any vertex outside V(C) because dy(uj_1) > 2. Then, the claim
holds by letting k = j — 1. This concludes the proof of the claim.

Assume, without loss of generality, that u, is neither the midpoint of any short
chord nor a false twin of any vertex outside V(C). Let vi,vy,...,vq be the pendant
vertices of H incident to uy. We create a new vertex uy and we add the edge upu; and
the edges joining uyg to every false twin of u; outside V(C) (if any). If u, is adjacent to
up, then we also add an edge joining 1y to u,. Finally, we remove every edge joining u,
to a neighbor of ug. Let H’ be the graph that arises this way and let P/ = upujuy ... uy.
Clearly, H" and P’ satisfy Lemma 4.18 by letting H’ and P’ play the roles of H and P,
respectively. So, by Lemma 4.19 and its proof, H’ is the underlying graph of some
M &p, I &p, &+ &, Iy where each T} is a crown, a fold, or a rhombus, and each
pi = 0. (Indeed, no T} is a K4 because no vertex v e V(H’)\V(P’) has degree 3.) Finally,
H is the circular concatenation ' &p, 2 &p, & - -+ &y, | Th &q O, where each link is a
crown, a fold, or a rhombus. O

The next theorem is the main result of this subsection and proves that, except for
a few sporadic cases (assertions (i), (ii), and (iii) below), connected graphs containing

no bipartite claw are linear and circular concatenations of basic two-terminal graphs
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(assertion (iv)).

Theorem 4.25. Let H be a connected graph. Then, H contains no bipartite claw if and only if
at least one of the following assertions holds:

(i) H is spanned by a 6-cycle having a long chord or three consecutive short chords.

(ii) H hasa5-cycle C and a vertexw € V(C) such that: (1) eachv € V(H)\V(C) is a pendant
vertex adjacent to wand (2) C has three consecutive short chords or w is the midpoint of
a chord of C.

(iii) H has a complete set Q of size 4 and there are two vertices q1, qa2 € Q such that: (1) each
v € V(H\V(Q) is a pendant vertex adjacent to qq or qa and (2) there is at least one
pendant vertex adjacent to qi fori =1,2.

(iv) H is a linear or circular concatenation of crowns, folds, rhombi, and K4's, where the K4
links may occur only in the case of linear concatenation and only as the first and/or last
links of the concatenation.

Proof. Suppose that H contains no bipartite claw and we will prove that at least one
of the assertions (i)-(iv) holds. Since H contains no bipartite claw and H is connected,
every cycle of H of length at least 5 is edge-dominating in H.

If H contains a 6-cycle C having a long chord or three consecutive short chords,
then, as H contains no bipartite claw, H is spanned by C and assertion (i) holds. So,
from now on, we assume, without loss of generality, that H contains no 6-cycle having
a long chord or three consecutive short chords.

Suppose now that H contains antenna. Then, H has some 5-cycle C = vivyvzvavsvy
and some vertex v € V(H)\V(C) such that v is adjacent to v, and v; is adjacent to vs.
If v were adjacent to any vertex of C different from v;, then H would have a 6-cycle
having a long chord, contradicting our assumption. If any vertex of C different from
v were adjacent to some vertex outside V(C) different from v, then H would contain
a bipartite claw. Therefore, as H is connected and C is edge-dominating, each vertex
v € V(H)\V(C) is a pendant vertex adjacent to v,. Thus, (ii) holds. So, from now on,
we assume, without loss of generality, that H contains no antenna.

Suppose now H has a 5-cycle C with three consecutive short chords. If there were
any vertex v € V(H)\V(C) adjacent to the two vertices v; and v, of C that are no mid-
points of any of these three short chords, then H would have a 6-cycle with three con-
secutive short chords, contradicting our assumption. Since H contains no antenna,
the midpoints of the chords of C have neighbors in V(C) only. Therefore, as C is
edge-dominating, each v € V(H)\V(C) is a pendant vertex adjacent to v; or vp. If
there were two different vertices 1y, u; € V(H)\V(C) such that u; is adjacent to v; for
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i = 1,2, then H would contain a bipartite claw. Hence, without loss of generality, each
v € V(H)\V(C) is a pendant vertex adjacent to v; and (ii) holds. From now on, we
assume, without loss of generality that H has no 5-cycle with three consecutive short
chords.

Suppose now that H has a 5-cycle C = vivov3vyvsvy with at least three chords.
Then, by hypothesis, C has exactly three chords and, without loss of generality, the
chords of C are vivs, viv4, and v3vs. As C is edge-dominating and H contains no an-
tenna, each vertex v e V(H)\V(C) is adjacent to vi and/or to v3 only. Then, H =
rhombus &, m-crown &, O for some p1, p2 = 0 and some m > 1 and, in particular,
(iv) holds. So, from now on, we assume, without loss of generality, that each 5-cycle
of H has at most two chords.

Suppose that H has a 5-cycle C = vivpv3v4vsv1 with two crossing chords. Without
loss of generality, assume that v,v4 and v3vs are the chords of C. As H contains no
antenna, vz and v4 have neighbors in V(C) only. Suppose that there is some vertex
v € V(H)\V(C) such thatv is adjacent simultaneously to v, vo, and vs. Since H contains
no bipartite claw, it follows that the only neighbors of v; are v, v», and vs, and the only
vertex outside V(C) adjacent simultaneously to v, and vs is v. So, since C is edge-
dominating, we conclude that H = rhombus &;,, rhombus &, © for some p1,p2 = 0
and, in particular, (iv) holds. So, without loss of generality, assume that there is no
vertex outside V(C) adjacent to vy, v, and vs simultaneously. Suppose now that there
is some vertex v € V(H)\V(C) which is adjacent to v, and vs and nonadjacent to v;.
Since H contains no bipartite claw, v; has no neighbors apart from v, and vs. So, since
C is edge-dominating, we conclude that H = rhombus &, m-fold &, O for some
P1,P2 = 0and m > 2 and, in particular, (iv) holds. Finally, assume, without loss of
generality, that there is no vertex v e V(H)\V(C) adjacent to v, and vs5 simultaneously.
Then, since C is edge-dominating, H = rhombus &, m;-crown &, my-crown &, O
for some p1, p2, p3, my, my = 0 and (iv) holds.

Suppose that H has a 5-cycle C = vivov3v4vsvy with two noncrossing chords. With-
out loss of generality, assume that viv3 and viv4 are the chords of C. Since H con-
tains no antenna, vertices v, and vs have neighbors in V(C) only. If there were a ver-
tex outside V(C) which were adjacent to vy, v3, and vy, then H would have a 6-cycle
with a long chord, contradicting our assumption. Therefore, as C is edge-dominating,
H = mj-crown &, mp-crown &, mg-crown &, O for some p1,p2,p3,m1 = 0 and
some my, m3 = 1 and (iv) holds. Therefore, from now on, we assume, without loss of
generality, that each 5-cycle of H has at most one chord.

Suppose now that H has a 5-cycle C = vivpv3vsvsvy with exactly one chord. With-
out loss of generality, assume that the only chord is viv3. Since H has no antenna, no
vertex outside V(C) is adjacent to v,. If there were some vertex outside V(C) adjacent
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to at least three vertices of C, then H would have a 5-cycle with at least two chords,
contradicting our hypothesis. Suppose that there is some vertex v € V(H)\V(C) which
is adjacent to two nonconsecutive vertices of C different from v; and v3. Without
loss of generality, assume that the two neighbors of v are v; and v4. Since H con-
tains no bipartite claw, vs has no neighbors outside V(C). As C is edge-dominating,
we conclude that H = m;-fold &}, mz-crown &, mz-crown &p, O for some m; >
2, my > 1, and some m3,p1,p2,p3 = 0. If, on the contrary, there is no vertex in
V(H)\V(C) adjacent to two nonconsecutive vertices of C different from v; and v, then
H = my-crown &, my-crown &p, mz-crown &, my-crown &p, O for some m; > 1
and some my, m3, M4, p1, P2, P3, P4 = 0. In both cases, (iv) holds. Hence, from now on,
we assume that every 5-cycle of H is chordless.

As we are assuming that H has no 6-cycle having a long chord or three consecutive
short chords and that each 5-cycle of H is chordless, if H has a cycle of length at least
5, then, by Lemma 4.24, H is a circular concatenation of crowns, folds, and rhombi,
which means that (iv) holds. So, we assume, without loss of generality, that each cycle
of H has length at most 4. But then, H is a fat caterpillar and assertion (iii) or (iv) holds
by virtue of Theorem 4.23.

Conversely, if H satisfies one of the assertions (i)—(iii), then clearly H contains no
bipartite claw. Finally, if H satisfies assertion (iv), then also H contains no biparite claw
by reasoning as in the first part of the proof of Lemma 4.20. O

Notice that, although those graphs satisfying (iii) are the underlying graphs of
edge &, K4 &, edge for positive integers p1, p2, we prefer to consider (iii) a sporadic

case.

4.2.2 Edge-coloring graphs containing no bipartite claw

The chromatic index x'(H) of a graph H is the minimum number of colors needed to
color all the edges of H so that no two incident edges receive the same color. Clearly,
x'(H) = A(H). In fact, Vizing [122] proved that for every graph H either x'(H) =
A(H) or x’(H) = A(H) + 1. The problem of deciding whether a graph H satisfies
x'(H) = A(H) is NP-complete even for graphs having only vertices of degree 3 [74].
Interestingly, the problem of deciding whether or not x’(H) = A(H) can be solved in
linear time if H is contains no bipartite claw. Indeed, as H contains no bipartite claw
as a minor, it has bounded tree-width [106], which means that x’(H) can determined
via the algorithm devised in [129] (for the undefined notions see, e.g., Chapter 12 of
[46]). In this subsection, we give a structural characterization of those graphs having
no bipartite claw that satisfy x’ # A.

We need to introduce some terminology related to edge-coloring. A major vertex of
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SRl

K5 — e L5 SK5

Figure 4.6: Graphs P*, SKy4, K5 — e, Ls, and SKs

a graphis a vertex of maximum degree. If His a graph, the core Ha of H is the subgraph
of H induced by the major vertices of H. Graphs H for which x’(H) = A(H) are Class
1, and otherwise they are Class 2. A graph H is critical if H is Class 2, connected,
and x'(H — e) < x'(H) for each e € E(H). Some graphs needed in what follows are
introduced in Figure 4.6.

We rely on the following results.

Theorem 4.26 ([73]). If H is a connected Class 2 graph with A(Ha) < 2, then the following

conditions hold:
(i) H is critical.
(ii) 6(HA) =2.
(iii) 8(H) = A(H) — 1, unless H is an odd chordless cycle.
(iv) Every vertex of H is adjacent to some major vertex of H.

Theorem 4.27 ([31]). Let H be a connected graph such that A(Ha) < 2 and A(H) = 3.
Then, H is Class 1, unless H = P*.

Theorem 4.28 ([123]). If H is a graph of Class 2, then H contains a critical subgraph of
maximum degree k for each k such that 2 < k < A(H).

Theorem 4.29 ([3]). There are no critical graphs having 4 or 6 vertices. The only critical
graphs having 5 vertices are Cs, SKy, and Ks — e.

By exploiting our structure theorem for graphs containing no bipartite claw (The-
orem 4.25) and the results above, we give a structural characterization of all connected

Class 2 graphs within graphs containing no bipartite claw, as follows.

Theorem 4.30. Let H be a connected graph containing no bipartite claw. Then, x'(H) =
A(H) if and only if none of the following statements holds:

(i) A(H) = 2and H is an odd chordless cycle.

(ii) A(H) = 3 and H is the circular concatenation of a sequence of edges, triangles, and
rhombi, where the number of edge links equals one plus the number of rhombus links.
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(iii) A(H) =4and H = Ks — e, Ks, Ls, or SKs.

Proof. Let H be a connected graph containing no bipartite claw and such that x'(H) #
A(H). We need to prove that H satisfies (i), (ii), or (iii). Since the result holds trivially
if A(H) < 2, we assume, without loss of generality, that A(H) > 3. The proof splits
into three cases.

Case 1. A(Ha) <2.

We claim that H = K5 — e. Since P* contains a bipartite claw, if A(H) = 3 then
H would be Class 1 by Theorem 4.27, contradicting the hypothesis. Thus, A(H) > 4.
By Theorem 4.26, (Ha) = 2 and 8(H) = A(H) — 1 > 3. Suppose, by the way of
contradiction, that assertion (iv) of Theorem 4.25 holds for H. Since the vertices of H
that are not concatenation vertices have degree at most 3, all major vertices of H are
concatenation vertices. Since 8§(Ha) = 2, H is necessarily a circular concatenation of
crowns. Finally, since 5(H) > 3, each of the crowns of the concatenation is an edge and
H has no pendant vertices; i.e., H is a chordless cycle, contradicting A(H) > 4. This
contradiction proves that assertion (iv) of Theorem 4.25 does not hold for H. Thus,
assertion (i), (ii), or (iii) of Theorem 4.25 holds for H. As 6(H) > 3, H has no pendant
vertices and necessarily |V(H)| = 5 or 6. So, since H is critical and A(H) > 4, it follows
from Theorem 4.29 that H = K5 — e, as claimed.

Case 2. A(Hp) > 3and A(H) > 4.

Suppose that H has a 6-cycle C having a long chord. This implies that C is spanning
in H because H is connected and contains no bipartite claw. In particular, |V(H)| < 6.
Then, as we are assuming that A(H) > 4, Theorems 4.28 and 4.29 imply that H contains
Ks — e and A(H) = 4. Therefore, as H has a spanning 6-cycle, H arises from Ks — e by
adding one vertex adjacent precisely to the two vertices of degree 3 of the K5 — e; i.e.,
H = SKs. So, for the remaining of this case, we assume that H has no 6-cycle having a
long chord.

As A(Ha) > 3, there is some major vertex wy of H that is adjacent in H to three
other major vertices wi, wy, w3 of H. Let W = {wg, w1, wp, w3}.

Suppose, by the way of contradiction, that [N (w;)\W| > 2 for each i = 1,2, 3.
If [(NH(wi1) U N(w2) U N(wsz))\W| > 3, then, by Hall’s Theorem, H would con-
tain a bipartite claw, a contradiction. We conclude that there are two vertices x1,x; €
V(H)\W such that x; # x2 and Nyu(wi)\W = {x1,x2} for each i = 1,2,3. Then,
WoW1X1W2XoW3wy is a 6-cycle having three long chords, a contradiction. As this con-
tradiction arose from assuming that [N (w;)\W| > 2 for each i = 1, 2, 3, there is some
j € {1,2,3} such that [Ny (w;)\W| < 1 and, in particular, A(H) = 4.

Suppose now that |(N(wi1) U Ni(wz) U Ny (ws))\W/| = 2. Then, by Hall’s The-
orem and by symmetry, we assume, without loss of generality, that there are two
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different vertices x1,x2 € V(H)\W such that x; is adjacent to wy, fori = 1,2, and
INH(W3)\W| < 1. As w3 is a major vertex, ws is necessarily adjacent to wy and wy.
As A(H) = 4 and H contains no bipartite claw, for each of wy and wj, its only neigh-
bor outside W is either x; or x,. By symmetry, we assume, without loss of generality,
that Ny[ws] = W u {x1}. Then, as H contains no bipartite claw and has no 6-cycle
having a long chord, Ny [wo] = W U {x1}, Nu[w1] = WU {x1}, Nu[wz] = W U {x2},
N (x1) = {wo, w1, w3}, and Ny (x2) = {wz}. We conclude that H = Ls.

Finally, suppose that [(Ny(w1) u Ny(w2) u N (w3))\W| = 1 and, consequently,
Nu[wi] = Nu[wz] = Ny[wz] = W u {x} for some x € V(H)\W. If wy is adjacent to
x, then H = Ks. If, on the contrary, the neighbor of wy outside W is x” # x, then, as H
contains no bipartite claw and has no 6-cycle having a long chord, H = Ls.

Case 3. A(Ha) = 3and A(H) = 3.

As A(H) = 3, (iii) of Theorem 4.25 does not hold. Suppose, by the way of con-
tradiction, that (i) or (ii) of Theorem 4.25 holds for H. Then, |[V(H)| = 5 or 6 and, by
Theorems 4.28 and 4.29, H contains a SK4. Therefore, as H contains no bipartite claw,
H is connected, and A(H) = 3, it follows that either H = SK4 or H arises from SK4 by
adding a pendant vertex adjacent to the vertex of degree 2 of the SK4, contradicting
the assumption that (i) or (ii) of Theorem 4.25 holds. We conclude that, necessarily, H
is a linear or circular concatenation as described in (iv) of Theorem 4.25. As A(H) = 3,
no link of the linear or circular concatenation is an m-crown for any m > 3 or an m-
fold for any m > 4. Moreover, if any of the links in the linear or circular concatenation
were a 2-crown, 3-fold, or K4, then H would be precisely the underlying graph of a
2-crown, 3-fold, or K4, and H would be Class 1, a contradiction. Therefore, H is a lin-
ear or circular concatenation of edges, triangles, squares, and rhombi. As A(H) = 3, if
any link of the concatenation is a triangle, square, or rhombus, then its adjacent links
in the concatenation are edges. Then, it is clear that there is a 3-edge-coloring of H if
and only if there is a coloring of only the edge links of H such that:

(1) Each two edge links that are adjacent to the same triangle link are colored with
different colors.

(2) Each two edge links that are adjacent to the same rhombus link are colored with
the same color.

(3) Each two adjacent edge links are colored with different colors.

So, if H is a linear concatenation, a greedy coloring of the edge links following
the order of their occurrence in the linear concatenation and following rules (1)—(3)
above, ends up successfully, implying that H has a 3-edge-coloring, a contradiction
with the fact that H is Class 2. So, H is a circular concatenation. Suppose, by the
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way of contradiction, that some link of the circular concatenation is a square. Then,
H = edge &, 2 &y, -+ &p, , edge & square O and, as H is not 3-edge-colorable,
edge & edge &p, &I &p, 2 &p, - -~ &p,_, edge &7 edge is a linear concatenation of
edges, triangle, squares, and rhombi that is no 3-edge-colorable, a contradiction to
what we have just shown. This contradiction proves that H is a circular concatenation
of edges, triangles, and rhombi only.

We will now prove that if H is a circular concatenation of edges, triangles, and
rhombisuch that A(HA) > 3and A(H) = 3, then H is Class 2 if and only if H has exactly
one more edge links than rhombus links. As A(Ha) > 3, H has at last one thombus
link. So, without loss of generality, H = edge &p, 2 &p, - - - &p,, , edge &rhombus & O.
Notice that H is Class 2 if and only if there is no 3-edge-coloring of the edge links of
H’' = edge&p, N &p, - - - &p,,_, edge satisfying rules (1)—(3) above and such that the first
and the last link of H’ are colored with the same color. Moreover, H’ is not 3-edge-
colorable satisfying rules (1)-(3) above if and only if the graph H”, that arises from
H’ by contracting each triangle link to a vertex and contracting each pair formed by
a rhombus link followed by an edge also to a vertex, consists of precisely two edges;
i.e., H' has two more edge links than rhombus links. We conclude that H has exactly
one more edge links than rhombus links; i.e., (ii) holds. This completes Case 3 and the
proof of the ‘only if” part of the theorem.

Notice also that we have just proved that if (ii) holds for H, then by the analysis in
Case 3, H is Class 2. As a result, the ‘if” part of the theorem is also proved because, if
(i) or (iii) holds for H, then H is clearly Class 2. O

Corollary 4.31. The critical graphs containing no bipartite claw are the odd cycles, Ks — e,
and those graphs H satisfying A(H) = 3 that are circular concatenations of edges, triangles,
and rhombi having exactly one more edge links than rhombus links and without pendant edges.

4.2.3 Matching-perfect graphs

As mentioned in the beginning of this section, in order to prove Theorems 4.16 and
4.17, it suffices to prove the theorem below, which is the main result of this subsection.

Theorem 4.32. Let H be a connected graph containing no bipartite claw and such that the
length of each cycle of H is at most 4 or is a multiple of 3. Then, otm(H) = Tm (H).

To prove that am(H) = tm(H) in Theorem 4.32, we combine upper bounds on
Tm (H) with lower bounds on &y, (H). For instance, the next lemma states a simple yet
useful upper bound on T, (H).

