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Sobre caracterizaciones estructurales de clases de
grafos relacionadas con los grafos perfectos

y la propiedad de Kőnig

Un grafo es balanceado si su matriz clique no contiene como submatriz ninguna ma-
triz de incidencia arista-vértice de un ciclo impar. Se conoce una caracterización para
estos grafos por subgrafos inducidos prohibidos, pero ninguna que sea por subgrafos
inducidos prohibidos minimales. En esta tesis probamos caracterizaciones por subgra-
fos inducidos prohibidos minimales para los grafos balanceados restringidas a ciertas
clases de grafos y mostramos que dentro de algunas de ellas conducen a algoritmos
lineales para reconocer el balanceo.

Un grafo es clique-perfecto si en cada subgrafo inducido el mínimo número de vérti-
ces que intersecan todas las cliques coincide con el máximo número de cliques disjun-
tas dos a dos. Contrariamente a los grafos perfectos, para estos grafos no se conoce una
caracterización por subgrafos inducidos prohibidos ni la complejidad del problema de
reconocimiento. En esta tesis caracterizamos los grafos clique-perfectos por subgrafos
inducidos prohibidos dentro de dos clases de grafos, lo que implica algoritmos de
reconocimiento polinomiales para la clique-perfección dentro de dichas clases.

Un grafo tiene la propiedad de Kőnig si el mínimo número de vértices que intersecan
todas las aristas iguala al máximo número de aristas que no comparten vértices. En
esta tesis caracterizamos estos grafos por subgrafos prohibidos, lo que nos permite
también caracterizar los grafos arista-perfectos por arista-subgrafos prohibidos.

Palabras clave. algoritmos de reconocimiento, grafos arco-circulares, grafos arista-perfectos,
grafos balanceados, grafos bipartitos, grafos clique-Helly hereditarios, grafos clique-perfectos,
propiedad de Kőnig, grafos coordinados, grafos de línea, grafos K-perfectos hereditarios, grafos
perfectos, subgrafos prohibidos





On structural characterizations of graph classes
related to perfect graphs and the Kőnig property

A graph is balanced if its clique-matrix contains no edge-vertex incidence matrix of
an odd cycle as a submatrix. While a forbidden induced subgraph characterization of
balanced graphs was given, no such characterization by minimal forbidden induced
subgraphs is known. In this thesis, we prove minimal forbidden induced subgraph
characterizations of balanced graphs, restricted to graphs that belong to certain graph
classes. We also show that, within some of these classes, our characterizations lead to
linear-time recognition algorithms for balancedness.

A graph is clique-perfect if, in each induced subgraph, the minimum size of a set of
vertices meeting all the cliques equals the maximum number of vertex-disjoint cliques.
Unlike perfect graphs, neither a forbidden induced subgraph characterization nor
the complexity of the recognition problem are known for clique-perfect graphs. In
this thesis, we characterize clique-perfect graphs by means of forbidden induced sub-
graphs within two different graph classes, which imply polynomial-time recognition
algorithms for clique-perfectness within the same two graph classes.

A graph has the Kőnig property if the minimum number of vertices needed to meet
every edge equals the maximum size of a set of vertex-disjoint edges. In this thesis,
we characterize these graphs by forbidden subgraphs, which, in its turn, allows us to
characterize edge-perfect graphs by forbidden edge-subgraphs.

Keywords. balanced graphs, bipartite graphs, circular-arc graphs, clique-perfect graphs, co-
ordinated graphs, edge-perfect graphs, forbidden subgraphs, Kőnig property, hereditary clique-
Helly graphs, hereditary K-perfect graphs, line graphs, perfect graphs, recognition algorithms





Agradecimientos

A mis directores de tesis, Willy y Flavia, por todo lo que me enseñaron a lo largo de
estos años y por haberme brindado su apoyo y confianza desde el primer momento.
A los jurados, Andreas Brandstädt, Marisa Gutierrez y Fábio Protti, por sus valiosas
observaciones. A Min Chih Lin, mi consejero de estudios.

A Luciano, mi compañero y amigo durante estos años. También a mis demás coau-
tores, Mitre Dourado, Luerbio Faria y Annegret Wagler, por su generosidad.

A toda la gente del Departamento de Computación y del Instituto de Ciencias. Al
CONICET que me sostuvo económicamente con una beca.





A mis padres Clara y Horacio y mi hermano Damián,
por dar todo para ayudarme a cumplir mis sueños.

A Sole, por el amor que me das cada día.





On structural characterizations of graph classes

related to perfect graphs and the Kőnig property
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Chapter 1

Introduction

In 1969, Berge defined a t0, 1u-matrix to be balanced [7] if it contains no edge-vertex
incidence matrix of any cycle of odd length as a submatrix. Balanced matrices have
remarkable properties studied in polyhedral combinatorics. Most notably, if A is a
balanced matrix, then A is perfect and ideal, meaning, respectively, that the fractional
set packing polytope PpAq � tx P Rn : Ax ¤ 1, 0 ¤ x ¤ 1u and the fractional set covering
polytope QpAq � tx P Rn : Ax ¥ 1, 0 ¤ x ¤ 1u are integral (i.e., all their extreme points
have integer coordinates) [58].

Perfect graphs were defined by Berge around 1960 [5] and are precisely those graphs
whose clique-matrix is perfect [36], where by a clique we mean an inclusion-wise max-
imal set of pairwise adjacent vertices and by a clique-matrix we mean a clique-vertex
incidence matrix. Some years ago, the minimal forbidden induced subgraphs for per-
fect graphs were identified [34], settling affirmatively a conjecture posed more than
40 years before by Berge [5, 6]. This result is now known as the Strong Perfect Graph
Theorem and states that the minimal forbidden induced subgraphs for the class of per-
fect graphs are the chordless cycles of odd length having at least 5 vertices, called odd
holes, and their complements, the odd antiholes.

Balanced graphs were defined to be those graphs whose clique-matrix is balanced.
These graphs were already considered by Berge and Las Vergnas in 1970 [12] but the
name ‘balanced graphs’ appears explicitly in [11]. It follows from [12] that balanced
graphs form a subclass of the class of perfect graphs. Moreover, from [8] it follows
that balanced graphs belong to another interesting graph class, the class of hereditary
clique-Helly graphs [104]; i.e., the class of graphs whose induced subgraphs satisfy that
the intersection of any nonempty family of pairwise intersecting cliques is nonempty.
Prisner [104] characterized hereditary clique-Helly graphs as those graphs containing
no induced 0-, 1-, 2-, or 3-pyramid (see Figure 1.1). Hence, no balanced graph contains
an odd hole, an odd antihole, or any pyramid as an induced subgraph.
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2 Chapter 1. Introduction

0-pyramid

(or 3-sun)

1-pyramid 2-pyramid 3-pyramid

Figure 1.1: The pyramids

A graph is bipartite if it has no cycle of odd length. The line graph LpGq of a graph G

has the edges of G as vertices and two different edges of G are adjacent in LpGq if and
only if they share an endpoint. Bipartite graphs, complements of bipartite graphs,
line graphs of bipartite graphs, and complements of line graphs of bipartite graphs
are well-known classes of perfect graphs. Their perfectness follows already from the
works of Kőnig [76, 77]. Moreover, these four graph classes constitute four of the five
basic perfect graph classes in the decomposition of perfect graphs devised for the proof
of the Strong Perfect Graph Theorem [34]. The validity of the Strong Perfect Graph
Theorem within line graphs was first proved by Trotter [114]. Bipartite graphs and
line graphs of bipartite graphs are balanced [10], but their complements are not always
balanced. This is due to the fact that, contrary to perfect graphs, balanced graphs are
not closed under graph complementation. For example, the graphs in Figure 1.1 are
not balanced but have balanced complements.

The intersection graph of a finite family F is a graph whose vertices are the mem-
bers of F and in which two different members of F are adjacent if and only if they
have nonempty intersection. An interval graph [62] is the intersection graph of a finite
number of intervals on a line. The class of interval graphs is properly contained in the
class of strongly chordal graphs [54], which consists of all graphs whose clique-matrices
are totally balanced; i.e., whose clique-matrices contain no edge-vertex incidence matrix
of a cycle of length at least 3 as a submatrix [1]. As totally balanced matrices are bal-
anced by definition, strongly chordal graphs, and consequently also interval graphs,
are balanced. A circular-arc graph [79] is the intersection graph of a finite family of arcs
on a circle. Contrary to the case of interval graphs, not all circular-arc graphs are bal-
anced. Indeed, circular-arc graphs are neither perfect nor hereditary clique-Helly in
general as odd holes, odd antiholes, and pyramids are easily seen to be circular-arc
graphs. Perfectness of circular-arc graphs was addressed in [119], but the study of
balancedness of circular-arc graphs is still in order.

Balanced graphs were characterized by a family of forbidden induced subgraphs
known as extended odd sun [21]. Nevertheless, this characterization is not by minimal
forbidden induced subgraphs because there are some extended odd suns that contain
some other extended odd sun as a proper induced subgraph, as in the example given
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Figure 1.2: On the left, an extended odd sun that is not minimal. Bold lines correspond to
the edges of a proper induced extended odd sun, depicted on the right.

in Figure 1.2.
In Chapter 3, we address the problem of characterizing balanced graphs by mini-

mal forbidden induced subgraphs, giving several partial solutions by restricting our-
selves to different graph classes. We prove structural characterization of balanced
graphs, including characterizations by minimal forbidden induced subgraphs, restrict-
ed to complements of bipartite graphs, line graphs of multigraphs, and complements
of line graphs of multigraphs. As a consequence of our structural characterizations, we
show that the recognition problem of balanced graphs is linear-time solvable within
each of these graph classes. This is in contrast, for instance, with the fact that Opn9q

is the currently best time bound for algorithms deciding whether or not a given split
graph havingn vertices is balanced. In addition, we prove minimal forbidden induced
subgraph characterizations of balanced graphs within three subclasses of circular-arc
graphs: a superclass of the class of Helly circular-arc graphs and the classes of claw-
free and gem-free circular-arc graphs.

Perfect graphs were originally defined by Berge in terms of a min-max type equal-
ity involving two important graph parameters: the clique number and the chromatic
number. In many situations we are interested in knowing the minimum number of
different colors needed to color all the vertices of a certain graph G in such a way that
no two adjacent vertices receive the same color. This minimum number is called the
chromatic number of G and is denoted by χpGq. The maximum size of a clique of a
graph G is called the clique number of G and is denoted by ωpGq. Clearly, ωpGq is a
trivial lower bound for χpGq; i.e., the min-max type inequality

ωpGq ¤ χpGq holds for every graph G.

Moreover, the difference between χpGq and ωpGq can be arbitrarily large. Mycielski
presented in [102] a family of graphs Gn such that ωpGnq � 2 and χpGnq � n for each
n ¥ 2. In this context, Berge defined a graph G to be perfect if and only if the equality
ωpG 1q � χpG 1q holds for each induced subgraph G 1 of G.

An important property of perfect graphs is that the complement of a perfect graph
is also perfect. This fact was conjectured by Berge. The first proof was given by
Lovász [92] and there is an alternative proof due to Fulkerson based on the theory of
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antiblocking polyhedra [56]. The result is known as the Perfect Graph Theorem and im-
plies that a graph is perfect if and only if the clique number and the chromatic number
coincide in each induced subgraph of its complement. Let the stability number αpGq

of a graph G be the clique number of its complement G; i.e., αpGq is the maximum
number of pairwise nonadjacent vertices. Similarly, let the clique covering number θpGq
be the chromatic number of G; i.e., θpGq is the minimum number of cliques covering
all the vertices. So, the min-max type inequality

αpGq ¤ θpGq holds for every graph G

and, by the Perfect Graph Theorem, a graph G is perfect if and only if the equality
αpG 1q � θpG 1q holds for each induced subgraph G 1 of G.

There is an interesting connection between the equality αpGq � θpGq and a prop-
erty of some families of sets known as the Kőnig property. The transversal number of
a finite family F of nonempty sets with ground set X is the minimum number of el-
ements of X needed to meet every member of F and the matching number of F is the
maximum size of a collection of pairwise disjoint members of F. If these two numbers
coincide, the family F is said to have the Kőnig property (see [9, Chapter 2]). Given a
t0, 1u-matrix A with no null columns, we may interpret its columns as the character-
istic vectors of the members of some finite family F of nonempty sets. In this context,
we say that two columns are disjoint if they do not have a 1 in the same row. Similarly,
we say that a row meets a column if there is a 1 at the common entry of the row and
the column. So, the columns of A have the Kőnig property if the maximum number of
disjoint columns equals the minimum number of rows meeting every column. If we
let G be a graph and AG be a clique-matrix of G, then the maximum number of pair-
wise disjoint columns of AG is αpGq and the minimum number of rows meeting every
column of AG is θpGq. Thus, the columns of AG have the Kőnig property if and only
if αpGq � θpGq. Interestingly, Berge and Las Vergnas [12] proved that if a t0, 1u-matrix
is balanced and has no null columns then its columns have the Kőnig property, from
which they deduced that αpGq � θpGq holds for every balanced graph G. Moreover,
as the class of balanced graphs is hereditary, they concluded that balanced graphs are
perfect.

The Kőnig property has its origins in the study of matchings and transversals in
bipartite graphs. The matching number νpGq of a graph G is the maximum size of a
set of vertex-disjoint edges and the transversal number τpGq is the minimum number
of vertices necessary to meet every edge. Clearly, the min-max type inequality

νpGq ¤ τpGq holds for every graph G.

In 1931, Kőnig [77] and Egerváry [52] proved that every bipartite graph B satisfies
νpBq � τpBq. This result is known as Kőnig’s matching theorem. The theorem of Berge
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and Las Vergnas in [12] was originally conceived as a generalization of Kőnig’s match-
ing theorem in the following sense. As the transpose of a balanced matrix is also
balanced, the result of Berge and Las Vergnas is equivalent to the fact that if A is a
balanced t0, 1u-matrix with no null rows, then the rows of A have the Kőnig property;
i.e., the maximum number of disjoint rows equals the minimum number of columns
meeting every row. Let G be a graph and let AG be a clique-matrix of G. On the one
hand, the maximum number of pairwise disjoint rows of AG is the clique-independence
number αcpGq, which is the maximum number of vertex-disjoint cliques of G. On the
other hand, the minimum number of columns meeting every row of AG is the clique-
transversal number τcpGq, which is the minimum number of vertices meeting every
clique of G. Clearly, the min-max type inequality

αcpGq ¤ τcpGq holds for every graph G.

What follows from the theorem of Berge and Las Vergnas is that αcpGq � τcpGq holds
for every balanced graph G; i.e., the cliques of a balanced graph have the Kőnig prop-
erty. In particular, if G is bipartite, as αcpGq � νpGq � ipGq and τcpGq � τpGq � ipGq

where ipGq denotes the number of isolated vertices of G, αcpGq � τcpGq reduces to
νpGq � τpGq, which is precisely the statement of Kőnig’s matching theorem.

As the class of balanced graphs is hereditary, the equality αcpGq � τcpGq holds not
only for every balanced graph G but also for each of its induced subgraphs. Graphs
G such that αcpG

1q � τcpG
1q holds for each induced subgraph G 1 of G were named

clique-perfect by Guruswami and Pandu Rangan [64] in 2000. It is important to men-
tion that clique-perfect graphs are not perfect in general and that perfect graphs are
not clique-perfect in general since, for instance, the antiholes that are clique-perfect are
those having number of vertices multiple of 3 (Reed, 2001, see [50]). Notice that if the
equality αcpGq � τcpGq holds for a graph G, the same equality may not hold for all its
induced subgraphs. For instance, every graphG in the class of dually chordal graphs [29]
satisfies the equality αcpGq � τcpGq, dually chordal graphs are not clique-perfect in
general; e.g., W5 is dually chordal but it is not clique-perfect because it contains an
induced C5, for which αcpC5q � 2 but τcpC5q � 3. A set of vertex-disjoint cliques of a
graph is a clique-independent set and a set of vertices meeting all the cliques of a graph
is called a clique-transversal. So, αcpGq is the maximum size of a clique-independent
set of a graph G and τcpGq is the minimum size of a clique-transversal of G. The dif-
ference between αcpGq and τcpGq can be arbitrarily large. Durán, Lin, and Szwarcfiter
presented in [50] a family of graphs Gn such that αcpHnq � 1 and τcpHnq � n for
each n ¥ 2, where the number of vertices of Hn grows exponentially on n. Later,
Lakshmanan S. and Vijayakumar [84] found another family of graphs H 1

n such that
αcpH

1
nq � 2n � 1 and τcpH

1
nq � 3n � 1 for each n ¥ 1, where H 1

n has only 5n � 2
vertices.
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Apart from balanced graphs, some other well-known graph classes are known to
be clique-perfect: comparability graphs [2], complements of forests [15], and distance-
hereditary graphs [87]. Unlike perfect graphs, the class of clique-perfect graphs is
neither closed under graph complementation nor is a complete characterization of
clique-perfect graphs by forbidden induced subgraphs known. Nevertheless, partial
results in this direction were obtained; i.e., characterizations of clique-perfect graphs
by a restricted list of forbidden induced subgraphs within graphs that belong to cer-
tain graph classes [16, 17, 25]. For instance, in [16], a characterization of those line
graphs that are clique-perfect in terms of minimal forbidden induced subgraphs was
given and, in [17], clique-perfect graphs were characterized within Helly circular-arc
graphs also by minimal forbidden induced subgraphs. Another open question regard-
ing clique-perfect graphs is the time complexity of the recognition problem.

In Chapter 4, we give structural characterizations of clique-perfect graphs restricted
to two different graph classes. First, we characterize, by minimal forbidden induced
subgraphs, which complements of line graphs are clique-perfect and show that this
characterization leads to an Opn2q-time algorithm that decides whether or not a given
complement of line graphG havingn vertices is clique-perfect and, if affirmative, com-
putes a minimum clique-transversal. Finally, we show that, within gem-free circular-
arc graphs, clique-perfect graphs coincide with perfect graphs and with two further
superclass of balanced graphs: coordinated graphs and hereditary K-perfect graphs.

Graphs G satisfying the thesis of Kőnig’s matching theorem, νpGq � τpGq, but not
being necessarily bipartite, are called Kőnig-Egerváry graphs or simply said to have the
Kőnig property. In 1979, Deming [44] and Sterboul [111] independently gave the first
structural characterization of graphs having the Kőnig property. Moreover, in [44],
also a polynomial-time recognition algorithm for graphs having the Kőnig property
was devised. In 1983, Lovász [93] introduced the notion of nice subgraphs and charac-
terized graphs having the Kőnig property by forbidden nice subgraphs within graphs
with a perfect matching. We will show that it is not possible to extend his result to a
characterization of all graphs having the Kőnig property by forbidden nice subgraphs.
We introduce the notion of strongly splitting subgraphs, providing a suitable extension
of Lovász’s nice subgraphs, in the sense that all graphs having the Kőnig property can
be characterized by forbidden strongly splitting subgraphs. Our result relies on a char-
acterization by Korach, Nguyen, and Peis [82] of graphs having the Kőnig property by
means of what we call forbidden configurations (certain arrangements of a subgraph and
a maximum matching) which is itself an extension of Lovász’s characterization.

Imposing the Kőnig property to each induced subgraph of a graph can be easily
seen to coincide with requiring the graph to be bipartite. Instead, Escalante, Leoni,
and Nasini defined a graph G to be edge-perfect [53] if each of its edge-subgraphs has
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the Kőnig property, where an edge-subgraph is any induced subgraph that arises by
removing a (possibly empty) set of edges together with their endpoints. Edge-perfect
graphs form a superclass of the class of bipartite graphs and a subclass of the class of
graphs having the Kőnig property. The class of edge-perfect graphs cannot be charac-
terized by forbidden induced subgraphs because it is not closed under taking induced
subgraphs. Instead, our aim is to characterize them by forbidden edge-subgraphs.

In Chapter 5, we give a characterization of all graphs having the Kőnig property by
forbidden strongly splitting subgraphs, which is a strengthened version of the charac-
terization due to Korach et al. by forbidden configurations. Using our characterization
of graphs having the Kőnig property, we state and prove a simple characterization of
edge-perfect graphs by forbidden edge-subgraphs. Unfortunately, this result does not
lead to a polynomial-time recognition algorithm for edge-perfect graphs. In fact, al-
though the problem of recognizing edge-perfect graphs is known to be polynomial-
time solvable when restricted to certain graph classes [47], it is NP-hard for the general
class of graphs [48].





Chapter 2

Preliminaries

2.1 Basic definitions and notation

In this section, we give some general definitions; more specific definitions are intro-
duced as needed. Graphs in this thesis are finite, undirected, without loops, and with-
out multiple edges. We will also deal with multigraphs, introduced near the end of
this section.

Let G be a graph. The vertex set of G is denoted by VpGq, the edge set by EpGq,
and the complement of G by G. A edge-vertex incidence matrix of G is a t0, 1u-matrix
having one row for each edge and one column for each vertex such that only two 1’s
of each row are in two columns corresponding to the endpoints of the edge the row
represents. A subgraph of G is a graph H such that VpHq � VpGq and EpHq � EpGq.
A subgraph H of G is spanning if VpHq � VpGq. If H1 and H2 are two subgraphs of
G, we say that H1 and H2 touch if they share exactly one vertex of G. Moreover, if
VpH1q X VpH2q � tvu, we say that H1 and H2 touch at v. If W � VpGq, the subgraph
of G induced by W is the subgraph GrWs whose vertex set is W and whose edge set
is tvw P EpGq : v,w P Wu. If W � VpGq, GrWs is a proper induced subgraph of G. By
G � W, we denote the subgraph of G induced by VpGqzW. If W � tvu, we denote
G � W simply by G � v. If G is a graph and e is any edge of G, G � e denotes the
graph that arises from G by making the endpoints of e nonadjacent. If v and w are
two nonadjacent vertices of G, then G � vw denotes the graph that arises from G by
making v and w adjacent. If F � EpGq, GzF denotes the graph that arises from G by
removing the edges in F from the edge set of G. By contracting a subgraph H of G we
mean replacing VpHq with a single vertex h and making each vertex v P VpGqzVpHq

adjacent to h if and only if v was adjacent in G to some vertex of H. For any set S, |S|
denotes its cardinality. For any sets X and Y, X △ Y denotes the symmetric difference
pXzYq Y pYzXq.

9
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A vertex v of a graphG is universal if it is adjacent to every other vertex ofG, pendant
if it is adjacent to exactly one vertex of G, or isolated if it is adjacent to no vertex of G.
An edge is pendant if it has at least one pendant endpoint. The neighborhood of v in G is
the set consisting of all vertices of G adjacent to v and is denoted by NGpvq, or simply
Npvq if G is clear from context. The closed neighborhood of v is NGrvs � NG Y tvu. The
common neighborhood of an edge e � vw is NGpeq � NGpvqXNGpwq and, in general, the
common neighborhood of a nonempty set W � VpGq is NGpWq �

�
wPW NGpwq, whereas

NGpHq � VpGq. Two vertices v and w of G are false twins if NGpvq � NGpwq and true
twins if NGrvs � NGrws. Two vertices are twins if they are either false or true twins.
We denote by EGpvq the set of edges of G incident to v. The degree dGpvq of a vertex v

of G is the number of different neighbors of v in G. The maximum degree of the vertices
of G is denoted by ∆pGq and the minimum degree by δpGq.

A graph is complete if its vertices are pairwise adjacent and the complete graph on
n vertices is denoted by Kn. A complete of a graph is a set of pairwise adjacent vertices
and a clique is an inclusion-wise maximal complete set. A clique-matrix of a graph is
a clique-vertex incidence matrix; i.e., a t0, 1u-matrix having one row for each clique
and one column for each vertex and such that there is a 1 in the intersection of a row
and a column if and only if the clique corresponding to the row contains the vertex
corresponding to the column. A complete on 3 vertices is called a triangle. A stable set
of a graph is a set of pairwise nonadjacent vertices. A set A � VpGq and a vertex v

of VpGq are complete to each other if A � NGpvq, and anticomplete if NGrvs X A � H.
The set A � VpGq is complete (resp. anticomplete) to the set B � VpGq if A and b are
complete (resp. anticomplete) for each b P B.

Paths and cycles are simple; i.e., have no repeated vertices aside from the starting
and ending vertices in the case of cycles. Trivial paths consisting of only one vertex
(and no edges) will be allowed, but cycles must have at least three vertices. An n-path
(resp. n-cycle) is a path (resp. cycle) on n vertices. The starting and ending vertices of
a path are called the endpoints of the path. The cycles on three vertices are also called
triangles. Let Z be a path or a cycle of a graph G. By the edges of Z we mean those
edges of G joining two consecutive vertices of Z. We denote by VpZq the set of vertices
of Z and by EpZq the set of edges of Z. The length of Z is |EpZq|. The distance between
two vertices in a graph is the minimum length of a path in the graph having them
as endpoints. A chord of Z is an edge joining two nonconsecutive vertices of Z and
Z is chordless if Z has no chords. The chordless n-path and the chordless n-cycle are
denoted by Pn and Cn, respectively. For each n ¥ 4, Wn denotes the graph that arises
from Cn by adding a universal vertex. A chord ab of Z is short if there is some vertex c

ofZwhich is consecutive to each ofa and b inZ. If so, c is called a midpoint of the chord
ab in Z. Three short chords of Z are consecutive if they admit three consecutive vertices
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ofZ as their midpoints. A chord ofZ that is not short is called long. Two chords ab and
cd of a cycle C such that their endpoints are four different vertices of C that appear
in the order a, c,b,d in C are called crossing. A cycle is odd if it has an odd number of
vertices, and is even otherwise. A hole is a chordless cycle of length at least 4 and an
antihole is the complement of a hole of length at least 5. A cycle of a graph is Hamiltonian
if it visits every vertex of the graph. If P � v1v2 . . . vn and P 1 � w1w2 . . .wm are
two paths (where the vi’s and the wj’s are vertices) and their only common vertex
is vn � w1, then PP 1 denotes the concatenated path v1v2 . . . vnw2w3 . . .wm. If v is a
vertex outside VpPq adjacent to v1, vP denotes the path vv1v2 . . . vn.