Lemma 4.33. If H is a graph and vy and v, are two adjacent vertices of H, then the set of
edges of H that are incident to vy and/or to v, is a matching-transversal of H. In particular,
Tm(H) < dp(vi) + dp(v2) — 1.
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Proof. No matching M of H disjoint from Ey(vi) U Ef(v2) is maximum because M u
{viv,} is a larger matching of H. O

A partial k-edge-coloring of a graph Hisamap ¢ : E(H) — {0,1,2,...,k} such that,
for each pair of incident edges e1,e2 of H, d(e1) = d(ez) implies p(e1) = d(ez) = 0.
If ¢(e) # 0, e is said to be colored with color ¢(e); otherwise, e is said to be uncolored.
A k-edge-coloring of H is a partial k-edge-coloring that colors all edges of H. The color
classes of a partial k-edge-coloring are the sets &1, &, . .., £ where &; is the set of edges
of H colored by ¢ with color j, foreachj =1,2,..., k.

We complement the upper bounds on 1, with lower bounds on &, obtained with
the help of a special kind of partial edge-colorings that we call profuse-colorings. A
k-profuse-coloring of a graph H is a partial k-edge-coloring ¢ : E(H) — {0,1,2,...,k}
such that, for each edge e of H (either colored or not), there are edges of H incident to
e that are colored with at least k — 1 different colors. We say that a k-profuse-coloring
¢ is maximal if, for each uncolored edge, there are edges incident to it that are colored
with the k different colors (i.e., no uncolored edge can be colored while keeping the
coloring a k-profuse-coloring). We now show that the maximum value of k for which
a graph H has a k-profuse coloring is precisely am(H). Hence, in order to prove that
am (H) = k it will suffice to exhibit a k-profuse-coloring of H.

Lemma 4.34. Let H be a graph. Then, the following assertions are equivalent:
(i) am(H) > k.
(if) H has a k-profuse-coloring.
(iii) H has a maximal k-profuse-coloring.

Indeed, the collection of color classes of a maximal k-profuse-coloring of H is a matching-
independent set of size k.

Proof. Let us prove first that (i) = (iii). Suppose that om(H) > k. Then, there is a
collection M = {Mj, My, ..., My} of k pairwise disjoint maximal matchings of H. Let
da : E(H) — {0,1,2,...,k} be defined by

¢ni(e) =1ifand only if e€ My, foreachee E(H)andeachi=1,..., k.

Notice that ¢y(e) = Oif and only if e ¢ My U Mp U - - - U My. We claim that ¢y is a
maximal k-profuse-coloring of H. Since each M; is a matching, ¢y is a partial edge-
coloring of H. Let e be any edge of H. Assume first that e € M; forsomej € {1,2,...,k}.
Foreachi=1,2,...,kand eachi # j, the maximality of M; implies that there is some
edge e; of H incident to e such that ¢y(ei) = i. So, the set {e; : i # j} consists of
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k —1 edges incident to e that are colored with k — 1 different colors. Assume now that
e¢ MjuMjpu - U Mg. Foreacheachi =1,2,...,k, the maximality of M; implies
that there is some edge e; of H incident to e such that ¢y(e;) = i. We conclude that
¢y is a maximal k-profuse-coloring of H and (iii) holds.

We now prove that (ii) = (i). Suppose (ii) holds and let ¢ : E(H) — {0,1,2,...,k}
be a k-profuse coloring of H. Then, for eachi =1,2,...,k, the color class &; = d)‘l(i)
is a matching of H. For eachi = 1,2,...,k, let M; be any maximal matching of H
containing &; and let e be any edge of H. As ¢ is a k-profuse-coloring, there are k — 1
edges ey, e, ..., ex of H incident to e such that ¢(e1), d(e2),..., d(ex_1) are positive
and pairwise different. So, as e; € &g, (e,) and My, (e,) is a matching containing &g ey,
e ¢ Mg(ey for eachi = 1,2,...,k — 1. This proves that each edge e of H belongs
to at most one of My, My, ..., My. Thus, by construction, M = {My, My,..., My}
is a collection of k disjoint maximal matchings of H and o (H) > k; i.e., (i) holds, as
desired. Since (iii) trivially implies (ii), this completes the proof the equivalence among
(i)—(iii). Finally, notice that if ¢ is maximal, then M; = &; because each e € E(H)\&; is
incident to some edge in &;. Therefore, if ¢ is maximal, then {&;, ..., &k} is a collection
of k disjoint maximal matchings, proving the last assertion of Lemma 4.34. O

We state the following immediate consequence of Lemma 4.34 for future reference.

Corollary 4.35. Let H be a graph and let ¢ be a maximal k-profuse-coloring of H. Then, every
matching-transversal of H has at least one edge colored with color i for eachi =1,2,...,k.

More upper bounds on T, and lower bounds on &y, will be proved later in this
subsection. Some of them depend on the degrees of what we call hubs. The hubs of a
graph are the vertices of degree at least 3. The minimum hub degree 5, (H) of a graph H
is the infimum of the degrees of the hubs of H. Notice that 6,,(H) > 3 for any graph H
and that 6, (H) = +ooif and only if H has no hubs. A hub is minimum if its degree is the
minimum hub degree. An edge of a graph is hub-covered if at least one of its endpoints
is a hub. A graph H is hub-covered if each of its edges is hub-covered. Equivalently, H
is hub-covered if and only if its hub set is edge-dominating. A graph is hub-regular if
all its hubs have the same degree. Equivalently, a graph H is hub-regular if and only
if &, (H) = A(H) or dy(H) = +oo0.

The proof of Theorem 4.32 splits into two parts. In Sub-subsection 4.2.3.1, we con-
sider the case when H has some cycle of length greater than 4 (which is necessarily a
cycle of length 3k for some k > 2). Later, in Sub-subsection 4.2.3.2, we show how to
deal with the case when H has no cycle of length greater than 4.
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4.2.3.1 Graphs having some cycle of length 3k for some k > 2

The main result of this sub-subsection is the theorem below, which is the restriction
of Theorem 4.32 to graphs containing some cycle of length 3k for some k > 2.

Theorem 4.36. Let H be a connected graph containing no bipartite claw and such that the
length of each cycle of H is at most 4 or is a multiple of 3. If H has some cycle of length 3k for
some k = 2, then o (H) = T (H).

Theorem 4.36 will follow by considering separately the cases when the graph is
hub-covered (Lemma 4.42) and when it is not hub-covered (Lemma 4.43).

From the structure lemma below, whose proof is immediate, it follows that if a
graph H containing no bipartite claw is such that the length of each of its cycles is at
most 4 or is a multiple of 3 and H contains a cycle of length 3k for some k > 2, then H
is triangle-free.

Lemma 4.37. Let H be a connected graph containing no bipartite claw such that the length of
each cycle is at most 4 or is a multiple of 3. If H contains some cycle C of length 3k for some
k = 2, then one of the following conditions holds:

(i) Harises from Cg by adding 1, 2, or 3 long chords.

(ii) C is chordless and each vertex v € V(H)\V(C) is either: (1) a false twin of a vertex of C
of degree 2 in H or (2) a pendant vertex adjacent to a vertex of C.

In particular, H is triangle-free.
We begin the case of hub-covered graphs with the following upper bound on Tp,.

Lemma 4.38. Let H be a triangle-free graph containing no bipartite claw. If v is any hub
of H, then the set of edges of H incident to v is a matching-transversal of H. In particular,
Tm(H) < o (H).

Proof. Let v be any minimum hub of H and let wi, w; and ws be three of its neigh-
bors in H. If Ey(v) were not a matching-transversal of H, there would be a maximal
matching M of H disjoint from Ey(v). Then, for each i = 1, 2, 3, there would be some
ei € Mincident to w; and non-incident tov. As H is triangle-free, w; would be the only
endpoint of e; in {wy, wy, w3}, for each i = 1,2,3. But then, {vwi,vw;,vw3, e, €2, e3}
would be the edge set of a bipartite claw contained in H, a contradiction. This contra-
diction proves that Ey(v) is a matching-transversal of H and that T, (H) < 6n(H). O

The counterpart of the above upper bound on Ty, (H) is the following lemma from
which we deduce sufficient conditions for 6, (H) being also a lower bound on o, (H).
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Lemma 4.39. Let H be a triangle-free graph containing no bipartite claw. Then, there exists a
set F of hub-covered edges of H such that the graph H' = H\F is hub-regular and has the same
hub set and the same minimum hub degree as H.

Proof. Let H be a counterexample to the lemma with minimum number of edges. If H
were hub-regular, the lemma would hold by letting F = 5. So, H is not hub-regular;
i.e,, A(H) > 6n(H). Let v be any hub of H that is not minimum.

We claim that v has some neighbor w in H which is not a minimum hub. Suppose,
by the way of contradiction, that all the neighbors of v are minimum hubs. By con-
struction, v has at least four neighbors wq, wp, w3, w4 and let W = {v, w1, wa, w3, wy}.
As H is triangle-free and w; is a hub, [Ny (wi)\W| > &,(H) — 1 for each i = 1,2,3.
Then, &, (H) = 3, since otherwise, Hall’s Theorem would imply that v is the center of a
bipartite claw contained in H. Similarly, Hall’s Theorem forces |(N(w1) U Ny (w2) U
Ny (w3)\W| < 2. So, §,(H) = 3 and there are two different vertices x1,x, outside
W such that Nyy(w1) = Ny(w2) = Npy(ws) = {v,x1,x2} and, by symmetry, also
N (ws) = {v,x1,x2}. Then, H contains a bipartite claw, a contradiction. This contra-
diction proves that v has some neighbor w which is not a minimum hub, as claimed.

Let w be a neighbor of v which is not a minimum hub of H. Then, vw is a hub-
covered edge of Hand H; = H\{vw} has the same hub set and the same minimum hub
degree as H. By minimality of the counterexample H, the lemma holds for H;. Hence,
there exists a set F; of hub-covered edges of H; such that H" = H;\F; is hub-regular
and has the same hub set and the same minimum hub-degree as H;. By construction,
F = F; u {vw} is a set of hub-covered edges of H such that H’ = H\F is hub-regular
and H' has the same hub set and the same minimum hub degree as H. So, the lemma
holds for H, contradicting the choice of H. This contradiction proves the lemma. [

Lemma 4.40. Let H be a triangle-free graph containing no bipartite claw. If H is hub-covered
and has at least one edge, then oty (H) = dp(H).

Proof. By Lemma 4.39, there exists a set F of hub-covered edges of H such that H' =
H\F is hub-regular and has the same hub set and the same minimum hub degree as
H. Since H has at least one edge and H is hub-covered, H has at least one hub; i.e.,
3 < &p(H) < +oo. By construction, H' is also hub-covered and A(H') = §,(H’) =
dn(H) = 3. Since H' is a subgraph of H, H’ is also triangle-free and contains no bipartite
claw. By Theorem 4.30, x'(H’) = A(H’); i.e., there is an edge-coloring ¢’ of H’ using
A(H’) = 8,(H) colors. Let ¢ : E(H) — {0,1,2,...,5,(H)} be defined by ¢(e) = ¢'(e)
for each e € E(H’) and ¢(e) = 0 for each e € E(H)\E(H’). Since H is hub-covered,
¢ is a & (H)-profuse-coloring of H by construction. Thus, by Lemma 4.34, o (H) >
dn(H). O
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From Lemmas 4.38 and 4.40, we can determine o, and T, for all connected hub-
covered triangle-free graphs containing no bipartite claw.

Lemma 4.41. If H is a connected hub-covered triangle-free graph containing no bipartite claw
and having at least one edge, then octm(H) = Tm(H) = 8, (H).

By Lemma 4.37 and the above lemma, we settle Theorem 4.36 for hub-covered
graphs, as follows.

Lemma 4.42. Let H be a connected graph containing no bipartite claw and such that the length
of each cycle of H is at most 4 or is a multiple of 3. If H has a cycle of length 3k for some k > 2
and H is hub-covered, then om(H) = th (H) = &, (H).

Finally, we also settle Theorem 4.36 for graphs that are not hub-covered.

Lemma 4.43. Let H be a connected graph containing no bipartite claw and such that the length
of each cycle of H is at most 4 or is a multiple of 3. If H has a cycle of length 3k for some k = 2
and H is not hub-covered, then om(H) = th(H) = 3.

Proof. As H is not hub-covered and has at least one edge, Lemma 4.33 implies T, (H) <
3. So, we just need to prove that oy, (H) > 3. Since the length of C is a multiple of 3,
there is a 3-edge-coloring of C, ¢’ : E(C) — {1, 2,3} such that each three consecutive
edges of C are colored with three different colors by ¢’. Let ¢ : E(H) — {0,1,2,3}
be defined by ¢(e) = ¢’(e) for each e € E(C) and ¢(e) = 0 for each e € E(H)\E(C).
Since H is connected and contains no bipartite claw, C is edge-dominating in H and,
consequently, ¢ is a 3-profuse-coloring of H. By virtue of Lemma 4.34, x, (H) > 3, as
needed. O

Clearly, Lemmas 4.42 and 4.43 together imply Theorem 4.36.

4.2.3.2 Graphs having no cycle of length greater than 4

As Theorem 4.36 is now proved, to complete the proof of Theorem 4.32, it only remains
to prove the theorem below, which is the main result of this sub-subsection.

Theorem 4.44. If H is a fat caterpillar, then om(H) = Tm(H).
To begin with, the next lemma provides several upper bounds on Tp,.

Lemma 4.45. Let H be a graph containing no bipartite claw and having no 5-cycle and let v
be a hub of H. Then:

(i) Ifv has degree at least 5 in H, then Ey(v) is a matching-transversal of H and, in partic-
ular, T, (H) < dp(v).
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(ii) Suppose that v has degree 4 in H. Then, Ty (H) < 5. If Ny (v) does not induce 2K, in
H, then By (Vv) is a matching-transversal of H and, in particular, T, (H) < 4.

(iii) Suppose that v has degree 3 in H. Then, T, (H) < 5. If Ny (v) induces 3Ky in H, then
Ewi(v) is a matching-transversal of H and, in particular, T, (H) < 3. If Ny (v) induces
Ko u Ky in H, then 1o, (H) < 4.

Proof. If Eyy(v) is a matching-transversal of H, then T, (H) < dy(v) and there is noth-
ing left to prove. Therefore, we assume, without loss of generality, that Ey(v) is not a
matching-transversal of H. Therefore, there exists a maximal matching M of H such
that MnEn (v) = J. Because of the maximality of M, for each neighbor w of v there is
exactly one edge e,, € M that is incident to w. Notice that there could be two different
neighbors wq and w; of v such that e,,, = e,.

We claim that |{e,, | w € Ny (v)}| < 2. Suppose, by the way of contradiction, that
there are three different edges ey, ew,, ew, for some wi, wy, w3 € Ny (v). Then, vis the
center of a bipartite claw contained in H with edge set {vw1, ey, VW2, e, VW3, ey, },
a contradiction. This contradiction proves the claim. Therefore, as each edge e, is
incident to at most two vertices of Ny(v), in particular, dy(v) < 4. So far, we have
proved (i).

Suppose that dy(v) = 3 and let Ny (v) = {w1,wz, w3}. Suppose, by the way of
contradiction, that E+(v) U Fy(v) is not a matching-transversal of H. Then, there is
some maximal matching M’ such that M" n (Ex(v) U Fiy(v)) = . Because of the
maximality of M/, for eachi = 1,2, 3, thereis an edge e,,, € M’. Then, v is the center of

/ ’

a bipartite claw whose edge set is {vwy, e}, ,vwy, e/, ,vws3, e@s }, a contradiction. This

w1/ %24

contradiction proves that Ey(v) U Fy(v) is a matching-transversal of H. In particular,
Tm(H) < 3 + |Fr(v)|. This proves (iii) when N1 (v) is not a complete. So, assume that
Ny (v) is a complete. Since H has no 5-cycle, every vertex x € V(H)\Ny[v] having at
least one neighbor in N1(v), has exactly one neighbor in Ny (v). So, since H contains
no bipartite claw, there is at least one vertex in Ny (v) that has degree 3 in H. Assume,
without loss of generality, that wy has degree 3 in H. Then, by Lemma 4.33, T, (H) <
dy(v) + dy(wi1) — 1 = 5. This completes the proof of (iii).

Finally, we consider the case dy(v) = 4. Since |{ew, | w € Ny (v)}| < 2 and
each edge e,, is incident to at most two neighbors of v, we assume, without loss of
generality, that e,,, = ey, = wiw; and ey, = ey, = wawy. In particular, the graph
induced by Ny (v) contains 2K,. Moreover, since H has no 5-cycle, N (v) induces 2K5.
To complete the proof of (ii) it only remains to prove that 7 (H) < 5. Suppose, by the
way of contradiction, that Ey(v) U {wiw,} is not a matching-transversal. Then, there
is maximal matching M’ of H such that M’ n (Ey(v) u {wiws}) = . Because of the
maximality of M’, foreachw € Ny (v), there is some edge e;,, € M’ incident to w. Since
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wiwy ¢ M/, ey, # ey,. Since ws is nonadjacent to wy and wy, ey, is different from

ew, and e,,,. We conclude that v is the center of a bipartite claw contained in H whose

!/
wi/

!/

VW2, €y,

edge set {vwq, e vws, ey,,,}. This contradiction proves that E (v) U {wiw,}
is a matching-transversal, which means that T, (H) < 5. This completes the proof of

(ii) and of the lemma. O

We now prove a lower bound on oy, (Lemma 4.48), which is the last of the next

three lemmas.

Lemma 4.46. Let H be a graph. If v is a vertex of H that is neither the center of a bipartite
claw nor a vertex of a 5-cycle, at most two of the neighbors of v have degree at least 4 each.

Proof. Suppose, by the way of contradiction, that there exists some vertex v of H that
is neither the center of a bipartite claw nor a vertex of 5-cycle and such that v has three
different neighbors wi, wa, w3 in H such that dy(w;) > 4 for each i = 1,2,3. Since
dy(wi) = 4 for each i = 1,2, 3, each w; is adjacent to at least one vertex x; different
from v, wq, Wy, ws.

We claim that {w1, Wy, w3} is a stable set of H. Suppose, by the way of contradic-
tion, that {wy, Wy, w3} is not a stable set of H. By symmetry, we assume, without loss
of generality, that wy is adjacent to wy. Since there is no 5-cycle passing through v, x3
is different from x; and x,. Thus, x; = x and Ny (wq) € {v, Wy, w3,x1} because v is
not the center of a bipartite claw. So, as d(v1) > 4, necessarily wy is adjacent to w3
and wixiwovwzwy is a 5-cycle of H passing through v, which is a contradiction. This
contradiction proves that {w1, wp, w3} is a stable set of H.

Since {w1, Wy, w3} is a stable set and dj (w;) > 4, there are three pairwise different
vertices xi1, Xi2, Xi3 € Ny (wi)\{v, w1, wo, w3}, for each i = 1,2,3. By Hall’s Theorem,
there are some j1,j2,j3 € {1,2,3} such that M = {w1x4j,, W2X2j,, W3X3j,} is a matching
of H of size 3. Then, {vw1, vw,, vw3} U M is the edge set of a bipartite claw with center
v, a contradiction. This contradiction completes the proof of the lemma. O

Lemma 4.47. Let H be a graph containing no bipartite claw and having no 5-cycle. If by (H) >
4, then there exists a set F of hub-covered edges of H such that the graph H' = H\F is hub-
reqular and has the same hub set and the same minimum hub degree as H.

Proof. Suppose, by the way of contradiction, that the lemma is false and let H be a
counterexample to the lemma with minimum number of edges. If H were hub-regular,
then the lemma would hold for H by letting F = ¢, a contradiction. Hence, H is
not hub-regular; i.e.,, A(G) > 0,(G). Let v be a hub of H that is not minimum. As
dn(G) > 4, the vertex v has at least 5 neighbors. So, since H contains no bipartite
claw and has no 5-cycle, Lemma 4.46 implies that v has some neighbor w that is not
a hub (because d,(H) > 4). Then, since vw is not incident to any minimum hub of
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H, Hy = H\{vw} has the same hub set and the same minimum hub degree as H. The
proof ends exactly as the one of Lemma 4.39. O

Lemma 4.48. Let H be a graph containing no bipartite claw and having no 5-cycle. If H is
hub-covered, has at least one edge, and dy,(H) > 4, then o, (H) = dp(H).

Proof. By Lemma 4.47, there exists a set F of hub-covered edges of H such that H' =
H\F is hub-regular and has the same hub set and the same minimum hub degree as
H. As H is hub-covered and has at least one edge, o, (H) < +0. Then, H' is also hub-
covered and A(H’) = d,(H’) = 8,(H) > 4. Since H’ is a subgraph of H, H' contains
no bipartite claw and has no 5-cycle. Therefore, by Theorem 4.30, x'(H') = A(H');
i.e., there is an edge-coloring ¢’ of H' using A(H’) = &,(H) colors. Let ¢ : E(H) —
{0,1,2,...,8n(H)} be such that ¢(e) = ¢’'(e) for each e € E(H’) and ¢(e) = O for
each e € E(H)\E(H’). Since H is hub-covered, ¢ is a &, (H)-profuse-coloring of H by
construction. Thus, by Lemma 4.34, oy (H) = 8 (H). O

The next two lemmas settle Theorem 4.44 for fat caterpillars containing A or net.

Lemma 4.49. Let H be a fat caterpillar containing A. Then, am(H) = Tm(H). More
precisely, there are some C = vivovavgvy and x1,x2 € V(H)\V(C) as in the statement of
Lemma 4.21 and one of the following assertions holds:

(i) C is chordless and

3 ide(Vg,) = dH (V4) =2
dn(H) otherwise.

om(G) = Tm(G) = {

(i) vyvs is the only chord of C, dy(va) = 2, and

4 ide(Vz) >4and 5p,(H) =3
dn(H) otherwise.

om(G) = Tm(G) = {

(iii) C has two chords, dy(v3) = dy(vs) = 3, and

5 if each of vi and v, has degree at least 5
4 otherwise.

Proof. Let C = vivavavgvy and xq,x2 € V(H)\V(C) as in the statement of Lemma 4.21.
In particular, each non-pendant vertex in V(H)\V(C) is a false twin of v4 of degree
2. Notice that am(H) > 3 because a 3-profuse-coloring of H arises by coloring the
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Figure 4.7: Some profuse-colorings for the proof of Lemma 4.49

edges in E(C) u {vi1x1,v2x2} as in Figure 4.7(a) and leaving the remaining edges of H
uncolored.

We claim that if 5y (H) > 4 then 1 (H) < dy(H). On the one hand, if some min-
imum hub of H is adjacent to some pendant vertex, then T, (H) < 6,(H) because of
Lemma 4.33. On the other hand, if 5, (H) > 4 and the minimum hubs of H are adjacent
to non-pendant vertices only, then vs is the only minimum hub of H and Lemma 4.45
implies that T (H) < 8, (H) because dyy(v3) = 6,(H) > 4 and Ny (v3) does not induce
2K5. Hence, the claim follows.

The proof splits into three cases corresponding to assertions (i)—(iii) of Lemma 4.21.

Case 1. C is chordless.

Suppose first that dy(v3) = dn(va) = 2 or 0p(H) = 3. If dn(vz) = dn(vs) = 2
or some vertex of degree 3 is adjacent to a pendant vertex, then oy, (H) = Ti(H) = 3
because Tm(H) < 3 by Lemma 4.33 and we have seen that oy, (H) > 3. Otherwise,
the only minimum hub is v3 and Ny (v3) induces 3K; which also leads to am(H) =
Tm(H) = 3 because 1»(H) < 3 by Lemma 4.45 and we have seen that «, (H) > 3. So,
if dyy(v3) = d(v4) = 2 or &, (H) = 3, then (i) holds.

Suppose now that neither dy(v3) = dy(va) = 2 nor 6,(H) = 3 holds. Then, H
is hub-covered and 6,,(H) > 4 which implies that oy, (H) = ™ (H) = 64(H) because
om(H) = 8, (H) by Lemma 4.48 and 1, (H) < 01(H). So, also in this case, (i) holds.

Case 2. vyv3 is the only chord of C and dp(vs) = 2.

Assume first that di(v2) > 4 and d,(H) = 3. Necessarily, di(v3) = 3. Hence, as
dn(v4) = 2, Lemma 4.33 implies that T (H) < 4. Let y, be a neighbor of v, outside
V(C) different from x,. Then, oy (H) > 4 because a 4-profuse-coloring of H arises
by coloring the subgraph of H induced by V(C) u {x1,x2, Y2} as in Figure 4.7(b) and
leaving the remaining edges of H uncolored. We have proved that, if dy(v2) > 4 and
dn(H) = 3, then o (H) = Tm(H) = 4 and, in particular, (ii) holds.

Assume now that, on the contrary, d(v2) = 3 or o,(H) > 4. If the former holds,
then o (H) = ™ (H) = 3 = 8, (H) because we know that o, (H) > 3 and Lemma 4.33
would imply that T, (H) < 3. If the latter holds, then & (H) = T (H) = 8, (H) because
H is hub-covered and Lemma 4.48 would imply that o (H) > 8, (H) and because we
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have proved that T, (H) < 0, (H) whenever &, (H) > 4. We conclude thatif dy(v1) = 3
or 6p(H) > 4, then an(H) = T (H) = 6, (H) and (ii) holds.

Case 3. C has two chords and dyy(v3) = dy(vs) = 3.

Assume v or v, has degree 4. Then, Lemma 4.45 implies that t,,(H) < 4. In
addition, a 4-profuse-coloring of H arises by coloring the edges of the subgraph of H
induced by V(C) u {x1, %2} as in Figure 4.7(c) and leaving all the remaining edges of
H uncolored. In particular, oy, (H) > 4. So, in this case, am(H) = ™m(H) = 4 and (iii)
holds.

Assume now that each of v and v, has degree at least 5 and, for each i = 1,2,
let y; be a neighbor of v; outside V(C) different from x;. As dn(v3) = dn(vs) = 3,
Lemma 4.33 implies that T,(H) < 5. In addition, am(H) > 5 because a 5-profuse-
coloring of H arises by coloring the subgraph of H induced by V(C) u {x1,x2,Y1, Y2}
as in Figure 4.7(d) and leaving the remaining edges of H uncolored. Hence, in this
case, am(H) = T(H) = 5 and (iii) holds. O

Lemma 4.50. Let H be a fat caterpillar containing net but containing no A. Then, H has
some edge-dominating triangle C such that each v € V(H)\V(C) is pendant and om(H) =
T (H) = 8n(H).

Proof. That H has an edge-dominating cycle C such that each v € V(H)\V(C) is pen-
dant follows from Lemma 4.22. As the hubs of H are the vertices of C and each of
them is adjacent to some pendant vertex, Lemma 4.33 implies that T (H) < d,(H).
For the proof of the lemma to be complete, it suffices to show that om(H) = o, (H).
If 5,(H) > 4, then, as H is hub-covered, am(H) > 6,(H) by Lemma 4.48. Finally,
if 5,(H) = 3, then an(H) > 3 because a 3-profuse-coloring of H arises by 3-edge-
coloring the net induced in H by {v1, v, v3,u1, uz, uz} and leaving the remaining edges
of H uncolored. O

In order to settle Theorem 4.44, it only remains to prove the next result.

Theorem 4.51. Let H be a fat caterpillar containing no A and no net. Then, for each k > 1,
am(H) = kif and only if T (H) > k.

By Lemma 4.20, fat caterpillars containing no A and not net are certain linear
concatenations of basic two-terminal graphs. To begin with, the following lemma,
whose proof is straightforward, enumerates the values of o, and Ty, for the underly-
ing graphs of each of the basic two-terminal graphs.

Lemma 4.52. The underlying graphs of each of the basic two-terminal graphs satisfy om =
Tm. Moreover:
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o For the underlying graph of the edge, xm = Tm = 1.

e For the underlying graph of the triangle, the rhombus, and the K4, &m = Tm = 3.
o For the underlying graph of the m-crown, Xy = Tm = m + 1, for each m = 2.

o For the underlying graph of the m-fold, X = T, = m, for each m = 2.

Our proof of Theorem 4.51 is indirect. The theorem clearly holds for k = 1. In the
remaining of this sub-subsection, we deal separately with cases k = 2,k = 3,k = 4,
k = 5,and finally k > 6. Case k = 2 of Theorem 4.51 can be derived from Theorem 4.4,
as follows.

Lemma 4.53. Let H be a fat caterpillar. Then, xm(H) > 2 if and only if 1 (H) > 2.

Proof. The ‘only if’ part is trivial. For the converse, suppose, by the way of contradic-
tion, that T, (H) > 2 but ot (H) < 1. So, if G = L(H), then 7.(G) > 2 and 7.(G) < 1.
Hence, by Theorem 4.4, G contains an induced Qzn 41 for some n > 1. As G is the
complement of a line graph, necessarily G contains an induced Q3 (= 3-sun) and, as
a result, H contains a bipartite claw, a contradiction. This contradiction proves the "if’

part and the lemma follows. ]
Case k = 3 can be dealt as follows.

Lemma 4.54. Let H be a fat caterpillar containing no A and no net and having at least one
edge. Then, am(H) = 3 if and only if 7o (H) = 3. In fact, both inequalities hold if and only if
H satisfies all of the following assertions:

(i) For each pair of adjacent vertices vi and vy, dpy(vi) + du(v2) —1 = 3.
(ii) Each 4-cycle of H has at most two vertices of degree 2 in H.
(iii) H is not the underlying graph of triangle &, triangle for any p > 0.

Proof. Since om(H) < t™m(H), clearly am(H) > 3 implies T (H) > 3. Suppose that
Tm(H) > 3. Then, (i) holds because of Lemma 4.33. If there were some 4-cycle C =
v1vovzwgvy such that dy(vi) = dp(v2) = du(vs) = 2, then {vivy, vov3} would be a
matching-transversal of H, contradicting tm, (H) > 3. Similarly, if H were the underly-
ing graph of triangle &, triangle for some p > 0, then the two edges of H that are not
incident to the concatenation vertex are a matching-transversal of H, another contra-
diction. These contradictions prove that (ii) and (iii) also hold.

To complete the proof of the lemma, let us assume that (i)—(iii) hold and we will
prove that am(H) > 3, or, equivalently, that H has a 3-profuse-coloring. As H is a fat
caterpillar containing no A and no net, Lemma 4.20 implies that H is the underlying
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graph of I &, 12 &y, - - - &, 'y where each T is a basic two-terminal graph and each
pi = 0. If n = 1, then H is the underlying graph of some two-terminal graph different
from an edge and a square and H admits a 3-profuse-coloring by Lemma 4.52. So,
assume thatn > 2.

Case 1. H is the underlying graph of T & I where each of 1 and T is an edge or a triangle
andp = 0.

By (iii), assume, without loss of generality, that I'| is an edge. If I, is also an edge,
then (i) implies that p > 1 and clearly oy, (H) > 3 because a 3-profuse-coloring of
H arises by coloring with three different colors any three edges of H and leaving the
remaining edges of H uncolored. If, on the contrary, I; is a triangle, then also &y, (H) >
3 because a 3-profuse-coloring of H arises by coloring the edge of I'1 and the two edges
of I incident to the concatenation vertex with three different colors and leaving the
remaining edges of H uncolored.

Case 2. H does not fulfils Case 1.

For eachi = 1,...,n, let P; be some shortest path in I} joining its two terminal
vertices. Then, P = P1P,... Py is a chordless path in H and let P = upuy ... u, where
Uy is the source of I7 and ug is the sink of I',. Consider a coloring of the edges of P
with the colors 1, 2, and 3, such that any three consecutive edges of P receive three
different colors. As P is edge-dominating, every edge of H is incident to at least two
differently colored edges, except for the edges incident to ug and ;. Assume without
loss of generality that ugu; is colored with color 1 and uju; with color 2. We make the
edges incident to ugy adjacent to at least two differently colored edges as follows:

(1) If there are at least two edges joining ug to vertices outside P, we color two of
these edges using colors 2 and 3.

(2) If there is exactly one vertex u’ outside P adjacent to 1wy, then I is a triangle or
a thombus (because (ii) ensures that I is not a square). In particular, u; is also
adjacent to 1" and we color uju’ with color 3.

(3) If there is no vertex outside P adjacent to 1, then I7 is an edge and, by (i), u; is
adjacent to some vertex 1’ outside P. We color u;u’ with color 3.

Symmetrically, let x be the color of u,_ju¢, y be the color of ug_ou_1, and z €
{1,2,3}\{x,y}. We make the edges incident to u; adjacent to at least two differently
colored edges as follows:

(1") If there are at least two edges joining u, to vertices outside P, we color two of
these edges using colors y and z.
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(2) If there is exactly one vertex u” outside P adjacent to ¢, then u” is adjacent to
ug_1 (asin (2)). If there were an edge incident to u¢_; colored with color z, then,
n = 2, I is a triangle, and either I is an triangle or an edge, contradicting the
hypothesis. So, we color the edge u¢_ju” with color z.

(3") If there is no vertex outside P adjacent to ug, then I, is an edge and uy_1 is
adjacent to some vertex u” outside P (as in (3)). If there were some edge incident
to u¢_; colored with color z, then n = 2 and I7 is an edge or a triangle, which
would contradict our hypothesis because I is a triangle. So, we color w,_qu”
with color z.

The resulting partial 3-edge-coloring is a 3-profuse-coloring of H because each
edge of H is incident to at least two differently colored edges. Hence, am(H) > 3,
as needed. O

For case k = 4, we prove the following.

Lemma 4.55. Let H be a fat caterpillar containing no net and no A and having at least one
edge. Then, am(H) = 4 if and only if Ty (H) = 4. In fact, both inequalities hold if and only H
satisfies all of the following conditions:

(i) For each pair of adjacent vertices vi and vo, dp(vi) + du(v2) — 1 > 4.

(if) No block of H is a complete of four vertices.
(iif) Each vertex of degree 3 that is not a cutpoint has only neighbors of degree at least 3.
(iv) The neighborhood of each cutpoint of degree 3 induces Ko U Ky in H.

Proof. By Lemma 4.20, H is the underlying graph of some I &, 12 &p, - &p,., Th
where each I is a basic two-terminal graph and each p; > 0. Foreachi =1,2,...,n-1,
let vi be the concatenation vertex of H that arises by identifying the sink of I} with
the source of Ti ;1 and let vg be the source of 1 and vy, be the sink of I},. Clearly, the
cutpoints of H are the concatenation vertices v, v, ..., vn—1 and the underlying graph
of each T is a block of H.

Since otm(H) < Tm(H), am(H) = 4 implies that T,(H) > 4. Suppose now that H
satisfies T (H) > 4. Then, H satisfies (i) because of Lemma 4.33. If some block of H
were a complete of size four, this block would have at least three vertices of degree 3
in H (because H contains no A and has no 5-cycle) and the edges of the Kz induced
by these three vertices would be a matching-transversal of H. So, since 1,(H) > 4, H
satisfies (ii). If there were a vertex v of H of degree 3 that were not a cutpoint and had
a neighbor of degree less than 3, then, up to symmetry, either: (1) v is a non-terminal
vertex of I and I is arhombus, or (2) v is the source of I'7 and I is a 2-crown or a 3-fold.
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If (1) holds, the edges of the triangle induced by Ny[vo| form a matching-transversal
of H of size 3. If (2) holds, Ey;(vp) is a matching-transversal of H of size 3. In either
case, we reach a contradiction to T, (H) > 4. This contradiction proves that H satisfies
(iii). Finally, if v is a cutpoint of H of degree 3, then Ny (v) induces a disconnected
graph with three vertices; i.e., Ny (v) induces 3K; or Ky u Kj. But, if N (v) induces
3K1, then, by Lemma 4.45, T, (H) < 3. This proves that H satisfies (iv). Altogether, we
have proved that, if T, (H) > 4, then H satisfies conditions (i)—(iv).

To complete the proof of the lemma, we assume that H satisfies conditions (i)—(iv)
and we will prove that am(H) > 4, or, equivalently, by Lemma 4.34, that H has a 4-
profuse-coloring. To begin with, we prove the following claims about H.

Claim 1. Each of T and T, is either an edge, m-crown for some m > 3, or m~fold for some
m >4

Proof of the claim. Indeed, each of I'1 and T}, is different from triangle and square be-
cause of (i), different from 2-crown, 3-fold, and rhombus because of (iii), and different
from K4 because of (ii). As each of T and I, is basic, the claim follows. O

Claim 2. If there is a maximal 4-profuse-coloring ¢ of H and there are at least three edges of
I5 incident to the same terminal vertex of T, then each terminal vertex of T is incident to four
edges of H colored by ¢.

Proof of the claim. Without loss of generality, assume that there are at least three edges
of I} incident to v;. As Tj is basic, there are also at least three edges of I incident to
vj_1 and Tj is either an m-crown for some m > 2 or an m-fold for some m > 3. So,
if dy(vj) = 3, then j = n and either I, would be a 2-crown or a 3-fold, contradicting
Claim 1. Therefore, d(vj) > 4 and, symmetrically, d(vj_1) > 4. In addition, neither
Nt (vj) nor Ny (vj—1) induces 2K; in H and, by Lemma 4.45, Ey;(v) and Eyy(vj_1) are
matching-transversals of H. Hence, by Corollary 4.35, the maximality of ¢ implies
that each of v; and v;_; is incident to four edges of H colored by ¢. O

Claim 3. If n > 2, I',_1 and Ty, are both edges, pn_1 = 2, and there is some 4-profuse-
coloring of H, then either n = 2 or there is some 4-profuse-coloring of H that colors at least
two of the edges incident to vy _.

Proof of the claim. Suppose that n > 3 and we have to prove that there is a 4-profuse-
coloring of H that colors at least two edges incident to v,_>. Let ¢ be a 4-profuse-
coloring of H that maximizes the number of colored edges incident to v,,_» and, with-
out loss of generality, assume that ¢ is maximal. Suppose, by the way of contradic-
tion, that ¢ colors at most one edge incident to v,,—>. As ¢ is maximal, the four edges
incident to v,,_1 are colored by ¢ and, in particular, v,_2vn_1 is colored. So, by hy-
pothesis, all edges incident to v, different from v,,_»v,_1 are uncolored. If there
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were an edge joining v, _» to some non-cutpoint vertex of H, then this edge would be
uncolored and, at the same time, incident to at most three colored edges, contradict-
ing the maximality of ¢. Therefore, pn—1 = 0 and I, is an edge. As v_3vn_7 is
uncolored and vy, _ovn_1 is the only colored edge incident to v,,_», there are at least
three colored edges incident to v, _3 such that each of them is colored differently from
Vn—2Vn—1. If there were some pendant edge p incident to v,,_3 and colored differently
from vn_yvn_1, then, by coloring v, _3v,_» with the color of p and uncoloring p, a
new 4-profuse-coloring of H arises that colors at least two edges incident to vy, a
contradiction with the choice of ¢. This contradiction shows that there are at least
three colored edges of I, incident to v, _3. So, by Claim 2, v,,_4 is incident to four
colored edges. Let e be any of the colored edges incident to v,,_3 but not to v,, _4 such
that e is colored differently from v,,_>vn_1. Then, coloring v,,_3vn > with the color of
e and uncoloring e, a new 4-profuse-coloring of H arises that colors two of the edges
edges incident to v _p, contradicting the choice of ¢. This contradiction arose from
assuming that ¢ does not color at least two edges incident to v, 5. So, the claim fol-
lows. O

Claim 4. If H has a 4-profuse-coloring, T is an edge, n > 2, p1 = 1, and Ny (v1) induces
Ko U 2Ky in H, then there is a 4-profuse-coloring & of H that colors the only edge of H joining
two neighbors of v1.

Proof of the claim. Let ¢’ be a maximal 4-profuse-coloring of H and let e be the only
edge of H joining two vertices in Ny (v1). As dy(v1) = 4 and Ny (v1) does not induce
2Ky, Lemma 4.45 implies that E} (v1) is a matching-transversal of H and the four edges
incident to v; are colored by ¢’ because of the maximality of ¢’ and because of Corol-
lary 4.35. If ¢’ colors e, the claim holds by letting ¢ = ¢’. So, suppose that e is not
colored by ¢’. Then, the maximality of ¢’ implies that e is incident to at least four
other edges of H.

Suppose first that e is incident to exactly four edges of H; i.e., either I’ is triangle
and dy(v2) = 4, or I is rhombus. Let w be an endpoint of e different from v, and let
e’ = viw. Let e” be a pendant edge incident to v; and colored differently from each
of the colored edges incident to w. Notice that the maximality of ¢, Lemma 4.33, and
Corollary 4.35 imply that the four edges of H incident to e are colored by ¢’ using four
different colors. So, if we define ¢ : E(H) — {0, 1,2, 3,4} tobe as ¢’ except that ¢ colors
e and e” with color ¢'(e’) and e’ with color ¢’(e”), then ¢ is a 4-profuse-coloring of
H that colors e, as claimed.