A graph is connected if every two of its vertices are the endpoints of some path. A
component of a graph is a containment-wise maximal connected subgraph. A compo-
nent is nontrivial if it has at least two vertices, and is trivial otherwise. A connected
graph without cycles is a tree. A graph is a forest if all its components are trees. A
cutpoint is a vertex whose removal increases the number of components. A graph is
nonseparable if it is connected, has at least two vertices, and has no cutpoints. A block of
a graph is a containment-wise maximal nonseparable subgraph. An edge e of a graph
G is a bridge if G� e has more components than G.

A dominating set of a graph G is a set A � VpGq such that each v P VpGqzA is
adjacent to at least one element ofA. We say that a subsetW of the vertex set of a graph
H is edge-dominating if each edge of H has at least one endpoint in W. A path or cycle
Z is dominating (resp. edge-dominating) if VpZq is dominating (resp. edge-dominating).

Let G and H be two graphs. We say that G contains H if H is isomorphic to a sub-
graph (induced or not) of G and that G contains an induced H if H is isomorphic to an
induced subgraph of G. A class G of graphs is called hereditary if, for every graph G

of G, each induced subgraph of G belongs to G. We say that G is H-free to mean that G
contains no induced H. If H is a collection of graphs, we say that G is H-free to mean
that G contains no induced H for any H P H. A graph H is a forbidden induced subgraph
for a graph class G if no graph of G contains an induced H. Moreover, if G is a hereditary
class, H is said a minimal forbidden induced subgraph for the class G or a minimally not G
graph if H does not belong to G but each proper induced subgraph of H belongs to G.

Let G1 and G2 be two graphs and assume that VpG1q X VpG2q � H. The join
of G1 and G2 is the graph G1 � G2 having vertex set VpG1q Y VpG2q and edge set
EpG1q Y EpG2q Y tvw : v P VpG1q,w P VpG2qu.

A graph H is bipartite if its vertex set can be partitioned into two stable sets X and
Y. If so, tX, Yu is called a bipartition of H. If, in addition, every vertex of X is adjacent
to every vertex of Y, the graph is called complete bipartite.

A matching of a graph G is a set of vertex-disjoint edges of G. Let M be a match-
ing of G. The endpoints of the edges belonging to M are called M-saturated and the
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Figure 2.1: Some small graphs

remaining vertices of G are called M-unsaturated. M is maximal if it is inclusion-wise
maximal and maximum if it is of maximum size; i.e., if |M| � νpGq (whereνpGqdenotes
the matching number defined in the Introduction). M is perfect if it saturates every ver-
tex of G and near-perfect if it saturates all but one vertex of G. Clearly, graphs with a
perfect matching have an even number of vertices, while graphs with a near-perfect
matching have an odd number of vertices. Perfect and near-perfect matchings are triv-
ially maximum. A path is M-alternating if, for each two consecutive edges of the path,
exactly one of them belongs to M. An M-augmenting path is an M-alternating path
starting and ending in M-unsaturated vertices. Notice that if P is an M-augmenting
path then M 1 �M△ EpPq is also a matching and |M 1| � |M| � 1. Indeed, a matching
M is maximum if and only if it has no M-augmenting paths [4]. The following is a
well-known result about matchings in bipartite graphs.

Theorem 2.1 (Hall’s theorem [66]). LetH be a bipartite graph with bipartition tX, Yu. Then,
there is a matching M of H that saturates each vertex of X if and only if���¤

aPA
NHpaq

��� ¥ |A| for each A � X.

Some small graphs to be referred in what follows are depicted in Figure 2.1. We
will call any of the graphs in Figure 1.1 a pyramid. The center of a bipartite-claw is its
vertex of degree 3.

Multigraphs are an extension of graphs obtained by allowing different edges to have
the same pair of endpoints. Multigraphs are still finite, undirected, and without loops.
Two edges joining the same pair of vertices are called parallel. We denote the vertex
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Figure 2.2: Some special multigraphs

set of a multigraph H by VpHq and its edge set by EpHq. If H is a multigraph, the
underlying graph of H is the graph pH having the same vertices as H and two vertices
of pH are adjacent if there is at least one edge in H joining them. If v is a vertex of a
multigraphH, we denote by d̂Hpvq the degree of v in the underlying graph pH. A vertex
of a multigraph is pendant if it has exactly one neighbor; i.e., if it is a pendant vertex of
the underlying graph. Notice that there may be many edges joining a pendant vertex
to its only neighbor.

Let H 1 and H be two multigraphs. We say that H 1 is a submultigraph of H if VpH 1q �

VpHq and, for each pair of adjacent vertices v and w of H 1, there are at least as many
edges in H joining them as there are in H 1. We say that H 1 is contained in H or that
H contains H 1 if and only if H 1 is isomorphic to a submultigraph of H. Two submulti-
graphs touch at vertex v if v is their only common vertex. A multigraph is connected if its
underlying graph is connected and a component of a multigraph is a containment-wise
maximal connected submultigraph.

The paths and cycles of a multigraph are the paths and cycles of its underlying
graph. A multitree is a connected multigraph without cycles; i.e., a multigraph whose
underlying graph is a tree. Some multigraphs needed in what follows are displayed
in Figure 2.2. Notice that we denote the multigraph consisting of two vertices and two
parallel edges joining them by C2, despite not being a cycle under our definition.

Two edges are incident if they share at least one endpoint, so that parallel edges
are considered incident. If R is a graph or multigraph, the line graph LpRq of R has the
edges of R as vertices and two different edges e1, e2 of R are adjacent in LpRq if and
only if e1 and e2 are incident. A graph G is a line graph of a multigraph if there exists
some multigraph R such that G � LpRq. If R can be chosen to be a graph, G is simply
said to be a line graph and R is called a root graph of G. A matching of a multigraph H is
any set M of pairwise non-incident edges of H and M is maximal if it is inclusionwise-
maximal.

Let H1 and H2 be two vertex-disjoint graphs or multigraphs. The disjoint union
H1 YH2 of H1 and H2 has vertex set VpH1q YVpH2q, two vertices v and w are adjacent
in H if and only if they are adjacent in Hi for some i P t1, 2u, and there are exactly as
many edges joining u and v in H as there are in Hi. If t is a nonnegative integer and
H is a graph or multigraph, tH denotes the disjoint union of t copies of H.
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2.2 Some special graph classes and the modular decomposition

In this section, we give some background about some special graph classes and the
modular decomposition. Some results already stated in the Introduction are formally
restated for future reference.

2.2.1 Perfect graphs

In the 1960’s, Berge posed two conjectures regarding the structure of perfect graphs,
the weaker of which is now known as the the Perfect Graph Theorem and states that
the class of perfect graphs is closed by graph complementation.

Theorem 2.2 (Perfect Graph Theorem [92]). A graph is perfect if and only if its complement
is perfect.

The stronger conjecture posed by Berge, concerning the minimal forbidden in-
duced subgraph characterization for the class of perfect graphs, was proved only some
years ago.

Theorem 2.3 (Strong Perfect Graph Theorem [34]). A graph is perfect if and only if it has
no odd holes and no odd antiholes.

In addition, an Opn9q-time algorithm was devised in [33] that decides whether or
not a given graph G having n vertices has an odd hole or an odd antihole.

The following result characterizes perfect graphs by means of the integrality of
their fractional set packing polytopes.

Theorem 2.4 ([36]). A graph is perfect if and only if its clique-matrix is perfect.

2.2.2 Helly property and hereditary clique-Helly graphs

A family F of sets has the Helly property if every nonempty subfamily of F of pairwise
intersecting members has nonempty intersection. A graph is clique-Helly if the family
of its cliques has the Helly property. So, a hereditary clique-Helly graph is a graph
such that each of its induced subgraphs is clique-Helly. Prisner characterized hered-
itary clique-Helly graphs both by forbidden submatrices of their clique-matrices and
by minimal forbidden induced subgraphs, as follows.

Theorem 2.5 ([104]). A graph is hereditary clique-Helly if and only if its clique-matrices
contain no edge-vertex incidence matrix of C3 as a submatrix or, equivalently, if and only if it
does not contain any of the graphs in Figure 1.1 as an induced subgraph.

Prisner also gave a recognition algorithm for hereditary clique-Helly graphs.
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K2,3 G2 G3 domino G5 G6 G9

Figure 2.3: Some forbidden induced subgraphs for the class of circular-arc graphs

Theorem 2.6 ([104]). It can be decided in Opn2mq time whether or not a given graph having
n vertices and m edges is hereditary clique-Helly.

Moreover, he proved that if G is a connected hereditary clique-Helly graph, then G

has at most m cliques and concluded that all the cliques of G can be found in Opm2nq

time by means of the algorithm devised in [116] that enumerates the cliques of G, one
after the other, in Opmnq time per clique. Therefore, the following holds.

Theorem 2.7 ([104, 116]). In Opm2nq time, it can be decided whether or not a given a con-
nected graph G having n vertices and m edges is hereditary clique-Helly and, if affirmative,
output a clique-matrix of G, which has at most m rows.

2.2.3 Circular-arc graphs and Helly circular-arc graphs

A circular-arc graph is the intersection graph of a finite family of arcs on a circle. Such
a family of arcs is called a circular-arc model of the graph. The structure of circular-
arc graphs was first studied by Tucker [117, 118, 119, 120] and these graphs can be
recognized in linear time [100]. Some minimal forbidden induced subgraphs for the
class of circular-arc graphs are K2,3, G2, G3, domino, G5, G6, C6, netY K1, Cn Y K1 for
each n ¥ 4, and G9 [115] (see Figure 2.3).

Since Cn Y K1 is not a circular-arc graph for any n ¥ 4, if G is a circular-arc graph
and H is a hole of G, then VpHq is dominating in G. We state the following slightly
more general result for future reference (see [18]).

Lemma 2.8. Let G be a circular-arc graph and H be a hole of G. If v P VpGqzVpHq, then
either v is adjacent to every vertex of H or NGpvq X VpHq induces a path in G.

A Helly circular-arc graph [61] is a circular-arc graph admitting a circular-arc model
having the Helly property. We call any circular-arc modelA having the Helly property
a Helly circular-arc model of the graph. The class of Helly circular-arc graphs contains all
interval graphs because every set of intervals of a line has the Helly property [72]. Let
G be a Helly circular-arc graph and let us denote by Av the arc of A that corresponds
to vertex v P VpGq. For a clique Q of G, we call any point p P

�
vPQAv an anchor of

Q. Since Q is an inclusion-wise maximal complete, for each anchor p of Q and each
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v P VpGq, it holds that p P Av if and only if v P Q. In [75], a linear-time recognition
algorithm for Helly circular-arc graphs was given, as well as a characterization by
forbidden induced subgraphs of Helly circular-arc graphs within circular-arc graphs
(see Theorem 3.46 on page 64).

2.2.4 Cographs and modular decomposition

Let G be a graph. A set M of vertices of G is a module if every vertex outside M is
either adjacent to all vertices of M or to none of them. The empty set, the singletons
tvu for each v P VpGq, and VpGq are the trivial modules of G. A nonempty module
M of G is strong if, for every other module M 1 of G, either M XM 1 � H, M, or M 1.
The modular decomposition tree TpGq of a graph G is a rooted tree having one node for
each strong module of G and such that a node h representing a strong module M

has as its children the nodes representing the inclusion-wise maximal strong modules
of G properly contained in M. Therefore, the root of TpGq is VpGq and the leaves of
TpGq are the singletons tvu for each v P VpGq. We will identify the module tvu with
the vertex v and say that the leaves of TpGq are the vertices of G. For each node h of
TpGq, we denote by Mphq the strong module of G represented by h. By definition,
Mphq is the set of vertices of G having h as their ancestor in TpGq. For each node h

of TpGq, we denote GrMphqs by Grhs. Each internal node of TpGq is labeled P, S, or
N, according to whether Grhs is disconnected, Grhs is disconnected, or both Grhs and
Grhs are connected, respectively. Nodes labeled P, S, or N are called parallel, series, or
neighborhood, respectively. Therefore, if h is an internal node of TpGq and h1, . . . ,hk

are the children of h in TpGq, the following conditions holds:

(i) If Grhs is disconnected, then h is labeled P and Grh1s, . . . , Grhks are the compo-
nents of G.

(ii) If Grhs is disconnected, then h is labeled S and Grh1s, . . . , Grhks are the compo-
nents of G.

(iii) If Grhs and Grhs are both connected, then h is labeled N and Grh1s, . . . , Grhks is
the set of inclusion-wise maximal proper submodules of Grhs.

There are linear-time algorithms for computing the modular decomposition tree of
any given graph [40, 41, 101, 113].

A cograph if a P4-free graph. The following result implies that a graph is a cograph
precisely when each internal node of its modular decomposition tree is either a parallel
or a series node.

Theorem 2.9 ([108]). If G is a cograph having at least two vertices, then either G or G is
disconnected.



2.2. Some special graph classes and the modular decomposition 17

Seinsche [108] used this fact to prove that cographs are perfect since K1 is perfect
and the disjoint union and the join of two perfect graphs are perfect.





Chapter 3

Balanced graphs

In this chapter, we address the problem of characterizing balanced graphs by minimal
forbidden induced subgraphs within different graph classes. The chapter is organized
as follows:

• In Section 3.1, we give some background about balanced graphs.

• In Section 3.2, we prove basic properties about minimally not balanced graphs.

• In Section 3.3, we show that there is a strong tie between the time complexities
of the problem of recognizing balanced graphs and that of recognizing balanced
matrices.

• In Sections 3.4 to 3.6, we give structural characterizations of balanced graph, in-
cluding minimal forbidden induced subgraphs characterizations, within each
of the following graph classes: complements of bipartite graphs, line graphs of
multigraphs, and complements of line graphs of multigraphs. These characteri-
zations lead to linear-time algorithms for recognizing balancedness within each
of these graph classes. This is in contrast with the fact that the currently best
bound on the running time of an algorithm that recognizes balanced graphs
within split graphs is Opn9q, where n denotes the number of vertices of the in-
put graph.

• In Section 3.7, we present a minimal forbidden induced subgraph characteri-
zation of balanced graphs within a superclass of the class of Helly circular-arc
graphs. In Sections 3.8 and 3.9, we prove analogous characterizations within the
classes of claw-free circular-arc graphs and gem-free circular-arc graphs, respec-
tively.

The main results of this chapter appeared in [22] and [23].

19
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3.1 Background

Recall that a t0, 1u-matrix A is balanced if and only if it contains no edge-vertex inci-
dence matrix of an odd cycle as a submatrix. Notice that if A contains the edge-vertex
incidence matrix of an odd cycle, then A contains the edge-vertex incidence matrix
of an odd chordless cycle. Equivalently, A is balanced if and only if it contains no odd
square submatrix with exactly two 1’s per row and per column. Notice that any matrix
that arises by permuting the rows and/or columns of a balanced matrix is balanced
and that the transpose of a balanced matrix is also balanced.

In [12], Berge and Las Vergnas reported to have found a new class of perfect graphs
in an attempt to prove a conjecture about perfect graphs. In fact, they concluded the
following.

Theorem 3.1 ([12]). A graph G has a balanced clique-matrix if and only if every odd cycle in
G contains at least one edge with the property that every maximal clique containing this edge
contains a third vertex of the cycle. Moreover, any such graph G is perfect.

In [8], Berge gave a more detailed characterization of these graphs, which we repro-
duce below. For each graph G, each W � VpGq, and each subfamily D of the family
of cliques of G, let GW,D be the graph that arises from G by deleting the vertices of
VpGqzW and the edges that do not belong to a clique in D.

Theorem 3.2 ([8]). Let G be a graph. Then, the following assertions are equivalent:

(i) The clique-matrix of G is balanced.

(ii) ωpGW,Dq � χpGW,Dq for each W and each D.

(iii) αpGW,Dq � θpGW,Dq for each W and each D.

(iv) Every odd cycle in G contains at least one edge with the property that every maximal
clique containing this edge contains a third vertex of the cycle.

So, a balanced graph is any graph satisfying all of the above assertions. The name
‘balanced graphs’ for these graphs appears in [11]. As Berge [8] also proved that the
rows (resp. columns) of a balanced matrix have the Helly property, we have the fol-
lowing.

Theorem 3.3 ([8]). Balanced graphs are hereditary clique-Helly.

Theorem 3.1 characterizes balanced graphs by means of the absence of unbalanced
cycles; i.e., the absence of odd cycles C such that, for each edge e P EpCq, there ex-
ists a (possibly empty) complete subgraph We of G such that We � NpeqzVpCq and
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NpWeq X Npeq X VpCq � H. More recently, balanced graphs were characterized by
forbidden induced subgraphs, called extended odd suns. An extended odd sun [21] is
a graph G with an unbalanced cycle C such that VpGq � VpCq Y

�
ePEpCqWe and

|We| ¤ |Npeq X VpCq| for each edge e P EpCq. The extended odd suns with the small-
est number of vertices are C5 and the pyramids in Figure 1.1. The characterization of
balancedness by forbidden induced subgraphs is as follows.

Theorem 3.4 ([21]). A graph is balanced if and only if it contains no induced extended odd
sun.

As already noted in [21], extended odd suns are not necessarily minimal forbid-
den induced subgraphs because some extended odd suns may contain some others as
proper induced subgraphs.

A graph is chordal [65] if every cycle of length at least 4 has some chord. For each
t ¥ 3, a t-sun, or simply sun, is a chordal graph G on 2t vertices whose vertex set can
be partitioned into two sets, W � tw1, . . . ,wtu and U � tu1, . . . ,utu, such that W is a
stable set and, for each i � 1, 2, . . . , t, NGpwiq � tui,ui�1u (where ut�1 stands for u1).
Such a sun is odd if t is odd and complete if U is a complete. We denote the complete
t-sun by St. For instance, S3 coincides with the graph 3-sun of Figure 1.1. The graph
S4 is depicted in Figure 2.1. Clearly, extended odd suns contain odd suns as a special
case.

Strongly chordal graphs, which we mentioned in the Introduction as one example
of balanced graphs, are precisely the sun-free chordal graphs [54]. More generally,
the following characterization of those chordal graphs that are balanced was proved
in [88].

Theorem 3.5 ([88]). Let G be a chordal graph. Then, G is balanced if and only if it contains
no induced odd sun.

Notice that the extended odd suns in Figure 1.2 are also odd suns and, conse-
quently, not all odd suns are minimal forbidden induced subgraphs for balancedness.
Indeed, characterizing balanced graphs by minimal forbidden induced subgraphs is
unresolved even when the problem is restricted to chordal graphs.

Notice, however, that the problem is easily settled within the class of split graphs,
which is a subclass of the class of chordal graphs. A graph is split [55] if its vertex
set can be partitioned into a complete and a stable set. In [55], it was shown that
split graphs are precisely those graphs that are chordal and whose complement is
also chordal, and also that they coincide with the t2K2,C4,C5u-free graphs. A pseudo-
split graph [13, 98] is a t2K2,C4u-free graph. So, the class of pseudo-split graphs is a
superclass of the class of split-graphs, but not of the class of chordal graphs. The fol-
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lowing corollary of Theorem 3.5 gives the characterization of balanced graphs within
pseudo-split graphs by minimal forbidden induced subgraphs.

Corollary 3.6. Let G be a pseudo-split graph. Then, G is balanced if and only if it contains
no induced C5 and no induced odd complete sun.

Proof. Let H be a pseudo-split graph that is minimally not balanced. We must show
that H is either C5 or a complete odd sun. If H contains an induced C5, then the mini-
mality of H implies that H is C5. Therefore, assume, without loss of generality, that H
is C5-free. So, as H is pseudo-split, H is a split graph. Then, by Theorem 3.5, H is an
odd sun and let tU,Vu be a partition of the vertex set of H as in the definition of odd
sun. If there were two nonadjacent vertices in U, say ui and uj, then tui,wi,uj,wju

would induce 2K2 in H, a contradiction with the fact that H is split. So, U is a complete
and H is an odd complete sun.

3.2 Some properties of minimally not balanced graphs

The aim of this section is to prove some basic properties of minimally not balanced
graphs; i.e., those graphs that are not balanced but such that each of their induced
subgraphs are balanced.

Lemma 3.7. If H is a minimally not balanced graph, then each of the following holds:

(i) H is connected.

(ii) H has no pendant vertices.

(iii) H has no true twins.

(iv) H has no universal vertices.

(v) H has no cutpoints.

Proof. (i) Suppose, by the way of contradiction, that H is not connected. Let H �

H1YH2 for some graphsH1 andH2 having at least one vertex each and letA1 and
A2 be clique-matrices of H1 and H2, respectively. Then, A �

�
A1 0
0 A2

	
is a clique-

matrix of H. As H is not balanced, there is some submatrix A 1 of A which is the
edge-vertex incidence matrix of an odd chordless cycle. As A 1 cannot intersect
both A1 and A2 in A, A 1 is a submatrix of either A1 or A2. But then, H1 or H2 is
not balanced, contradicting the minimality of H. This contradiction proves that
H is connected.
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(ii) Suppose, by the way of contradiction, that H has some pendant vertex v. Then,
a clique-matrix of H � v arises from the clique-matrix of H by first removing a
column with exactly one 1 (which is the column corresponding to vertex v) and
then removing a row with exactly one 1 (which is the row corresponding to the
clique NHrvs). Since an edge-vertex incidence matrix of a chordless cycle has
two 1’s per row and per column, H is balanced if and only if H � v is balanced.
This contradicts the minimality of H and proves that H has no pendant vertices.

(iii) Suppose, by the way of contradiction, that there are two true twins v and w in
H. Then, a clique-matrix of H� v arises from a clique-matrix of H by removing
the column corresponding to vertex v, which is identical to the column corre-
sponding to vertex w. Since an edge-vertex incidence matrix of a chordless cycle
contains no two identical columns, H is balanced if and only if H�v is balanced.
This contradicts the minimality of H and proves that H has no true twins.

(iv) Suppose, by the way of contradiction, that there is some universal vertex v in H.
Then, a clique-matrix of H � v arises from a clique-matrix of H by removing a
column with all its entries equal to 1. Since an edge-vertex incidence matrix of a
chordless cycle contains no columns with all entries equal to 1, H is balanced if
and only if H � v is balanced. This contradicts the minimality of H and proves
that H has no universal vertices.

(v) As H is minimally not balanced, Theorem 3.4 implies that H is an extended odd
sun. Let C and tWeuePEpCq be as in the definition of extended odd sun. It is
clear that neither the vertices of C nor the vertices of the We’s are cutpoints of
H. Since H � VpCq Y

�
ePEpCqWe, H has no cutpoints.

We will now establish necessary and sufficient conditions for the join of two graphs
to be balanced. They involve the notion of trivially perfect graphs, introduced by
Golumbic [63]. A graph is trivially perfect if each induced subgraph H has a stable
set meeting all the cliques of H. Trivially perfect graphs coincide with tP4,C4u-free
graphs [63] and also arise as the comparability graphs of trees, which means that triv-
ially perfect graphs are those in which the closed neighborhoods of any two adjacent
vertices are nested (see [124, 125] or [126]). The latter characterization can also be
phrased in terms of clique-distinguishability: we say that two vertices u and v of a
graph are clique-distinguishable if there is a clique containing u and not containing v

and vice versa. As two vertices are clique-distinguishable if and only if their closed
neighborhoods are not nested, we have the following.

Theorem 3.8 ([124]). A graph is trivially perfect if and only if every two clique-distinguishable
vertices are nonadjacent.
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This also means that a graph is trivially perfect if and only if a clique-matrix of it
contains no submatrix that arises by permuting the rows of

� 1 0
1 1
0 1

	
. This immediately

means that trivially perfect graphs are balanced. Moreover, we have the following.

Lemma 3.9. Let G be a graph that is the join of two graphs G1 and G2. Then, G is balanced
if and only if at least one of the following assertions holds:

(i) One of G1 and G2 is complete and the other one is balanced.

(ii) Both G1 and G2 are trivially perfect.

Proof. Suppose that G is balanced. Since G1 and G2 are induced subgraphs of G,
they are balanced too. Therefore, if at least one of G1 and G2 were complete, then
(i) would hold. Suppose, on the contrary, that none of G1 and G2 is complete. Then,
G1 is trivially perfect; otherwise G1 would contain an induced P4 or C4 and, since G2

is not complete, G � G1 � G2 would contain an induced P4 � 2K1 � 2-pyramid or
C4 � 2K1 � 3-pyramid, respectively, contradicting the fact that G is balanced. Sym-
metrically, G2 is also trivially perfect. Thus, (ii) holds.

Now suppose that G is not balanced. If G1 were complete, then the clique-matrix
of G2 would arise from the clique-matrix of G by removing some columns all whose
entries are 1’s and, as G is not balanced, necessarily G2 would not be balanced. Sym-
metrically, if G2 were complete, then G1 would not be balanced. We conclude that
(i) does not hold. Assume now that none of G1 and G2 is complete. Since G is not
balanced, there exist some cliques Q1, . . . ,Q2t�1 of G and some pairwise different ver-
tices v1, . . . , v2t�1 of G for some t ¥ 1 such that Qi X tv1, v2, . . . , v2t�1u � tvi, vi�1u for
each i � 1, . . . , 2t � 1 (where v2t�2 stands for v1). In particular, C � v1v2 . . . v2t�1v1

is an odd cycle of G. Since C is odd, there are two consecutive vertices of C that be-
long both to G1 or both to G2. Without loss of generality, assume that v1 and v2 both
belong to G1. As Qi is a clique of G, Q 1

i � Qi X VpG1q is a clique of G1 for each
i � 1, 2, . . . , 2t � 1. By construction, Q 1

2t�1 X tx1, x2u � tx1u, Q 1
1 X tx1, x2u � tx1, x2u,

and Q 1
2Xtx1, x2u � tx2u. Therefore, x1 and x2 are two adjacent clique-distinguishable

vertices and, by Theorem 3.8, G1 is not trivially perfect and (ii) does not hold.

The above lemma implies the following fact about minimally not balanced graphs.

Corollary 3.10. The only minimally not balanced graphs whose complements are disconnected
are the 2-pyramid and the 3-pyramid.

Proof. LetH be a minimally not balanced graph whose complementH is disconnected.
Since H is disconnected, H is the join of two graphs H1 and H2 with at least one vertex
each. Therefore, as H is minimally not balanced, H1 and H2 are balanced. Neverthe-
less, as H is not balanced, Lemma 3.9 implies that H1 or H2 is not trivially perfect.
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Without loss of generality, assume that H1 is not trivially perfect; i.e., H1 contains an
induced P4 or an induced C4. Since H � H1 � H2 is not balanced and H1 is bal-
anced, Lemma 3.9 implies that H2 is not complete. Thus, H2 contains an induced
2K1. Finally, H � H1 � H2 contains an induced P4 � 2K1 � 2-pyramid or an induced
C4 � 2K1 � 3-pyramid. By minimality, H is the 2-pyramid or the 3-pyramid.

By Lemma 3.9, the join of two trivially perfect graphs is balanced. Below, we state
a generalization of this fact for future reference. Notice that, in the result below, GrXs
and GrYs are trivially perfect by Theorem 3.8.

Lemma 3.11. If the vertex set of a graph G can be partitioned into two sets X and Y such that
every two clique-distinguishable vertices inG that belong both toX or both to Y are nonadjacent,
then G is balanced.

Proof. Suppose, by the way of contradiction, that G is not balanced. Then, there is
some submatrix A of a clique-matrix AG of G such that A is an edge-vertex incidence
matrix of an odd chordless cycle. Notice that no row ofA has two 1’s in columns corre-
sponding to vertices of X; otherwise, these two columns would correspond to adjacent
vertices of X which, by hypothesis, are not clique-distinguishable in G, meaning that
one of these columns would dominate the other in AG, contradicting the fact that A
has no dominated columns. Similarly, no row of A contains two 1’s in columns corre-
sponding to vertices of Y. So, as each row of A has exactly two 1’s, each row of A has
exactly one 1 in a column corresponding to a column corresponding to a vertex of X
and exactly one 1 in a column corresponding to a vertex of Y, which contradicts the fact
that A is an edge-vertex incidence matrix of an odd chordless cycle. This contradiction
arose from assuming that G was not balanced.

We close this section with the following reformulation of Lemma 3.9, also for fu-
ture reference.

Lemma 3.12. A graphG is balanced if and only if exactly one of the following assertions holds:

(i) G has only trivial components.

(ii) G has only one nontrivial component and the complement of this component is balanced.

(iii) G has exactly two nontrivial components and the complements of these two components
are trivially perfect.

Proof. If G has only trivial components, then G is a complete graph and, in particular,
balanced. If G has only one nontrivial component H, then G is the join of a (possibly
empty) complete and H and, by Lemma 3.9, G is balanced if and only if H is balanced.
Suppose now that G has two nontrivial components H1 and H2. Then, G is the join of
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a (possibly empty) complete with the join of H1 and H2, where none of H1 and H2 is a
complete graph. Therefore, by Lemma 3.9, G is balanced if and only if H1 and H2 are
trivially perfect. Finally, notice that if G has 3 or more nontrivial components, then G

is not balanced because it contains an induced 3K2 � 3-pyramid.

3.3 Recognition of balanced graphs and balanced matrices

As noted in [42], a polynomial-time algorithm for recognizing balanced graphs fol-
lows from Theorem 2.7 and the fact, first proved in [37], that balanced matrices can be
recognized in polynomial time. The purpose of this section is to show that there is a
stronger tie between the recognition of balanced graphs and of balanced matrices.

In [128], Zambelli devised a recognition algorithm for balanced t0, 1u-matrices,
which has the currently best time bound.

Theorem 3.13 ([128]). There is a Oppr � cq9q-time algorithm that decides whether or not a
given r� c t0, 1u-matrix is balanced.

It is easy to see that the above result immediately implies that whether or not a
given graph G having n vertices and m edges is balanced can be decided in Opm9�nq

time. Indeed, as it takes onlyOpm�nq time to compute the components ofG, it suffices
to show that if G is connected then it can be decided in Opm9q time whether or not G
is balanced. Indeed, if G is connected, then Theorem 2.7 ensures that in Opm2nq time
it can either be detected that G is not hereditary clique-Helly (and, consequently, not
balanced) or a clique-matrix of G be computed. In the latter case, such a clique-matrix
of G has at most m rows and at most m columns and Zambelli’s algorithm is able to
determine whether or not the clique-matrix of G is balanced in Opm9q time.

We observe that for graphs having the number of cliques bounded from above
by a linear function on the number of vertices, like chordal graph [57], pseudo-split
graphs [13], planar graphs [105], and Helly circular-arc graphs [61], the same analysis
shows that deciding their balancedness can be completed inOpn9q time. One might be
tempted to consider the Opn9q time bound too loose, for instance, for chordal graphs,
given that, in order to decide the balancedness of chordal graphs, there is no need to
test for balancedness of arbitrary t0, 1u-matrices, but just those that are clique-matrices
of chordal graphs. The lemma below shows that it is not the case, as any improvement
on the Opn9q-time bound for the recognition of balanced graphs within split graphs
is tied to the existence of recognition algorithms for balanced matrices asymptotically
faster than that of Zambelli, and vice versa. The reduction we apply here was used in
[32] to prove the NP-completeness of determining αc and τc for split graphs.
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Lemma 3.14. Let p ¥ 2. Then, there exists an Opnpq-time algorithm for deciding the bal-
ancedness of any given split graph having n vertices if and only if there exists an Oppr� cqpq-
time algorithm for deciding the balancedness of any given r� c t0, 1u-matrix.

Proof. Suppose that there is an Opnpq-time algorithm for deciding the balancedness
of split graphs having n vertices and let A � paijq be a given r � c t0, 1u-matrix.
Without loss of generality, assume that no row of A is full of 1’s, as such rows can be
ignored when deciding the balancedness of A. Consider the graph GpAq with vertex
set ts1, . . . , sr,k1, . . . ,kcu, where ts1, . . . , sru is a stable set, tk1, . . . ,kcu is a complete,
and such that si is adjacent to kj if and only if aij � 1. Clearly, GpAq can be constructed
in Oppr � cq2q time and a clique-matrix of GpAq is A 1 �

�
Ir A
0 1

�
where Ir denotes the

identity matrix of order r, 0 a row of r entries equal to 0’s, and 1 denotes a row of
c entries equal to 1’s. Clearly, A 1 is balanced if and only if A is balanced. So, A is
balanced if and only if GpAq is balanced, which, by hypothesis, can be decided in
Oppr� cqpq � Opnpq time.

Conversely, suppose that there is an Oppr � cqpq-time algorithm that decides the
balancedness of r�c t0, 1u-matrices and let G be a split graph. Let tS,Ku be a partition
of VpGq such that S � ts1, . . . , sxu is a stable set and K � tk1, . . . ,kyu is complete of
G, and let A � paijq be the x � y t0, 1u-matrix such that aij � 1 if and only if si is
adjacent to kj. Reasoning as in the preceding paragraph, G is balanced if and only if
A is balanced, which, by hypothesis, can be decided in Opnpq time once the matrix A

is constructed in Opn2q time, where n � x� y is the number of vertices of G.

Notice that if p ¥ 2 and there were an Oppr � cqpq-time recognition algorithm
for balanced matrices, then, by reasoning as we did with Zambelli’s algorithm, one
concludes that there would be an Opmp �m2nq-time algorithm for deciding the bal-
ancedness of any given graph having n vertices and m edges. Notice also that above
proof of the lemma leads to an alternative derivation of Corollary 3.6.

3.4 Balancedness of complements of bipartite graphs

Recall from the Introduction that bipartite graphs are balanced, but also that the class
of balanced graphs is not self-complementary. In particular, it turns out that the com-
plements of bipartite graphs are not necessarily balanced. In this section, we charac-
terize those complements of bipartite graphs that are balanced by minimal forbidden
induced subgraphs. In fact, we show that the complement of a bipartite graph is bal-
anced if and only if it is hereditary clique-Helly.

Theorem 3.15. Let G be the complement of a bipartite graph. Then, the following statements
are equivalent:
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(i) G is balanced.

(ii) A clique-matrix of G has no edge-vertex incidence matrix of C3 as a submatrix.

(iii) G is hereditary clique-Helly.

(iv) G contains no induced 1-pyramid, 2-pyramid, or 3-pyramid.

Proof. The implication (i) ñ (ii) follows by definition and (ii) ñ (iii) ñ (iv) follows
from Theorem 2.5. In order to prove that (iv) ñ (i), assume thatG contains no induced
1-pyramid, 2-pyramid, or 3-pyramid, and we will prove that G is balanced. Since G

is the complement of a bipartite graph, its vertex set can be partitioned into red and
blue vertices such that any two vertices of the same color are adjacent. Suppose, by the
way of contradiction, that G is not balanced. Let C � v1v2 . . . v2t�1v1 be an unbalanced
cycle in G and let the We’s for each e P EpCq be as in the corresponding definition.
Since the 3-sun is not the complement of a bipartite graph, G is pyramid-free and, by
Theorem 2.5, t ¡ 1.

Since C is odd, there exist consecutive vertices vk and vk�1 in C having the same
color (here, and all along the proof, subindices should be understood modulo 2t �
1). Either, there is another vertex vℓ in VpCqztvk, vk�1u of this color, or all vertices
in VpCqztvk, vk�1u have the other color. In any case, as t ¡ 1, C has three pairwise
different vertices vi, vi�1, and vj of the same color, say red. Thus, vi, vi�1, and vj

induce a triangle and vj P NGpvivi�1q X VpCq follows.
Next, we shall construct a blue triangle u1, u2, and u3 in G. By the definition of

an unbalanced cycle, NpWvivi�1q X Npvivi�1q X VpCq � H and there exists some
u1 P Wvivi�1 such that u1 is nonadjacent to vj. Since vj is red, u1 is blue. If vi�1 is
nonadjacent to vi�1, we let u2 � vi�1; otherwise, vi�1 P Npvi�1viq X VpCq and we let
u2 be any vertex of Wvi�1vi

nonadjacent to vi�1. In both cases, u2 is blue because it
is nonadjacent to the red vertex vi�1. Similarly, if vi�2 is nonadjacent to vi, we define
u3 � vi�2; otherwise, we let u3 be any vertex of Wvi�1vi�2 nonadjacent to vi. In both
cases, u3 is blue because it is nonadjacent to vi. By construction, u1, u2, andu3 are pair-
wise different because NGpu1q X tvi, vi�1u � tvi, vi�1u, NGpu2q X tvi, vi�1u � tviu,
and NGpu3qXtvi, vi�1u � tvi�1u. Since u1, u2, and u3 are blue, they induce a triangle
in G. Therefore, tu1, vi, vi�1, vj,u2,u3u induces a 1-pyramid, 2-pyramid, or 3-pyramid
inG, a contradiction. This contradiction arose from assuming thatGwas not balanced.
Hence, G is balanced, which concludes the proof of (iv) ñ (i) and of the theorem.

As a consequence of the equivalence between (i) and (iii) of the above theorem, de-
ciding if the complement of a bipartite graph is balanced is equivalent to determining
whether it is hereditary clique-Helly. The currently best known time bound for recog-
nizing hereditary clique-Helly graphs is Opm2 � nq where m is the number of edges
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of the input graph [91]. Notice that if the input graph is the complement of a bipartite
graph with n vertices and m edges, then m2 � Θpn4q, which means that Opm2 � nq

is not a linear-time bound. In fact, the algorithm in [91] ‘as is’ takes Ωpn3q time when
applied to the complement of a bipartite graph with n vertices because its main loop
runs over all the triangles of the input graph. We will show that there is a simple
linear-time recognition algorithm for hereditary clique-Helly graphs (or, equivalently,
balanced graphs) when the input graph is known to be the complement of a bipartite
graph.

As a consequence of Theorem 3.15, Lemma 3.12 becomes the following when spe-
cialized to complements of bipartite graphs.

Corollary 3.16. Let G be the complement of a bipartite graph. Then, G is balanced if and only
if one of the following assertions holds:

(i) G has only trivial components.

(ii) G has exactly one nontrivial component and this component is tE,P4 Y P2, 3K2u-free.

(iii) G has exactly two nontrivial components and these two components are complete bipar-
tite graphs.

Proof. The results follows from Lemma 3.9 by noticing that if H is a connected bipar-
tite graph then: (1) H is balanced if and only if H is tE,P4 Y P2, 3K2u-free, and (2) H
is trivially perfect if and only if H is a complete bipartite graph. Assertion (1) follows
immediately from Theorem 3.15. When considering (2), it is clear that, if H is a com-
plete bipartite graph, then H is trivially perfect because the endpoints of any pair of
non-incident edges in H induce C4 in H. Conversely, suppose that H is trivially per-
fect. In particular, H is P4-free, which means that any two nonadjacent vertices u and
v belonging to a same component of H are at distance 2 in H. So, since we are assum-
ing that H is a connected bipartite graph, any two nonadjacent vertices of H are on
the same set of the bipartition of H. This proves that H is complete bipartite, which
completes the proof of (2) and of the corollary.

Let G be the complement of a bipartite graph H and let n and m be the number
of vertices and edges of G. We will show that there is a simple Opn2q-time algorithm
that decides whether or not G is balanced. Notice that, in this case, Opn2q is a linear-
time bound because, being G the complement of a bipartite graph, m � Θpn2q. Since
conditions (i) and (iii) of Corollary 3.16 can be clearly verified in Opn2q time, it suffices
to show that it is easy to decide in Opn2q time whether or not a connected bipartite
graph having n vertices is tE,P4 Y P2, 3K2u-free.

If H is any bipartite graph, we write H � pX, Y; Fq to mean that tX, Yu is a biparti-
tion of H and F � EpHq. The bipartite complement of a connected bipartite graph H �
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pX, Y; Fq is the bipartite graph H
bip

� pX, Y; pX� YqzFq. For instance, P5
bip

� 2K2 Y K1.
The recognition algorithm for tE,P4 Y P2, 3K2u-free bipartite graphs follows from the
study of E-free bipartite graphs in [95]. In particular, we make use of the following
result.

Theorem 3.17 ([95]). Let H be a connected bipartite graph. Then, the following assertions
are equivalent:

(i) H is tE,P7u-free.

(ii) H is P5
bip-free.

(iii) Each component of Hbip is 2K2-free.

We have the following immediate consequence.

Corollary 3.18. Let H be a connected bipartite graph. Then, H is tE,P4YP2, 3K2u-free if and
only if each component of Hbip is 2K2-free.

Proof. In fact, if H is tE,P4YP2, 3K2u-free, then, in particular, H is tE,P7u-free (because
P7 contains an induced P4YP2) and, by Theorem 3.17, each component of Hbip is 2K2-
free.

Conversely, suppose that each component of Hbip is 2K2-free. Then, by Theorem
3.17, H is P5

bip-free. Since each of E, P4 Y P2, and 3K2 contains an induced P5
bip, H is

tE,P4 Y P2, 3K2u-free.

Bipartite 2K2-free graphs are known as chain graphs [127] or difference graphs [67].
It is well-known that a linear-time recognition for these graphs follows from the fact
that, in any bipartite chain graph H � pX, Y; Fq, the neighborhoods of the vertices of X
(resp. Y) are nested. (For a detailed account, the reader may consult [71].) Therefore, as
a consequence of Corollary 3.18, given a connected bipartite graph H with n vertices,
it can be decided whether or not H is tE,P4 Y K2, 3K2u-free in Opn2q time, as follows:
H

bip can be clearly computed in Opn2q time and, since bipartite chain graphs can be
recognized in linear time, we can decide whether each of the components of Hbip is
2K2-free also in Opn2q time.

Altogether, we have a simple Opn2q-time algorithm to decide whether or not a
given complement of bipartite graph with n vertices is balanced. Recalling that an
Opn2q-time algorithm is linear-time if its input is the complement of a bipartite graph,
we conclude the following.

Corollary 3.19. It can be decided in linear time whether or not the complement of a bipartite
graph is balanced (or, equivalently, hereditary clique-Helly).
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3.5 Balancedness of line graphs of multigraphs

The first characterization of perfect line graphs appeared in [114] and an alternative
algorithmic proof was given in [43]. This characterization was later extended in [97]. It
is known that line graphs of bipartite graphs are balanced [10]. In this subsection, we
prove structural characterizations of those line graphs that are balanced, including
a characterization by minimal forbidden induced subgraphs. Near the end of this
subsection, we show how these structural results naturally extend to line graphs of
multigraphs.

In order to state our results we need to introduce some definitions. First, we note
that the cliques in the line graph LpRq of a given graph R correspond to the inclusion-
wise maximal sets of pairwise incident edges in R, called by us the L-cliques of R, which
are the edge sets of the triangles of R, called triads, and the stars ERpvq (v P VpRq) that
are not contained in another star or triad.

A t-bloom tv; v1, . . . , vtu in a graph is a set of t ¡ 0 different pendant vertices
v1, . . . , vt all being adjacent to vertex v. By identifying two nonadjacent vertices u and
v, we mean replacing them by a new vertex w with Npwq � Npuq Y Npvq. If G1

and G2 are two vertex-disjoint graphs, A � ta;a1, . . . ,atu is a t-bloom in G1, and
B � tb;b1, . . . ,btu is a t-bloom in G2, then G1 △AB G2 denotes the graph that arises
from G1 YG2 by adding the edge ab and identifying ai with bi for each i � 1, . . . , t.

The following result characterizes which line graphs are balanced, including a
characterization by minimal forbidden induced subgraphs.

Theorem 3.20. Let G be a line graph and let R be a graph such that G � LpRq. Then, the
following assertions are equivalent:

(i) G is balanced.

(ii) G is perfect and hereditary clique-Helly.

(iii) G has no odd holes and contains no induced 3-sun, 1-pyramid, or 3-pyramid.

(iv) R has no odd cycles of length at least 5 and contains no net, kite, or K4.

(v) Each component of R belongs to the graph class S which is the minimal graph class sat-
isfying the following two conditions:

(a) All connected bipartite graphs belong to S.

(b) If G1,G2 P S and the sets A and B are t-blooms of G1 and G2, respectively, then
G1 △AB G2 belongs to S.
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Proof. The implication (i) ñ (ii) follows from Theorems 3.1 and 3.3 and (ii) ñ (iii)
from Theorem 2.5. That (iii) ñ (iv) follows from the definition of line graph.

We prove that (iv) ñ (v) by induction on the number n of edges of R. Assume that
R has no odd cycles of length at least 5 and contains no kite, net, or K4. If n � 1, (v)
holds trivially. Let n ¡ 1 and assume that (v) holds for graphs with less than n edges.
Let S be any component of R and assume that S is not bipartite. In order to prove that S
belongs to S, we need to show that S � S1△ABS2 for some S1,S2 P S and some blooms
A andB. Since S is not bipartite and has no odd cycles of length at least 5, there is some
triangle T in S. Since S contains no net, kite, or K4, there is some vertex of T of degree
2 in S. Let T � ta,b, c1u where dSpc1q � 2. Let c1, c2, . . . , ct be all the vertices of S
with ta,bu � NSpciq. Since S contains no K4, tc1, . . . , ctu is a stable set of S. Moreover,
we have ta,bu � NSpciq, for each i � 2, . . . , t, because S contains no kite. Let S 1 be
the graph that arises from S by removing the edge ab and the vertices c1, . . . , ct; i.e.,
S 1 � pS�abq�tc1, . . . , ctu. Since Shas no odd cycles of length at least 5, there is no path
joining a and b in S 1. Nevertheless, S 1 � ab � S � tc1, . . . , ctu is connected because
S is connected. Consequently, S 1 consists of two components S 11 and S 12 such that a
belongs to S 11 and b belongs to S 12. Let S1 be the graph that arises from S 11 by adding t

pendant vertices a1, . . . ,at adjacent to a. Analogously, let S2 be the graph that arises
from S 12 by adding t pendant vertices b1, . . . ,bt adjacent to b. Then, A � ta;a1, . . . ,atu

and B � tb;b1, . . . ,btu are t-blooms of S1 and S2, respectively, and S � S1 △AB S2.
Moreover, S1 and S2 satisfy (iv) because they are subgraphs of S. Therefore, as S1 and
S2 are connected and have less edges than S, by induction hypothesis, S1,S2 P S. This
completes the proof of (iv) ñ (v).

Let us now turn to the proof of (v) ñ (i). Assume that every component of R
belongs to S. We will prove that G � LpRq is balanced by induction on the number n
of edges of R. Without loss of generality we can assume that R has no isolated vertices.
If n � 1, then G � K1 is balanced. Let n ¡ 1 and assume that (i) holds when R has less
thann edges. If R is disconnected, each component S of R has less thann edges and, by
induction hypothesis, each LpSq is balanced, which implies that G � LpRq is balanced,
as desired. So, without loss of generality, we assume that R is connected. Suppose,
by the way of contradiction, that G is not balanced; i.e, there exist some L-cliques
E1, . . . ,Er and some pairwise different edges e1, . . . , er of R such that EiXte1, . . . , eru �
tei, ei�1u (from this point on, all subindices should be understood modulo r) for some
odd r ¥ 3.

Recall from the Introduction that line graphs of bipartite graphs are balanced.
Hence, R is not bipartite and, since R P S by hypothesis, R � R1 △AB R2 where
R1,R2 P S, A � ta;a1, . . . ,atu is a t-bloom of R1, and B � tb;b1, . . . ,btu is a t-bloom
of R2. Since R1 and R2 have less edges than R, the induction hypothesis implies that
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LpR1q and LpR2q are both balanced. If ERpaq is an L-clique of R, we will identify ERpaq

with ER1paq and say that ERpaq is an L-clique of R1. Similarly, if ERpbq is an L-clique of
R, we will identify ERpbq with ER2pbq and say that ERpbq is an L-clique of R2. With
this conventions, the L-cliques of R are the L-cliques of R1 and R2, plus the triads
Tk � tab,ack,bcku for each k � 1, . . . , t, where ck is the vertex that results from
identifying ak with bk. If r � 3, Theorem 2.5 implies that G contains an induced
pyramid, which means that R contains net, kite, or K4; and consequently, by defini-
tion of △, either R1 or R2 contain net, kite or K4, a contradiction with LpR1q and LpR2q

balanced. Hence, we have r ¥ 5 and suppose that at least one of E1, . . . ,Er is an L-
clique of R1. Since LpR1q is balanced, not all of E1, . . . ,Er are L-cliques of R1. Therefore,
there exists some i P t1, . . . , ru such that Ei is an L-clique of R1, but Ei�1 is not. Since
Ei X Ei�1 � H, necessarily, Ei � ERpaq. Similarly, there is some j P t1, . . . , ru such
that Ej is an L-clique of R1 and Ej�1 is not, and necessarily Ej � ERpaq. Hence, every
block of consecutive L-cliques of R1 in the circular ordering E1E2 . . .ErE1 starts and
ends with ERpaq. Since E1, . . . ,Er are r pairwise different L-cliques of R, ERpaq is the
only L-clique of R1 that may belong to E1, . . . ,Er. Similarly, ERpbq is the only L-clique
of R2 that may belong to E1, . . . ,Er.

Since r ¥ 5 and among E1, . . . ,Er there are at most one L-clique of R1 and at
most one L-clique of R2, there are two consecutive elements in the circular ordering
E1E2 . . .EkE1 that are triads Tk for some values of k. Without loss of generality, E1 � T1

and E2 � T2. Therefore, e2 P E1 X E2 � tabu. But then, e � ab belongs to each of
E1, . . . ,Er, a contradiction. This contradiction arose from assuming that G was not
balanced. So, G satisfies (i), as desired.

As a corollary of the above theorem, we now prove another characterization of
those line graphs that are balanced which leads to a linear-time recognition algorithm
for balanced graphs within line graphs.

Corollary 3.21. Let G be a line graph and let R be a graph such that G � LpRq. Let U be the
set of vertices of R of degree 2 that belong to some triangle of R and let E 1 be the set of edges
of R whose both endpoints are the two neighbors of some vertex of U. Then, G is balanced if
and only if R�U is a bipartite graph and every edge of R�U that belongs to E 1 is a bridge of
R�U.

Proof. Suppose that G is balanced. By assertion (iv) of Theorem 3.20, R contains no
kite, net, or K4. Thus, every triangle of R has at least one vertex of degree 2 and,
therefore, R � U has no triangles. Since, in addition, R has no odd cycles of length at
least 5, R�U is bipartite. Let ab be an edge of R�U that belongs to E 1 and suppose,
by the way of contradiction, that ab is not a bridge of R � U. Thus, ab is an edge of
some cycle C of R � U. Since R � U is bipartite, C � abv1 . . . v2ka for some k ¥ 1.
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Since ab P E 1, there exists some vertex c P R such that NRpcq � ta,bu. But then,
C 1 � acbv1 . . . v2ka is a cycle of R of length 2k� 3 with k ¥ 1, a contradiction since R

has no odd cycles of length at least 5.
Conversely, assume that R � U is bipartite and every edge of R � U that belongs

to E 1 is a bridge of R � U. We will prove that assertion (iv) of Theorem 3.20 holds. R
contains no kite, net, or K4 (otherwise, R�U would contain a triangle, in contradiction
with R � U bipartite). It only remains to prove that R has no odd cycles of length at
least 5. Suppose, by the way of contradiction, that R has a cycle C � v1v2 . . . vrv1 of
odd length at least 5. Let w1,w2, . . . ,ws be the sequence of vertices that arises from
the sequence v1, v2, . . . , vr by removing all the vertices that belong to U. Notice that, if
vi P U, then each of vi�1 and vi�1 has degree at least 3 in R and, therefore, none of vi�1

and vi�1 belongs to U and vi�1vi�1 is an edge of R�U. Therefore, C 1 � w1w2 . . .wsw1

is a cycle of R�U. SinceC is an odd cycle and R�U is bipartite, C 1 � C. So, necessarily,
there is at least one vertex of C that belongs to U. Without loss of generality assume
that v2 P U. By construction, w1 � v1, w2 � v3, v1v3 P E 1, and v1v3 is an edge of the
cycle C 1 in R � U. Therefore, v1v3 is an edge of R � U that belongs to E 1 but is not a
bridge of R�U, a contradiction. This contradiction proves that R has no odd cycles of
length at least 5. Hence statement (iv) of Theorem 3.20 holds and, consequently, G is
balanced.