It only remains to consider the case when e is incident to more than four edges of
H. Necessarily, I is a triangle and dy(v2) = 5. Let w be the non-terminal vertex of
I. Suppose that there is some pendant edge p incident to v, that is colored by ¢'. By
permuting, if necessary, the colors of the edges of H incident to v; that are different



4.2. Clique-perfectness of complements of line graphs 115

from viv,, we assume, without loss of generality, that viw is colored differently from
p. Then, by coloring e with the color of p and uncoloring p, a new 4-profuse-coloring
of H arises that colors e, as claimed. So, from now on, we assume, without loss of
generality, that there is no pendant edge incident to v, colored by ¢'. So, as dy(v2) = 5,
Lemma 4.45 and Corollary 4.35 imply that there are four edges incident to v, colored
by ¢’ and, necessarily, three of them are edges of I's. By Claim 2, there are four colored
edges incident to v3. Therefore, if we let e’ be any edge of I's incident to v, but not to
vz and colored by ¢’ differently from viw, then by coloring e with the color of e’ and
uncoloring e’, a new 4-profuse-coloring of H arises that colors e, as claimed. ]

Claim 5. If H has a 4-profuse-coloring, Ty = edge, n > 2, and p1 > 1, then there is a
4-profuse-coloring of H that colors at least two pendant edges incident to v1.

Proof of the claim. Suppose, by the way of contradiction, that ¢ is a 4-profuse-coloring
of H that maximizes the number of colored pendant edges incident to v; and that,
nevertheless, ¢ colors at most one pendant edge incident to vi. Since p1 > 1, there is
at least one uncolored pendant edge incident to vi. Then, the maximality of ¢ means
that there are four colored edges incident to vi. As I is an edge and there is at most
one colored pendant edge incident to vy, there are at least three colored edges of I
incident to v1. Then, by Claim 2, there are four colored edges incident to v,. Let e be
any colored edge of I incident to v; but not to v, and let p be any of the uncolored
pendant edges incident to vi. If we color p with the color of e and uncolor e, a new
4-profuse-coloring of H arises that colors one more pendant edge incident to v; than
¢, contradicting the choice of ¢. This contradiction proves that the claim holds. [

We turn back to the proof of the lemma. The proof proceeds by induction on the
number of cutpoints of H. Clearly, the cutpoints of H are the n —1 vertices vy, ..., vn_1.
Consider first the case when H has no cutpoints; i.e,, n = 1. Then, H is the underlying
graph of I'1 which, by Claim 1, is an edge, m-crown for some n > 3, or m-fold for
some m > 2. If [] were an edge, then dy(vg) + dy(v1) — 1 = 1, which contradicts (i).
Therefore, if n = 1, then H is m-crown for some m > 3 or m-fold for some m > 4 and,
by Lemma 4.52, oy (H) > 4.

Assume that n > 2 and that the lemma holds for graphs with less than n — 1
cutpoints. Suppose that H has some cutpoint of degree 3; i.e., there is some j €
{1,2,...,m — 1} such that v; has degree 3 in H. By (iv), Ny(vj) induces K, U Kj in
H. Therefore, p; = 0 and, by symmetry, assume, without loss of generality, that
I is an edge and Tj4 is either a triangle or a thombus. Let H; be the graph that
arises from H by first removing all vertices and edges from I5.1,Tj2,..., I, except
for the vertices of Ny [v;] and the edges incident to vj, and, then, adding one pen-
dant edge p incident to v;. Notice that H; can be regarded as the underlying graph of
M &p, 12 &py o &p [ &2 edge. Clearly, H; satisfies (i)—(iv) and, by induction hy-
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pothesis, there is a 4-profuse-coloring of H;. By Claim 3, there is a 4-profuse-coloring
¢1 of Hy that colors at least two of the edges of H; incident to vj_1. So, by permut-
ing, if necessary, the pendant edges incident to v; in Hy, we assume, without loss of
generality, that ¢ colors some edge incident to v;_; with color ¢1(p). Let H; be the
graph that arises from H by first removing all vertices an edges of I, I3, ..., T}, except
for the vertices of Ny [v;] and the edges incident to v;, and, then, adding one pendant
edge incident to vj. The graph H; can also be regarded as the underlying graph of
edge &1 Ij41 &p, . [j42 &p;,, -+ &p,,_; Tn. By Claim 4, there is a maximal 4-profuse-
coloring ¢, of Hj that colors the only edge e joining two neighbors of v;. By permuting,
if necessary, the pendant edges incident to vj, we assume, without loss of generality,
that ¢, colors e differently from the edge of I';. Moreover, by permuting, if necessary,
the colors of ¢», we assume without loss of generality, that ¢ and ¢» color the edge
of I and each of the edges of I5.1 incident to v; in exactly the same way. Thus, there
is no edge of H where ¢ and ¢, differ and the partial edge-coloring ¢ that results by
merging ¢1 and ¢, is easily seen to be 4-profuse-coloring of H, as desired. Therefore,
from now on, we assume, without loss of generality, that H has no cutpoint of degree
3.

Suppose now that thereis somej € {1,2,...,n} such thatTj isarhombus. Let H; be
the graph that arises from H by removing all the vertices and edges from I3, I 41,...,Tn
except for the vertices of Ny [v;_1] and the edges incident to vj_1, and let H; the graph
that arises from H by removing all vertices and edges from I, I3, ..., I except for the
vertices of N1[vj] and the edges incident to vj. Moreover, as H has no cutpoint of de-
gree 3, dy, (vj—1) = 4, from which it follows that H; satisfies (i)—(iv) and, by induction
hypothesis, H; admits a 4-profuse-coloring ¢1. Similarly, dp,(vj+1) = 4 and H; ad-
mits a 4-profuse-coloring ¢>. By Claim 5, we assume, without loss of generality, that
¢; colors both edges of I that belong to H;, for i = 1, 2. By permuting, if necessary, the
colors of ¢, we assume, without loss of generality, that ¢1 and ¢» color the four edges
of Tj that belong to H; or H, using 4 different colors. Then, let ¢ : E(H) — {0,1,2,3,4}
defined as ¢ in E(H1), as ¢, in E(H2), and that leaves the only edge of I that belongs
neither to Hi nor to Hy uncolored. Clearly, ¢ is a 4-profuse-coloring of H, as desired.

It only remains to consider the case when H has no cutpoins of degree 3 and no I
is a rhombus; i.e., the case when 6,,(H) > 4. Then, as (i) ensures that H is hub-covered
and since H has at least one edge, Lemma 4.48 implies that oty (H) > 6,(H) > 4, which
completes the proof of the lemma. O

The following lemma settles case k = 5.

Lemma 4.56. Let H be a fat caterpillar containing no A and no net and having at least one
edge. Then, am(H) = 5 if and only if 1 (H) = 5. In fact, both inequalities hold if and only if
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H satisfies all of the following assertions:
(i) For each pair of adjacent vertices vi and vy, dyy(vi) + dp(v2) —1 = 5.
(if) No block of H is a complete of four vertices.
(iif) No cutpoint of H has degree 3 in H.
(iv) The neighborhood of each vertex of degree 4 induces 2K, in H.

Proof. Since om(H) < tm(H), am(H) = 5 implies tT»(H) > 5. Suppose now that H
satisfies Ty (H) > 5. Then, H satisfies (i) because of Lemma 4.33. If there were some
block of H of size four, it would have at least three vertices of degree 3 in H (because
H contains no A and has no 5-cycle) and the edges of the K3 induced by these three
vertices would be a matching-transversal of H, contradicting T, (H) > 5. So, H satisfies
(ii). Since the neighborhood of a cutpoint induces a disconnected graph, if H had some
cutpoint of degree 3, then, by Lemma 4.45, T, (H) < 4. Hence, H satisfies (iii). Finally,
Lemma 4.45 implies that H satisfies (iv). Hence, we have proved that if 1,(H) > 5,
then H satisfies (i)—(iv). To complete the proof of the lemma, we assume that H satisfies
conditions (i)—(iv) and we will show that am (H) > 5, or, equivalently, by Lemma 4.34,
that H has a 5-profuse-coloring.

By virtue of Lemma 4.20, H is the underlying graph of some I' &, l2&p, - - -&p,  Th
where each I} is a basic two-terminal graph and each p; > 0. Clearly, the underlying
graph of each I} is a block of H. Therefore, because of (ii), none of I, I3,..., I isa
K4. Foreachi = 1,2,...,n — 1, let v; be the concatenation vertex of H that arises by
identifying the sink of I with the source of I 1. Let vg be the source of I and let v,
be the sink of I},. We make the following claims.

Claim 1. Each of Iy and T, is either an edge, m-crown for some m = 4, or m-fold for some
m = 5.

Proof of the claim. Indeed, each of I'1 and I, is different from triangle, square, 2-crown,
3-fold, and rhombus because of (i), different from 3-crown and 4-fold because of (iv),
and different from K4 because of (ii). The claim follows. O

Claim 2. If there is a maximal 5-profuse-coloring & of H and there are at least three edges of
I5 incident to the same terminal vertex of Tj, then each terminal vertex of Tj is incident to five
edges of H colored by ¢.

Proof of the claim. Without loss of generality, suppose that there are at least three edges
of I incident to v;. As Tj is basic, there are also at least three edges of I incident to
vj_1 and Tj is either and m-crown for some m > 2 or an m-fold for some m > 3. If
dn(vj) = 3, then j = n and I}, is either a 3-crown or a 4-fold, contradicting Claim 1.
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So, dn(vj) = 4 and, symmetrically, d(vj—1) > 4. In addition, neither Ny (v;) nor
Nt (vj—1) induces 2K; and, by (iv), dy(vj) = 5and dp(vj—1) = 5. Hence, Lemma 4.45,
Corollary 4.35, and the maximality of ¢ imply that each of vj and vj_; is incident to
five edges colored of H by ¢, as claimed. O

Claim 3. If H has a 5-profuse-coloring and Tj is a triangle of H, then there is a 5-profuse-
coloring of H that colors the three edges of Tj.

Proof of the claim. By the way of contradiction, assume that the claim is false. Hence,
there is some link Ij that is a triangle and some 5-profuse-coloring ¢ of H that maxi-
mizes the number of colored edges of I such that, nevertheless, ¢ does not color the
three edges of I. Without loss of generality, assume that ¢ is maximal. Let w be the
non-terminal vertex of Ij. By Claim 1 and (iii), dn(vj—1) = 4 and dn(v;) > 4. Sup-
pose, by the way of contradiction, that dy;(v;) = 4. Then, Lemma 4.33 implies that
the set of five edges E;(vj) U Ey(w) is a matching-transversal of H and, by the max-
imality of ¢ and Corollary 4.35, these five edges are colored by ¢, contradicting the
fact that not all the edges of I are colored. So, necessarily dy(v;j) > 5 and, symmet-
rically, dyy(vj—1) = 5. Let e be any uncolored edge of I and assume, without loss of
generality, that e is incident to vj. As dy(vj) > 5, there are five colored edges incident
to v; because of Lemma 4.45, Corollary 4.35, and the maximality of ¢. If there were
some pendant edge p incident to v; and colored differently from v;_;w (if colored),
then, by coloring e with the color of p and uncoloring p, a new 5-profuse-coloring
of H that colors one more edge of I would arise, contradicting the choice of ¢. This
contradiction proves that among the colored edges incident to vj, there are at least
three of them that are edges of I§. Therefore, by Claim 2, there are five colored edges
incident to vj4q1. Symmetrically, if e were incident to vj_i, then there would be five
colored edges incident to v;_,. Finally, let c € {1, 2,3, 4,5} different from the colors of
the colored edges of I and different from the colors of v;vj 1 (if present and colored)
and vj_,v;_1 (if present and colored). Let ¢’ be the partial edge-coloring of H defined
as ¢ except that ¢’ colors e with color ¢ and uncolors the edge of H incident to e col-
ored by ¢ with color c. By construction, ¢’ is a 5-profuse-coloring of H and ¢’ colors
one more edge of I than ¢, a contradiction with the choice of ¢. This contradiction
proves that ¢ colors all the edges of I} and the claim holds. O

Claim 4. If H has a 5-profuse-coloring, 11 is an edge, n = 2, and p1 > 1, then there is a
5-profuse-coloring ¢ of H that colors at least two pendant edges incident to v1.

Proof of the claim. By the way of contradiction, suppose that there is 5-profuse-coloring
¢ of H that maximizes the number of colored pendant edges incident to v; and that,
nevertheless, ¢ colors at most one pendant edge incident to vi. Without loss of gen-
erality, assume that ¢ is maximal. Since p; > 1, there is still at least one uncolored
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pendant edge incident to vi. Then, the maximality of ¢ implies that there are five col-
ored edges incident to vi and, as there is at most one pendant colored edge incident
to v1, there are at least four colored edges of I incident to vi. By Claim 2, there are
five colored edges incident to v,. Let e be any of the colored edges of I; incident to
v1 but not to v, and let p be any of the uncolored pendant edges incident to vi. If we
color p with the color of e and uncolor e, a new 5-profuse-coloring of H arises that col-
ors one more pendant edge incident to v; than ¢, contradicting the choice of ¢. This
contradiction proves the claim. O

We turn back to the proof of the lemma. The proof proceeds by induction on the
number of cutpoints of H. Consider the case H has no cutpoints; i.e., n = 1. Then H is
the underlying graph of It which, by Claim 1, is an edge, m-crown for some m > 4, or
m-fold for some m > 5. If H were an edge, vp and v; would be two adjacent pendant
vertices of Hand dy(vo)+dpn(v1)—1 = 1, which would contradict (i). So, H is m-crown
for some m > 4 or m-fold for some m > 5 and, by Lemma 4.52, & (H) > 5.

Assume now that n > 2 and that the lemma holds for graphs with less thann — 1
cutpoints. Suppose first that H has a cutpoint of degree 4 and letj € {1,2,3,...,n — 1}
such that dy{(vj) = 4. Because of (iv), Ny (v;) induces 2K; in H. Therefore, p; = 0 and
each of Ij and I is a triangle or a thombus. If one of I and 5, is a triangle and the
other is a rhombus, we assume, without loss of generality, that I is the one that is a
triangle. Let H' be the graph that arises from H by contracting I, to a vertex. Then,
H'is the underlying graph of I &p, T2 &p, - - - &p;_, T &p; ,; Tj42&p; -+ - &p,, T and
H’ satisfies (i)-(iv). By induction hypothesis, H' has a 5-profuse-coloring ¢’. Without
loss of generality, assume that ¢’ is maximal. If Tj is a thombus, the maximality of
¢’ implies that ¢’ colors all the edges of I5. If, instead, [j is a triangle, then Claim 3
allows us to assume that ¢’ colors all the edges of I5. Then, we define a new partial
5-edge-coloring ¢ : E(H) — {0,1,2,3,4,5} as follows. Let ¢ coincide with ¢’ in those
edges of H that are neither of Ij nor of I, and we define ¢ on the edges of I} and
I+1 depending on how ¢’ colors the edges of Tj as described in Figure 4.8, where
a,b,c,d, e is a permutation of the colors 1,2,3,4,5. Clearly, ¢ is a 5-profuse-coloring
of Hand oy (H) > 5, as desired. Therefore, from now on, we assume that dy(vi) > 5
foreachi=1,2,...,n—1.

Next, we assume that I is a rhombus for some j. As Claim 1 implies that neither
1 nor I, is thombus, 2 < j < n — 1. Let Hy be the graph that arises from H by
removing all the vertices and edges of I, [ 1, . .., 'y except for the vertices of N [v;_1]
and the edges incident to vj_;. Let Hj be the graph that arises from H by removing
all the vertices and edges of I, I, ..., T} except the vertices of Ny [v;] and the edges
incident to vj. Then, we can regard H; as the underlying graph of I'1 &, 2 &p, - - &, _,
B-1&p;_i+1 edge and H; as the underlying graph of edge &p;+1 l4+1 &py g 42 &pj )y
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Figure 4.8: Rules for transforming &' into ¢ in the proof of Lemma 4.56. Here a, b, c, d, e
represents any permutation of the colors 1,2,3,4,5 and rule (a), (b), or (c) apply depending
on whether each of Ty and 1541 is a triangle or a rhombus.

-+ &, . Since we are assuming that dy(vj—1) = 5 and dn(vj) = 5, Hy and Hp
satisfy conditions (i)—(iv). By induction hypothesis, there are 5-profuse colorings of
Hi and Hy. By Claim 4, we can assume that the 5-profuse-colorings of H; and H; are
such that the two edges of I incident to v;_ are colored by the 5-profuse-coloring of
H; and the two edges of T incident to vj are colored by the 5-profuse-coloring of H,.
By permuting, if necessary, the colors in the 5-profuse-coloring of H,, we can assume
that the four edges of I that are incident to some terminal vertex of I are colored by
these profuse colorings using four different colors. So, a 5-profuse-coloring of H arises
by merging the profuse-colorings of H; and H» and letting the edge joining the two
non-terminal vertices of I uncolored. Thus, by Lemma 4.34, o, (H) > 5. So, from this
point on, we assume that no I is a rhombus.

Because of (iii) and because we are assuming that no cutpoint of H has degree 4,
each of the vertices vi, vy, ..., vn_1 has either degree 2 or degree at least 5. In addition,
since each of I'1 and I}, is either an edge, m-crown for some m > 4, or m-fold for some
m = 5, each of vg and vy, has degree 1 or atleast 5. Finally, since no I is thombus or Ky,
each vertex of H different from vo, v1, ..., vn has degree at most 2. So, 6,(H) > 5. Since
H has at least one edge and H is hub-covered (because of (i)), Lemma 4.48 implies that
om(H) = 6, (H) > 5, which completes the proof. O

Finally, for the k > 6 we prove the following.

Lemma 4.57. Let H be a fat caterpillar containing no A and no net and having at least one
edge. If k = 6, then the following assertions are equivalent:

(i) am(H) > k.
(i) Tm(H) > k.
(iii) H is hub-covered and d,(H) > k.

Proof. Clearly, (i) implies (ii) because otm (H) < Tm(H). Ask > 6 and H has at least one
edge, Lemma 4.48 shows that (iii) implies (i). For the proof to be complete, it suffices
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to show that (ii) implies (iii). Suppose that T (H) > k. Since k > 6, H is hub-covered
because of Lemma 4.33. By virtue of Lemma 4.20, H is the underlying graph of some
N &p, 12 &p, - - &p,,_, ' where each T} is a basic two-terminal graph and each p; > 0.
If there were some i € {1,2,...,n} such that I, is a rhombus or K4, then the two non-
terminal vertices of I} would be two adjacent vertices of degree 3 and Lemma 4.33
would imply that tm(H) < 5, a contradiction. Therefore, each I} is an m-crown for
some m > 0 or an m-fold for some m > 2. Let v; the vertex of H that arises by
identifying the sink of I} and the source of ;1 and let vg be the source of I and v;, be
the sink of I},. Then, each v; has degree 2 in H or has a neighbor in H of degree 2 in H.
Therefore, for each i = 1,2,...,n, either dy;(vi) = 2 or dy(vi) = k — 1 because given
any neighbor w of degree 2 of v; the inequality dy(vi) +1 = dy(w) + du(vi) —1 >k
must hold because of Lemma 4.33. Notice also that, since I is a crown or a fold,
either dy(vg) = 1 or dy(vo) = k because if vy is not pendant then Ey(vp) is clearly a
matching-transversal of H. Symmetrically, either dii(vn) = 1 or di(vn) = k. Finally,
all vertices of H different from vy, vy, ..., vy are vertices of degree 2 because no block
of H is a rhombus or K4. We conclude that 8, (H) > k —1. Since k—1 > 5, Lemma 4.45
implies that T, (H) < 8, (H). Since we are assuming tm (H) > k, 6,(H) > k. Thus, (ii)
implies (iii) and the proof is complete. O

As we have proved Lemmas 4.49 and 4.50 and all the cases of Theorem 4.51, now
Theorem 4.44 follows. This, together with Theorem 4.36, imply Theorem 4.32, from
which the main results of this section (Theorems 4.16 and 4.17) follow.

4.2.4 Recognition algorithm and computing the parameters

The reader acquainted with the theory of tree-width and second order logic may notice
the following. Since forbidding the bipartite claw as a subgraph or as a minor are
equivalent, graphs containing no bipartite claw have bounded tree-width [106] and
have a linear-time recognition algorithm [14]. Moreover, as the characterization in
Theorem 4.17 can be expressed in counting monadic-second order logic with edge set
quantifications (see [39]), its validity can be verified in linear time within any graph
class of bounded tree-width [27, 38]. In particular, matching-perfect graphs can be
recognized in linear time. Nevertheless, the resulting algorithm is not elementary.
Instead, below we propose a very elementary linear-time recognition algorithm for
matching-perfect graphs which relies on depth-first search only.