From Corollary 3.21, we deduce the following.

Corollary 3.22. It can be decided in linear time whether a given line graph G is balanced.

Proof. Let n and m be the number of vertices and edges of G. A graph R without
isolated vertices such that LpRq � G can be computed in Opm � nq time [89, 107].
Additionally, the neighborhoods of the vertices of R can be easily sorted, consistently
with some fixed total ordering of VpRq, in Opnq time (see, e.g., [80, p. 115]). Notice that
Opnq time means linear time of R because R has n edges and no isolated vertices. We
now show that U and E 1 defined as in Corollary 3.21 can also be computed in Opnq

time. Let H be an auxiliary multigraph whose vertex set is VpRq and having each of its
edges labeled with a vertex ofRdefined as follows: two vertices v andw ofH are joined
by one (and exactly one) edge labeled with x if and only if NRpxq � tv,wu. Clearly, H
can be computed in Opnq time and, as we did with R, we can sort the neighborhoods
of H (ignoring the edge labels), consistently with the total ordering of VpRq used for
the neighborhoods of R, also in Opnq time. Now, as both NRpvq and NHpvq are sorted
consistently for each v P VpRq, we can find, in overall Opnq time, the set D of all triples
pv,w, xq that satisfy both that w P NRpvq XNHpvq and that there is an edge joining v

and w labeled with x. Then, U consists of all vertices x such that there is some triple
pv,w, xq P D and E 1 consists of all edges vw such that there is some triple pv,w, xq P D.
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This shows that indeed U and E 1 can be computed in Opnq time. Finally, we can also
decide in Opnq time whether R � U is bipartite and whether the edges of R � U that
belong to E 1 are bridges of R � U, because the bridges of a graph can be determined
in linear time by depth-first search [112].

In the above proof, the sets U and E 1 can also be computed in Opm � nq time by
enumerating all triangles of R using the approach sketched in [80, p. 115], which leads
to an alternative linear-time algorithm to decide the balancedness of G. Neverthe-
less, our procedure has the advantage that it takes only linear time of R to decide the
balancedness of LpRq if R is given as input.

We will now briefly comment on how the above results for line graphs naturally
extend to line graphs of multigraphs. Since two edges of a multigraph H are adjacent
in LpHq if and only if they have at least one endpoint in common, every two parallel
edges of H are true twins in LpHq. This means that the line graph of the multigraph H

arises from the line graph of its underlying graph pH by adding true twins. As adding a
true twin to a graph only duplicates one column of its clique-matrix, its balancedness
is not affected. Therefore, LpHq is balanced if and only if LppHq is balanced. Moreover,
adding true twins affects neither perfectness nor the fact of being hereditary clique-
Helly (as follows, for instance, from Theorems 2.3 and 2.5 because no odd hole, no odd
antihole, and no pyramid has true twins). Therefore, LpHq is perfect and hereditary
clique-Helly if and only if LppHq is so. As a consequence, Theorem 3.20 extends to line
graphs of multigraphs as follows.

Theorem 3.23. Let G be the line graph of a multigraph H. Then, the following assertions are
equivalent:

(i) G is balanced.

(ii) G is perfect and hereditary clique-Helly.

(iii) G has no odd holes and contains no induced 3-sun, 1-pyramid, or 3-pyramid.

(iv) H has no odd cycles of length at least 5, and contains no net, kite, or K4.

(v) Each component of the underlying graph of H belongs to the class S (as defined in the
statement of Theorem 3.20).

Finally, also the linear-time recognition algorithm for balanced graphs within line
graphs can be extended to line graphs of multigraphs.

Corollary 3.24. Given the line graph G of a multigraph, it can be decided in linear time
whether or not G is balanced.
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Proof. In [80], an algorithm is proposed that, given a graph G, computes in linear time
the representative graphRpGq ofG, which is the graph that arises fromG by successively
removing one vertex of some pair of true twins, as long as this is possible. It is easy
to see that RpGq is unique up to isomorphisms. Indeed, a representative graph of G
is any induced subgraph of G induced by a set of representatives of the equivalence
classes of the relation “is a true twin of” on the vertices of G. As G � LpHq arises from
LppHq by adding true twins, RpGq is also the representative graph of LppHq. Thus, RpGq
is an induced subgraph of LppHq and, in particular, RpGq is a line graph. In addition,
as adding true twins does not affect balancedness, G is balanced if and only if RpGq
is balanced. We conclude that the algorithm for computing the representative graph
in [80] reduces the problem of deciding the balancedness of the line graphs of multi-
graphs G to that of deciding the balancedness of the line graphs RpGq, which, as we
have seen, is linear-time solvable.

3.6 Balancedness of complements of line graphs of multigraphs

We say that a multigraphH is L-balanced if the complement of its line graph is balanced.
In this subsection, we will characterize those complements of line graphs of multi-
graphs that are balanced by determining which multigraphs are L-balanced. As com-
pletes in LpHq correspond to matchings in H, the clique-matrices of LpHq are the max-
imal matching vs. edge incidence matrices of H, which we call the matching-matrices
of H. Consequently, H is L-balanced if and only if its matching-matrix is balanced.

3.6.1 Families of L-balanced multigraphs

The main result of this subsection is Theorem 3.28 which establishes that certain multi-
graph families are L-balanced. The proof of this theorem splits into two parts. The first
part will follow from a sufficient condition for L-balancedness given in Lemma 3.27,
near the end of this subsection. The second part is postponed to Subsection 3.6.4. In
order to prove the aforesaid sufficient condition, we introduce three multigraph fami-
lies: A1, A2, andA3. In Figure 3.1, a generic member of each of these families is shown,
where light lines represent single edges, bold lines one or more parallel edges, p is any
positive integer, and a1, . . . ,ap are pairwise false twins.

Our next lemma shows that the multigraph families A1, A2, and A3 arise naturally
when characterizing those multigraphs H such that LpHq is trivially perfect.

Lemma 3.25. Let G be the line graph of a multigraph H. Then, the following assertions are
equivalent:

(i) G is trivially perfect.
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A1 A2

...

a1
a2

ap

A3

Figure 3.1: Multigraphs families A1, A2, and A3. Light lines represent single edges,
whereas bold lines represent one or more parallel edges. Parameter p varies over all pos-
itive integers and a1,a2, . . . ,ap are pairwise false twins

(ii) H contains no P5, 2P3, P3 Y C2, or 2C2.

(iii) Some component of H is contained in some member of A1, A2, or A3, and each of the
remaining components of H has at most one edge.

Proof. The equivalence between (i) and (ii) follows immediately from the definitions
of trivially perfect graphs and line graphs of multigraphs. It is also clear, by simple
inspection, that each of the members of the families A1, A2, and A3 contains no P5,
2P3, P3 Y C2, or 2C2. Therefore, the same holds also for any submultigraph of them,
which proves that (iii) implies (ii). To complete the proof, we prove that (ii) implies
(iii). Recall that d̂Hpvq denotes the degree of v in the underlying graph pH and that a
vertex v of H is pendant if and only if d̂Hpvq � 1.

Suppose that H satisfies (ii) and let S be any component of H. First assume that S
is a multitree and let P � v1v2 . . . vt be a longest path in S. Since S contains no P5 and
P is maximal, necessarily t ¤ 4, v1 and vt are pendant vertices, and each neighbor of
v2, . . . , vt�1 outside P is a pendant vertex. If t ¤ 3, S is contained in some member of
A3, as desired. So, let t � 4. Since S contains no P3 Y C2 or 2C2, we can assume, by
symmetry, that there is a single edge joining v1 to v2 and d̂Spv2q � 2. We conclude
that S is contained in some member of A3, as desired. So, from now on, we assume,
without loss of generality, that S is not a multitree and let ℓ be the length of the longest
cycle of S. Since S contains no P5, ℓ � 3 or ℓ � 4.

Suppose that ℓ � 3 and let T � v1v2v3v1 be some triangle of S. Since S contains no
P5 or bipartite claw and ℓ � 3, at most one vertex of T has some neighbor v P VpSqzVpTq

and each of these neighbors v is a pendant vertex. Without loss of generality, we as-
sume that d̂Spv1q � d̂Spv2q � 2. If d̂Spv3q ¡ 3 or v3 is joined to some pendant vertex
through two or more parallel edges, then there is a single edge joining v1 to v2 (be-
cause S contains no P3 Y C2 or 2C2) and S is contained in some member of A3. If
d̂Spv3q ¤ 3 and there are no two parallel edges joining v3 to a pendant neighbor, then
S is contained in some member of A1.

Finally, suppose that ℓ � 4 and let C be a 4-cycle of S. Since C contains no P5 or
2C2, VpSq � VpCq and S has no two non-incident pairs of parallel edges. Therefore, S
is some member of A1 or A2.
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We conclude that H satisfies (iii), which completes the proof.

We say that two edges e1 and e2 of a multigraph H are matching-distinguishable
if there is some maximal matching of H that contains e1 but not e2 and vice versa.
Equivalently, e1 and e2 are matching-distinguishable inH if and only if they are clique-
distinguishable as vertices of LpHq. Notice that every two parallel edges are always
matching-distinguishable. It is easy to see that, for each member ofA1,A2, andA3, any
two matching-distinguishable edges are incident. Indeed, in each of the multigraphs
represented in Figure 3.1, the edges in bold are pairwise incident and each light edge is
not matching-distinguishable from any edge that is non-incident to it. (Alternatively,
the result follows by applying Theorem 3.8 to LpHq for each multigraphH in Figure 3.1,
as we know that LpHq is trivially perfect.)

Let F be a submultigraph of a multigraph H. We say that F is a fragment of H if
there is an embedding of F in some of the multigraphs represented in Figure 3.1 such
that the edges of F corresponding, under the embedding, to light edges in Figure 3.1
are incident in H to edges of F only. We observe the following.

Lemma 3.26. If F is a fragment of H, then any pair of edges of F matching-distinguishable in
H are incident.

Proof. Indeed, the edges of F corresponding under the embedding to bold edges are
pairwise incident and, if M is a maximal matching of H that does not contain some
edge e of F corresponding to a light edge, thenMmust contain some edge e 1 of F that is
incident to e and it follows that M cannot contain any edge e2 of F that is non-incident
to e (because the edges e2 of F that are non-incident to e turn out to be necessarily
incident to e 1).

In Figure 3.2, we introduce multigraph families B1, B2, . . . , B16 by presenting a
generic member of each family: light lines represent single edges, bold lines represent
one or more parallel edges, p is any positive integer, and a1, . . . ,ap are pairwise false
twins. Notice, for instance, that for each member of B2, B3, and B4, its edge set can
be partitioned into the edge sets of two fragments. Our next result shows that this
condition is sufficient for L-balancedness.

Lemma 3.27. If the edge set of a multigraph H can be partitioned into the edge sets of two
fragments of H, then H is L-balanced.

Proof. Let F1 and F2 be two fragments of H such that tEpF1q,EpF2qu is a partition of
EpHq. Let G � LpHq and let X � EpF1q and Y � EpF2q. Then, tX, Yu is a partition of the
vertex set of G and, by Lemma 3.26, any two vertices clique-distinguishable in G that
belong both to X or both to Y are nonadjacent. So, by Lemma 3.11, G is balanced, as
desired.
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Figure 3.2: Multigraph families B1, B2, . . . , B16. Light lines represent single edges,
whereas bold lines represent one or more parallel edges. Parameter p varies over the positive
integers, and a1,a2, . . . ,ap are pairwise false twins

In Figure 3.2, we introduce the multigraph families B1, B2, . . . , B16 by presenting
a generic member of each family. If follows, by direct application of the above lemma,
that the families B2, B3, B4, B9, B10, B11, B12, and B16 are L-balanced; i.e., each of their
members are L-balanced. In Subsection 3.6.4, we provide separate proofs of the L-
balancedness of each of the remaining families displayed in Figure 3.2. As a result, we
conclude the following.

Theorem 3.28. The families B1, B2, . . . , B16 are L-balanced.

3.6.2 Characterizing balanced complements of line graphs of multigraphs

In this subsection, we characterize those complements of line graphs of multigraphs
that are balanced, including a characterization by minimal forbidden induced sub-
graphs.

Theorem 3.29. Let G be the complement of the line graph of a multigraph H. Then, the
following assertions are equivalent:

(i) G is balanced.

(ii) A clique-matrix ofG has no edge-vertex incidence matrix ofC3,C5, orC7 as a submatrix.

(iii) G contains no induced 3-sun, 2-pyramid, 3-pyramid, C5, C7, U7, or V7.
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(iv) H contains no bipartite claw, P5 Y P3, P5 YC2, 3P3, 2P3 YC2, P3 Y 2C2, 3C2, C5, C7,
6-pan, braid, 1-braid, or 2-braid.

(v) One of the following conditions holds:

(a) Each component of H has at most one edge.

(b) H has exactly one component with more than one edge, which is contained in a
member of B1, B2, . . . , or B16

(c) H has exactly two components with more than one edge each, each of which is con-
tained in a member of A1, A2, or A3.

Proof. The implication (i) ñ (ii) follows by definition. The implication (ii) ñ (iii)
follows from the fact that a clique-matrix of each of 3-sun, 2-pyramid, 3-pyramid, C5,
C7,U7, andV7 contains an edge-vertex incidence matrix ofC3,C5, orC7 as a submatrix.
The implication (iii) ñ (iv) follows by definition of the line graph of a multigraph.

The implication (v) ñ (i) can be proved as follows. If (a) holds, then G � LpHq is a
clique and, in particular, G is balanced. So, assume that (b) or (c) holds. Without loss
of generality, H has no isolated vertices. Moreover, we can also assume that H has no
component with only one edge because removing these components from H amounts
to removing the universal vertices from LpHq, which does not affect the balancedness
of LpHq (because each universal vertex corresponds to a column full of 1’s in the clique-
matrix). Therefore, we can assume that H is contained in a member of B1, B2, . . . , or
B16 or H has two components, each of which is contained in a member of A1, A2, or
A3. If the former holds, LpHq is balanced by Theorem 3.28, if the latter holds, LpHq is
balanced by Lemma 3.27. This concludes the proof of (v) ñ (i).

The rest of the proof is devoted to showing that (iv) ñ (v). In order to do so,
assume that H satisfies (iv). Suppose first that H has two or more components with
two or mores edges each. Since H contains no 3P3, 2P3 Y C2, P3 Y 2C2, or 3C2, H
has exactly two components S1 and S2 with at least two edges each. In particular, S2

contains P3 or C2, which means that S1 contains no P5, 2P3, P3 Y C2, or 2C2 and, by
Lemma 3.25, S1 is contained in some member of A1, A2, or A3. By symmetry, S2 is
also contained in some member of A1, A2, or A3. This proves that if H has at least two
components with two or more edges each, (c) holds. If each component of H has at
most one edge, (a) holds. Therefore, we assume that H has exactly one component S
having at least two edges. We will prove that S is contained in some member of B1,
B2, . . . , B16 and, consequently, (b) holds, concluding the proof of the theorem.

We split the proof into four main cases. In the first case S is a multitree. In the other
cases, we assume that S is not a multitree and we let ℓ be the length of the longest cycle
in S. Since S contains no C5, C7, or P5 Y P3, necessarily ℓ � 3, 4, or 6.
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Along this proof, we adopt the following convention: Given any two adjacent ver-
tices u and v of S, we will say that uv is a simple edge if there is exactly one edge joining
u to v; otherwise, we say that uv is a multiple edge. Recall that we say that a vertex v

of S is pendant if and only if d̂pvq � 1 (where d̂Spvq denotes the degree of v in the
underlying graph pS).

Case 1. S is a multitree.
Let P � v1v2 . . . vt be a path of S of maximum length. As S is not edgeless, t ¥ 2.

Moreover, since S is a multitree, the endpoints of P are pendant vertices and t ¤ 7
because S contains no P5 Y P3. By maximality of P and since S contains no bipartite
claw, the neighbors of v2, . . . , vt�1 outside P are pendant vertices of S.

1a t ¤ 4. Then, S is contained in some member of B15.

1b t � 5. If d̂Spv3q ¤ 3 and any edge joining v3 to a pendant neighbor is simple, then
S is contained in some member of B15. If d̂Spv3q ¡ 3 or there is a multiple edge
joining v3 to a pendant neighbor, then either d̂Spv2q � 2 and v1v2 is simple, or
d̂Spv4q � 2 and v4v5 is simple (otherwise S would contain 3P3, 2P3YC2, P3Y2C2,
or 3C2). In either case, S is contained in some member of B16.

1c t � 6. If d̂Spv2q � d̂Spv5q � 2 and v1v2 and v5v6 are simple, then S is contained
in some member of B16. By symmetry, assume, without loss of generality, that
d̂Spv2q ¡ 2 or v1v2 is multiple. Then, d̂Spv3q � 2 follows since S contains no
P5 Y P3 and no P5 Y C2. In addition, d̂Spv5q � 2 and v5v6 is simple, because S

contains no braid, 1-braid, or 2-braid. Thus, also in this case, S is contained in
some member of B16.

1d t � 7. Since S contains no P5 Y P3 and no P5 Y C2, d̂Spv2q � d̂Spv4q � d̂Spv6q �

2 and the edges v1v2 and v6v7 are simple. Therefore, S is contained in some
member of B16.

Case 2. S has a longest cycle of length ℓ � 3.
In each subcase, we assume that the previous subcases do not hold.

2a There is some triangle T such that all its vertices have some neighbor outside T . Let T �
v1v2v3v1 be such a triangle in S. By hypothesis, S has no 4-cycle and S contains
no bipartite claw. Therefore, for each i � 1, 2, 3, each vertex v P NSpviqzVpTq is a
pendant vertex of S. Since S contains no 3P3, 2P3YC2, P3Y2C2, or 3C2, there are
at most two vertices of T having more than one pendant neighbor or joined to a
pendant neighbor by a multiple edge. Therefore, S is contained in some member
of B15.
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2b There is a triangle T touching a 5-path P at an endpoint of P. Let T � v1v2v3v1 touch
P � v1w1w2w3w4 at v1. As S contains no P5 Y P3 or P5 Y C2 and ℓ � 3, d̂Spv2q �

d̂Spv3q � 2, NSpw1q � tv1,w2,w3u, NSpw3q � tw1,w2,w4u, NSpw4q � tw2,w3u,
each v P NSpv1qztv2, v3,w1,w2u is pendant, each v P NSpw2qztv1,w1,w3,w4u is
pendant, and the edges v2v3 and w3w4 are simple. If w1 and w3 are nonadjacent,
then S is contained in some member of B16. So, assume, without loss of general-
ity, that w1 and w3 are adjacent. Then, w2 is nonadjacent to v1 and to w4 because
S has no 4-cycles, and d̂Spw2q � 2 because S contains no P5 Y P3. Therefore, S is
contained in some member of B10.

2c There are two touching triangles, say T � v1v2v3v1 and T 1 � v1w1w2v1. By sym-
metry and since 2a does not hold, we assume, without loss of generality, that
d̂Spv2q � 2 and d̂Spw1q � 2. As S has no 4-cycles and no bipartite claw, each
v P NSpv1qztv2, v3,w1,w2u is a pendant vertex. Since S has no 4-cycles and 2b
does not hold, each v P NSpv3qzVpTq is a pendant vertex. Symmetrically, each
v P NSpw2qzVpT

1q is also a pendant vertex.

If each of v1 and w2 is adjacent to some pendant neighbor, then v2v3 is simple
and d̂Spv3q � 2 (because S contains no P5 Y C2 or P5 Y P3), which means that S
is contained in some member of B16.

So, if v1 is adjacent to some pendant neighbor, we can assume that d̂Spv3q �

d̂Spw2q � 2 and, since S contains no P3 Y 2C2 or 3C2, one of the following con-
ditions hold:

• v1 is adjacent to exactly one pendant neighbor and the edge joining v1 to its
pendant neighbor is simple, which means that S is contained in B1.

• At least one of v2v3 and w1w2 is simple, which implies that S is contained
in a member of B16.

So, without loss of generality, assume that v1 is not adjacent to any pendant
neighbor. Ifw2 is adjacent to at least two pendant neighbors or there is a multiple
edge joining w2 to a pendant neighbor, then v2v3 is simple (because S contains
no 1-braid or 2-braid) and, as a result, S is contained in some member of B16. If
w2 is adjacent to at most one pendant neighbor and any edge joiningw2 to a pen-
dant vertex is simple, then, symmetrically, v3 is adjacent to at most one pendant
neighbor and any edge joining v3 to a pendant vertex is simple and we conclude
that S is contained in some member of B2.

2d There is an edge touching two different triangles. Since S has no 4-cycles and 2c does
not hold, any pair of different triangles of T in S are vertex-disjoint. Let v1w1 be
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an edge touching the two triangles T � v1v2v3v1 and T 1 � w1w2w3w1 in S. Since
S has no 4-cycle and 2b does not hold, d̂Spw2q � d̂Spw3q � d̂Spv2q � d̂Spv3q � 2.
As S contains no bipartite claw and 2c does not hold, each v P NSpv1qztv2, v3,w1u

is a pendant vertex and also each v P NSpw1qztw2,w3, v1u is a pendant vertex. If
none of the edges v2v3 and w2w3 is multiple, S is contained in some member of
B16. If v2v3 is multiple, then w2w3 is simple (because S contains no 2-braid) and
d̂Spv1q � 3 (because S contains no P5 YC2), and we conclude that S is contained
in a member of B10.

2e There is a triangle T touching a 4-path P at an endpoint of P. Let T � v1v2v3v1 touch
P � v1w1w2w3 at v1. Since 2a does not hold, we assume, without loss of gen-
erality, that d̂Spv2q � 2. As 2c does not hold, v1 and w2 are nonadjacent. Since
S has no 4-cycles, v1 and w3 are nonadjacent. As 2d does not hold, w1 and w3

are nonadjacent. Since S has no 4-cycles and no 5-cycles, v3 is nonadjacent to w1,
w2, and w3. So, two vertices of VpTqYVpPq are adjacent only if they are adjacent
in T or in P. Since 2b does not hold, w3 is a pendant vertex. As S contains no
P3 Y P5 and ℓ � 3, there is at most one vertex v P NSpv3qztv1, v2u and, if so, v is a
pendant vertex and vv3 is simple. Since S has no 4-cycles, 2c does not hold, and
S contains no bipartite claw, each v P NSpv1qztv2, v3,w1u is a pendant vertex. As
2d does not hold and S contains no bipartite claw, each v P NSpw1qztv1,w2u is
a pendant vertex. Since 2b does not hold, each vertex v P NSpw2qztw1,w3u is a
pendant vertex.

If w2 has a pendant neighbor or w2w3 is multiple, then d̂Spw1q � d̂Spv3q � 2 and
v2v3 is simple (otherwise S contains P5 Y P3, P5 Y C2, braid, 1-braid, or 2-braid)
and, therefore, S is contained in some member of B16. Hence, we can assume
that d̂Spw2q � 2 and w2w3 is simple.

If d̂Spv3q � 3 or v2v3 is multiple, then d̂Spv1q � 3 (because S contains no P5 Y P3

or P5YC2) and S is contained in some member of B10. Otherwise, S is contained
in some member of B16.

2f None of the previous subcases holds. Let T � v1v2v3v1 be triangle of S. Suppose, by
the way of contradiction, that v1 has two non-pendant neighbors different from
v2 and v3. Let w1,w2 P NGpv1qztv2, v3u such that w1 and w2 are non-pendant.
Since w1 is non-pendant, there exists some vertex w3 P NGpw1qztv1u. As S has
no 4-cycles and 2c does not hold, w3 R VpTq Y tw1,w2u. Similarly, there is a
vertex w4 P NGpw2qztv1u and w4 R VpTq Y tw1,w2,w3u. But then, S contains a
bipartite claw, a contradiction.

Hence, each vertex of T is adjacent to at most one non-pendant vertex not inVpTq.
Since S has no 4-cycles, 2c and 2e do not hold, and ℓ � 3, if w is a non-pendant
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neighbor of vi for some i P t1, 2, 3u, then each v P NSpwqztviu is a pendant
vertex.

Suppose that v1 is adjacent to some non-pendant vertex w1 such that w1 is adja-
cent to two pendant neighbors or there is a multiple edge joiningw1 to a pendant
neighbor. Since S contains no P5 Y P3, P5 YC2, 3P3, 2P3 YC2, P3 Y 2C2, or 3C2, if
d̂Spv1q ¥ 4, then d̂Spv2q � d̂Spv3q � 2 and one of the following holds:

• d̂Spv1q � 4 and the edge joining v1 to a pendant vertex is simple and, con-
sequently, S is contained in some member of B13.

• v2v3 is simple and S is contained in some member of B16.

So, we assume that d̂Spv1q � 3. Since 2a does not hold, we assume, without loss
of generality, that d̂Spv3q � 2. Since S contains no P5YP3, P5YC2, braid, 1-braid,
or 2-braid, d̂Spv2q ¤ 3 and if there is v P NSpv2qztv1, v3u, then v is pendant and
v2v is simple. We conclude that S is contained in some member of B10.

So it only remains to consider the case in which each non-pendant vertex w of vi
for some i P t1, 2, 3u satisfies that d̂Spwq � 2 and that, for each w 1 P NSpwqztviu,
ww 1 is simple. Since 2a does not hold, S is contained in some member of B16.

Case 3. S has a longest cycle of length ℓ � 4.
In each subcase, we assume that the previous subcases do not hold.

3a There are two touching 4-cycles in S, say C � v1v2v3v4v1 and C 1 � v1w2w3w4v1.
Since S has no 5-cycle and contains no P3 Y P5, VpSq � VpCq Y VpC 1q. Since S

contains no P5 Y C2, the edges v2v3, v3v4, w1w2, and w2w3 are simple. If v2v4

is multiple, then there is no edge v1v3. Symmetrically, if w1w3 is multiple, then
there is no edge v1w2. We conclude that S is contained in some member of B2,
B3, or B4.

3b There is a triangle T touching a 4-cycle in S. LetC � v1v2v3v4v1 touch T � v1w1w2v1.
As S has no 5-cycle and contains no bipartite claw, we have NSpv2q � tv1, v3, v4u,
NSpv4q � tv1, v2, v3u, andNSpv3qXtw1,w2u � H. This also means thatNSpw1qX

VpCq � NSpw2qXVpCq � tv1u. Since S contains no P5YP3 and 3a does not hold,
d̂Spw1q ¤ 3 and we assume, without loss of generality, that d̂Spw2q � 2.

Let us consider the case when d̂Spw1q � 3 or w1w2 is multiple. Since S contains
no P5 Y P3 or P5 Y C2, NSpv1q � VpCq Y VpTq, NSpv3q � VpCq, and if there is
some w3 P NSpw1qztv1,w2u then w3 is a pendant vertex of S and w1w3 is simple.
In addition, v2v3 and v3v4 are simple because S contains no 1-braid or 2-braid.
If v2v4 is not a multiple edge of S, then S is contained in some member of B3.
Otherwise, v1v3 is not an edge of S (because S contains no 1-braid or 2-braid)
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and S is contained in some member of B2. So, from now on, we assume that
d̂Spw1q � d̂Spw2q � 2 and w1w2 is simple.

Suppose that v2 and v4 are adjacent. Since S contains no bipartite claw, each
v P NSpv1qzpVpTq Y VpCqq is a pendant vertex of S. So, if NSpv3q � VpCq, then
S is contained in some member of B12. Therefore, we can assume that there is
some w3 P NSpv3qzVpCq. Since S contains no bipartite claw, P5 Y P3, or P5 Y C2,
v1v3 is not an edge of S, |NSpv3qzVpCq| � 1, w3 is a pendant vertex of S, and v3w3

is simple. We conclude that S is contained in some member of B11.

It only remains to consider the case when v2 and v4 are nonadjacent. Due to the
first remarks of this subcase, NSpv2q � NSpv4q � tv1, v3u. Notice that each v P

NSpv1qzpVpTq Y VpCqq satisfies NSpvq � tv1, v3u because S contains no bipartite
claw. If each v P NSpv3qztv1u satisfies that NSpvq � tv1, v3u, then S is contained
in some member of B16. So, we can assume that there is some w3 P NSpv3qztv1u

and some w4 P NSpw3qztv1, v3u. By construction, w3,w4 R VpCq Y VpTq. Then,
NSpw3q � tv3,w4u and w3w4 is simple since S contains no braid or 1-braid. In
addition, NSpw4q � tv3,w3u because S contains no P3 Y P5. Since S contains
no bipartite claw, each v P NSpv3qztv1, v2, v4,w3,w4u satisfies NSpvq � tv1, v3u.
Thus, S is contained in some member of B16.

3c S contains K2,3. Equivalently, suppose that there are two vertices v1, v3 P VpSq

such that NSpv1q X NSpv3q consists of at least three vertices. Let v2 be a vertex
of NSpv1q XNSpv3q of maximum degree in pS and let v4 and v5 be any two other
vertices ofNSpv1qXNSpv3q. Since S has no 5-cycle and contains no bipartite claw,
tv2, v4, v5u is a stable set, d̂Spv4q � d̂Spv5q � 2, and each v P NSpv2qztv1, v3u is a
pendant vertex.

Suppose that each vertex v P pNSpv1q YNSpv3qqztv1, v2, v3u is such that NSpvq �

tv1, v3u. If v2 is adjacent to at most one pendant vertex and any edge joining v2

to a pendant vertex is simple, then S is contained in some member of B15. So,
assume, on the contrary, that v2 is adjacent to at least two pendant vertices or v2

is joined to a pendant vertex by a multiple edge. Then, NSpv1q � tv2, v3, v4, v5u

and NSpv3q � tv1, v2, v4, v5u (because S contains no P5 Y P3), each of the edges
v1v4, v1v5, v3v4, v3v5 is simple (because S contains no 1-braid and no 2-braid) and,
consequently, S is contained in some member of B14. So, we can assume that
there is some vertex w1 P NSpv1qztv2, v3u such that NSpw1q � tv1, v3u and let
w2 P NSpw1qztv1, v3u. Since S contains no P3 Y P5, d̂Spv2q � 2. Notice that,
by construction, w1 is nonadjacent to v3; otherwise, w1 P NSpv1q X NSpv3q and
d̂Spw1q ¡ 2 � d̂Spv2q, contradicting the choice of v2. Since S contains no braid
or 1-braid, d̂Spw1q � 2 and w1w2 is simple. Notice that w2 is a pendant vertex
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because S has no 5-cycle, contains no P5 Y P3, and 3b does not hold. Since S

contains no bipartite claw, w1 is the only vertex v P NSpv1qztv2, v3u such that
NSpvq is not contained in tv1, v3u. By symmetry, there is at most one vertex
w3 P NSpv3qztv1, v2u such that NSpw3q � tv1, v3u and, if so, d̂Spw3q � 2, the
vertex w4 � NSpw3qztv3u is a pendant vertex, and w3w4 is simple. Since, by
construction, all vertices v P pNSpv1q Y NSpv3qqztv1, v3,w1,w3u are such that
NSpvq � tv1, v3u, S is contained in some member of B16.

3d There is a 4-cycle C � v1v2v3v4v1 such that each vertex vi of C has a neighbor wi R

VpCq. Since S has no 5-cycle and 3c does not hold, NSpviq XNSpvjq � VpCq for
all i and all j. In particular, w1, w2, w3, and w4 are pairwise different. Since S

contains no P5 Y P3 or P5 YC2, wi is the only vertex in NSpviqzVpCq and viwi is
simple for each i � 1, 2, 3, 4. Moreover, w1, w2, w3, and w4 are pendant vertices
as S has no 6-cycle and contains no bipartite claw. Finally, since S contains no
bipartite claw, C is chordless and we conclude that S is a member of B5.

3e There is a 4-cycle C touching a 4-path P at an endpoint of P. Let C � v1v2v3v4v1

touch P � v1w1w2w3 in v1. Since ℓ � 4, S contains no P5 Y P3 or P5 Y C2,
and 3a does not hold, NSpw3q � tw1,w2u and w2w3 is simple. Similarly, and
since 3b does not hold, NSpw2q � tw1,w3u. Since S has no 5-cycles and 3c does
not hold, NSpw1q X VpCq � tv1u. Since ℓ � 4 and S contains no P5 Y P3, each
v P NSpw1qztv1,w2,w3u is a pendant vertex of S, NSpv1q � VpCq Y tw1u, and
NSpv2q,NSpv3q,NSpv4q � VpCq. Notice also that v2v3 and v3v4 are simple be-
cause S contains no P5 Y C2. Therefore, if v2v4 is not a multiple edge of S, then
S is contained in some member of B9. If, on the contrary, v2v4 is multiple, then
v1 and v3 are nonadjacent (because S contains no P5 Y C2) and S is contained in
some member of B10.

3f There is a 4-cycle C � v1v2v3v4v1 such that three of its vertices have a neighbor outside
C, say, vi has a neighbor wi R VpCq for each i � 1, 2, 3. Then, NSpv1qzVpCq,
NSpv2qzVpCq, andNSpv3qzVpCq are pairwise disjoint and eachw P NSpviqzVpCq,
for some i P t1, 2, 3u, is a pendant vertex because 3c does not hold and S has no
5-cycles or 6-cycle and contains no P5YP3. Since 3d does not hold and S contains
no bipartite claw, NSpv4q � tv1, v3u. Finally, w2 is the only pendant neighbor of
v2 and v2w2 is simple because S contains no P5YP3 or P5YC2. We conclude that
S is a contained in some member of B15.

3g There is a 4-cycle C � v1v2v3v4v1 where v1 is adjacent to a non-pendant vertex w1 R

VpCq. Let w2 be any vertex of NSpw1qztv1u. Then, w2 R VpCq because S contains
no 5-cycle and 3c does not hold. As S has no 5-cycle or 6-cycle and 3b does
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not hold, NSpw2q X VpCq � H. Therefore, w2 is a pendant vertex as 3e does
not hold. Notice that NSpv2q,NSpv4q � VpCq because S contains no bipartite
claw. Since w2 is an arbitrary vertex of NSpw1qztv1u, each w P NSpw1qztv1u is
a pendant vertex. Since w1 is an arbitrary non-pendant vertex in NSpv1qzVpCq,
for every non-pendant vertex w 1

1 in NSpv1qzVpCq, each w P NSpw
1
1qztv1u is a

pendant vertex. Thus, since S contains no P3 Y P5, w1 is the only non-pendant
vertex in NSpv1qzVpCq; i.e., each v P NSpv1qztv2, v3, v4,w1u is a pendant vertex.

Suppose first that d̂Spw1q ¡ 2 or w1w2 is multiple. Since S contains no P5YP3 or
P5YC2, v1 has no pendant neighbors andNSpv3q � VpCq. If v2v4 is not a multiple
edge, then S is contained in some member of B9, but if v2v4 is a multiple edge,
then v1v3 is not an edge of S (because S contains no 1-braid or 2-braid) and S is
contained in some member of B10. So, from now on, we assume that d̂Spw1q � 2
and w1w2 be simple.

Suppose that v2 and v4 are adjacent. If v3 is adjacent to some v P VpSqzVpCq,
then v is a pendant vertex and v3v is simple (because S contains no P5 Y P3 or
P5 Y C2) and v1 is not adjacent to v3 (because S contains no bipartite claw), so S

is contained in some member of B11. Otherwise, S is contained in some member
of B12. So, from now, we assume that v2 and v4 are nonadjacent.

If v3 also has some non-pendant neighbor w3 P VpSqzVpCq, then, reasoning with
w3 as we did with w1, we prove that each v P NSpv3qzVpCq different from w3

is pendant and we can assume that d̂Spw3q � 2 and, if w4 is the only vertex of
NSpw3qztv3u, then w3w4 is simple. Thus, S is contained in some member of B16,
even if v3 has no non-pendant neighbor.

3h None of the previous subcases holds. Since ℓ � 4, there exists some 4-cycle C �

v1v2v3v4v1 in S. Since 3g does not hold, each v P NSpviqzVpCq is pendant, for
each i � 1, 2, 3, 4. Since 3f does not hold, there are at most two vertices of C
that are adjacent to pendant vertices. If there are less than two vertices of VpCq
adjacent to pendant vertices, S is contained in some member of B13. Therefore,
we assume that there are two vertices of VpCq adjacent to pendant vertices, say
v1 and vj, where j � 2 or j � 3.

If each of the vertices v1 and vj is adjacent to two pendant vertices or joined to
some pendant vertex through a multiple edge, then j � 3 and v1 is nonadjacent
to v3 (because S contains no braid, 1-braid, or 2-braid). We conclude that S is
contained in some member of B16.

Finally, if vj is adjacent to only one pendant vertex through a simple edge, then
S is contained in some member of B13.
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Case 4. S has a longest cycle C of length ℓ � 6,
Let C � v1v2v3v4v5v6v1. Since S is connected and contains no 6-pan, the vertices of

C are the only vertices of S. As S contains no 5-cycle, C has no short chords.
Suppose first that C has two multiple chords, say v1v4 and v2v5 are multiple edges.

Since S contains no 2-braid, there is no edge v3v6 in S and each of v2v3, v3v4, v5v6, and
v6v1 is simple. This means that S is a member of B7. So, from now on, we can assume
that C has at most one multiple chord.

Since C has at most one multiple chord, S would belong to B8 if no edge of C were
multiple. Therefore, from now on, we assume that v1v2 is multiple. As S contains no
2-braid, none of v3v4 and v5v6 is multiple and at most one of v1v6, v2v3, v5v6 is multiple.
In its turn, this means that, if C has no multiple chords, then S is a member of B7 or
B8. So, from now on, let C have exactly one multiple chord.

Since S contains no 2-braid, if v3v6 were the only multiple chord of S, then v4v5

would not be multiple, v1 would be nonadjacent to v4, v2 would be nonadjacent to v5,
and, as a result, S is a member of B6, By symmetry, we assume that the only chord of
S is v1v4. Recall that the only possible multiple edges of C are v1v6, v2v3, and v4v5 and
that at most one of them is multiple. If v1v6 is multiple, then S is a member of B8. If
v4v5 is multiple, then there is no edge v3v6 in S (because S contains no 2-braid) and,
consequently, S is a member of B7. If v2v3 is multiple, then v2v5 and v3v6 are not edges
of S (because S contains no 2-braid) and, consequently, S is a member of B6. Finally, if
none of v4v5, v1v6, and v2v3 is multiple, then S is a member of B8.

In each of the Cases 1 to 4 above, we proved that the component S of H is contained
in some member of B1, B2, . . . , or B16. Consequently, case (b) of assertion (v) holds,
which completes the proof.

3.6.3 Recognizing balanced complements of line graphs of multigraphs

We will derive, from the above theorem, the existence of a linear-time recognition
algorithm for balanced graphs within complements of line graphs of multigraphs.

Given a graph G, we define a pruned graph of G as any maximal induced subgraph
of G having no three pairwise false twins and no universal vertices. Let V1,V2, . . . ,Vq

be the equivalent classes of the relation “is a false twin of” on the set of vertices of
G. We say that the equivalent class Vi is universal if some vertex of Vi is a universal
vertex of G. Clearly, if Vi is universal, then |Vi| � 1. The pruned graphs of G are those
subgraphs of G induced by some set V 1

1YV 1
2Y . . .YV 1

q such that V 1
i � Vi and |V 1

i| � βi,
for each i � 1, 2, . . . ,q, where

βi �

$&
%

minp|Vi|, 2q if Vi is not universal

0 otherwise.
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Since any two vertices that belong the same Vi are nonadjacent and have the same
neighbors, the pruned graphs of G are unique up to isomorphisms and we denote
any of them by PpGq.

Lemma 3.30. A pruned subgraph of a graph G can be computed in linear time.

Proof. In order to compute PpGq, we first construct the modular decomposition tree
TpGq of G. Then, two vertices u and v of G are false twins if and only if the leaves of
the modular decomposition tree representing them are children of the same parallel
node. This means that we can find a subset of vertices inducing a pruned graph of G
by marking for exclusion all universal vertices of G and by performing a breadth-first
search on the modular decomposition tree of G in order to mark for exclusion also the
third, fourth, fifth, and so on, leaf children of each parallel node. Since the modular
decomposition tree can be computed in linear time, PpGq can also be computed in
linear time.

The following fact about PpGq is crucial for our purposes.

Corollary 3.31. Let G be the complement of the line graph of a multigraph. Then, G is bal-
anced if and only if PpGq is balanced.

Proof. If G is balanced, then clearly PpGq is also balanced (because PpGq is an induced
subgraph of G). In order to prove the converse, we assume that G is not balanced and
we will prove that PpGq is not balanced. Let W be a subset of vertices inducing a min-
imal induced subgraph of G that is not balanced. By Theorem 3.29, the subgraph of
G induced by W is isomorphic to 3-sun, 2-pyramid, 3-pyramid, C5, C7, U7, or V7. In
particular, there are no three pairwise false twins of G in W and there is no universal
vertex of G in W. Therefore, if the equivalent classes V1,V2, . . . ,Vq and βi are as de-
fined earlier and Wi �WXVi, then |Wi| ¤ βi for each i � 1, 2, . . . ,q. So, it is possible
to find V 1

1,V 1
2, . . . ,V 1

q such that Wi � V 1
i � Vi and |V 1

i| � βi for each i � 1, 2, . . . ,q.
Then, G 1 � GrV 1

1YV 1
2Y� � �YV 1

qs is a pruned graph ofG andG 1 is not balanced because
W � VpG 1q and G 1rWs � GrWs is not balanced.

Let G be the complement of the line graph of a multigraph and let k be a fixed
integer. According to Corollary 3.31, if PpGq has at most k vertices, we can decide
whether G is balanced in linear time by computing PpGq in linear time and then de-
ciding whether PpGq is balanced in constant time. (Indeed, the obvious Opn7q-time
recognition algorithm for balancedness among complements of line graphs of multi-
graphs that follows from assertion (iii) of Theorem 3.29 becomes constant-time when
n � Op1q.) In what follows, we will fix k � 40 and the remainder of this subsection is
devoted to proving that we can decide in linear time whether PpGq is balanced even
if PpGq has more than 40 vertices.
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...

a1
a2

ap

B ′
16

Figure 3.3: Multigraph family B 1

16. Light lines represent single edges, whereas bold lines
represent one or more parallel edges. Parameter p varies over the positive integers, and
a1,a2, . . . ,ap are pairwise false twins

We denote by L�1pGq any multigraph H without isolated vertices such that LpHq �
G and whose underlying graph pH satisfies LppHq � RpGq, where RpGq is the represen-
tative graph of G as defined in Section 3.5. Given a graph G, a multigraph L�1pGq can
be computed in linear time of G (see [78, p. 67–68]). We say that two incident edges e1

and e2 of a multigraph H are twins if they are incident to the same edges of EpHq. We
say that a multigraph H is reduced if each pair of twin edges are parallel. By construc-
tion, H � L�1pGq is reduced. In Figure 3.3 we introduce the multigraph family B 1

16.

Corollary 3.32. Let G be the complement of the line graph of a multigraph and suppose that
PpGq has more than 40 vertices. If H � L�1pPpGqq, then the following conditions are equiva-
lent:

(i) G is balanced.

(ii) H is a connected submultigraph of some member of B15 or B 1
16.

(iii) H is connected, has exactly two vertices v1 and v2 that are incident to at least six edges
each, and, for each i � 1, 2, there is at most one vertex wi that is adjacent to vi and
such that there is some xi P NHpwiqztv1, v2u and, if so, each of the following holds:
NHpwiq � txi, v1, v2u, there is exactly one edge ei joining wi to xi, and ei is the only
edge incident to xi. (It is possible that w1 � w2.)

Proof. Suppose thatG is balanced and letH � L�1pPpGqq. AsHhas no isolated vertices
and PpGq has no universal vertices, each component of H has at least two edges. Since
G is balanced, PpGq is balanced; i.e., H is L-balanced. So, by Theorem 3.29, either
H is a connected submultigraph of some member of B1, B2, . . . , B16 or H has two
components, each of which is contained in a member of A1, A2, or A3. But, as PpGq has
more than 40 vertices, H has more than 40 edges. Since, by construction, PpGq has no
three pairwise true twins, H has no three pairwise parallel edges. Since, in addition, H
is reduced, H is necessarily a connected submultigraph of B15 or B 1

16. Conversely, if H
is a submultigraph of some member of B15 or B 1

16, then PpGq is balanced by Theorem
3.29 and, then, G is also balanced by Corollary 3.31. This concludes the proof of the
equivalence between (i) and (ii).
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Since clearly (iii) implies (ii), it only remains to show that (ii) implies (iii). So, as-
sume that H is is a connected submultigraph of some member of B15 or B 1

16. Since
H � L�1pPpGqq, H has no three pairwise parallel edges. Therefore, H has at most two
vertices incident to at least six edges. Moreover, since H has at least 40 edges, H has
exactly two vertices incident to at least six edges each, and (iii) clearly holds.

The next result implies that if PpGq has more than 40 vertices, then we can either
detect that G is not balanced or compute L�1pPpGqq efficiently.

Corollary 3.33. Let G be the complement of the line graph of a multigraph. Let nP and mP

be the number of vertices and edges of PpGq and suppose that nP ¡ 40. If

mP ¥
2
9pnP � 3qpnP � 36q (3.1)

does not hold, then G is not balanced. On the other hand, if (3.1) holds, then H � L�1pPpGqq

can be computed from G in linear time.

Proof. Suppose first that G is balanced and let H � L�1pPpGqq. Then, H has nP edges
and satisfies condition (iii) of Corollary 3.32. Let A be the set of vertices a of H such
that NHpaq � tv1, v2u. Since PpGq has no three pairwise true twins, H has no three
pairwise parallel edges. Moreover, asH is reduced, there are at most two edges joining
vi to pendant vertices in A, for each i � 1, 2. Let Ei be the set of edges joining vi to
non-pendant vertices in A, for each i � 1, 2. Since H is a submultigraph of a member
ofB15 orB 1

16 andH is reduced, |E1|�|E2| ¥ nP�12. Without loss of generality, assume
that |E1| ¥ |E2|. Then, 1

2pnP � 12q ¤ |E1| ¤
2
3nP because each non-pendant vertex of

A is joined to v1 by at most two edges and joined to v2 by at least one edge. So, since
each edge of E2 is incident to at most two edges of E1 and PpGq � LpHq,

mP ¥ |E2|p|E1| � 2q ¥ pnP � 12� |E1|qp|E1| � 2q ¥ 2
9pnP � 3qpnP � 36q.

This proves that if (3.1) does not hold, then G is not balanced.
Suppose now that (3.1) holds. We have seen thatPpGq can be computed inOpm�nq

time, where n and m are the number of vertices and edges of G. The complement of
PpGq can obviously be computed in Opn2

Pq time. In addition, H � L�1pPpGqq can be
computed from PpGq in linear time of PpGq, which is again Opn2

Pq. Notice that since
mP ¤ m and we are assuming that (3.1) holds, Opn2

Pq is Opmq. We conclude that H
can be computed from G in Opm� nq time, as desired.

Let G be the complement of the line graph of a multigraph. We know that if PpGq
has at most 40 vertices, we can decide whether G is balanced in linear time. So, sup-
pose that PpGq has more than 40 vertices and let nP and mP be the number of vertices
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and edges of PpGq. If (3.1) does not hold, we know that G is not balanced. Otherwise,
we can decide whether G is balanced in linear time by first computing H � L�1pPpGqq

and then checking the validity of condition (iii) of Corollary 3.32. As a conclusion, we
have the following.

Corollary 3.34. Given a graph G that is the complement of the line graph of a multigraph, it
can be decided whether or not G is balanced in linear time.

3.6.4 Lemmas for the proof of Theorem 3.28

This subsection is devoted to prove that each of the multigraph families B1, B5, B6,
B7, B8, B13, B14, and B15 is L-balanced.

A bicoloring of a t0, 1u-matrix is a partition of its columns into red and blue columns
such that every row with two or more 1’s contains at least a 1 in a red column and at
least a 1 in a blue column. Clearly, the edge-vertex incidence matrix of an odd cycle
cannot be bicolored. Interestingly, a t0, 1u-matrix is balanced if and only if each of
its submatrices is bicolorable [8]. Let A be a submatrix of the matching-matrix of a
multigraph H and let M and E be the sets of maximal matchings and edges of H corre-
sponding to the rows and columns of the submatrixA, respectively. In this context, we
say that a partition tE1,E2u of E is a bicoloring of A if for each M PM either |MXE| ¤ 1
or M intersects both E1 and E2.

We will make repeated use the following lemma.

Lemma 3.35. Let H be a multigraph that is not L-balanced. Then, a matching-matrix of H
has some submatrix A which is an edge-vertex incidence matrix of an odd chordless cycle and
let E be the set of edges of H corresponding to the columns of A. If X is a set of pairwise
incident edges of H, there must be some maximal matching M of H such that |MXE| � 2 and
MX EX X � H.

Proof. Let M be the set of maximal matchings of H corresponding to the rows of the
submatrix A. Since A is an edge-vertex incidence matrix of an odd chordless cycle,
|M X E| � 2 for each M P M. Since X consists of pairwise incident edges of X, |M X

E X X| ¤ 1 for every matching M of X. As |M X E| � 2 for each M P M, it follows
that |pMXEqzXq| ¥ 1 for each M PM. Since A is not bicolorable, tXXE,EzXu is not a
bicoloring of A and, necessarily, there is some M PM such that |MX XX E| � 0.

If u, v,w are three pairwise adjacent vertices of H of a multigraph, we denote by
THpu, v,wq the set of all edges of H joining any two of the vertices u, v, and w. Recall
that EHpvq denote the set of edges of H incident to v.

Lemma 3.36. The family B1 is L-balanced.
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Figure 3.4: Vertex labeling of the multigraph H for the proofs of Lemmas 3.36 to 3.43.
Light lines represent single edges, whereas bold lines represent one or more parallel edges.
Parameter p varies over the positive integers, and a1,a2, . . . ,ap are pairwise false twins

Proof. By the way of contradiction, consider a not L-balanced multigraph H P B1.
Label its vertices as in Figure 3.4 and let A and E be as in Lemma 3.35.

We claim that b1b6 P E. By Lemma 3.35 applied toX � THpb1,b2,b3q, there is some
maximal matching M of H such that |M X E| � 2 but M X E X X � H. Necessarily,
b1b6 PMX E and, in particular, b1b6 P E, as claimed.

By Lemma 3.35 applied to X � EHpb1q, there is some maximal matching M of H
such that |M X E| � 2 but M X E X X � H. Necessarily, M X E consists of one edge
joining b2 to b3 and one edge joining b4 to b5 and, by the maximality of M, b1b6 PM.
So, as we proved that b1b6 P E, we conclude that b1b6 PMXEXX, which contradicts
MX EX X � H. Hence, any member of B1 is L-balanced.

Lemma 3.37. The family B5 is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H P B5.
Label its vertices as in Figure 3.4 and let A and E be as in Lemma 3.35.

By Lemma 3.35 applied to X � EHpb2q, there is a maximal matching M of H such
that |M X E| � 2 but M X E X X � H. So, necessarily, M X E contains at least one of
b1b5 and b3b7. Symmetrically, M X E contains at least one of b2b6 and b4b8. So, we
assume, without loss of generality, that b1b5,b2b6 P E.