Let H be a graph. We denote by H; the graph that arises from H by removing all
vertices that are pendant in H. We denote by H, some maximal induced subgraph of
H having no vertices that are pendant in H and no two vertices that are false twins
of degree 2 in H. Finally, we denote by H3 some maximal induced subgraph of H
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having no two vertices that are false twins of degree 2 in H. We claim that there is
an elementary linear-time algorithm that either computes Hz or determines that H
contains a bipartite claw. Let us consider an algorithm that keeps a list L(v) for each
vertex v of H and that stores at each vertex v of H aboolean variable indicating whether
or not the vertex is marked for deletion. Initially, all the list are empty and no vertex
is marked for deletion. The algorithm proceeds by visiting every vertex v of H and,
for each neighbor u € N (v) that was not marked for deletion and such that Ny (u) =
{v,w} for some w € V(H), we do the following: if w is already in the list of L(v), then
we mark u for deletion, otherwise we add w to L(v). To make the algorithm linear-
time, we stop whenever we attempt to add a third vertex to any of the lists L(v) as this
means that v is the center of a bipartite claw. If all vertices of H are visited and no
bipartite claw is detected, then we output as Hj the subgraph of H induced by those
vertices not marked for deletion. The algorithm is clearly correct and linear-time. So,
it follows that there is an elementary algorithm that either computes H;, Hp, and Hs
in linear time or detects that H contains a bipartite claw.

We now claim that there is also an elementary linear-time algorithm to decide
whether a given graph is a fat caterpillar and, if affirmative, compute a matching-
transversal of minimum size. To begin with, we proceed as in the preceding para-
graph in order to either compute Hj, Hy, and Hs, or detect that H contains a bipartite
claw. If the latter occurs, we can be certain that H is not a fat caterpillar and stop. So,
without loss of generality, assume that Hy, Hy, and Hz were successfully computed in
linear time. If Hy is a triangle and each vertex of H; has some neighbor in H outside
Hji, then Lemma 4.50 implies that H is a fat caterpillar and the set of edges incident
to any minimum hub of H is a matching-transversal of minimum size. Suppose now
that Hy is spanned by a 4-cycle C having at least two consecutive vertices adjacent in
H to some vertex outside Hy. Let C = vivyv3v4v1 where vi and v; are adjacent to some
vertex outside H, and vy is the only vertex of H, that may have false twins of degree
2 in H. In this case, it is straightforward to determine whether or not H is a fat cater-
pillar and, if affirmative, compute a matching-transversal of minimum size in linear
time thanks to Lemma 4.49. Assume now that neither H; is a triangle such that each
vertex of Hj is adjacent in H to some vertex outside Hj, nor H; is spanned by a 4-cycle
having at least two consecutive vertices adjacent in H to vertices outside Hy. Then, by
Lemmas 4.49 and 4.50, H is a fat caterpillar if and only if H is a fat caterpillar contain-
ing no A and no net. Therefore, by Lemma 4.20, H is a fat caterpillar if and only if H
is a linear concatenation of basic two-terminal graphs where the K4 links may occur
only as the first and/or last links of the concatenation. So, H is a fat caterpillar if and
only if Hj is a linear concatenation of edge, triangle, rhombus, and K4 links where the
K4 links may occur only as the first/and or last link of the concatenation and no vertex
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of a rhombus link has a false twin of degree 2 in H. Equivalently, H is a fat caterpillar
if and only if Hj satisfies each of the following conditions:

(1) Each of the blocks of Hs is an edge, a triangle, a diamond, or a K4

(2) Each block of H3 has at most two cutpoints

(3) The cutpoints of the diamond blocks are vertices of degree 2 in the diamond.
(4) Each K4 block has at most one cutpoint.

(5) Each cutpoint of Hz belongs to at most two blocks of Hj that are not pendant
edges.

(6) No vertex of a diamond block of H3 of degree 2 in H has a false twin in H.

All these conditions can be easily verified in linear time once the blocks and the
cutpoints of Hz are determined, which in its turn can be done in linear time by per-
forming a depth-first search [112]. Finally, if all these conditions are met, H is a fat
caterpillar containing no A and no net and a matching-transversal of H of minimum
size can be determined in linear time as follows from the characterizations given in
Lemmas 4.53 to 4.57.

Suppose now that we need to determine whether a given graph H is matching-
perfect and assume, without loss of generality, that H has more than 6 vertices. We
begin by deciding whether H is a fat caterpillar as in the preceding discussion. If H is
found to be a fat caterpillar, we are done because we know that H is matching-perfect
and stop. Therefore, assume without loss of generality that H is not a fat caterpillar.
Then, H is matching-perfect if and only if H is matching-perfect and contains a cycle
of length 3k for some k > 2. So, by Lemma 4.37, if H is matching-perfect, then H3 is
a chordless cycle of length 3k for some k > 2. Conversely, if H3 is a chordless cycle of
length 3k for some k > 3, clearly H is matching-perfect by Theorem 4.17. This shows
that we can decide in linear time whether H is matching-perfect. Finally, if there is any
edge e = uv of Hj that is not hub-covered in H, then E(u) U Ey(v) is a matching-
transversal of H of minimum size by Lemma 4.43; otherwise, if v is any minimum hub
v of H, then Ey(v) is a matching-transversal of H of minimum size by Lemma 4.42.

Theorem 4.58. There is a simple linear-time algorithm that decides whether a given graph H
is matching-perfect and, if affirmative, computes a matching-transversal of H of minimum size
within the same time bound.

In particular, if H is matching-perfect, we can also determine the common value
of am(H) and T, (H) in linear time. We do not know if it is possible to also compute

a matching-independent set of maximum size within the same time bound. Notice
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however that the only non-constructive argument used in the proofs of Subsection
4.2.3 is the existence of optimal edge-colorings for some Class 1 graphs containing no
bipartite claw. This meas that, using an algorithm such the as the one given in [129]
to produce the necessary edge-colorings, our proofs in Subsection 4.2.3 can actually
be turned into a procedure to compute a matching-independent set of maximum size
for any given matching-perfect graph.

Let G be graph on n vertices which is the complement of a line graph. We can
compute a root graph H of G in O(n?) time by relying on [89, 107] and then decide
whether G is clique-perfect by determining whether H is matching-perfect as above.
Thus, we conclude the following.

Theorem 4.59. There is an O(n?)-time algorithm that given a graph G, which is the comple-
ment of a line graph, decides whether or not G is clique-perfect and, if affirmative, computes a
minimum clique-transversal of G within the same time bound.

Notice that the bottleneck of the algorithm is computing a root graph H of G.

4.3 Clique-perfectness of gem-free circular-arc graphs

In[17], clique-perfect graphs were characterized within Helly circular-arc graphs (The-
orem 4.5 on page 76). The problem of charactering which circular-arc graphs are
clique-perfect is still open. In this section, we characterize clique-perfect graphs by
minimal forbidden induced subgraphs within gem-free circular-arc graphs. In fact,
we show that, within gem-free circular-arc graphs, being perfect, clique-perfect, coor-
dinated, or hereditary K-perfect, are all equivalent.

Theorem 4.60. Let G be a gem-free circular-arc graph. Then, the following statements are
equivalent:

(i) G is clique-perfect.
(ii) G is coordinated.
(iii) G is hereditary K-perfect.
(iv) G is perfect.
(v) G has no odd holes.

Proof. Along this proof, denote by €1, €5, and Cz, the families of minimally not clique-
perfect, minimally not coordinated, and minimally not hereditary K-perfect graphs,
respectively, and let ¢ = €1 u G U C3. Clearly, odd holes are in €1 N € n C3. If
we prove that the odd holes are the only graphs in €, then the equivalence among
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(i), (ii), (iii), and (v) follows. The equivalence between (iv) and (v) is an immediate
consequence of the Strong Perfect Graph Theorem (Theorem 2.3).

Suppose, by the way of contradiction, that there exists a graph H in € that is not an
odd hole. As H € €1 U €, U €3, H is not balanced. Hence, by Theorem 3.54, H has an
odd hole or contains an induced 3-pyramid. If H had an odd hole, then the minimality
of the graphs in €1, €2, and €3 would imply that H is an odd hole, contradicting the
hypothesis. Therefore, H contains an induced 3-pyramid. Let P < V(H) such that P
induces a 3-pyramid in H and let W < P such that W induces a C4 in H.

We claim that V(H)\W is complete to W in H. Indeed, let wiw,wzwaw; be the
hole induced by the vertices of W in H and let P\W = {u;, uz}. Let v be an arbitrary
vertex of V(H)\W. If v e P\W, then v is complete to W by construction. So, without
loss of generality, suppose that v e V(H)\P. Let k = [Ny (v) n W|. By Lemma 2.8 and
symmetry, we can assume, without loss of generality, that Ny (v) n W = {u; : 1 <
i<k}l Ifk=0ork =1, {u, Wy, up, wg, v} would induce C4 U K; in H, which is not a
circular-arc graph, a contradiction. If k = 2 or k = 3, {v, Wy, u;, wg, w1} would induce
a gem in H, another contradiction. We conclude that k = 4, which proves that V(H)\P
is complete to W in H, as claimed.

Since H is gem-free, H — W is P4-free. Since H is K;3-free, H — W is 3K;-free. So,
H — W is a Py-free bipartite graph and, as we saw in the proof of Corollary 3.16, this
means that each component of H — W is a complete bipartite graph. Since H{W] =
C4 = 2K, and W is anticomplete to V(H)\W in H, H is the disjoint union of at least
three complete bipartite graphs.

We claim that H ¢ C;. In fact, as H has disconnected complement, let H; and H; be
two graphs having at least one vertex each such that H = H; 4+ H». Then, as noted in
[85, 87], &c(H) = min{a.(H1), xc(H2)} and 1.(H) = min{t.(H1),t.(H2)}. So, if H € Cy,
the minimality of H would ensure that «.(H;) = T.(Hi) for each i = 1,2 and the
conclusion would be that «.(H) = 1.(H), contradicting H € C;. This proves the claim.

So, necessarily, H € € U C3; i.e., H is minimally not coordinated or minimally not
hereditary K-perfect. In particular, y.(H) # A.(H) or K(H) is imperfect and, in either
case, H has no universal vertices; i.e., each component of H has atleast two vertices. Let
Hi, Ha, ..., H¢ be the components of H and, for each i = 1,2,...,t, let {A}, A%} be the
bipartition of the complete bipartite graph H;. Then, the cliques of H are of the form
A]ilUA%ZU' --UAJ wherejy, ..., ji € {1,2}. Notice that y(H) = 2t ! and A.(H) = 2t 1
(indeed, each vertex of H belongs to 2t~ cliques of H), which contradicts the fact that
H € Cp, and that K(H) = 2tK, which is a cograph and, in particular, perfect, which
contradicts H € (3, as desired. ]






Chapter 5

Graphs having the Konig property and
edge-perfect graphs

This chapter is organized as follows.

e In Section 5.1, we give some background about graphs having the Kénig prop-
erty and about edge-perfect graphs.

e In Section 5.2, we prove a characterization of graphs having the Kénig property
in terms of forbidden strongly splitting subgraphs, which is a strengthened ver-
sion of a characterization due to Korach, Nguyen, and Peis [82] by forbidden
configurations: (1) First, we show that one of their forbidden configurations is
redundant and can be omitted; (2) then, we reformulate the resulting character-
ization in terms of forbidden subgraphs; (3) finally, we strengthen the formula-
tion by restricting the way in which the forbidden subgraphs may occur.

e In Section 5.3, we use our characterization of graphs having the Kénig property
in order to prove a characterization of edge-perfect graphs by forbidden edge-
subgraphs.

The results of this chapter appeared in [49].

5.1 Background

5.1.1 Graphs having the Konig property

Recall from the Introduction that a graph G has the Kénig property is its matching
number v(G) equals its transversal number T(G). This means that Kénig’s match-
ing theorem [77] can be regarded as asserting that bipartite graphs have the Kénig
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%MA

barbell Ky

Figure 5.1: Cs, barbell, and K4

property. Graphs having the Kénig property have received considerable attention
[28, 44, 81, 82, 86, 90, 93, 94, 99, 103, 111]. The study of graphs having the Kénig prop-
erty from a structural point of view has its origins in the works of Sterboul [111] and
Deming [44] who, independently, gave the first structural characterization for these
graphs. In [51], Edmonds devised the first polynomial-time algorithm for maximum
matching in general graphs, for which he introduced the notions of blossoms, stems,
and flowers. Let G be a graph and let M be a matching of G. An M-blossom is an odd
cycle of length 2k +1 for some k > 1 such that k of its edges are edges of M. An M-stem
is either an exposed vertex or an even M-alternating path having an M-unsaturated
vertex in one end and an edge of M in the other; the M-unsaturated vertex and the
vertex at the other end are called, respectively, the root and the tip of the stem. An
M-flower consists of a blossom and a stem whose only common vertex are the base of
the blossom and the tip of the stem. In [111], Sterboul defined an M-posy to consist
of two (not necessarily disjoint) blossoms joined by an odd M-alternating path that
starts and ends in edges of M and whose endpoints are the bases of the two blossoms.
He observes that if an M-posy exists, one M-posy can be found whose only vertex of
each blossom belonging to the path is its base. The characterization is as follows.

Theorem 5.1 ([44, 111]). Let G be a graph. The following assertions are equivalent:
(i) G has the Kénig property (i.e., T(G) = v(G)).
(ii) For every maximum matching M, there exists an M-flower or an M-posy,.
(iii) For some maximum matching M, there is an M-flower or an M-posy.

Deming [44] continues the analysis and also devises a polynomial-time algorithm
for recognizing graphs having the Kénig property and, if affirmative, computing a
maximum independent set. Nevertheless, the fact that the two blossoms that define
an M-posy may intersect does not give a simple forbidden subgraph characterization
of graph having the Kénig property.

In [93], Lovész proved a characterization of graphs having the Kénig property, re-
stricted to graphs having a perfect matching by means of what he called nice subgraphs.
An even subdivision of an edge uv consists in replacing the edge uv by two new ver-
tices w1 and w, together with three edges uwi, wiwy, and wyv. An even subdivision of
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Figure 5.2: Forbidden configurations for graphs having the Kénig property

a graph G is either the graph G itself or any of the graphs that arise from G by succes-
sive application of even subdivisions. A subgraph H of a graph G is nice if G — V(H)
has a perfect matching. The aforementioned characterization is stated below. For the
barbell graph, see Figure 5.1.

Theorem 5.2 ([93]). A graph with a perfect matching has the Kénig property if and only if it
has no even subdivision of barbell or K4 as a nice subgraph.

In [82], Korach, Nguyen, and Peis extended Lovész’s result to a characterization
of all graphs having the Kénig property by, what we call, forbidden configurations. A
configuration of a graph G is an ordered pair & = (S, M) where S is a subgraph of G,
M is a maximum matching of G, and S belongs to one of the four families of graphs
represented in Figure 5.2, where dashed edges stand for M-alternating paths start-
ing and ending in edges of M, solid edges stand for M-alternating paths starting and
ending in edges not belonging to M, and the vertex v is M-unsaturated. The graph
S is said the underlying graph of &. The characterization by Korach et al. by forbidden
configurations is the following.

Theorem 5.3 ([82]). A graph has the Kénig property if and only if it has none of the configu-
rations in Figure 5.2.

Notice that if we require that each induced subgraph of a graph G have the Kénig
property, then G should be bipartite because the chordless odd cycles do not have the
Kénig property. Recall from the Introduction that, instead, edge-perfect graphs are
those graphs such that the Kénig property holds for each of their ‘edge subgraphs’. If
F is any set of edges, we will denote by V(F) the set of endpoints of the edges belong-
ing to F; i.e., V(F) = [ cr € by regarding each edge e as the set of its endpoints. With
this notation, the edge-subgraphs of a graph G are the induced subgraphs G — V(F) for
some F € E(G). Clearly, edge-perfect graphs form a superclass of the class of bipartite
graphs and a subclass of the class of graphs having the Kénig property. Moreover,
both inclusions are proper, as shown by the paw (which is edge-perfect but not bipar-
tite) and the graph that arises from C¢ by adding a short chord (which has the Kénig
property but is not edge-perfect).
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If Cis a chordless odd cycle of a graph G, let a savior of C be a vertex v of V(G)\V(C)
such that Ng(v) € V(C). Let a two-twin pair be a pair of false twins of degree 2 and
let N(G) be the family of the neighborhoods of the vertices in each two-twin pair;
ie, N(G) = {Ng(v) : vhas degree 2 and has a false twin in G}. Finally, let Gp be the
edge-subgraph of G that arises by removing the endpoints of all the pendant edges of
G. In [47] and [48], edge-perfect graphs were characterized by the presence of saviors
and by the absence in Gp of chordless odd cycles with forbidden pairs.

Theorem 5.4 ([47, 48]). A graph G is edge-perfect if and only if each chordless odd cycle of G
has a savior that is either a pendant vertex or belongs to some two-twin pair or, equivalently,

if and only if Gp has no chordless odd cycle containing at most one vertex from each pair in
N(G).

These characterizations were used to identify some graph classes within which
there are polynomial-time recognition algorithms for edge-perfect graphs [47] and to
prove that the problem of recognizing edge-perfect graphs is NP-hard in general [48].
Originally, edge-perfect graphs were defined in [53] in connection with packing and
covering games introduced in [45]. In fact, in [48], based on the NP-hardness of the
recognition of edge-perfect graphs, it is deduced that the recognition of matrices defin-
ing totally balanced packing games is NP-hard, answering a question raised in [45].
This is in contrast with the case of matrices defining totally balanced covering games,
which can be recognized in polynomial time [121].

5.2 The Konig property in terms of forbidden subgraphs

We will first show that it is not possible to extend Theorem 5.2 to a characterization of
all graph having the Kénig property by forbidden nice subgraphs. That is, we cannot
drop the hypothesis that G has a perfect matching by adding some extra forbidden
nice subgraphs. It is not possible to do so because, while the relation “is a nice sub-
graph of” is clearly transitive, the Kénig property is not always inherited by the nice
subgraphs (as the example given in Figure 5.3 shows). Suppose, by the way of con-
tradiction, that it were possible to characterize the whole class of graphs having the
Kénig property by forbidden nice subgraphs. Consider Figure 5.3, where a graph is
displayed on the left and a nice subgraph of it on the right. Since the graph on the
right does not have the Kénig property, it should have some nice subgraph ® which
is forbidden in the characterization whose existence we are assuming. Then, by tran-
sitivity, the forbidden nice subgraph ® would also be a nice subgraph of the graph
on the left, which would contradict the fact that the graph on the left does have the
Kénig property. This contradiction proves that Theorem 5.2 cannot be extended to a
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Figure 5.3: The Kdnig property is not always inherited by the nice subgraphs. The graph
on the left has the Kénig property while its bold edges correspond to a nice subgraph of it
(depicted also on the right) that does not have the Kénig property.

characterization by forbidden nice subgraphs of all graphs having the Kénig property.
Instead, our approach towards obtaining a similar result holding for all graphs will
be to replace nice subgraphs by splitting subgraphs (to be defined after Lemma 5.5) and
later by strongly splitting subgraphs (to be defined on page 133).

Let G be a graph and let X be a subset of V(G). We say that X is a splitting set of G
if and only if there is some maximum matching M of G such that no edge of M joins
a vertex of X to a vertex of G — X. If so, we say that M is split by X. The next lemma
gives a sufficient condition for a subgraph of a graph having the Kénig property to
also have the Kénig property.

Lemma 5.5. Let G be a graph having the Kénig property and let H be a subgraph of G. If
V(H) is a splitting set of G and v(H) = v(G[V(H)]), then H also has the Kénig property.

Proof. Suppose that V(H) is a splitting set of G and v(H) = v(G[V(H)]). Let M be a
maximum matching of G split by V(H); i.e., there is no edge of M joining a vertex of H
to a vertex of G — V(H). Let My be the set of edges of M joining two vertices of V(H)
and let Mg_v(n) be the set of edges of M joining two vertices of G — V(H). Since M
is a maximum matching of G and M is split by V(H), My is a maximum matching of
G[V(H)]. Since v(H) = v(G[V(H)]), there is maximum matching M7, of H such that
IM{| = [My|. Therefore, M’ = M, U Mg_v(n) is a maximum matching of G. Then,

v(G) = v(H) + v(G — V(H)) < t(H) + (G — V(H)) < t(G). (5.1)

Since G has the Kénig property, both inequalities in (5.1) hold with equality and, nec-
essarily, v(H) = t(H) and v(G — V(H)) = t(G — V(H)). This proves that H has the
Kénig property. O

The above lemma leads us to introduce the notion of splitting subgraphs as follows.
Let G be a graph and let H be a subgraph of G. We will say that H is a splitting subgraph
of G if and only if V(H) is a splitting set of G and H has a perfect or near-perfect
matching. Notice that if H has a perfect or near-perfect matching, v(H) = v(G[V(H)])
holds trivially. Therefore, we have the following corollary of Lemma 5.5 showing that,
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contrary to the case of nice subgraphs, the Kénig property is always inherited by the
splitting subgraphs.