We claim that from b1b5,b2b6 P E it follows that b3b7,b4b8 P E. By Lemma 3.35
applied to X � EHpb1q, there is some maximal matching M of H such that |MXE| � 2
but MXEXX � H. As b1b5 P EXX, it follows that b1b5 RM. Thus, by the maximality
of M, M contains an edge joining b1 to either b2 or b4. Then, as MX E consists of two
non-incident edges and is disjoint from EHpb1q, necessarily b3b7 P M X E and, in
particular, b3b7 P E. Symmetrically, b4b8 P E.
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Let R � pEHpb2q Y tb4b8uq X E and B � EzR. Then, tR,Bu is a partition of E

and we claim that tR,Bu is bicoloring of A. Let M the set of maximal matchings of
H corresponding to the rows of A and let M P M. As A is an edge-vertex incidence
matrix of an odd chordless cycle, |MX E| � 2. Suppose, by the way of contradiction,
that M X R � H. This meas that M X E is disjoint from EHpb2q Y tb4b8u. So, since
|MXE| � 2, MXE consists of one edge incident to b1 and one edge incident to b3 but
none of them incident to b2 and, by the maximality of M, b2b6 P M. Consequently,
b2b6 PMXR, a contradiction. This contradiction arose from assuming thatMXR � H.

Suppose now that M X B � H. This means that M X E consists of two edges
contained in EHpb2q Y tb4b8u. Since M is a matching, MX E consists of b4b8 and one
edge incident to b2. Then, the maximality of M implies that M X tb1b5,b3b7u � H

and, consequently, pM X Bq X tb1b5,b3b7u � H, a contradiction. This contradiction
arose from assuming that MX B � H.

So, we have proved that for eachM PM, MXR � H andMXB � H, which proves
that tR,Bu is a bicoloring of A, contradicting the choice of A. Hence, any member of
B5 is L-balanced.

Lemma 3.38. The family B6 is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H P B6.
Label its vertices as in Figure 3.4 and let A and E be as in Lemma 3.35.

We claim that b4b5 P E. Suppose, by the way of contradiction, that b4b5 R E. By
Lemma 3.35 applied to X � EHpb3q, there is some maximal matching M of H such
that |M X E| � 2 but M X E X X � H. Necessarily, M X E consists of the edge b5b6

and an edge joining b1 to b2. In particular, b5b6 P E. Similarly, by Lemma 3.35 applied
to X � EHpb6q, there is some maximal matching M of H such that |M X E| � 2 and
M X E X X � H. Necessarily, M X E consists of b3b4 and an edge joining b1 to b2.
Hence, the maximality of M implies that b5b6 P M and, since b5b6 P E, it follows
that b5b6 P MX EX X, contradicting MX EX X � H. This contradiction arose from
assuming that b4b5 R E and completes the proof of the claim.

Moreover, we claim that no edge joining b3 to b6 belongs to E. Suppose, by the way
of contradiction there is some edge e P E joining b3 to b6. Let M be the set of maximal
matchings of H corresponding to the rows of A. As A is an edge-vertex incidence
matrix of an odd chordless cycle, there are two different maximal matchings M,M 1 P

M such that |MX E| � |MX E| � 2 and e PM,M 1. Since every maximal matching of
H containing e also contains b4b5, we conclude that MXE �M 1XE � te,b4b5u. This
means that rows and columns of A corresponding to M,M 1 and e,b4b5 determine a
2� 2 submatrix of A full of 1’s, which contradicts the choice of A. This contradiction
arose from assuming that e P E and completes the proof of the claim.
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We also claim that b5b6 P E. Suppose, by the way of contradiction that b5b6 R E,
by Lemma 3.35 applied to X � EHpb4q, there is some maximal matching M of H such
that |MXE| � 2 and MXEXX � H. As b5b6 R E, MXE consists of b1b6 and an edge
joining b2 to b3 and the maximality of M implies that b4b5 PM. Thus, since b4b5 P E,
it follows that b4b5 PMXEXX, which contradicts MXEXX � H. This contradiction
arose from assuming that b5b6 R E. This concludes the proof of the claim.

We further claim that b3b4,b1b6 P E. By Lemma 3.35 applied to X � EHpb5q, there
is some maximal matchingM ofH such that |MXE| � 2 andMXEXX � H. Reasoning
as in the preceding paragraph, b3b4 P MX E; otherwise, the maximality of M would
imply that b4b5 P M and, since b4b5 P E, it would follow that b4b5 P M X E X X, a
contradiction. Suppose, by the way of contradiction, that b1b6 RMX E. Then, MX E

consists ofb3b4 and an edge joiningb1b2 and, by maximality ofM, b5b6 PM. But then,
since b5b6 P E, it follows that b5b6 P M X E X X, a contradiction. This contradiction
arose from assuming that b1b6 R M X E. As we proved that b3b4,b1b6 P M X E, in
particular b3b4,b1b6 P E, as claimed.

Let R � pEHpb3qYtb4b5uqXE and B � EzR. Then, tR,Bu is a partition of E and we
claim that tR,Bu is a bicoloring of A. Recall that M is the set of maximal matchings of
H corresponding to the rows of A and let M PM. Since A is an edge-vertex incidence
matrix of an odd chordless cycle, |MX E| � 2. Suppose, by the way of contradiction,
that M X R � H. This means that M X E is disjoint from EHpb3q Y tb4b5u. So, since
|MX E| � 2, necessarily M X E consists of b5b6 plus an edge joining b1 to b2 and, by
the maximality of M, b3b4 P M, which implies b3b4 P M X R, a contradiction. This
contradiction arose from assuming that MX R � H.

Suppose now that M X B � H. This means that M X E consists of two edges
that belong to EHpb3q Y tb4b5u. Since there is no edge in E joining b3 to b6, M X E

consists of b4b5 and an edge joining b2 to b3. Then, the maximality of M implies that
b1b6 P M and, as b1b6 P E, b1b6 P M X B, a contradiction. This contradiction arose
from assuming that MX B � H.

So, we have proved that tR,Bu is a partition ofE such that, for eachM PM, MXR �

H and MX B � H; i.e., tR,Bu is a bicoloring of A, which contradicts the choice of A.
Hence, any member of B6 is L-balanced.

Lemma 3.39. The family B7 is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H P B7.
Label its vertices as in Figure 3.4 and let A and E be as in Lemma 3.35.

By Lemma 3.35 applied to X � EHpb2q, there is some maximal matching M such
that |MXE| � 2 and MXEXX � H. Since MXE is a matching of size 2 disjoint from
X, necessarily at least one of b1b6, b3b4, or b5b6 belongs to MXE and, in particular, to
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E. By symmetry, we assume, without loss of generality, that b1b6 P E.
We now show that our assumption that b1b6 P E implies that b5b6 P E and, more-

over, that b2b3 P E or b3b4 P E. By Lemma 3.35 applied to X � EHpb1q, there is some
maximal matching M of H such that |M X E| � 2 and M X E X X � H. Suppose, by
the way of contradiction, that b5b6 R MX E. Then, MX E consists either of b2b3 and
one edge joining b4 to b5, or of b3b4 and one edge joining b2 to b5. In either case, the
maximality of M implies that b1b6 P M and, since we are assuming that b1b6 P E, it
follows that b1b6 PMX EX X, which contradicts MX EX X � H. This contradiction
arose from assuming that b5b6 R E. As MX E is a matching of size 2, disjoint from X,
and containing b5b6, necessarily b2b3 P M X E or b3b4 P M X E. This completes the
proof of the claim. As we are assuming that b1b6, we assume further, without loss of
generality, that b2b3,b5b6 P E.

Reasoning as in the previous paragraph, from the assumption that b2b3 P E we
can derive that b3b4 P E. We conclude that E1 � tb1b6,b2b3,b3b4,b5b6u is contained
in E. Let R � pEHpb2qYtb5b6uqXE, and B � EzR. We claim that tR,Bu is bicoloring of
A. Let M be a maximal matching of H corresponding to a row of A. By construction,
|MX E| � 2. If |MX E1| � 2, necessarily M has an edge in R and an edge in B. Notice
that if |MX E1| � 2, necessarily MX E1 � H and, since MX E is a matching of size 2,
M also has one edge in R and one edge in B. This shows that tR,Bu is a bicoloring of
A, which contradicts the choice of A. Hence, any member of B7 is L-balanced.

Lemma 3.40. The family B8 is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H P B8.
Label its vertices as in Figure 3.4 and let A and E be as in Lemma 3.35.

By Lemma 3.35 applied to X � EHpb3q, there is some maximal matching M of H
such that |MX E| � 2 and MX EXX � H. By symmetry, we assume, without loss of
generality, that MX E � tb1b2,b4b5u and, in particular, b1b2,b4b5 P E.

We claim that no edge joining b3 to b6 belongs to E. Suppose, by the way of
contradiction, that there is some edge e P E joining b3 to b6. Since A is an edge-
vertex incidence matrix of an odd chordless cycle, there are two different maximal
matchings M and M 1 of H such that e P M,M 1 and |M X E| � |M 1 X E| � 2. But
te,b1b2,b4b5u and te,b1b4,b2b5u are the only maximal matchings of H containing e

and |te,b1b2,b4b5u X E| � 3, a contradiction. This contradiction proves the claim.
We now show that our assumption that b1b2,b4b5 P E implies that b1b6 P E or

b5b6 P E. By Lemma 3.35 applied to X � EHpb2q, there is some maximal matching M

of H such that |MXE| � 2 and MXEXX � H. Necessarily, MXE consists of one edge
incident to b4 and one edge incident to b6 and, since no edge joining b3 to b6 belongs
to E, it follows that M X E contains b1b6 or b5b6. In particular, b1b6 P E or b5b6 P E.
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By symmetry, we assume, without loss of generality that b1b6 P E.
We further claim that b5b6 P E. By Lemma 3.35 applied to X � EHpb1q, there is

some maximal matching M of H such that |MXE| � 2 and MXEXX � H. Suppose,
by the way of contradiction, that b5b6 R E. In particular, b5b6 RMX E. As we proved
that no edge joining b3 to b6 belongs to E, we conclude that M X E consists either of
the edge b2b5 and an edge joining b3 to b4, or of the edge b4b5 and an edge joining b2

to b3. In either case, the maximality of M implies that b1b6 P M and, since b1b6 P E,
it follows that b1b6 P M X E X X, contradicting M X E X X � H. This contradiction
arose from assuming that b5b6 R E. This concludes the proof of the claim.

As b1b2,b4b5 P E implies that b1b6,b5b6 P E, by symmetry, b1b2,b5b6 P E implies
that b1b4 P E. Similarly, from b1b6,b4b5 P E follows that b2b5 P E. We infer that
EHpb1q Y EHpb5q � E. Let R � EHpb1q and B � EzR. Then, tR,Bu is a partition of E
and we claim that tR,Bu is a bicoloring of A. Indeed, given any maximal matching M

ofH, it contains one edge incident to b1, one edge incident to b3, and one edge incident
to b5. As EHpb1q � R and EHpb5q � B, M contains one edge from R and at least one
edge from B. This proves that tR,Bu is a bicoloring of A, contradicting the choice of
A. Hence, any member of B8 is L-balanced.

Lemma 3.41. The family B13 is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H P B13.
Label its vertices as in Figure 3.4 and let A and E be as in Lemma 3.35.

We claim that b3b4 P E. By Lemma 3.35 applied to X � EHpb1q, there is some
maximal matching of M of H such that |MX E| � 2 but MX EX X � H. Necessarily
b3b4 PMX E and, in particular, b3b4 P E.

By Lemma 3.35 applied to X � EHpb3q, there is some maximal matching of M
such that |M X E| � 2 but M X E X X � H. Necessarily, b2b4 P M X E and, by the
maximality of M, b3b4 P M. Hence, as b3b4 P E, we conclude that b3b4 P MX EX X,
which contradicts MX EX X � H. Hence, any member of B13 is L-balanced.

Lemma 3.42. The family B14 is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H P B14.
Label its vertices as in Figure 3.4 and let A and E be as in Lemma 3.35.

By Lemma 3.35 applied to X � EHpb1q, there is some maximal matching M of H
such that |MXE| � 2 but MXEXX � H. Necessarily, b2b3 PMXE or b2b4 PMXE.
By symmetry, we assume, without loss of generality, that b2b3 P M X E. Then, the
maximality of M implies that b1b4 P M and, necessarily b1b4 R E (otherwise, b1b4

would belong to MX EX X).
By Lemma 3.35 applied to X � EHpb3q, there is some maximal matching M such

that |MX E| � 2 but MX EXX � H. Since b1b4 R E, necessarily b1b3 PMX E. Then,
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the maximality of M implies that b2b4 PM and, necessarily b2b4 R E (otherwise, b2b4

would belong to MX EX X.)
By Lemma 3.35 applied to X � THpb1,b2,b3q, there is some maximal matching M

of H such that |MX E| � 2 but MX EX X � H. Necessarily, MX E contains an edge
incident to b4 and, in particular, b1b4 P E or b2b4 P E, which contradicts the conclusion
of the preceding two paragraphs.

Hence, any member of B14 is L-balanced.

Lemma 3.43. The family B15 is L-balanced.

Proof. By the way of contradiction, consider a not L-balanced multigraph H P B15.
Label its vertices as in Figure 3.4 and let A and E be as in Lemma 3.35.

We claim that b3b4 P E. By Lemma 3.35 applied to R � EHpb1q, there is some
maximal matching M of H such that |M X E| � 2 but M X E X X � H. Necessarily
b3b4 PMX E and, in particular, b3b4 P E.

By Lemma 3.35 applied to X � EHpb3q, there is some maximal matching M of H
such that |M X E| � 2 but M X E X X � H. Necessarily, M X E consists one edge
incident to b1 and one edge incident to b2, but none of them incident to b3. Hence,
by the maximality of M, b3b4 P M and, as we proved that b3b4 P E, we conclude that
b3b4 PMX EX X, which contradicts MX EX X � H.

Hence, any member of B15 is L-balanced.

3.7 Balancedness of a superclass of Helly circular-arc graphs

In this section, we give a minimal forbidden induced subgraph characterization of bal-
ancedness for a superclass of Helly circular-arc graphs. In order to do so, we introduce
the graph families below, which are schematically represented in Figure 3.5.

• For each t ¥ 2 and each p even such that 2 ¤ p ¤ 2t, the graph V2t�1
p has vertex

set tv1, v2, . . . , v2t�1,u1,u2u, v1v2 . . . v2t�1v1 is a cycle whose only chord is v1v3,
Npu1q � tv1, v2u, and Npu2q � tv2, v3, . . . , vp�1u.

• For each t ¥ 2, let D2t�1 be the graph with tv1, v2, . . . , v2t�1,u1,u2,u3u as vertex
set such that v1v2 . . . v2t�1v1 is a cycle whose only chords are v2t�1v2 and v1v3,
Npu1q � tv2t�1, v1u, Npu2q � tv2, v3u, and Npu3q � tv1, v2u.

• For each t ¥ 2 and each even p with 4 ¤ p ¤ 2t, let X2t�1
p be the graph with ver-

tex set tv1, v2, . . . , v2t�1,u1,u2,u3,u4u such that v1v2 . . . v2t�1v1 is a cycle whose
only chords are v2t�1v2 and v1v3, Npu1q � tv2t�1, v1u, Npu2q � tv2, v3,u4u,
Npu3q � tv2t�1, v1, v2,u4u, and Npu4q � tv1, v2, v3, . . . , vp,u2,u3u.
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Figure 3.5: Families of minimally not balanced Helly circular-arc graphs: (a) FamilyV2t�1
p :

The dotted paths joining v3 and vp�1 resp. vp�2 and v1 represent chordless even paths, not
simultaneously empty. All vertices of the dotted path joining v3 to vp�1 are adjacent to u2.
(b) Family D2t�1: The dotted path joining v3 and v2t�1 represents a nonempty even path of
length 2t� 2. (c) Family X2t�1

p : The dotted paths joining v4 and vp resp. vp�1 and v2t�1

represent any chordless even paths, both of them possibly empty, even simultaneously. The
vertices of the dotted path joining v4 to vp are all adjacent to u4.

In the three families of graphs above, C � v1v2 . . . v2t�1v1 is an unbalanced cycle and
consequently all their members are not balanced. In fact, we will see later that all these
graphs are minimally not balanced (see Corollary 3.45).

Our first result below is a minimal forbidden induced subgraph characterization
of balanced graphs restricted to Helly circular-arc graphs.

Theorem 3.44. Let G be a Helly circular-arc graph. Then, G is balanced if and only if G
has no odd holes and contains no induced 3-sun, 1-pyramid, 2-pyramid, C7, V2t�1

p , D2t�1, or
X2t�1
p for any t ¥ 2 and any valid p.

Proof. The ‘only if’ part is clear because the class of balanced graphs is hereditary.
Conversely, suppose that G is not balanced. Then, G contains some induced subgraph
H that is minimally not balanced. SinceG is a Helly circular-arc graph,H is also so. The
proof will be complete as soon as we prove that H is a 3-sun, 1-pyramid, 2-pyramid,
C7, V2t�1

p , D2t�1, or X2t�1
p for some t ¥ 2 and some valid p.

Since H is not balanced, a clique-matrix of H contains some square submatrix that
is an edge-vertex incidence matrix of an odd chordless cycle. Therefore, there are
some cliques Q1,Q2, . . . ,Q2t�1 and some pairwise different vertices v1, v2, . . . , v2t�1 of
H such that tv1, v2, . . . , v2t�1u XQi � tvi, vi�1u for each i � 1, 2, . . . , 2t � 1 (all along
the proof, subindices are to be understood modulo 2t� 1) for some t ¥ 1. It is easy to
verify that C � v1v2 . . . v2t�1v1 is an unbalanced cycle by setting We :� Qiztvi, vi�1u

for each edge e � vivi�1 of C.
If t � 1, Theorem 2.5 implies thatH contains an induced pyramid. This implies that

H itself is a pyramid because H is minimally not balanced. So, if t � 1, then H equals
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the 3-sun, 1-pyramid or 2-pyramid (because the 3-pyramid is not a Helly circular-arc
graph). So, from now on, we assume, without loss of generality, that t ¥ 2.

Let A be a Helly circular-arc model of H on a circle C. Denote by Ai the arc
of A corresponding to the vertex vi for each i � 1, 2, . . . , 2t � 1. Fix an anchor pj

of the clique Qj for each j � 1, . . . , 2t � 1. By construction, pj P Ai if and only
if vi P Qj. Therefore, by hypothesis, tp1,p2 . . . ,p2t�1u X Ai � tpi�1,piu for each
i � 1, . . . , 2t � 1. Since A1,A2, . . . ,A2t�1 are arcs of C, there are only two possible or-
ders for the anchors when traversing C in clockwise direction, either p1,p2, . . . ,p2t�1

or p2t�1, . . . ,p2,p1. So, we can assume, without loss of generality, that the anchors
p1,p2, . . . ,p2t�1 appear exactly in that order when traversing C in clockwise direction.
Hence, Ai X tp1,p2, . . . ,p2t�1u � tpi�1,piu implies that Ai is contained in the clock-
wise open arc of C that starts in pi�2 and ends in pi�1 for each i � 1, . . . , 2t � 1. We
now prove the following three claims about C.

Claim 1. All chords of C are short.

Proof of the claim. If t � 2, all possible chords of C are short. So, suppose that t ¥ 3.
Since Ai is contained in the clockwise open arc of C that starts in pi�2 and ends in
pi�1 for each i P t1, . . . , 2t � 1u, it follows that if the arc Ai intersects Aj for some
j P t1, . . . , 2t � 1u then i � j � 2, j � 1, j, j � 1, or j � 2 (modulo 2t � 1). We conclude
that each chord of C is short, as claimed.

Claim 2. Any set of three vertices ofC that induces a triangle inH consists of three consecutive
vertices of C.

Proof of the claim. Suppose, by the way of contradiction, that there is some set S of three
vertices of C that induces a triangle T in H but, nevertheless, S does not consist of
three consecutive vertices of C. Notice that if each vertex of S were consecutive in C

to some other vertex of S, then S would consist of three consecutive vertices of C. So,
necessarily, there must be some vertex s1 of S such that s1 is not consecutive in C to
any vertex of Szts1u. By symmetry, we can assume that s1 � v1 and, since all chords
of C are short, S � tv1, v3, v2tu. Being C odd and each of its chords short, necessarily
t � 2. Consequently, S � tv1, v3, v4u is contained in some clique of H, that should have
some anchor q. Nevertheless, since A1 is contained in the clockwise open arc of C that
starts in p4 and ends in p2, A3 is contained in the clockwise open arc of C that starts
in p1 and ends in p4, and A4 is contained in the clockwise open arc of C that starts in
p3 and ends in p1, there is no suitable position in C for q. This contradiction proves
that indeed any set of three vertices of C that induces a triangle in H consists of three
consecutive vertices of C, as claimed.

Claim 3. Every two chords of C are crossing.
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Proof of the claim. Suppose, by the way of contradiction, thatChas two different chords
ei � vi�1vi�1 and ej � vj�1vj�1 that are not crossing. Notice that it is possible that
ei and ej share one endpoint. We will show that H� tvi, vju is not balanced. Indeed,
consider the cycle C 1 � v1v2 . . . vi�1vi�1 . . . vj�1vj�1 . . . v2t�1v1. For each edge e of C 1,
define W 1

e � H, if e � ei or ej; and W 1
e � We, otherwise. Since all the triangles of

C are induced by three consecutive vertices of C, by Claim 2, C 1 and the W 1
e’s satisfy

the definition of unbalanced cycle. Indeed, for each edge e of C, either W 1
e �We and

W 1
e XNpeq X VpC 1q � We XNpeq X VpCq � H, or e � ek for k P ti, ju and NpW 1

eq X

Npeq X VpC 1q � Npeq X pVpCqztvkuq � H because, by Claim 2, the only vertex of C
with which vertices vk�1 and vk�1 can form a triangle inH is vk. Therefore, H�tvi, vju
is not balanced, a contradiction with the minimality of H. This contradiction shows
that indeed every two chords of C are crossing, as claimed.

With the help of the three previous claims, we complete the proof of Theorem 3.44.
Notice that if C has no chords, then, by the minimality of H, H � C2t�1, as required.
Therefore, we will assume that C contains at least one chord. Since all chords of C are
short and crossing by Claims 1 and 3, either C has exactly one chord that is short or
C has two chords that are short and are crossing. We divide the remaining proof into
two parts corresponding to the former and the latter case.

Case 1. C has exactly one chord that is short.
Without loss of generality, let v1v3 be the only chord of C. Since C is an unbal-

anced cycle, there exists u1 P NHpv1v2qzVpCq such that u1 is not adjacent to v3. Anal-
ogously, there exists u2 P NHpv2v3qzVpCq such that u2 is not adjacent to v1. By min-
imality, VpHq � VpCq Y tu1,u2u. Let p � |NHpu2q X VpCq| and q � |NHpu1q X

VpCq|. By construction, 2 ¤ p,q ¤ 2t. By Lemma 2.8 applied to the hole induced by
VpCqztv2u, NHpu2qXVpCq � tv2, v3, v4, . . . , vp�1u and, by symmetry, NHpu1qXVpCq �

tv2, v1, v2t�1, v2t, . . . , v2t�q�4u (where for q � 2, we mean that NHpu1q X VpCq �

tv2, v1u).
Suppose, by the way of contradiction, that u1 is adjacent to u2. If u2 were adjacent

to v2t�1, then either tv2t�1, v1, v2, v3,u1,u2u would induce a proper 2-pyramid in H or
tv2t�1, v1, v3,u1,u2u would induce a K2,3 in H, depending on whether u1 is adjacent
v2t�1 or not, respectively. Since H is a minimally not balanced circular-arc graph and
K2,3 is not a circular-arc graph, we conclude that u2 is not adjacent to v2t�1. If u1 were
adjacent to v2t�1, then tv2t�1, v1, v2, v3,u1,u2uwould induce a proper 1-pyramid in H.
This contradiction shows that u1 is not adjacent to v2t�1, and this means that q � 2.
Symmetrically, p � 2. But then, tv1, v3,u2,u1, v5u induces a C4 YK1 in H, which is not
a circular-arc graph, a contradiction. This contradiction arose from assuming that u1

and u2 were adjacent, so we conclude that u1 is not adjacent to u2.
If p were odd, then u2vp�1vp�2 . . . v2t�1v1v2u2 would be an odd hole in H, con-



62 Chapter 3. Balanced graphs

tradicting the minimality of H. Thus, p is even and, by symmetry, q is also even. If
t � 2, then, up to symmetry, either p � q � 4 and H � C7, or q � 2 and H � V5

p

for some p P t2, 4u, as desired. So, without loss of generality, assume that t ¥ 3. If
NHpu1qXNHpu2q � tv2u, then, since p and q are even, there would exist some k such
that 5 ¤ k ¤ 2t and vk P NHpu1q XNHpu2q; but then, tv1,u1, vk,u2, v3u would induce
a C5 in H, in contradiction with the minimality of H. This contradiction shows that
NHpu1q X NHpu2q � tv2u. If p � 2 and q � 2, then u2vp�1vp�2 . . . v2t�q�4u1v2u2

would be an odd hole in H, contradicting the minimality of H. Therefore, we can
assume that q � 2, and finally H � V2t�1

p for some p even such that 2 ¤ p ¤ 2t.

Case 2. C has exactly two chords that are short and are crossing.
Since the two chords are crossing, we assume, without loss of generality, that

the chords of C are v1v3 and v2t�1v2. Since C is an unbalanced cycle, there is some
u1 P NHpv2t�1v1qzVpCq such that u1 is not adjacent to v2 and there is some u2 P

NHpv2v3qzVpCq such that u2 is not adjacent to v1.
Let r � |NHpu2q X VpCq|. By construction, 2 ¤ r ¤ 2t and, by Lemma 2.8 ap-

plied to the hole induced by VpCqztv1u, NHpu2q X VpCq � tv2, v3, v4, . . . , vr�1u. If
r � 2t, then tv2t�1, v1, v2, v3,u1,u2u would induce a proper 1-, 2- or 3-pyramid in H

(depending on the existence or not of the edges u1u2 and u1v3), a contradiction with
the minimality of H. If r is even and 2   r   2t, then u2vr�1vr�2 . . . v2tv2t�1v2u2

would be a proper odd hole in H, a contradiction. If r were odd and r � 3, then
the cycle u2vr�1vr�2 . . . v2tv2t�1v1v3u2 would be a proper odd hole in H, a contradic-
tion. So, r � 2 or 3. Symmetrically, if s � |NHpu1q X VpCq|, then s � 2 or 3 and, by
Lemma 2.8 applied to the hole induced by VpCqztv2u, NHpu1q XVpCq � tv2t�1, v1u or
tv2t, v2t�1, v1u, respectively.