Corollary 5.6. If a graph has the Kénig property, then each of its splitting subgraphs has the
Kénig property.

Notice that if G has a perfect matching, then H is a splitting subgraph of G if and
only if H has a perfect matching and H is a nice subgraph of G. Since all the graphs
involved in Theorem 5.2 have perfect matchings, the result still holds if we replace
‘nice subgraphs’ by ‘splitting subgraphs”:

Theorem 5.2 in terms of splitting subgraphs ([93]). A graph with a perfect matching
has the Kénig property if and only if it has no even subdivision of barbell or K4 as a
splitting subgraph.

We will show that, contrary to the case of nice subgraphs, the whole class of graph
having the Kénig property can be characterized by means of splitting subgraphs. That
is, when Theorem 5.2 is reformulated in terms of forbidden splitting subgraphs as
above, the hypothesis that G has a perfect matching can be dropped by simply adding
some extra forbidden splitting subgraphs. The characterization of the graphs having
the Kénig property by forbidden splitting subgraphs will follow from the characteri-
zation by Korach et al. (Theorem 5.3). To begin with, the lemma below shows that it
is not essential to forbid the flower configurations in Theorem 5.3 because forbidding
triangular configurations prevents both triangular and flower configurations from oc-

curring.
Lemma 5.7. If a graph has a flower configuration, then it also has a triangular configuration.

Proof. Assume that a graph G has some flower configuration & = (S, M). Let v be the
M-unsaturated vertex of S and let w be the vertex of S of degree 3 in S. Let P be the
path of S joining v to w and let C be the only cycle of S. Notice that M’ = M A E(P) is
also a maximum matching of G because P is an M-alternating even path of G and v is
M-unsaturated. Therefore, (C, M') is a triangular configuration of G, which completes
the proof. O

Next we observe that the occurrence of the three remaining configurations coin-
cides with the occurrence of their underlying graphs as splitting subgraphs.

Lemma 5.8. Let G be a graph and let S be a subgraph of G. Then, S is the underlying graph
of a triangular, triangular pair, or tetrahedral configuration of G if and only if S is a splitting
subgraph of G which is an even subdivision of Cs, barbell, or Ky, respectively.



5.2. The Kénig property in terms of forbidden subgraphs 133

Proof. Assume that there is some splitting subgraph S of G which is an even subdi-
vision of C3, barbell, or K4. By definition, V(S) is a splitting set of G; i.e., there is a
maximum matching M of G such that no edge of M joins a vertex of S with a vertex of
G — V(S). Let M be the set of edges of M that join two vertices of S and let Mg_y(s)
be the set of edges of M that join two vertices of G — V(S). By construction, Mg is
a maximum matching of G[V(S)]. Since S is an even subdivision of Cs, barbell, or
Ky, there is a perfect or near-perfect matching Rs of S. Notice that Rg is unique up
to isomorphisms of S. As S is a spanning subgraph of G[V(S)], |[Rs| = |[Ms|. Then,
M’ = Rs U Mg_v(s) is a maximum matching of G. By construction, (S, M’) is a tri-
angular, triangular pair, or tetrahedral configuration of G depending on whether S is
an even subdivision of C3, barbell, or K4, respectively.

Conversely, assume that S is the underlying graph of a triangular, triangular pair,
or tetrahedral configuration & = (S, M) of G. By definition, V(S) is a splitting set of
G and S has a perfect or near-perfect matching. Thus, S is a splitting subgraph of G.
We conclude that S is a splitting subgraph of G which is an even subdivision of C3,
barbell, or K4 depending on whether £ is a triangular, triangular pair, or tetrahedral
configuration, respectively. O

Therefore, the characterization by Korach et al. can be reformulated in terms of
splitting subgraphs:

Theorem 5.3 in terms of splitting subgraphs. A graph has the Kénig property if and
only if it has no even subdivision of any of the graphs in Figure 5.1 as a splitting sub-

graph.

Notice that the above statement is precisely a characterization of the whole class of
graphs having the Kénig property in terms of splitting subgraphs of the kind that we
were looking for. Indeed, it arises from the reformulation of Theorem 5.2 in terms of
forbidden splitting subgraphs by dropping the hypothesis that G has a perfect match-
ing and adding the even subdivisions of C3 as the extra forbidden splitting subgraphs.

Finally, we will prove Theorem 5.9, which is a strengthened characterization of
graphs with the Kénig property obtained by restricting the way in which the forbid-
den subgraphs may occur. For the purpose of formulating our characterization, we
introduce the notion of strongly splitting subgraphs as follows. Let G be a graph. A
subset X of V(G) is a strongly splitting set if there is a maximum matching M of G such
that no edge of M joins a vertex of X to a vertex of G — X and no vertex of X is adjacent
to any M-unsaturated vertex of G — X. A subgraph H of G is a strongly splitting subgraph
if V(H) is a strongly splitting set of G and H has a perfect or near-perfect matching.

Clearly, strongly splitting sets are splitting sets, and strongly splitting subgraphs
are splitting subgraphs. Moreover, the notion of strongly splitting subgraph is indeed
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more restrictive than that of splitting subgraph. For instance, K5 has Ky as splitting
subgraph but not as strongly splitting subgraph. More generally, if H has a perfect
matching, then H + K; has H as splitting subgraph but not as strongly splitting sub-
graph.

The theorem below is the main result of this section and shows that the forbidden
splitting subgraphs for the class of graphs having the Kénig property can be forced to
occur as strongly splitting subgraphs.

Theorem 5.9. A graph has the Kénig property if and only if it has no even subdivision of any
of the graphs in Figure 5.1 as a strongly splitting subgraph.

Proof. Since strongly splitting subgraphs are splitting subgraphs, Corollary 5.6 implies
that if G has the Kénig property then no strongly splitting subgraph of G is an even
subdivision of any of the graphs in Figure 5.1. Therefore, it suffices to prove that if G
does not have the Kénig property then G has a strongly splitting subgraph which is
an even subdivision of one of the graphs in Figure 5.1.

Suppose that G does not have the Kénig property. By Theorem 5.3 and Lemma 5.7,
G has a triangular, triangular pair, or tetrahedral configuration & = (S, M). Denote by
U the set of M-unsaturated vertices of G — V(S).

Case 1. & = (S, M) is a triangular configuration.

Let v be the M-unsaturated vertex of S and suppose, by the way of contradiction,
that there is a vertex s € V(S) adjacent to some vertex u € U. Since M is maximum
and u is M-unsaturated, s is M-saturated. In particular, s # v. Since S is a chordless
odd cycle, there is exactly one even path P in S joining s to v. By construction, uP
is an M-alternating path joining the M-unsaturated vertices u and v; i.e., uP is an M-
augmenting path, a contradiction with the fact that M is maximum. This contradiction
proves that there is no edge joining a vertex of S and a vertex of U. We conclude that
if G has a triangular configuration & = (S, M) then § is a strongly splitting subgraph
of G which is an even subdivision of C3. From now on, we assume, without loss of
generality, that G has no triangular configuration.

Case 2. & = (S, M) is a triangular pair configuration.

Suppose, by the way of contradiction, that there is a vertex s € V(S) adjacent to
some vertex u € U. Let wi and w, be the two vertices of S of degree 3 in S. Let P
be the path in S joining wq to w; and let C! be the cycle of S through w; fori = 1,2.
If s € V(P), let Q be the subpath of P that joins s to wy and, by symmetry, we can
assume that Q is odd. If, on the contrary, s € V(S)\V(P), we can assume without loss
of generality that s € V(C?)\{w,} and let Q be the odd path in S joining s to wy (which
exists because C? is odd). In both cases, uQ is an M-alternating even path of G where
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uisnot saturated by M. Therefore, M’ = MAE(1Q) is a maximum matching of G and
(C!, M) is a triangular configuration of G, a contradiction. This contradiction proves
that there is no edge joining a vertex of S and a vertex of U. We conclude that if G has
a triangular pair configuration & = (S, M) and G has no triangular configuration, then
S is a strongly splitting subgraph of G which is an even subdivision of barbell.

Case 3. & = (S, M) is a tetrahedral configuration.

Let wi, Wy, w3, wy be the set of vertices of S of degree 3in S. Foreachi,j € {1,2, 3,4}
such that i # j, let PYJ be the path of S joining w; to wj but not passing through wy
for any k # i,j. Without loss of generality, we assume that the vertices w1, wa, W3, wy
are labeled in such a way that the path P*! starts and ends in edges not belonging
to M for each i = 1,2, 3,4 (superindices should be understood modulo 4). For each
pairwise different i,j,k € {1,2,3,4}, let CYik be the cycle of S passing through wj,
wj, and wy but not passing through wy where { # 1i,j,k. Suppose, by the way of
contradiction, that there is a vertex s € V(S) that is adjacent to some vertex u € U. By
symmetry, we can assume that s € V(P12) or s € V(P!?). Suppose first that s € V(P12).
Since P! is odd, there is an even subpath Q of P'? joining s to wj forj = 1 orj = 2.
(Eventually P is the empty path starting and ending in w;.) Without loss of generality,
assume that Q joins s to wy. Since uQP!? is an M-alternating even path and u is M-
unsaturated, M’ = M A E(uQP!?) is a maximum matching of G and (C?**, M) is a
triangular configuration of G, a contradiction. Necessarily, s € V(P13). Since P'? is
odd, there is an odd subpath Q of P joining s to wy or w3. Without loss of generality
assume that Q joins s to wy. Since uQ is an M-alternating even path and u is M-
unsaturated, M’ = M A E(uQ) is a maximum matching of G and (CY?**, M’) is a
triangular configuration of G, a contradiction. This contradiction proves that there is
no edge between V(S) and U. We conclude that if G has a tetrahedral configuration
(S,M) and G has no triangular configuration, then S is a strongly splitting subgraph
of G which is an even subdivision of Kj.

We proved that if G does not have the Kénig property then G has a strongly split-
ting subgraph which is an even subdivision of Cz, barbell, or K4, which concludes the
proof. O

Notice that if G is a graph having a perfect matching and H is a strongly split-
ting subgraph of G, then H is a nice subgraph of G and H has a perfect matching. In
addition, the even subdivisions of C3 clearly do not have perfect matchings (because
they have an odd number of vertices). Therefore, for graphs with a perfect matching,
Theorem 5.9 reduces precisely to Lovasz’s characterization (Theorem 5.2).

The aim of our characterization is not to address the recognition problem, which
was already addressed in [44]. Instead, the usefulness of our characterization is on the
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structural side: given that a graph does not have the Kénig property, our result ensures
that an even subdivision of C3, barbell, or K4 occurs as a strongly splitting subgraph. As
an example of this, in the next section, we use Theorem 5.9 to derive a characterization
of edge-perfect graphs by forbidden edge-subgraphs.

5.3 Edge-perfectness and forbidden edge-subgraphs

Notice that the class of edge-perfect graphs is not closed by taking induced subgraphs.
Indeed, the paw is edge-perfect but contains an induced C3 which is not edge-perfect.
This simple example shows that the class of edge-perfect graphs cannot be charac-
terized by forbidden induced subgraphs. Instead, we will characterize edge-perfect
graphs by forbidden edge-subgraphs. Before turning into the proof of the characteri-
zation, we observe the following two facts.

Lemma 5.10. If F is an edge-subgraph of H and H is an edge-subgraph of G, then F is an
edge-subgraph of G.

Proof. Let Eq be a set of edges of H such that H— V(E;) = F and let E; be a set of edges
of G such that G — V(Ez) = H. Then, G — V(E; U E3) = F where E; U E; is a set of
edges of G because H is a subgraph of G. O

Lemma 5.11. Let G be a graph. If G has an odd cycle whose vertex set induces an edge-
subgraph of G, then G has an edge-subgraph which is a chordless odd cycle.

Proof. Suppose that G has an odd cycle whose vertex set induces an edge-subgraph
of G and let C be the shortest such odd cycle. It suffices to prove that C is chordless.
Suppose, by the way of contradiction, that C has some chord e = xy. Since C is odd,
its vertices can be labeled in such a way that C = viv,...vyr11v1, where vi = x and
Vop41 =y forsomep e {1,2,3,...,k —1}. Now C’ = vivpv3...vop 411 is an odd cycle
of G and G[V(C’)] is an edge-subgraph of G[V(C)] because G[V(C’)] = G[V(C)] —
V({xjxj11 | 2p +2 < j < 2k}). Since G[V(C')] is an edge-subgraph of G[V(C)] and
G[V(C)] is an edge-subgraph of G, by Lemma 5.10, G[V(C')] is an edge-subgraph of
G. Therefore, C’ is an odd cycle of G that induces an edge-subgraph of G and C’
is shorter than C, a contradiction with the choice of C. This contradiction arose by
assuming that C had some chord. So, G[V(C)] is an edge-subgraph of G which is a
chordless odd cycle, which completes the proof. O

The chordless odd cycles and K4 are not edge-perfect because they do not even
have the Kénig property. Therefore, these graphs cannot be edge-subgraphs of any
edge-perfect graph. The following result shows that, conversely, if a graph without
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isolated vertices is not edge-perfect, it is because it contains a chordless odd cycle or
K4 as an edge-subgraph.

Theorem 5.12. A graph with no isolated vertices is edge-perfect if and only if it has neither a
chordless odd cycle nor K4 as an edge-subgraph.

Proof. As we have just discussed, if a graph is edge-perfect then no edge-subgraph of
it can be a chordless odd odd cycle or K4. Conversely, let G be a graph with no isolated
vertices that is not edge-perfect. Then, G has at least one edge-subgraph that does not
have the Kénig property. Let H be an edge-subgraph of G with minimum number of
vertices that does not have the Kénig property. As H does not have the Kénig property,
there is some component H' of H that does not have the Kénig property. In particular,
H’ consists of at least two vertices.

We claim that H’ is the only component of H having at least two vertices. Suppose,
by the way of contradiction, that H has some other component H” having at least two
vertices. If Epy» is the set of edges of H joining vertices of H”, then H — V(Ep») =
H — V(H”) is an edge-subgraph of H that does not have the Kénig property because
one of its components is still H'. By Lemma 5.10, H — V(H") is also an edge-subgraph
of G. Since H — V(H”) does not have the Kénig property and has less vertices than
H, this contradicts the minimality of H. This contradiction shows that H' is the only
component of H having at least two vertices.

We now show that the fact that G has no isolated vertices implies that H is con-
nected; i.e.,, H = H’. Indeed, since G has no isolated vertices, for each isolated vertex v
of H (i.e.,, v e V(H)\V(H’)) there is some edge e, € E(G) thatis incident to v. If e, were
incident to some vertex of H’ then e, would be an edge of H, which would contradict
the fact that v does not belong to the component H' of H. Therefore, e, is not incident
to any vertex of H' for any v € V(H)\V(H’). Since H is an edge-subgraph of G, there
is some By € E(G) such that G — V(E) = H. So, if E; = {e, : v e V(H)\V(H)} then
G — V(En u E1) = H/, which proves that H' is an edge-subgraph of G. Since H’ does
not have the Kénig property, the minimality of H implies that H = H’, as claimed.

Since H does not have the Kénig property, Theorem 5.9 ensures that there is a
strongly splitting subgraph S of H which is an even subdivision of C3, barbell, or Kj.
We claim that H[V(S)] is an edge-subgraph of H. Indeed, since S is a strongly splitting
subgraph of H, there is a maximum matching M of H such that no edge of M joins
a vertex of S with a vertex of H — V(S) and such that no vertex of S is adjacent to an
M-unsaturated vertex of H — V(S). Let E; be the set of edges of M joining two vertices
of H—V(S), and let E; be the set of edges of H incident to some M-unsaturated vertex
of H— V(S). Since H is connected, for each M-unsaturated vertex of H — V(S) there
is at least one edge incident to it in E;. Also notice that since S is strongly splitting
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subgraph, no edge of E; is incident to a vertex of S. We conclude that H[V(S)]| =
H — V(E; U Ez), which shows that H[V(S)] is an edge-subgraph of H, as claimed.
Finally, we claim that H has a chordless odd cycle or K4 as an edge-subgraph.

Case 1. S is an even subdivision of C.
Then, S is an odd cycle of H whose vertex set induces an edge-subgraph of H. By
Lemma 5.11, H has an edge-subgraph which is a chordless odd cycle, as claimed.

Case 2. S is an even subdivision of barbell.

Let w1 and w; be the vertices of S of degree 3 in S, let Cl be the cycle of S through
wy for i = 1,2 and let P be the path of S joining wy to wy. Let P = x1X2X3... X2k 11
where x; = wy and x4 1 = Wo. Let E3 = E(C?) and let E4 = {xjxj41 | 2 <j <
2k}. Then, H[V(C!)] is an edge-subgraph of H[V(S)] because H[V(C')] = H[V(S)] —
V(E3 U E4). Since H[V(S)] is an edge-subgraph of H, by Lemma 5.10, H[V(C!)] is an
edge-subgraph of H. Thus, C! is an odd cycle of H whose vertex set induces an edge-
subgraph of H and, by Lemma 5.11, H has an edge-subgraph which is a chordless odd
cycle, as claimed.

Case 3. S is an even subdivision of K.

Let W be the set of vertices of S of degree 3 in S. For each w,w’ € W, let P’
be the path in S joining w to w’ and not passing through any vertex of W\ {w, w'}. If
PW ' has length 1 for each w,w’ € W, then S = H[V(S)] is an edge-subgraph of H
which is a K4, and the claim holds. Therefore, we assume without loss of generality
that there are two vertices wi, w, € W such that P*1"V2 has length greater than 1. Let
w3 and wy be the remaining two vertices of W. Let C be the cycle of S through wy, w3,
and wy, but not through wy. For each i = 2,3, 4, let P"V1Wi = y}y%yé .. .y%ki 41 where
yi =wj and yékiﬂ =wj and let F; = {y}y}ﬂ | 1 <j < 2k;i —1}. Notice that H[V(C)]
is an edge-subgraph of H[V(S)] because H[V(C)] = H[V(S)] — V(F2 u F3 U F4). Since
H[V(S)] is an edge-subgraph of H, by Lemma 5.10, H[V(C)] is an edge-subgraph of
H and, by Lemma 5.11, H has an edge-subgraph which is a chordless odd cycle, as
claimed.

Thus, we proved that H has a chordless odd cycle or K4 as an edge-subgraph. Since
H is an edge-subgraph of G, Lemma 5.10 implies that G has a chordless odd cycle or
K4 as edge-subgraphs, which completes the proof. O

We would like to draw attention to the role played by our characterization of graphs
having the Kénig property (Theorem 5.9) in the above proof. Indeed, the fact that S
is a strongly splitting subgraph of H was key in the proof of the claim that H[V(S)] is
an edge-subgraph of H, because it guarantees that there is no M-unsaturated vertex
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of S such that each edge incident to it were also incident to some vertex of S and, in
particular, no edge of E; is incident to a vertex of S.

Finally, we present the characterization of edge-perfectness by forbidden edge-
subgraphs also for graphs that may have isolated vertices. Notice that when taking an
edge-subgraph H of a graph G, the isolated vertices of G are never removed. There-
fore, H has at least as many isolated vertices as G. That explains why in the theorem
below we must forbid edge-subgraphs with an arbitrary number of isolated vertices.

Theorem 5.13. A graph is edge-perfect if and only it has neither K4 U tKq nor Cox41 L tKy
as an edge-subgraph for any k > 1 and any t > 0.

Proof. If G is edge-perfect then all its edge-subgraphs have the Kénig property and, in
particular, G has neither K4 U tK; nor Cox41 U tK; as an edge-subgraph for any k > 1
and any t > 0.

Conversely, assume that G is not edge-perfect. Let t be the number of isolated
vertices of G. Then, the graph G’ that arises from G by removing its t isolated vertices
is also not edge-perfect. By Theorem 5.13, G’ has K4 or Cpr41 for some k > 1 as
an edge-subgraph. So, G has K4 U tK; or Cpx;1 U tKy for some k > 1 as an edge-
subgraph. O






Chapter 6

Final remarks

In Chapter 3, we studied the problem of characterizing balanced graphs by minimal
forbidden induced subgraphs within different graph classes. The main results of the
chapter are summarized in Table 6.1.