Suppose, by the way of contradiction, that u1 and u2 are adjacent. Then, the set
tu1, v1, v2,u2u induces a C4 in H, which must be dominating because H is a circular-
arc graph. If t � 2, then at least one of u1 and u2 should be adjacent to v4 and
VpCq Y tu1,u2u would induce a proper V5

4 or C7 in H. (Notice that indeed VpCq Y

tu1,u2u � VpHq because, by definition of unbalanced cycle, Wv1v2 � VpHqzVpCq

and NHpWv1v2q X tv3, v4u � H, which implies Wv1v2 � H and, by construction,
Wv1v2 X pVpCq Y tu1,u2uq � H.) If t ¥ 3, then u1 must be adjacent to v2t and
tv2t, v2t�1, v1, v2, v3,u1,u2u would induce a proper V5

4 in H. So, in all cases we reach a
contradiction with the minimality of H. These contradictions prove that u1 and u2 are
nonadjacent.

We claim that r � s � 2. Indeed, if r � s � 3, then v1v2u2v4v5 . . . v2tu1v1 would
be an odd hole in H, a contradiction. Alternatively, if r � 3 and s � 2, then C 1 �

v1v2u2v4v5 . . . v2t�1v1 would be a cycle whose only chord is v2t�1v2, NHpu1qXVpC 1q �

tv2t�1, v1u, NHpv3q X VpC 1q � tv1, v2,u2, v4u and, therefore, VpCq Y tu1,u2u would
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induce a proper V2t�1
4 in H, a contradiction. (Recall that VpCqY tu1,u2u � VpHq from

the discussion in the paragraph above.) The case r � 2 and s � 3 is symmetric. We
conclude that our claim, r � s � 2, is true; in other words, NHpu1qXVpCq � tv2t�1, v1u

and NHpu2q X VpCq � tv2, v3u.
Suppose that

there is some u3 P NHpv1v2qzVpCq such that u3v2t�1,u3v3 R EpHq. (3.2)

Then, by minimality, VpHq � VpCq Y tu1,u2,u3u. By Lemma 2.8 applied to the holes
induced by VpCqztv1u and VpCqztv2u , NHpu3q X VpCq � tv1, v2u. If u1 were adjacent
to u3, then either t � 2 and tv2, v3, v4, v5,u1,u3u would induce a domino, or t ¥ 3 and
tu1, v2t�1, v1,u3, v5u would induce C4 Y K1 in H, which are not circular-arcgraphs, a
contradiction. So, u1 is nonadjacent to u3 and, symmetrically, u2 is nonadjacent to u3.
We conclude that, if (3.2) holds, H � D2t�1, as desired.

It only remains to consider the case when (3.2) does not hold. Since C is an un-
balanced cycle, this means that there are two adjacent vertices u3 and u4 such that
u3,u4 P NHpv1v2qzVpCq, u3 is adjacent to v2t�1 but not to v3, and u4 is adjacent to v3

but not to v2t�1.
Suppose, by the way of contradiction, that NHpu3q X NHpu4q X VpCq � tv1, v2u.

Then, there exists some k such that 4 ¤ k ¤ 2t and vk P NHpu3q XNHpu4q. If k � 4,
then tv2t�1, v1, v3, v4,u3,u4u would induce a proper 1- or 2-pyramid in H depending
on whether t ¥ 3 or t � 2, respectively, contradicting the minimality of H. So, k � 4
and, symmetrically, k � 2t. But then, tv2t�1, v1, v3,u3,u4, vku induces a proper 3-sun
in H, a contradiction. We conclude that NHpu3q XNHpu4q X VpCq � tv1, v2u.

Let p � |NHpu4qXVpCq| and q � |NHpu3qXVpCq|. By construction, 3 ¤ p,q ¤ 2t.
By Lemma 2.8 applied to the hole induced by VpCqztv2u, it follows that NHpu4q X

VpCq � tv1, v2, v3, . . . , vpu and NHpu3q X VpCq � tv2, v1, v2t�1, . . . , v2t�q�4u. If p were
odd and p � 3, then v1u4vpvp�1 . . . v2t�1v1 would be a proper odd hole in H, a con-
tradiction. So, p � 3 or p is even. Symmetrically, q � 3 or q is even. If p and q had
the same parity, then u3u4vpvp�1 . . . v2t�q�4u3 would be a proper odd hole of H (re-
call that NHpu3q XNHpu4q X VpCq � tv1, v2u), a contradiction. By symmetry, we will
assume, without loss of generality, that p is even, p ¥ 4, and q � 3. In particular, u4 is
adjacent to v4.

Notice that u2 is not adjacent to u3, since otherwise u2v3v4 . . . v2t�1u3u2 would be a
proper odd hole ofH. This, in its turn, implies thatu2 is adjacent tou4, since otherwise
tv2, v3, v4,u3,u4,u2u would induce a proper 3-sun in H. So, NHpu2q � tv2, v3,u4u.
(Recall that we already proved that u1 and u2 are nonadjacent.)

If u1 were adjacent to u4, then tv2t�1, v1, v2,u1,u2,u4u would induce a proper 1-
pyramid in H, contradicting the minimality of H. So, u1 is nonadjacent to u4. Finally, if
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u1 were adjacent tou3, thenC 1 � u3v2v3 . . . v2t�1u3 would be a cycle whose only chord
is v2t�1v2, NHpu1q X VpC 1q � tv2t�1,u3u, NHpu4q X VpC 1q � tu3, v2, v3, . . . , vpu and,
therefore, since u1 and u4 are nonadjacent, VpC 1q Y tu1,u4u would induce a proper
V2t�1
p in H, a contradiction. This contradiction shows that u1 is nonadjacent to u3 and

we conclude that NHpu1q � tv2t�1, v1u. We proved that H � X2t�1
p where p is even

and 4 ¤ p ¤ 2t, as required.

It is easy to see that among the forbidden induced subgraphs that characterize bal-
ancedness in Theorem 3.44 there are no two of them such that one is a proper induced
subgraph of the other. Therefore, Theorem 3.44 is indeed a characterization by minimal
forbidden induced subgraphs. In particular, we obtain the following result.

Corollary 3.45. The graphs V2t�1
p , D2t�1, and X2t�1

p are minimally not balanced for any
t ¥ 2 and any valid p.

We will extend Theorem 3.44 to a superclass of Helly circular-arc graphs; namely,
the class of {net,U4,S4}-free circular-arc graphs (see Figure 2.1). This extension will
also serve as a basis for the characterizations in the following two sections.

For that, let us firstly present the forbidden induced subgraph characterization of
those circular-arc graphs that are Helly circular-arc graphs given in [75]. Let an obstacle
be a graphH containing a cliqueQ � tv1, v2, . . . , vtuwhere t ¥ 3 and such that for each
i � 1, . . . , t, at least one of the following assertions holds (where in both assertions,
wt�1 means w1):

(O1) Npwiq XQ � Qztvi, vi�1u, for some wi P VpHqzQ.

(O2) Npuiq X Q � Qztviu and Npziq X Q � Qztvi�1u, for some adjacent vertices
ui, zi P VpHqzQ.

With this definition, the characterization of those circular-arc graphs that are Helly
circular-arc graphs runs as follows.

Theorem 3.46 ([75]). Let G be a circular-arc graph. Then, G is a Helly circular-arc graph if
and only if G contains no induced obstacle.

Notice that obstacles are not necessarily minimal; i.e., there are obstacles that con-
tain proper induced obstacles. For instance, 2C5 is an obstacle and contains a proper
induced 2P4, which is also an obstacle. In addition, there are minimal obstacles that
are not circular-arc graphs; e.g., antenna and C6 are minimal obstacles that are not
circular-arc graphs. Our next result determines all the {1-pyramid,2-pyramid}-free
minimal obstacles that are circular-arc graphs. Recall that for each t ¥ 3, St denotes
the complete t-sun.
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Theorem 3.47. Let H be a {1-pyramid,2-pyramid}-free minimal obstacle which is a circular-
arc graph. Then, H is 3-pyramid, U4, or St for some t ¥ 3.

Proof. Let Q � tv1, . . . , vtu, the wi’s, the ui’s, and the zi’s as in the definition of an
obstacle. All along the proof, subindices should be understood modulo t.

Let us consider first the case where t � 3. Suppose that (O2) holds for at least two
values of i, say i � 1 and i � 2. Then, tu1, z1, z2u is a complete and tv1, v2, v3,u1, z1, z2u

induces a 3-pyramid, since otherwise tv1, v2, v3,u1, z1, z2u would induce a 1-pyramid
or a 2-pyramid. Hence, by minimality, H � 3-pyramid. Consider now the case where
(O2) holds for exactly one value of i, say i � 1, and, consequently, (O1) holds for i � 2
and i � 3. We claim that tu1, z1u is anticomplete to w2. Indeed, if w2 were adjacent
to z1, then tv1, v2, v3,w2, z1,u1uwould induce a 1-pyramid or a 2-pyramid in H, a con-
tradiction. In addition, if w2 were adjacent to u1, then tv1, v2,u1, z1,w2uwould induce
a K2,3 in G, which is not a circular-arc graph. We proved that tu1, z1u is anticomplete
to w2 and, symmetrically, to w3. Also notice that w2 and w3 are nonadjacent, since
otherwise tv1, v2,w2,w3,u1, z1u would induce a domino, which is not a circular-arc
graph. Then, by minimality, H � U4, as desired. Finally, assume that (O1) holds for
each i � 1, 2, 3. Necessarily tw1,w2,w3u is a stable set, since otherwise G would con-
tain an induced C4 Y K1, G3 (see Figure 2.3), or C6 which are not circular-arc graphs.
By minimality, H � net � S3, as desired.

From now on, we assume that t ¥ 4. Suppose, by the way of contradiction, that
(O2) holds for some i, say i � 1. On the one hand, if (O1) held for i � 3, then
tv1, v2, v3,u1, z1,w3u would induce a 1-pyramid, 2-pyramid, or a proper 3-pyramid in
H, a contradiction. On the other hand, if (O2) held for i � 3, then tv1, v2, v3,u1, z1,u3u

would induce a 1-pyramid, 2-pyramid or a proper 3-pyramid in H, a contradiction.
These contradictions arose from assuming that (O2) held for some i. We conclude
that, if t ¥ 4, then (O2) does not hold for any i � 1, . . . , t and, by definition of an obsta-
cle, (O1) holds for each i � 1, . . . , t. By minimality, the vertices of H are QYW where
W � tw1,w2, . . . ,wtu. We claim that W is a stable set and, consequently, H � St. We
divide the proof of the claim into two cases: t � 4 and t ¥ 5.

Assume that t � 4. Suppose, by the way of contradiction, that W is not a stable
set. Suppose first that wi is adjacent to wi�1 for some i, say w3 is adjacent to w4. Nec-
essarily w1 is nonadjacent to w4, since otherwise tv1, v2, v3,w1,w3,w4u would induce
a 1-pyramid or a 2-pyramid in H (depending on the adjacency between w1 and w3), a
contradiction. In addition, w1 is nonadjacent tow3, since otherwise tw1, v1,w4, v3,w3u

would induce a K2,3, which is not a circular-arc graph. Symmetrically, w2 is nonadja-
cent to w3 and w4. On the one hand, if w1 and w2 are adjacent, tw2, v1,w3,w4, v3,w1u

induces a domino in G, which is not a circular-arc graph. On the other hand, if w1

and w2 are nonadjacent, then tv1, v2, v3,w1,w2,w3,w4u induces a proper U4 in H, a
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contradiction with the minimality of H. These contradictions prove that wi is not ad-
jacent to wi�1 for any i. Notice that also wi and wi�2 are nonadjacent, since otherwise
tvi,wi,wi�2, vi�3,wi�3uwould induce K4YK1 in G, which is not a circular-arc graph.
We conclude that W is a stable set and H � S4, as claimed.

It only remains to consider the case where t ¥ 5. Let S be any unordered pair of
vertices from W. Since t ¥ 5, S can be extended to a set S 1 � twi,wj,wj�1u of three
vertices where i and j are not consecutive modulo t and neither are i and j� 1. Notice
that S 1 is a stable set in H, since otherwise tvi, vj, vj�2,wi,wj,wj�1u would induce a
1-pyramid, a 2-pyramid, or a proper 3-pyramid in H, a contradiction. Since S 1 is a
stable set, so is S. Since S is any pair of vertices from W, W is a stable set and H � St,
as claimed.

Finally, notice that 3-pyramid, U4 and St for t ¥ 3 are obstacles, are circular-arc
graphs, and none of them is a proper induced subgraph of any of the others.

As a corollary of Theorems 3.46 and 3.47, we obtain a minimal forbidden induced
subgraph characterization of Helly circular-arc graphs within {1-pyramid,2-pyramid}-
free circular-arc graphs.

Corollary 3.48. Let G be a {1-pyramid,2-pyramid}-free circular-arc graph. Then, G is a Helly
circular-arc graph if and only if it contains no induced 3-pyramid, U4, or St for any t ¥ 3.

Since net, U4, and S4 are obstacles, the class of {net,U4,S4}-free circular-arc graphs
is indeed a superclass of Helly circular-arc graphs. We now prove the main result of
this section, which is an extension of the characterization of Theorem 3.44 to the class
of {net,U4,S4}-free circular-arc graphs.

Corollary 3.49. Let G be a {net,U4,S4}-free circular-arc graph. Then, G is balanced if and
only if G has no odd holes and contains no induced pyramid, C7, V2t�1

p , D2t�1, or X2t�1
p for

any t ¥ 2 and any valid p.

Proof. If G is a Helly circular-arc graph, the result reduces to Theorem 3.44. So, as-
sume that G is not a Helly circular-arc graph. Then, by Corollary 3.48 and since G

is {net,U4,S4}-free, G contains an induced 1-pyramid, 2-pyramid, or 3-pyramid or an
induced St for some t ¥ 5 (notice that S3 � net and S4 � S4). Since St contains an
induced 3-sun for every t ¥ 5, we conclude that G is not balanced and contains an
induced pyramid.

3.8 Balancedness of claw-free circular-arc graphs

In this section we will characterize, by minimal forbidden induced subgraphs, those
claw-free circular-arc graphs that are balanced. A proper circular-arc graph is a circular-
arc graph admitting a circular-arc model in which no arc properly contains another.
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The class of claw-free circular-arc graphs is a superclass of the class of proper circular-
arc graphs, as follows from the forbidden induced subgraph characterization of proper
circular-arc graphs in [118].

By Corollary 3.49, in order to characterize those claw-free circular-arc graphs that
are balanced, it will be enough to study the balancedness of those claw-free circular-arc
graphs containing an induced net (because claw-free graphs contain neither induced
U4’s nor induced S4’s). The following lemma will be of help in analyzing the structure
of claw-free circular-arc graphs containing an induced net.

Lemma 3.50 ([18]). Let G be a claw-free circular-arc graph containing a net induced by the
set W � tt1, t2, t3, s1, s2, s3u, where tt1, t2, t3u induces a triangle and si is adjacent to ti for
i � 1, 2, 3. If v is a vertex of G�W, then NGpvq XW is either tsi, tiu, or tt1, t2, t3, siu, or
tsi�1, ti�1, ti�2, si�2u, for some i P t1, 2, 3u (subindices should be understood modulo 3).

A graphG is a multiple of another graphH ifG arises fromH by successively adding
true twins to H; i.e., if G arises from H by replacing each vertex x of H by a nonempty
complete graph Mx and adding all possible edges between Mx and My if and only
if x and y are adjacent in H. In [18], a slightly stronger variant of the above lemma
is used to study the structure of chordal claw-free circular-arc graphs containing an
induced net. The proof in [18] can be easily adapted to prove the following related
result in which chordality is not required. For the sake of completeness, we give the
adapted proof.

Theorem 3.51 ([18]). If G is a claw-free circular-arc graph containing an induced net and
containing no induced 3-sun, then G is a multiple of a net.

Proof. The proof will be by induction on the number of vertices of G. If |VpGq| �
6, G equals a net, which is a trivial multiple of a net. So, assume that |VpGq| ¡ 6.
Then, there is some vertex v of G such that G � tvu contains an induced net. Since
G�tvu is also a claw-free graph containing an induced net and containing no induced
3-sun, by induction hypothesis, G � tvu is the multiple of a net; i.e., the vertices of
VpG� tvuq can be partitioned into nonempty completes S1, S2, S3, T1, T2, T3 such that
T1, T2, T3 are mutually complete and Ti is complete to Si and anticomplete to Si�1

and Si�2, for each i � 1, 2, 3 (where subindices along the proof should be understood
modulo 3). By Lemma 3.50, NGpvq X H � tsi, tiu or NGpvq X H � tt1, t2, t3, siu for
some i P t1, 2, 3u. (Notice that the fact that G contains no induced 3-sun prevents
NGpvq XH � tti�1, si�1, ti�2, si�2u from holding.)

Suppose first that NGpvq X H � tti, siu for some i P t1, 2, 3u. Let j P t1, 2, 3u,
s 1j P Sj and H 1 be the net induced by tt1, t2, t3, s1, sj�1, sj�2u. Applying Lemma 3.50
to H 1, it follows that v is adjacent to sj if and only if i � j. Thus, v is complete to Si
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and anticomplete to Si�1 and Si�2. Using the same strategy, we can prove that v is
complete to Ti and anticomplete to Ti�1 and Ti�2. Thus, we can obtain a partition of
the vertices of G showing that G as a multiple of a net by replacing Si by Si�1.

Finally, consider that NGpvq X H � tt1, t2, t3, siu. Reasoning as in the above para-
graph, it follows that v is complete to T1, T2, T3, and Si, and v is anticomplete to Si�1

and Si�2. Thus, we obtain a partition of the vertices of G showing that G is a multiple
of a net by replacing Ti by Ti Y tvu.

Now, we state and prove the main result of this section.

Theorem 3.52. Let G be a claw-free circular-arc graph. Then, G is balanced if and only if G
has no odd holes and contains no induced pyramids and no induced C7.

Proof. The ‘only if’ part is clear. In order to prove the ‘if’ part, suppose that G is not
balanced. Then, G contains some induced subgraph H that is minimally not balanced.
Since G is a claw-free circular-arc graph, H also is so. The proof will be complete if we
prove that H is an odd hole, a pyramid, or C7. Suppose, by the way of contradiction,
that H is not net-free. By Theorem 3.51, H is a net, has true twins, or contains an
induced 3-sun. Since the net is balanced and since minimally not balanced graphs
have no true twins (Lemma 3.7), G contains an induced 3-sun. By minimality, H is a 3-
sun, a contradiction with the fact that H is not net-free. This contradiction proves that
H is net-free. Since U4 and S4 are not claw-free, H is {net,U4,S4}-free and Corollary 3.49
implies that H has an odd hole or contains an induced pyramid or C7 (because each
of X2t�1

p , D2t�1, and X2t�1
p contains an induced claw for each t ¥ 2 and each valid

p). By the minimality of H, we conclude that H is an odd hole, a pyramid, or C7, as
required.

As proper circular-arc graphs are claw-free, and the odd holes, the pyramids, and
C7 are all proper circular-arc graphs, the minimal forbidden induced subgraphs for
balancedness within proper circular-arc graphs are the same as those within claw-free
circular-arc graphs.

3.9 Balancedness of gem-free circular-arc graphs

In this section, we will give a minimal forbidden induced subgraph characterization
of those gem-free circular-arc graphs that are balanced.

Lemma 3.53. Let G be a gem-free circular-arc graph that contains an induced net or an in-
duced U4. Then, G either has true twins or has a cutpoint.
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Proof. Assume that G has no true twins. We will prove that G has a cutpoint.
Consider first the case where G contains an induced U4. That is, there is some

chordless cycle C � u1u2u3u4u1 in G, some vertex z that is complete to VpCq, and a
pair of nonadjacent vertices p1,p2 of G such that NGppiq X pVpCq Y tzuq � tuiu for
each i � 1, 2. Since G is a circular-arc graph, VpCq is a dominating set of G. Let v be a
vertex of G not in VpCq Y tp1,p2u. We will analyze the possibilities for the nonempty
set NGpvq X VpCq.

Suppose, by the way of contradiction, that the neighbors of v in C are two. Then,
they are consecutive vertices of C by Lemma 2.8. So, NGpvq X VpCq � tui,ui�1u for
some i P t1, 2, 3, 4u (from now on, subindices should be understood modulo 4). If v
were not adjacent to z, then tv,ui, z,ui�2,ui�1u would induce a gem in G. If v were
adjacent to z, then tv,ui�1,ui�2,ui�3, zu would induce a gem in G. Since G is gem-
free, we conclude that |NGpvq X VpCq| � 2.

Now, for each i � 1, . . . , 4, let Vi be the set of vertices not in VpCq whose only
neighbor in C is ui. In particular, pi P Vi for each i � 1, 2. Let Z be the set of vertices
not in VpCq that are complete to VpCq, so z P Z. Finally, for each i � 1, . . . , 4, let V̄i be
the set of vertices not in VpCq whose only non-neighbor in C is ui.

Claim 1. Vi is anticomplete to Vj for every i � j.

Proof of the claim. Indeed, if vi P Vi and vj P Vj were adjacent, then VpCq Y tvi, vju
would induce either a domino or the graph G2 in Figure 2.3, which are not circular-
arc graphs, a contradiction.

Claim 2. Vi is anticomplete to Z for every 1 ¤ i ¤ 4.

Proof of the claim. Indeed, if vi P Vi were adjacent to w P Z, then tvi,ui,ui�1,ui�2,wu
would induce a gem in G, a contradiction.

Claim 3. Z is a complete.

Proof of the claim. Indeed, if w,w 1 in Z were nonadjacent, then, by the previous claim,
both of them would be nonadjacent to p2 and tu1,w,u3,w 1,p2uwould induce C4YK1

in G, which is not a circular-arc graph, a contradiction.

Claim 4. V̄i is a complete and is complete to Z for every 1 ¤ i ¤ 4.

Proof of the claim. Indeed, if v̄i, v̄ 1i in V̄i were nonadjacent, then tv̄i, v̄ 1i,ui,ui�1,ui�1u

would induce K2,3 in G, which is not a circular-arc graph, a contradiction. And, if
v̄i P V̄i and w P Z were nonadjacent, then tv̄i,ui�2,w,ui,ui�1u would induce a gem
in G, also a contradiction.

By the previous claims, all the vertices in Z are true twins. So, since G has no true
twins, we conclude that Z � tzu.
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Claim 5. V̄i is complete to V̄i�1 and anticomplete to V̄i�2 for every 1 ¤ i ¤ 4.

Proof of the claim. Let v̄i P V̄i and v̄i�1 P V̄i�1. By Claim 4, z is adjacent to both of
them. So, if v̄i and v̄i�1 were nonadjacent, then tv̄i,ui�1,ui, v̄i�1, zu would induce
a gem in G, a contradiction. Now, let v̄i�2 P V̄i�2. If v̄i�2 were adjacent to v̄i, then
tui, v̄i�2, v̄i,ui�2,ui�1u would induce a gem in G, a contradiction.

Claim 6. V̄i is anticomplete to Vj for every j � i� 2.

Proof of the claim. Let v̄i P V̄i and vj P Vj and suppose, by the way of contradiction,
they are adjacent. If j � i, then tui, v̄i,ui�1,ui�3, vju induces a K2,3 in G, that is not a
circular-arc graph, a contradiction. If j � i � 1, then tvj,ui�1,ui�2,ui�3, v̄iu induces
a gem in G, also a contradiction. These contradictions prove that v̄i and vj are nonad-
jacent unless j � i� 2.

Claim 7. Vi is empty for every 1 ¤ i ¤ 4.

Proof of the claim. Suppose, by the way of contradiction, that V̄i is nonempty for some
i P t1, 2, 3, 4u and let v̄i P V̄i. Since v̄i is not a true twin of vi�2, by the previous claims,
there must be a vertex vi�2 inVi�2 nonadjacent to v̄i. But then, tv̄i,ui�3,ui,ui�1, vi�2u

induces a C4 Y K1 in G, that is not a circular-arc graph, a contradiction.

By the above claims, u1 and u2 are cutpoints of G, as required. This completes the
proof when G contains an induced U4.

It only remains to consider the case where G contains no induced U4 but a net
induced by H � T Y S where T � tt1, t2, t3u is a complete, S � ts1, s2, s3u is a stable
set and NGpsiq X T � ttiu for each i � 1, 2, 3. Let v be a vertex of G not in H. Then,
NGpvqXH is nonempty because netYK1 is not a circular-arc graph. If |NGpvqXH| ¥ 5,
then G would contain an induced gem, so |NGpvq XH| ¤ 4.

Suppose that |NGpvqXH| � 4. If |NGpvqXS| � 3 thenGwould contain the graphG3

in Figure 2.3 as induced subgraph, which is not a circular-arc graph. If |NGpvqXS| � 2,
then G would contain an induced gem. So, if |NGpvq XH| � 4, then |NGpvq X S| � 1.

Suppose, by the way of contradiction, that |NGpvq X H| � 3. If |NGpvq X S| � 3,
then G would contain the graph G9 in Figure 2.3 as induced subgraph, which is not a
circular-arc graph. If |NGpvq X S| � 2, then G would contain either C5 YK1 or C4 YK1

as induced subgraph, and none of them is a circular-arc graph. If |NGpvq X S| � 1,
then G would contain either a gem or C4YK1 as induced subgraph. If |NGpvqXS| � 0,
then G would contain the graph G6 in Figure 2.3 as induced subgraph, which is not a
circular-arc graph. We conclude that |NGpvq X S| � 3.