Sections 3.4 to 3.6 were devoted to address the problem when restricted to the
classes of complements of bipartite graphs, line graphs of multigraphs, and comple-
ments of line graphs of multigraphs, and to show that balanced graphs are recogniz-
able in linear time within each of these graph classes. We observed that the character-
ization of balanced graphs within line graphs leads naturally to the characterization
within line graphs of multigraphs because adding true twins preserves balancedness.
Nevertheless, the same does not hold for complements of line graphs of multigraphs
because adding false twins does not always preserve balancedness. Indeed, for each
multigraph H in Figure 3.2, light lines are those that correspond to vertices in L(H) for
which adding a false twin may destroy balancedness. It would be interesting to have a
general criterion to decide when a false twin of a vertex can be added to a graph while
preserving balancedness. Such a result would have somewhat simplified our proof
of the characterization of balancedness within complements of line graphs of multi-
graphs. In order to be able to characterize balanced graphs within larger graph classes,
we may need to develop more convenient tools to prove balancedness of graphs. For
instance, although the proofs in Subsection 3.6.4 are very similar among themselves,
each of them had to be addressed separately. A natural step towards generalizing our
results within line graphs of multigraphs and their complements would be to attempt
to characterize balanced graphs within claw-free graphs and their complements. The
decomposition of claw-free graphs proposed in [35] could prove useful in such an at-
tempt.

In Sections 3.7 to 3.9, we considered the problem of characterizing balanced graphs
by minimal forbidden subgraphs within three subclasses of the class of circular-arc
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Minimal forbidden induced

Graph class subgraphs for balancedness Reference
complements of 1-pyramid, 2-pyramid, Theorem 3.15
bipartite graphs and 3-pyramid

line graphs of odd holes, 3-sun, Theorem 3.23
multigraphs 1-pyramid, and 3-pyramid
complement of line 3-sun, 2-pyramid, 3-pyramid, =~ Theorem 3.29
graphs of multigraphs Cs, C7, Uy, and V5.
[net,ly,S,}-free circular-arc graphs odd holes, pyramids, C, Corollary 3.49
(contains all Helly circular-arc graphs) Vil D2 and X2t
claw-free circular-arc graphs odd holes, pyramids, and Cy Theorem 3.52

(contains all proper circular-arc graphs)

gem-free circular-arc graphs odd holes and 3-pyramid Theorem 3.54

Table 6.1: Minimal forbidden induced subgraphs for balancedness within the graph classes
studied in Chapter 3

graphs, including a superclass of each of two of the most studied subclasses of circular-
arc graphs: the class of Helly circular-arc graphs and the class of proper circular-arc
graphs. Interestingly, a careful reading of the proof of Theorem 3.44 reveals that the
hypothesis that the graph is a Helly circular-arc graph (and not merely a circular-
arc graph) is only used in the proofs of Claim 1 and Claim 2, and in the latter case
only for t = 2. So, along the proof we indeed identified all circular-arc graphs that
are minimally not balanced and whose unbalanced cycles have length at least 7 and
have only short chords. Therefore, a possible road towards extending the proof of
Theorem 3.44 to the entire class of circular-arc graphs could be that of finding some
property of the chords of the unbalanced cycles within circular-arc graphs in general
that could serve as a substitute for Claim 1. A different approach would be to take
Theorem 3.47 as a starting point and study the balancedness of circular-arc graphs
containing net, Uy, or Sy as induced subgraph. We managed to do so when restricting
ourselves to claw-free and gem-free graphs. A better understanding of the structure
of circular-arc graphs would be of help to overcome these restrictions. The complete
characterization of balanced graphs by minimal forbidden induced subgraphs within
circular-arc graphs in general, remains unknown. The sun Ss is an example of circular-
arc graph that is minimally not balanced but that does not belong to any of the classes
of circular-arc graphs discussed in Chapter 3. We do not know if there are further
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Minimal forbidden induced
Graph class subgraphs for clique-perfectness Reference

complements of line graphs 3-sun and Cy for each k > 5 Theorem 4.16
that is not a multiple of 3

gem-free circular-arc graphs odd holes Theorem 4.60

Table 6.2: Minimal forbidden induced subgraphs for clique-perfectness within the graph
classes studied in Chapter 4

examples of such graphs. Notice that the complete suns S; with t odd and t > 7 are not
circular-arc graphs. We remark that the problem of characterizing balanced graphs by
minimal forbidden induced subgraphs remains unsolved even within chordal graphs.

In Chapter 4, we considered the problem of characterizing clique-perfect by mini-
mal forbidden induced subgraphs. The main results are summarized in Table 6.2.

We devoted Section 4.2 to characterizing clique-perfect graphs by minimal forbid-
den induced subgraphs within complements of line graphs and showed that clique-
perfect graphs can be recognized in O(n?) time within the same class, where n is the
number of vertices of the input graph. Similarly to the case of balanced graphs, the
characterization of clique-perfect graphs within line graphs proved in [16] (stated here
as Theorem 4.15) extends naturally to complements of line graphs because adding
true twins preserves clique-perfectness. Nevertheless, as adding false twins does not
always preserve clique-perfectness, from our characterization within complement of
line graphs it does not immediately follow a characterization of clique-perfect graphs
within complements of line graphs of multigraphs. In general, the problem of char-
acterizing clique-perfect graphs within claw-free graphs and their complements re-
mains unsolved. A different partial answer was given in [16], where clique-perfect
graphs were characterized within claw-free hereditary clique-Helly graphs. In Sub-
section 4.2.1, we gave a structure theorem for graphs containing no bipartite-claw,
which are precisely those graphs whose line graphs are net-free. It would be inter-
esting to study to which extent a characterization of the same type can be formulated
for some superclass of net-free line graphs.

In Section 4.3, we proved that clique-perfect graphs coincide with perfect graphs
within gem-free circular-arc graphs. This means that clique-perfect graphs can be rec-
ognized in polynomial time within gem-free circular-arc graphs. In [17], a minimal
forbidden induced subgraph characterization of clique-perfect graphs within Helly
circular-arc graphs was given (see Theorem 4.5). It is easy to see that the approach
used in Section 3.7 to extend Theorem 3.44 to Corollary 3.49, works also for extend-
ing the characterization of clique-perfect graphs within Helly circular-arc graphs in
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Graph class Forbidden subgraphs Reference
graphs having even subdivisions of Cs, barbell, and K4 Theorem 5.9
the Kénig property as strongly splitting subgraphs
edge-perfect graphs Ky u tKy and Cpx 1 U tKy Theorem 5.13

as edge subgraphs fork > 1,t > 0

Table 6.3: Main results of Chapter 5

Theorem 4.5 to a characterization of clique-perfect graphs within {net,lUy4,S4}-free n
{1-pyramid,2-pyramid,3-pyramid}-free circular-arc graphs. Nevertheless, characteriz-
ing clique-perfect graphs by forbidden induced subgraphs within all {net,Uy4,S4}-free
circular-arc graphs seems more difficult. The characterization of clique-perfect graphs
by forbidden induced subgraphs is open even within proper circular-arc graphs. For
coordinated graphs, the characterization remains unresolved even within both Helly
circular-arc graphs and proper circular-arc graphs. It is not hard to see that the results
in [17] imply a characterization of hereditary K-perfect graphs within Helly circular-
arc graphs. As circular-arc graphs are a natural generalization of interval graphs and
interval graphs are known to have perfect clique graph [70], we feel that it would be in-
teresting to study hereditary K-perfect graphs further within circular-arc graphs like,
for instance, proper circular-arc graphs.

The problem of determining the complexity of the recognition problem of clique-
perfect graphs remains open in general. Neither it is known to be polynomial-time
solvable nor was it shown to belong to any class of problems considered to be hard.

In Chapter 5, we studied the problem of characterizing graphs having the Kénig
property and edge-perfect graphs by means of certain types of forbidden subgraphs.
In Section 5.2, we proved a characterization of graphs having the Kénig property by
means of strongly splitting subgraphs. In Section 5.3, we used this result to prove a
characterization of edge-perfect graphs by forbidden edge-subgraphs. Edge-perfect
graphs are those graphs whose edge-subgraphs have the Kénig property. It would
be interesting to know if a simple characterization as the one we proved for the edge-
perfect graphs is also possible for those graphs whose edge-subgraphs are Class 1 (i.e.,
satisfy the edge-coloring property for edges). The results of Chapter 5 are summarized
in Table 6.3.



Bibliography

[1] R. Anstee and M. Farber. Characterizations of totally balanced matrices. Journal
of Algorithms, 5(2):215-230, 1984.

[2] V. Balachandran, P. Nagavamsi, and C. Pandu Rangan. Clique transversal and
clique independence on comparability graphs. Information Processing Letters,
58(4):181-184, 1996.

[3] L.W.Beineke and S. Fiorini. On small graphs critical with respect to edge colour-
ings. Discrete Mathematics, 16(2):109-121, 1976.

[4] C. Berge. Two theorems in graph theory. Proceedings of the National Academy of
Sciences, 43(9):842-844, 1957.

[5] C. Berge. Farbung von Graphen, deren sdmtliche beziehungsweise, deren
ungerade Kreise starr sind [In German: Coloring of graphs, all cycles or all
odd cycles of which are rigid]. Wissenschaftliche Zeitschrift der Martin-Luther-
Universitit Halle-Wittenberg, Mathematisch-Naturwissenschaftliche Reihe, 10:114—
115, 1961.

[6] C. Berge. Some classes of perfect graphs. In Six papers on graph theory, pages
1-21. Research and Training School, Indian Statistical Institute, Calcutta, 1963.

[7] C.Berge. Sur certains hypergraphes généralisant les graphes bipartis [In French:
On some hypergraphs generalizing bipartite graphs]. In P. Erdés, A. Rényi,
and V. T. Sé¢s, editors, Combinatorial theory and its applications 1. Proceedings of the
Colloguium on Combinatorial Theory and its Applications held at Balatonfiired, Hun-
gary, August 24-29, 1969, volume 4 of Colloquia Mathematica Societatis Janos Bolyai,
pages 119-133. North-Holland, Amsterdam, 1970.

[8] C. Berge. Balanced matrices. Mathematical Programming, 2(1):19-31, 1972.

[9] C. Berge. Hypergraphs: combinatorics of finite sets, volume 45 of North-Holland
Mathematical Library. North-Holland, Amsterdam, 1989.

[10] C.Berge. Minimax relations for the partial q-colorings of a graph. Discrete Math-
ematics, 74(1-2):3-14, 1989.

145



146 Bibliography

[11] C. Berge and V. Chvatal. Introduction. In Topics on Perfect Graphs, volume 88
of North-Holland Mathematics Studies, pages vii-xiv. Noth-Holland, Amsterdam,
1984.

[12] C. Berge and M. Las Vergnas. Sur un théoreme du type Kénig pour hyper-
graphes [In French: On a theorem of Kénig type for hypergraphs]. Annals of the
New York Academy of Sciences, 175:32—-40, 1970.

[13] Z. Blazsik, M. Hujter, A. Pluhér, and Z. Tuza. Graphs with no induced C4 and
2K,. Discrete Mathematics, 115(1-3):51-55, 1993.

[14] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of
small treewidth. Technical report RUU-CS-92-27, Utrecht University, Utrecht,
The Netherlands, 1992.

[15] F. Bonomo. On subclasses and variations of perfect graphs. PhD thesis, Depart-
mento de Computacién, Facultad de Ciencias Exactas y Naturales, Universidad
de Buenos Aires, Buenos Aires, Argentina, 2005.

[16] F. Bonomo, M. Chudnovsky, and G. Duran. Partial characterizations of clique-
perfect graphs I: Subclasses of claw-free graphs. Discrete Applied Mathematics,
156(7):1058-1082, 2008.

[17] F. Bonomo, M. Chudnovsky, and G. Durén. Partial characterizations of clique-
perfect graphs II: Diamond-free and Helly circular-arc graphs. Discrete Mathe-
matics, 309(11):3485-3499, 2009.

[18] F. Bonomo, G. Duréan, L. N. Grippo, and M. D. Safe. Partial characterizations of
circular-arc graphs. Journal of Graph Theory, 61(4):289-306, 2009.

[19] F. Bonomo, G. Duran, and M. Groshaus. Coordinated graphs and clique graphs
of clique-Helly perfect graphs. Utilitas Mathematica, 72:175-191, 2007.

[20] F. Bonomo, G. Duran, M. Groshaus, and J. L. Szwarcfiter. On clique-perfect and
K-perfect graphs. Ars Combinatoria, 80:97-112, 2006.

[21] F. Bonomo, G. Durdn, M. C. Lin, and J. L. Szwarcfiter. On balanced graphs.
Mathematical Programming, Series B, 105(2-3):233-250, 2006.

. Bonomo, G. Duran, M. D. 5afe, an . K. Wagler. On minimal forbidden sub-

[22] E. B G. Duran, M. D. Safe, and A. K. Wagler. O 1 forbidd b
graph characterizations of balanced graphs. Electronic Notes in Discrete Mathe-
matics, 35:41-46, 2009.

[23] F. Bonomo, G. Duran, M. D. Safe, and A. K. Wagler. Balancedness of some sub-
classes of circular-arc graphs. Electronic Notes in Discrete Mathematics, 36:1121-
1128, 2010.



Bibliography 147

[24] F. Bonomo, G. Duran, M. D. Safe, and A. K. Wagler. Clique-perfectness of com-
plements of line graphs. Electronic Notes in Discrete Mathematics, 37:327-332,
2011.

[25] F. Bonomo, G. Durén, F. Soulignac, and G. Sueiro. Partial characterizations
of clique-perfect and coordinated graphs: Superclasses of triangle-free graphs.
Discrete Applied Mathematics, 157(17):3511-3518, 2009.

[26] F. Bonomo, G. Durén, F. Soulignac, and G. Sueiro. Partial characterizations of
coordinated graphs: line graphs and complements of forests. Mathematical Meth-
ods of Operations Research, 69(2):251-270, 2009.

[27] R. B. Borie, R. Gary Parker, and C. A. Tovey. Automatic generation of linear-
time algorithms from predicate calculus descriptions of problems on recursively
constructed graph families. Algorithmica, 7(1):555-581, 1992.

[28] ]J.-M. Bourjolly and W. R. Pulleyblank. Konig-Egervary graphs, 2-bicritical
graphs and fractional matchings. Discrete Applied Mathematics, 24(1-3):63-82,
1989.

[29] A. Brandstddt, V. D. Chepoi, F. F. Dragan, and V. Voloshin. Dually chordal
graphs. SIAM Journal on Discrete Mathematics, 11(3):437-455, 1998.

[30] A.Brandstddt and F. F. Dragan. On linear and circular structure of (claw, net)-
free graphs. Discrete Applied Mathematics, 129(2-3):285-303, 2003.

[31] D. Cariolaro and G. Cariolaro. Colouring the petals of a graph. The Electronic
Journal of Combinatorics, 10:#R6, 2003.

[32] G. Chang, M. Farber, and Z. Tuza. Algorithmic aspects of neighborhood num-
bers. SIAM Journal on Discrete Mathematics, 6(1):24-29, 1993.

[33] M. Chudnovsky, G. P. Cornuéjols, X. Liu, P. D. Seymour, and K. Vuskovié. Rec-
ognizing Berge graphs. Combinatorica, 25(2):143-186, 2005.

[34] M. Chudnovsky, N. Robertson, P. D. Seymour, and R. Thomas. The strong per-
fect graph theorem. Annals of Mathematics, 164(1):51-229, 2006.

[35] M. Chudnovsky and P. D. Seymour. The structure of claw-free graphs. In B. S.
Webb, editor, Surveys in Combinatorics, 2005, volume 327 of London Mathemati-
cal Society Lecture Note Series, pages 153-171. Cambridge University Press, Cam-
bridge, 2005.

[36] V.Chvatal. On certain polytopes associated with graphs. Journal of Combinatorial
Theory, Series B, 18(2):138-154, 1975.

[37] M. Conforti, G. P. Cornuéjols, and R. Rao. Decomposition of balanced matrices.
Journal of Combinatorial Theory, Series B, 77(2):292-406, 1999.



148 Bibliography

[38] B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation, 85(1):12-75, 1990.

[39] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-order Logic, a
Language Theoretic Approach. To be published by Cambridge University Press,
2012.

[40] A.Cournier and M. Habib. A new linear algorithm for modular decomposition.
In S. Tison, editor, Trees in Algebra and Programming — CAAP’94, 19th International
Colloquium, Edinburgh, U.K., April 11-13, 1994, Proceedings, volume 787 of Lecture
Notes in Computer Science, pages 68-84. Springer, Berlin, 1994.

[41] E. Dahlhaus, J. Gustedt, and R. M. McConnell. Efficient and practical algo-
rithms for sequential modular decomposition. Journal of Algorithms, 41(2):360—
387,2001.

[42] E. Dahlhaus, P. D. Manuel, and M. Miller. Maximum h-colourable subgraph
problem in balanced graphs. Information Processing Letters, 65(6):301-303, 1998.

[43] D. de Werra. On line perfect graphs. Mathematical Programming, 15(1):236-238,
1978.

[44] R. W. Deming. Independence numbers of graphs—an extension of the Koenig-
Egervary theorem. Discrete Mathematics, 27(1):23-33, 1979.

[45] X.Deng, T. Ibaraki, and H. Nagamochi. Algorithmic aspects of the core of com-
binatorial optimization games. Mathematics of Operations Research, 24(3):751-766,
1999.

[46] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, Heidelberg, fourth edition, 2010.

[47] M. P. Dobson, V. A. Leoni, and G. L. Nasini. Recognizing edge-perfect graphs:
some polynomial instances. In 8th Cologne-Twente Workshop on Graphs and Com-
binatorial Optimization — CTWO09, Proceedings of the Conference, held in Paris, France,
June 2—4, 2009, pages 153-156, 2009.

[48] M. P. Dobson, V. A. Leoni, and G. L. Nasini. The computational complexity
of the Edge-Perfect Graph and the Totally Balanced Packing Game recognition
problems. Electronic Notes in Discrete Mathematics, 36:551-558, 2010.

[49] M. C. Dourado, G. Duran, L. Faria, L. N. Grippo, and M. D. Safe. Forbidden sub-
graphs and the Kénig property. Electronic Notes in Discrete Mathematics, 37:333—
338, 2011.

[50] G. Duran, M. C. Lin, and J. L. Szwarcfiter. On clique-transversals and clique-
independent sets. Annals of Operations Research, 116(1):71-77, 2002.



Bibliography 149

[51] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449—
467, 1965.

[52] ]J. Egervéry. Matrixok kombinatorikus tulajdonsédgairél [In Hungarian: Combi-
natorial properties of matrices]. Matematikai és Fizikai Lapok, 38:16-28, 1931.

[53] M. S. Escalante, V. A. Leoni, and G. L. Nasini. A graph theoretical model for
total balancedness of combinatorial games. Submitted, 2009.

[54] M. Farber. Characterizations of strongly chordal graphs. Discrete Mathematics,
43(2-3):173-189, 1983.

[55] S. Foldes and P. L. Hammer. Split graphs. Technical Report CORR 76-3, Univer-
sity of Waterloo, Waterloo, Canada, March 1976.

[56] D. R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. Mathematical
Programming, 1(1):168-194, 1971.

[57] D.R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific
Journal of Mathematics, 15(3):835-855, 1965.

[58] D. R. Fulkerson, A. J. Hoffman, and R. Oppenheim. On balanced matrices. In
M. Balinski, editor, Pivoting and Extensions: In honor of A.W. Tucker, volume 1 of
Mathematical Programming Study, pages 120-133. North-Holland, Amsterdam,
1974.

[59] T. Gallai. Transitiv orientierbare Graphen [In German: Transitively orientable
graphs]. Acta Mathematica Academiae Scientiarum Hungaricae, 18(1-2):25-66, 1967.

[60] M.R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman and Company, San Francisco, 1979.

[61] F. Gavril. Algorithms on circular-arc graphs. Networks, 4:357-369, 1974.

[62] P. Gilmore and A. Hoffman. A characterization of comparability graphs and of
interval graphs. Canadian Journal of Mathematics, 16:639-548, 1964.

[63] M. C. Golumbic. Trivially perfect graphs. Discrete Mathematics, 24(1):105-107,
1978.

[64] V. Guruswami and C. Pandu Rangan. Algorithmic aspects of clique-transversal
and clique-independent sets. Discrete Applied Mathematics, 100(3):183-202, 2000.

[65] A.Hajnal and J. Suranyi. Uber die Auflésung von Graphen in vollstindige Teil-
graphen [In German: On the partition of graphs into complete subgraphs]. An-
nales Universitatis Scientiarium Budapestinensis de Rolando E6tvés Nominatae Sectio
Mathematica, 1:113-121, 1958.



150 Bibliography

[66] P. Hall. On representatives of subsets. Journal of the London Mathematical Society,
10(1):26-30, 1935.

[67] P.L. Hammer. Difference graphs. Discrete Applied Mathematics, 28(1):35—44, 1990.

[68] F. Harary and A. J. Schwenk. Trees with Hamiltonian square. Mathematika,
18(1):138-140, 1971.

[69] F. Harary and A. J. Schwenk. The number of caterpillars. Discrete Mathematics,
6(4):359-365, 1973.

[70] B. Hedman. Clique graphs of time graphs. Journal of Combinatorial Theory, Series
B, 37(3):270-278, 1984.

[71] P.Heggernes and D. Kratsch. Linear-time certifying recognition algorithms and
forbidden induced subgraphs. Nord. ]. Comput., 14(1-2):87-108, 2007.

[72] E. Helly. Uber Mengen konvexer Kérper mit gemeinschaftlichen Punkten [In
German: On sets of convex bodies with common points]. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 32:175-176, 1923.

[73] A.]. W. Hilton and C. Zhao. The chromatic index of a graph whose core has
maximum degree two. Discrete Mathematics, 101(1-3):135-147, 1992.

[74] 1. Hoyler. The NP-completeness of Edge-Coloring. SIAM Journal on Computing,
10(4):718-720, 1981.

[75] B. L. Joeris, M. C. Lin, R. M. McConnell, J. P. Spinrad, and J. L. Szwarcfiter.
Linear-time recognition of Helly circular-arc models and graphs. Algorithmica,
59(2):215-239, 2011.

[76] D.Kénig. Uber Graphen und ihre Anwendung auf Determinantentheorie und
Mengenlehre [In German: On graphs and its applications to determinant theory
and set theory]. Mathematische Annalen, 77(4):453-465, 1916.

[77] D. Kénig. Graphok és matrixok [In Hungarian: Graphs and matrices]. Matem-
atikai és Fizikai Lapok, 38:116-119, 1931.

[78] A.King. Claw-free graphs and two conjectures on omega, Delta, and chi. PhD thesis,
School of Computer Science, McGill University, Montreal, Cadana, 2009.

[79] V. Klee. What are the intersection graphs of arcs in a circle? American Mathe-
matical Monthly, 76(7):810-813, 1969.

[80] T. Kloks, D. Kratsch, and H. Miiller. Dominoes. In E. W. Mayr, G. Schmidt,
and G. Tinhofer, editors, Graph-Theoretic Concepts in Computer Science, 20th In-
ternational Workshop, WG “94 Herrsching, Germany, June 1618, 1994, Proceedings,
volume 903 of Lecture Notes in Computer Science, pages 106-120. Springer, Berlin,
1995.



Bibliography 151

[81] E. Korach. Flowers and trees in a ballet of K4, or a finite basis characterization of
non-Kénig-Egervary graphs. Technical Report 115, IBM-Israel Scientific Center,
Haifa, Israel, 1982.

[82] E. Korach, T. Nguyen, and B. Peis. Subgraph characterization of red /blue-split
graph and Kénig-Egervary graphs. In Proceedings of the Seventeenth Annual ACM-
SIAM Symposium on Discrete Algorithms, held in Miami, Florida, USA, January 22—
24, 2006, pages 842-850. ACM, New York, 2006.

[83] A.Korenchendler, 2007. Personal communication.

[84] A.Lakshmanan S. and A. Vijayakumar. On the clique-transversal number of a
graph. Manuscript, 2006.

[85] A. Lakshmanan S. and A. Vijayakumar. The {(t)-property of some classes of
jay property
graphs. Discrete Mathematics, 309(1):259-263, 2009.

[86] C. Larson. The critical independence number and an independence decompo-
sition. European Journal of Combinatorics, 32(2):294-300, 2011.

[87] C.-M. Lee and M.-S. Chang. Distance-hereditary graphs are clique-perfect. Dis-
crete Applied Mathematics, 154(3):525-536, 2006.

[88] J. Lehel and Z. Tuza. Neighborhood perfect graphs. Discrete Mathematics,
61(1):93-101, 1986.

[89] P. G. H. Lehot. An optimal algorithm to detect a line graph and output its root
p & grap p
graph. Journal of the ACM, 21(4):569-575, 1974.

[90] V. Levit and E. Mandrescu. Well-covered and Konig-Egervary graphs. Congres-
sus Numerantium, 130:209-218, 1998.

[91] M. C.Linand J. L. Szwarcfiter. Faster recognition of clique-Helly and hereditary
clique-Helly graphs. Information Processing Letters, 3(1):40-43, 2007.

[92] L.Lovész. Normal hypergraphs and the perfect graph conjecture. Discrete Math-
ematics, 2(3):253-267, 1972.

[93] L. Lovéasz. Ear-decompositions of matching-covered graphs. Combinatorica,
3(1):105-117, 1983.

[94] L. Lovasz and M. D. Plummer. Matching Theory. North-Holland, 1986.

[95] V.V.Lozin. E-svobodnye dvudol'nye grafy [In Russian: E-free bipartite graphs].
Diskretnyj Analiz i Issledovanie Operacij, Serija 1, 7(1):49-66, 2000.

[96] C. L. Lucchesi, C. Picinin de Mello, and ]J. L. Szwarcfiter. On clique-complete
graphs. Discrete Mathematics, 183(1-3):247-254, 1998.



152 Bibliography

[97] E. Maffray. Kernels in perfect line-graphs. Journal of Combinatorial Theory, Series
B, 55(1):1-8, 1992.

[98] F. Maffray and M. Preissmann. Linear recognition of pseudo-split graphs. Dis-
crete Applied Mathematics, 52(3):307-312, 1994.

[99] P. Mark Kayll. Konig-Egervary graphs are non-Edmonds. Graphs and Combina-
torics, 26(5):721-726, 2010.

[100] R. M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica,
37(2):93-147, 2003.

[101] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive ori-
entation. Discrete Mathematics, 201(1-3):189-241, 1999.

[102] J. Mycielski. Sur le coloriage des graphs [In French: On the coloring of graphs].
Colloguium Mathematicum, 3(2):161-162, 1955.

[103] B. Peis. Structure Analysis of Some Generalizations of Matchings and Matroids Under
Algorithmic Aspects. PhD thesis, Zentrum fiir Angewandte Informatik, Univer-
sitat zu Koln, Cologne, Germany, 2006.

[104] E. Prisner. Hereditary clique-Helly graphs. The Journal of Combinatorial Mathe-
matics and Combinatorial Computing, 14:216-220, 1993.

[105] E. Prisner. Graphs with few cliques. In Y. Alavi and A. Schwenk, editors, Graph
Theory, Combinatorics, and Algorithms, Proceedings of the Seventh Quadrennial In-
ternational Conference on the Theory and Applications of Graphs, held at Kalamazoo,
Michigan, USA, June 1-5, 1992, volume 2, pages 945-956. Wiley, New York, 1995.

[106] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. Journal of
Combinatorial Theory, Series B, 35(1):39-61, 1983.

[107] N. D. Roussopoulos. A max{m, n} algorithm for determining the graph H from
its line graph G. Information Processing Letters, 2(4):108-112, 1973.

[108] D. Seinsche. On a property of the class of n-colorable graphs. Journal of Combi-
natorial Theory, Series B, 16(2):191-193, 1974.

[109] F. Soulignac and G. Sueiro. Exponential families of minimally non-coordinated
graphs. Revista de la Unién Matemitica Argentina, 50(1):75-85, 2009.

[110] F. Soulignac and G. Sueiro. NP-hardness of the recognition of coordinated
graphs. Annals of Operations Research, 169(1):17-34, 2009.

[111] F. Sterboul. A characterization of the graphs in which the transversal number
equals the matching number. Journal of Combinatorial Theory, Series B, 27(2):228—
229,1979.



Bibliography 153

[112] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146-160, 1972.

[113] M. Tedder, D. Corneill, M. Habib, and C. Paul. Simpler linear-time modular
decomposition via recursive factorizing permutations. In L. Aceto, I. Damgard,
L. A. Goldberg, M. M. Halldérsson, A. Ing6lfsdéttir, and I. Walukiewicz, editors,
Automata, Languages and Programming, 35th International Colloquium, ICALP 2008,
Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I, volume 5125 of Lecture Notes
in Computer Science. Springer, Berlin, 2008.

[114] L. E. Trotter. Line perfect graphs. Mathematical Programming, 12(1):255-259,
1977.

[115] W. T. Trotter and J. I. Moore. Characterization problems for graphs, partially
ordered sets, lattices, and families of sets. Discrete Mathematics, 16(4):361-381,
1976.

[116] S. Tsukiyama, M. Idle, H. Ariyoshi, and Y. Shirakawa. A new algorithm for gen-
erating all the maximal independent sets. SIAM Journal on Computing, 6(3):505—
517,1977.

[117] A.Tucker. Matrix characterizations of circular-arc graphs. Pacific Journal of Math-
ematics, 39(2):535-545, 1971.

[118] A.Tucker. Structure theorems for some circular-arc graphs. Discrete Mathematics,
7(1-2):167-195, 1974.

[119] A. Tucker. Coloring a family of circular arcs. SIAM Journal on Applied Mathemat-
ics, 29(3):493-502, 1975.

[120] A. Tucker. An efficient test for circular-arc graphs. SIAM Journal on Computing,
9(1):1-24, 1980.

[121] S. van Velzen. Simple combinatorial optimisation cost games. Discussion Pa-
per 2005-118, Center for Economic Research, Tilburg University, Tilburg, The
Netherlands, 2005.

[122] V. G. Vizing. Ob ocenke hromati¢eskogo klassa p-grafa [In Russian: On an esti-
mate of the chromatic class of a p-graph]. Diskretnyj Analiz, 3:25-30, 1964.

[123] V. G. Vizing. Kriti¢eskie grafy s dannym hromaticeskim klassom [In Russian:
Critical graphs with given chromatic class]. Diskretnyj Analiz, 5:9-17, 1965.

[124] E. S. Wolk. The comparability graph of a tree. Proceedings of the American Math-
ematical Society, 13(5):789-795, 1962.

[125] E. S. Wolk. A note on “The comparability graph of a tree”. Proceedings of the
American Mathematical Society, 16(1):17-20, 1965.



154 Bibliography

[126] J.-H. Yan, J.-J. Chen, and G. J. Chang. Quasi-threshold graphs. Discrete Applied
Mathematics, 69(3):247-255, 1996.

[127] M. Yannakakis. The complexity of the partial order dimension problem. SIAM
Journal on Algebraic and Discrete Methods, 3(3):351-358, 1982.

[128] G.Zambelli. A polynomial recognition algorithm for balanced matrices. Journal
of Combinatorial Theory, Series B, 95(1):49-67, 2005.

[129] X. Zhou, S. Nakano, and T. Nishizeki. Edge-coloring partial k-trees. Journal of
Algorithms, 21(3):598-617, 1996.



Glossary of notation
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XAY

G

G+w
G—v
G-W
G—e

G\F

G[W]
G1 + Gy
H; u Hy
tH

G1 Aag G2

M &, N
I &p O
«(G)
xc(G)
om(G)
5(G)
on(G)
A(G)
A(T)
Ac(G)
Ga
v(F)
Ye(G)
6(G)

sizeofasetS,9

symmetric difference of the sets Xand Y, 9
complement of G, 9

graph G plus the edge vw, 9

graph G minus the vertex v, 9

graph G minus the vertex set W, 9

graph G minus the edge e, 9

graph G minus the edge set F, 9

subgraph of G induced by W, 9

join of G1 and G, 11

disjoint union of the graphs or multigraphs H; and H,, 13
disjoint union of t copies of a graph or hypergraph H, 13
merging of t-blooms A and B of G; and G, 31
underlying graph of the multigraph H, 13
p-concatenation of two-terminal graphs I'7 and I3, 83
p-closure of a two-terminal graph T, 83

stability number of G, 4

clique-independence number of G, 5
matching-independence number of G, 82

minimum degree of G, 10

minimum hub degree of G, 101

maximum degree of G, 10

maximum degree of a family J of sets, 77

maximum clique-degree of G, 77

core of G, 96

chromatic index of a family J of sets, 77
clique-chromatic index of G, 77

Clique covering number, 4
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156 Glossary of notation

v(G) matching number of G, 4

(G) transversal number of G, 4

7(G) clique-transversal number of G, 5

T™m(G) matching-transversal number of G, 82

x(G) chromatic number of G, 3

x'(G) chromatic index of G, 95

w(G) clique number of G, 3

G™P bipartite complement of G, 30

Cn chordless cycle on n vertices, 10

dg(v) degree of vin G, 10

dn(v) underlying degree of v in a multigraph H, 13
Ec(v) set of edges incident to v in G, 10

Kn complete graph on n vertices, 10

L(R) line graph of a graph or multigraph R, 13
L(H) line graph (or representative graph) of a multigraph H, 80
Ng(v) neighborhood of vin G, 10

Ng[v] closed neighborhood of v in G, 10

Ng(W) common neighborhood of the set of vertices Win G, 10
Ng(e) common neighborhood of the edge e in G, 10
Pn chordless path on n vertices, 10

P(G) pruned graph of G, 49

R(G) representative graph of G, 36

=

wheel on n vertices, 10
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0-, 1-, 2-, 3-pyramid, 2
1-, 2-braid, 13

3-sun, 2

6-pan, 12

A (graph), 12

A1, Ao, Az, 37

adjacent links, 84

alternating path, 12

anchor, 15

antenna, 12

anticomplete to each other, 10
antihole, 11

augmenting path, 12

%1/ %2/ ceey 'Bl6/ 39
B1e, 50
balanced graph, 1, 20

balanced hypergraph, 80
balanced matrix, 1, 20
barbell, 128
basic two-terminal graph, 83
bicoloring, 52
of a submatrix of a matching-matrix,

52
bipartite claw, 12
bipartite complement, 29
bipartite graph, 2, 11
bipartition, 11
block, 11
-bloom, 31
braid, 12, 13
bridge, 11
bull, 12

Cy, 13

caterpillar graph, 85

center of a bipartite claw, 12
chain graph, 30

chord, 10

chordless path or cycle, 10
chromatic index, 77, 95
chromatic number, 3
circular concatenation, 84
circular-arc graph, 2, 15
circular-arc model, 15

Class 1,96

Class 2, 96

claw, 12

clique, 1, 10

clique covering number, 4
clique graph, 78

clique hypergraph, 79
clique number, 3
clique-chromatic index, 77
clique-complete graph, 75
clique-distinguishable vertices, 23
clique-Helly graph, 14
clique-independence number, 5
clique-independent set, 5
clique-matrix, 1, 10
clique-perfect graph, 5, 74
clique-transversal number, 5
clique-transversal set, 5
closed neighborhood, 10
closure, 83

cograph, 16

color class, 100
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common neighborhood, 10 edge-coloring, 100
complete bipartite graph, 11 edge-coloring property, 77, 79
complete graph, 10 edge-dominating, 11
complete set, 10 edge-perfect graph, 6, 129
complete sun, 21 edge-subgraph, 6, 129
complete to each other, 10 edge-vertex incidence matrix, 9
component, 11 edges of a path or cycle, 10

of a multigraph, 13 endpoint of a path, 10
concatenation, 83 even cycle, 11
concatenation vertices, 84 even subdivision, 128
configuration, 129 extended odd sun, 2, 21

connected graph, 11

connected multigraph, 13 false twins, 10

fat caterpillar graph, 85

flower, 128

fold, 83

forbidden configuration, 129
forbidden induced subgraph, 11
forest, 11

fractional set covering polytope, 1
fractional set packing polytope, 1

consecutive short chords, 10
contain a graph, 11

contain a multigraph, 13
contain an induced graph, 11
contract, 9

coordinated graph, 77

core, 96

critical graph, 96

crossing chord, 11 free, 11
crown, 83 Gy, 15
cutpoint, 11 Gs, 15
cycle, 10 Gs, 15

n-cycle, 10 G, 15

of a multigraph, 13 Gy, 15

gem, 12
D2+, 59 generalized sun, 74
degree, 10 graph having the Kénig property, 6, 127
diamond, 12
disjoint union, 13 Hall’s theorem, 12
distance, 10 Hamiltonian cycle, 11
dominating, 11 Helly circular-arc graph, 15
domino, 15 Helly circular-arc model, 15
dual edge-coloring property, 79 Helly property, 14, 80
dual hypergraph, 79 hereditary, 11
dual Kénig property, 79 hereditary K-perfect graph, 78
dually chordal graph, 5 hereditary clique-Helly graph, 1
hole, 11

E (graph), 12 hub, 101

edge (two-terminal graph), 84 hub-covered edge, 101
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hub-covered graph, 101 m-crown, 84

hub-regular graph, 101 M-flower, 128

hyperedge, 79 m-fold, 84

hyperedge-vertex incidence matrix, 79 M-posy, 128

hypergraph, 79 M-saturated vertex, 11
M-stem, 128

ideal matrix, 1
identify, 31
improper edge, 74

M-unsaturated vertex, 12
major vertex, 95
matching, 11

of a multigraph, 13
matching number, 4
matching-distinguishable edges, 38
matching-independence number, 82
matching-independent set, 82
matching-matrix, 36
matching-perfect graph, 82
join, 11 matching-transversal number, 82
matching-transversal set, 82
maximal matching, 12, 13

incident edges, 13
indifference graph, 30
induced subgraph, 9
integral polytope, 1
intersection graph, 2
interval graph, 2
isolated vertex, 10

K-perfect graph, 78

Koz, 15 . maximal profuse-coloring, 100
K4 (two-terminal graph), 84 maximum clique-degree, 77
Ks —e,96 maximum degree, 10

kite, 12

of the family of sets, 77
Kénig property, 4, 79

graph having the Kénig property, 6,
127
Kénig’s edge-coloring theorem, 77
Kénig’s matching theorem, 4
Kénig-Egervary graph, 6

maximum matching, 12

midpoint of a chord, 10

midpoint of a short chord, 10

minimal forbidden induced subgraph, 11
minimally not § graph, 11

minimum degree, 10

minimum hub, 101

minimum hub degree, 101

L-balanced multigraph, 36
L-clique, 31

Ls, 96 module, 16

length, 10 multiple edge, 41

line graph, 2, 13 multiple of a graph, 67
of a hypergraph, 80 multitree, 13

of a multigraph, 13

linear concatenation, 84 N1, 78

link, 84 near-perfect matching, 12

long chord, 11 neighborhood, 10
neighborhood node, 16

M-alternating path, 12 net, 12

M-augmenting path, 12 nice subgraph, 6, 129
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non-proper edge, 74
nonseparable graph, 11
nontrivial component, 11
nornal hypergraph, 80

obstacle, 64

odd cycle, 11

odd generalized sun, 74
odd sun, 21

P*, 96
parallel node, 16
partial edge-coloring, 100
partial hypergraph, 80
path, 10

n-path, 10

of a multigraph, 13
paw, 12
pendant edge, 10
pendant vertex, 10

of a multigraph, 13
perfect graph, 1, 3
Perfect Graph Theorem, 4
perfect matching, 12
perfect matrix, 1
posy, 128
profuse-coloring, 100

proper circular-arc graph, 66

proper cycle, 74

proper induced subgraph, 9

pruned graph, 48
pseudo-split graph, 21
pyramid graphs, 12

representative graph, 36
of a hypergraph, 80

rhombus, 84

root graph, 13

saturated vertex, 11
savior, 130

series node, 16
short chord, 10

simple edge, 41

sink, 83

SKy, 96

SKs, 96

source, 83

spanning subgraph, 9
split by, 131

split graph, 21

splitting set, 131

splitting subgraph, 131
square, 84

stability number, 4

stable set, 10

star, 31

stem, 128

strong module, 16
Strong Perfect Graph Theorem, 1
strongly chordal graph, 2
strongly splitting set, 133
strongly splitting subgraph, 133
subgraph, 9
submultigraph, 13

sun, 21

t-bloom, 31
t-generalized sun, 74
t-sun, 21
totally balanced matrix, 2
touching
at, 9
subgraphs, 9
submultigraphs, 13
transversal number, 4
tree, 11
triad, 31
triangle, 10
triangle (two-terminal graph), 84
trivial component, 11
trivial module, 16
trivially perfect graph, 23
true twins, 10
twin edges, 50
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twin vertices, 10
two-terminal graph, 83
two-twin pair, 130

Uy, 12
Uy, 12
unbalanced cycle, 20
uncolored edge, 100
underlying graph

of a configuration, 129

of a multigraph, 13

of a two-terminal graph, 83
universal vertex, 10
unsaturated vertex, 12

V%H'l, 59
V7,12

Wy, 12

2t+1
X2+, 59
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