Suppose now that |NGpvq X H| � 2. If |NGpvq X S| � 2, then G would contain
C5YK1 as induced subgraph, which is not a circular-arc graph. If |NGpvqXS| � 1 and
the neighbors of v in H were nonadjacent, then G would contain C4 Y K1 as induced
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subgraph. So, if |NGpvq XH| � 2, then either NGpvq XH � T or NGpvq XH � tti, siu
for some i P t1, 2, 3u.

Finally, if |NGpvq X H| � 1, then the neighbor of v in H belongs to T ; since other-
wise G would contain the graph G5 in Figure 2.3 as induced subgraph, and it is not a
circular-arc graph.

Let Si be the set of vertices in G � H whose only neighbor in T is ti (i.e., the set
of neighbors in H is either ttiu or tti, siu), Ti be the set of vertices in G � H whose
neighbors in H are tt1, t2, t3, siu, and Zi be the set of vertices in G�H whose neighbors
in H are T �ttiu. Since G is gem-free, at most one of the Zi’s is nonempty. So, without
loss of generality, assume that Z2 and Z3 are empty.

Claim 8. Si is anticomplete to Sj for i � j.

Proof of the claim. Indeed, if v P Si were adjacent tow P Sj and i � j, tv, ti, tj,w, s6�i�ju

would induce a C4 Y K1 in G, which is not a circular-arc graph, a contradiction.

Claim 9. For each i � 1, 2, 3, Si is complete to Ti and anticomplete to Tj for every j � i.

Proof of the claim. If v P Si and w P Ti were nonadjacent, then pHzts1uq Y tv,wu would
induce the graph G6 in Figure 2.3, which is not a circular-arc graph, a contradiction.
If v P Si were adjacent to w P Tj and j � i, then tsj, tj, ti, v,wu would induce a gem in
G, a contradiction.

Claim 10. For each i � 1, 2, 3, Ti is a complete and Ti is complete to Tj for every j � i.

Proof of the claim. Indeed, if w,w 1 P Ti were nonadjacent, then tw, si,w 1, ti�1, si�2u

would induce C4 YK1 in G, which is not a circular-arc graph, a contradiction. Also, if
wi P Ti were nonadjacent to wj P Tj and j � i, then tsj,wj, ti,wi, tju would induce a
gem in G, a contradiction.

Claim 11. For each i � 1, 2, 3, Si is anticomplete to Z1.

Proof of the claim. Indeed, if v P Si were adjacent to z1 P Z1, then either i � 1 and
tv, t1, t2, z1, s3uwould induceC4YK1 inG, or i � 1 and tt1, t5�i, z1, v, tiuwould induce
gem in G, and in both cases we would reach a contradiction.

Claim 12. T1 is anticomplete to Z1.

Proof of the claim. Indeed, if w1 P T1 were adjacent to z1 P Z1, then ts1, t1, t2, z1,w1u

would induce a gem in G, a contradiction.

By the previous claims, every vertex in T1 is a true twin of t1 and, since there are no
true twins in G, T1 is empty. Since the claims also prove that S1 Y ts1u is anticomplete
to VpG� tt1uqzpS1 Y ts1uq, t1 is a cutpoint of G, as required.

Now we are ready to characterize balanced graphs among gem-free circular-arc
graphs.
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Theorem 3.54. Let G be a gem-free circular-arc graph. Then, G is balanced if and only if G
has no odd holes and contains no induced 3-pyramid.

Proof. The ‘only if’ part is clear. In order to prove the ‘if’ part, suppose that G is not
balanced. Then, G contains some induced subgraph H that is minimally not balanced.
Clearly, H is a gem-free circular-arc graph because G is so. The proof will be com-
plete as soon as we prove that H is an odd hole or a 3-pyramid. Suppose, by the way
of contradiction, that H is not {net,U4,S4}-free. Since H is gem-free, H contains an in-
duced net or an induced U4. By Lemma 3.53, H has true twins or has a cutpoint, a
contradiction with the minimality of H (Lemma 3.7). This contradiction proves that
H is {net,U4,S4}-free and Corollary 3.49 implies that H has an odd hole or contains an
induced 3-pyramid (because each of 3-sun, 1-pyramid, 2-pyramid, C7, X2t�1

p , D2t�1,
and X2t�1

p , for each t ¥ 2 and each valid p, contains an induced gem). The minimality
of H ensures that H is an odd hole or 3-pyramid, which concludes the proof.



Chapter 4

Clique-perfect graphs

This chapter is organized as follows.

• In Section 4.1, we give some background about clique-perfect graphs and in-
troduce two further superclasses of balanced graphs: coordinated graphs and
hereditary K-perfect graphs. In Subsection 4.1.3, we give a brief account on the
connections between these four graph classes and with some notions studied in
hypergraph theory.

• In Section 4.2, we characterize clique-perfect graphs by minimal forbidden in-
duced subgraphs within complements of line graphs. This characterization leads
to an Opn2q-time algorithm for deciding whether or not a given complement of
line graph having n vertices is clique-perfect and, if affirmative, finding a mini-
mum clique-transversal. Our results follows from a characterization by minimal
forbidden subgraphs of matching-perfect graphs, which we define to be those
graphs such that, in each of its subgraphs, the maximal matchings have the
Kőnig property (i.e., the minimum number of edges needed to meet every max-
imal matching equals the maximum number of edge-disjoint maximal match-
ings). On the way to the proof, we also describe a simple linear and circular struc-
ture for graphs containing no bipartite claw that help us give a structural char-
acterization of all Class 2 graphs with respect to edge-coloring within graphs
containing no bipartite claw.

The results of this section appeared in [24].

• In Section 4.3, we show that a gem-free circular-arc graph is clique-perfect if and
only if it has no odd holes. This means that clique-perfect graphs coincide with
perfect graphs within gem-free circular-arc graphs. Moreover, we show that,

73



74 Chapter 4. Clique-perfect graphs

within gem-free circular-arc graphs, clique-perfect graphs coincide also with co-
ordinated graphs and hereditary K-perfect graphs.

4.1 Background

4.1.1 Clique-perfect graphs

A graph G is clique-perfect if and only if αcpG
1q � τcpG

1q for each induced subgraph G 1

of G, where αc and τc are the clique-independence number and τc is the clique-transversal
number defined in the Introduction. While the name ‘clique-perfect’ was introduced
in 2000 by Guruswami and Pandu Rangan [64], the equality between αc and τc was
studied long before. Recall from the Introduction that Kőnig’s matching theorem
[52, 77] is easily seen to be equivalent to the fact that αcpGq � τcpGq holds for ev-
ery bipartite graph G and that Berge and Las Vergnas [12] generalized this result by
proving that αcpGq � τcpGq remains true for all balanced graphs G. In [2], the equality
αcpGq � τcpGqwas shown to hold for all comparability graphs G, which form another
superclass of bipartite graphs [59]. As the classes of balanced graphs and comparabil-
ity graphs are hereditary, all the graphs in these classes are clique-perfect. Recall from
the Introduction that dually chordal graphs G defined in [29] satisfy αcpGq � τcpGq

but are not clique-perfect in general because they are not closed under taking induced
subgraphs. More recently, it was shown that complements of forests and distance-
hereditary graphs are clique-perfect [15, 87]. Balanced graphs, comparability graphs,
complements of forests, and distance-hereditary graphs, are perfect. However, clique-
perfect graphs are not necessarily perfect and perfect graphs are not necessarily clique-
perfect, as the following result holds.

Theorem 4.1 ([64] and Reed (2001), see [50]). A hole is clique-perfect if and only if it is
even. An antihole is clique-imperfect if and only if its number of vertices is a multiple of 3.

So, the odd holes and the antiholes whose number of vertices are not multiples of
3 are forbidden induced subgraphs for the class of clique-perfect graphs. In fact, all
these graphs are minimal forbidden induced subgraphs for clique-perfectness [15].

Odd generalized suns [20] are a family of forbidden subgraph for the class of clique-
perfect graphs that properly contain the odd suns and the odd holes, and are defined
as follows. Let G be a graph and C be a cycle of G. An edge e P EpCq is non-proper (or
improper) if it forms a triangle with some vertex of C; i.e., if NpeqXVpCq � H. For each
t ¥ 3, a t-generalized sun, is a graph G whose vertex set can be partitioned into two sets:
a cycle C of t vertices whose set of non-proper edges is tejujPJ (J is permitted to be an
empty set) and a stable set U � tujujPJ such that, for each j P J, uj is adjacent exactly
to the endpoints of ej. A t-generalized sun is odd if t is odd. A cycle is said proper if
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none of its edges is improper. By definition, proper odd cycles are odd generalized
suns. What interest us about odd generalized suns is that they are not clique-perfect.

Theorem 4.2 ([20]). Odd generalized suns are not clique-perfect.

Unfortunately, as the extended odd suns in Figure 1.2 are also odd generalized
suns, odd generalized suns are not necessarily minimal forbidden induced subgraphs
for the class of clique-perfect graphs. Some odd generalized suns that are minimally
not clique-perfect are the odd holes and the odd complete suns.

The following characterization of clique-perfect graphs within chordal graphs fol-
lows from Theorem 3.5 because balanced graphs are clique-perfect and because the
odd suns are not clique-perfect.

Theorem 4.3 ([12, 88]). Let G be a chordal graph. Then, G is clique-perfect if and only if it
contains no induced odd sun.

In other words, a chordal graph is clique-perfect if and only if it is balanced. So,
the situation regarding Theorem 4.3 is the same as that regarding Theorem 3.5: char-
acterizing clique-perfect graphs (or equivalently, balanced graphs) by minimal forbid-
den induced subgraphs is open even within chordal graphs. Moreover, Corollary 3.6
remains true if ‘balanced’ is replaced by ‘clique-perfect’ and the resulting character-
ization of clique-perfect graphs within pseudo-split graphs is by minimal forbidden
induced subgraph. This also meas that Lemma 3.14 remains true if ‘balancedness
of any given split graph’ is replaced by ‘clique-perfectness of any given split graph’.
However, the problem of determining the complexity of the recognition problem of
clique-perfect graphs in general is still open, as balanced graphs and clique-perfect
graphs do not coincide in general (see Figure 4.3 on page 81).

A graph G is called clique-complete [96] if each pair of its cliques has nonempty
intersection; i.e., if αcpGq � 1. In [96], the clique-complete graphs G without uni-
versal vertices (i.e., such that τcpGq ¡ 1) that are minimal with respect to taking in-
duced subgraphs were identified to be those graphs Q2n�1 (n ¥ 1) having 4n� 2 ver-
tices u1,u2, . . . ,u2n�1, v1, v2, . . . , v2n�1 such that Q2n�1rtv1, v2, . . . , vnus � C2n�1 and
NQ2n�1puiq � VpQ2n�1qztviu, for each i � 1, 2, . . . , 2n� 1.

Theorem 4.4 ([96]). For each n ¥ 1, αcpQ2n�1q � 1 and τcpQ2n�1q � 2. Moreover, if G
is a graph such that αcpGq � 1 but τcpGq ¡ 1, then G contains an induced Q2n�1 for some
n ¥ 1.

In [15], it was shown that Q2n�1 is minimally clique-imperfect if and only if n � 1
mod 3. Yet, forbidding induced odd generalized suns, clique-imperfect antiholes, and
clique-imperfect Q2n�1 graphs is not sufficient to ensure clique-perfectness in general.
For instance, the following holds.
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(a) (b) (c) (d)

Figure 4.1: Four families of minimal forbidden induced subgraphs for the class of clique-
perfect graphs within the class of Helly circular-arc graphs. Dashed lines represent induced
paths of length 2t� 3 for each t ¥ 2.

Theorem 4.5 ([17]). Let G be a Helly circular-arc graph. Then, G is clique-perfect if and only
if it has no odd holes and it contains no induced 3-sun, C7, or any graph belonging to any of
the four families depicted in Figure 4.1.

Here, the graphs of the families (c) and (d) of Figure 4.1 are neither odd generalized
suns, nor antiholes, nor Q2n�1 graphs for any n ¥ 1. Although there is no known for-
bidden induced subgraph characterization of clique-perfect graphs in general, there
are some more graph classes within which clique-perfect graphs were characterized
by forbidden induced subgraphs [16, 17, 25]: diamond-free graphs, line graphs, hered-
itary clique-Helly claw-free graphs, paw-free graphs, and {gem,W4,bull}-free graphs
(see, for instance, Theorems 4.6 and 4.15). For each of the graph classes within which
clique-perfect graphs were characterized by forbidden induced subgraphs, also a poly-
nomial-time or even linear-time algorithm for the recognition of clique-perfectness
within the class was devised, with the only exception of diamond-free graphs. In [17],
the following characterization of those diamond-free graphs that are clique-perfect
was given.

Theorem 4.6 ([17]). Let G be a diamond-free graph. Then, G is clique-perfect if and only if
G contains no induced odd generalized sun.

In [17], also the question of whether there is a polynomial-time algorithm for de-
ciding whether a given diamond-free graph is clique-perfect was posed. Interestingly,
the answer can be shown to be affirmative by reducing the problem to that of deciding
balancedness, as follows.

Corollary 4.7. Let G be a diamond-free graph. Then, G is clique-perfect if and only if G is
balanced.

Proof. Since balanced graphs are clique-perfect, we only need to prove that diamond-
free clique-perfect graphs are balanced, or equivalently, that a diamond-free graph
that is not balanced is not clique-perfect. Let G be a diamond-free graph that is not
balanced. By Theorem 3.4, G contains an unbalanced cycle C, that is, an odd cycle C.
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Notice that if u and v are two consecutive vertices of C, then NGpuvq X VpCq � H.
Indeed, if NGpuvq X VpCq � H, then, as NGpWuvq X NGpuvq X VpCq � H, for each
v P NGpuvq there is some w P We � NGpeq such that w is nonadjacent to x and, in
particular, tu, v, x,wu induces a diamond in G. Since NGpuvq X VpCq � H for each
two consecutive vertices u and v of C, VpCq induces an odd generalized sun in G and,
by Theorem 4.2, G is not clique-perfect, as desired.

Notice also that if G is a diamond-free graph, the problem of deciding whether
G is a minimal odd generalized sun can be solved in polynomial time (it suffices to
verify that G is not clique-perfect but G � v is clique-perfect for every vertex v of G).
Rather surprisingly, the problem of deciding whether a graph is an odd generalized
sun (not necessarily minimal) is NP-complete even if G is a triangle-free graph [83].
Indeed, an odd cycle in a triangle-free graph cannot have improper edges. Hence, if G
is a triangle-free graph with an odd number of vertices, then G is an odd generalized
sun if and only if G has a Hamiltonian cycle, and the Hamiltonian cycle problem on
triangle-free graphs with an odd number of vertices is NP-complete [60, pp. 56–60].

4.1.2 Coordinated graphs and hereditary K-perfect graphs

Coordinated graphs and K-perfect graphs were introduced while looking for charac-
terizations of clique-perfect graphs and the three classes are strongly related [19, 20].

Let F be a family of nonempty sets. The chromatic index γpFq of F is the mini-
mum number of colors necessary to color the members of F such that any two in-
tersecting members are colored with different colors. For each x P

�
F, let dFpxq be

the number of members of F to which x belongs and let the maximum degree ∆pFq �
maxxP�F dFpxq. Clearly, ∆pFq ¤ γpFq and F is said to have the edge-coloring property
[9] if equality ∆pFq � γpFq holds. The edge coloring property has its origins in a cele-
brated theorem of Kőnig [76] that states that the number of colors needed to color the
edges of a bipartite graph in such a way that incident edges receive different colors
equals the maximum degree of the graph. This result is known as Kőnig’s edge-coloring
theorem.

Let the clique-chromatic index γcpGq of a graph G be the minimum number of col-
ors needed to assign different colors to intersecting cliques of G and let the maximum
clique-degree ∆cpGq be the maximum cardinality of a family of cliques having at least
one vertex of G in common. Then, ∆cpGq ¤ γcpGq holds for every graph G and a
graph G is called coordinated [19] if ∆cpG

1q � γcpG
1q for each induced subgraph G 1 of

G. Equivalently, a graph is coordinated if, in every induced subgraph, the rows of a
clique-matrix have the edge coloring property. Interestingly, the edge coloring prop-
erty is connected to the equality ω � χ in such a way that a graph is perfect if and only
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N1 K(N1)

Figure 4.2: The graph N1 and its clique graph

if, in every induced subgraph, the columns of its clique-matrix have the edge-coloring
property. Moreover, in [19], coordinated graphs were proved to form a subclass of
the class of perfect graphs. In [25] and [26], coordination was characterized by for-
bidden induced subgraphs within graphs belonging to different graph classes: line
graphs, paw-free graphs, {gem,W4,bull}-free graphs, and complements of forests. No
complete characterization of coordinated graphs by forbidden induced subgraphs is
known, but it is known that the recognition problem is NP-hard [110] and the number
of minimal forbidden induced subgraphs for the class grows exponentially with the
number of vertices and edges [109].

The clique graph KpGq of a graph G is the intersection graph of the family of cliques
of G. A graph G is called K-perfect [20] if KpGq is perfect. Notice that the class of K-
perfect graphs is not hereditary. For instance, the graph N1 of Figure 4.2 is K-perfect
but it contains an induced C5 and KpC5q � C5 is imperfect. We introduce here the
following terminology: a graph will be said hereditary K-perfect graph if all its induced
subgraphs are K-perfect. It turns out that hereditary K-perfect graphs are perfect, as
implied by the Strong Perfect Graph Theorem (Theorem 2.3) together with the follow-
ing lemma.

Lemma 4.8. A hereditary K-perfect graph has no odd holes and has no antiholes with more
than 6 vertices.

Proof. Hereditary K-perfect graphs have no odd holes since odd holes are clearly K-
imperfect. Along the proof, Cn will denote the graph such that VpCnq � t0, 1, . . . ,n�
1u and EpCnq � t01, 12, 23, . . . , pn � 1q0u. Assume that n ¥ 5 and n � 6, 7, 9, 12. By
elementary number theory, n � 5a� 3b for some a ¥ 1 and some b ¥ 0. This implies
that there exists a sequence a1, . . . ,ak of integers taken from the set t2, 3u that satisfies
the following conditions: (1) a1 � � � � � ak � n; (2) ai � 2 for some i P t1, . . . ,ku;
and (3) for each j � 1, . . . ,k, aj � 2 implies aj�1 � 3 (where ak�1 stands for a1).
Assume that such a sequence taiu is given and define bi equal to a1�� � ��ai modulo
n for each i � 1, . . . ,k. In particular, bk � 0. Let Q1 � tb1,b2, . . . ,bku, Q2 � Q1 � 2,
Q3 � Q1 � 4, Q4 � Q1 � 1, and Q5 � Q1 � 3, where A � p � ta � p : a P Au

and the sum is taken modulo n. Then, Qi is a clique of Cn for i � 1, 2, . . . , 5 and, by
construction, Q1Q2 . . .Q5Q1 is an odd hole inKpCnq. Finally, observe thatKpC7q � C7;
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that if Q1 � t0, 2, 4, 6u then tQ1,Q1� 1,Q1� 2, . . . ,Q1� 8u induces a C9 in KpC9q; and
that if Q1 � t0, 2, 5, 7, 9u and Q2 � t1, 3, 5, 7, 10u then tQ1,Q1 � 1,Q1 � 2,Q1 � 3,Q1 �

9,Q2,Q2 � 1,Q2 � 2,Q2 � 3u induces a C9 in KpC12q.

Interestingly, a careful reading of the proofs in [16, 17, 25] reveals that hereditary
K-perfectness was implicitly characterized when restricted to different graph classes:
line graphs, Helly circular-arc graphs, hereditary clique-Helly claw-free graphs, paw-
free graphs, and {gem,W4,bull}-free graphs.

In the next subsection, we will show how coordinated and hereditary K-perfect
graphs relate to balanced and clique-perfect graph, with the help of some results in
hypergraph theory.

4.1.3 Connection with hypergraph theory

A hypergraph H is an ordered pair pX,Eq where X is a finite set and E is a family of
nonempty subsets of X such that X �

�
E. The elements of X are the vertices of H

and the elements of E are the hyperedges of H. If x1, . . . , xn are the vertices of H and
E1, . . . ,Em are the hyperedges of H, then a hyperedge-vertex incidence matrix of H is a
m� n matrix A � paijq where aij is 1 if xj P Ei and 0 otherwise. The dual hypergraph
H� of a hypergraph H � pX,Eq has E as vertex set and its hyperedges are the sets
Ex � tE P E : x P Eu| for each x P X. This means that a hyperedge-vertex incidence
matrix of H� is the transpose of one of H.

We will be mostly interested in clique hypergraphs of graphs. Namely, the clique
hypergraph of a graph G is the hypergraph KpGq � pX,Eq where X is the set of vertices
of G and E is the family of cliques of G. A hyperedge-vertex incidence matrix of KpGq
is a clique-matrix of G.

A hypergraph has the Kőnig property if the family of its hyperedges have the Kőnig
property. A hypergraph has the dual Kőnig property if its dual has the Kőnig property.
As discussed in the Introduction, for every graphG, αcpGq � τcpGq is equivalent to the
Kőnig property for KpGq and θpGq � αpGq is equivalent to the dual Kőnig property
for KpGq. Therefore, the following holds.

Remark 4.9. Let G be a graph. Then:

• G is perfect if and only if KpG 1q has the dual Kőnig property for every induced subgraph
G 1 of G

• G is clique-perfect if and only if KpG 1q has the Kőnig property for every induced sub-
graph G 1 of G.

A hypergraph has the edge-coloring property if its hyperedges have the edge col-
oring property. A hypergraph has the dual edge-coloring property if its dual has the
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edge coloring property. It is easy to see that the equality ωpGq � χpGq for a graph
G is equivalent to the dual edge coloring property for KpGq. Therefore, the following
holds.

Remark 4.10. Let G be a graph. Then:

• G is perfect if and only if KpG 1q has the dual edge coloring property for every induced
subgraph G 1 of G

• G is coordinated if and only if KpG 1q has the edge coloring property for every induced
subgraph G 1 of G.

A partial hypergraph of a hypergraphH � pX,Eq is any hypergraph having as hyper-
edge set a subset of E. A hypergraph has the Helly property if the family E of its hyper-
edges has the Helly property. So, a graph G is clique-Helly if and only if KpGq has the
Helly property. The line graph (or representative graph) of a hypergraph H � pX,Eq, de-
noted by LpHq, is the intersection graph of the family E. The line graph relates clique
graphs and clique hypergraphs in the following way: KpGq � LpKpGqq. The Kőnig
property, the edge coloring property, the Helly property, and perfectness are related
in the following way.

Theorem 4.11 ([36, 92]). LetH be a hypergraph,AH be the hyperedge-vertex incidence matrix
of H, and AT

H be its transpose. Then, the following assertions are equivalent:

(i) Every partial hypergraph of H has the Kőnig property.

(ii) Every partial hypergraph of H has the colored edge property.

(iii) H has the Helly property and LpHq is perfect.

(iv) The matrix AT
H is perfect.

Lovász defined the hypergraphs satisfying the above assertions to be normal [92].
Since KpGq � LpKpGqq and recalling Remarks 4.9 and 4.10, Theorem 4.11 implies the
following.

Corollary 4.12. If G is hereditary-clique Helly and hereditary K-perfect, then G is clique-
perfect and coordinated.

Berge defined a hypergraph to be balanced [7] if its hyperedge-vertex incidence ma-
trix is balanced. So, a graph is balanced if its clique hypergraph is balanced. In [12],
Berge and Las Vergnas proved that balanced hypergraphs had the Kőnig property and,
since the partial hypergraphs of a balanced hypergraph are balanced by definition, the
following holds.
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perfect

coordinated

clique-perfect

balanced

hereditary K-perfect

Figure 4.3: Containment and intersections among the classes of balanced, perfect, clique-
perfect, coordinated, and hereditary K-perfect graphs.

Theorem 4.13 ([12]). Every balanced hypergraph is normal.

In light of Theorem 4.11, the above theorem implies that every balanced graph is
clique-Helly and K-perfect. As the class of balanced graphs is hereditary, we have the
following.

Corollary 4.14 ([12, 92]). Balanced graphs are hereditary clique-Helly and hereditary K-
perfect. In particular, balanced graphs are clique-perfect and coordinated.

Figure 4.3 illustrates the containment relations and intersections among balanced,
perfect, clique-perfect, coordinated, and hereditaryK-perfect graphs by exhibiting one
graph in each possible intersection.
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4.2 Clique-perfectness of complements of line graphs

In [16], clique-perfect graphs were characterized by minimal forbidden induced sub-
graphs within the class of line graphs, as follows.

Theorem 4.15 ([16]). Let G be a line graph. Then, G is clique-perfect if and only ifG contains
no induced 3-sun and has no odd hole.

Nevertheless, as clique-perfect graphs are not closed by complementation, this
result does not tell us which complements of line graphs are clique-perfect. Pre-
cisely, the main result of this section is the following characterization of clique-perfect
graphs within complements of line graphs by means of minimal forbidden induced
subgraphs.

Theorem 4.16. Let G be the complement of a line graph. Then, G is clique-perfect if and only
if G contains no induced 3-sun and has no antihole Ck for any k ¥ 5 such that k is not a
multiple of 3.

Let G be the complement of the line graph of a graph H. In order to prove Theo-
rem 4.16, we profit from the fact that the cliques of G are precisely the maximal match-
ings of H. We call a matching-transversal of H any set of edges meeting all the maximal
matchings of H and matching-independent set of H any collection of edge-disjoint maxi-
mal matchings ofH. We define the matching-transversal number τmpHq ofH as the mini-
mum size of a matching-transversal of H and the matching-independence number αmpHq

ofH as the maximum size of a matching-independent set ofH. Clearly,αcpGq � αmpHq

and τcpGq � τmpHq. Finally, we say that H is matching-perfect if αmpH
1q � τmpH

1q for
every subgraph H 1 (induced or not) of H. Hence, G is clique-perfect if and only if H is
matching-perfect, and Theorem 4.16 can be reformulated as follows.

Theorem 4.17. Let H be a graph. Then, H is matching-perfect if and only if H contains no
bipartite claw and the length of each cycle of H is at most 4 or is a multiple of 3.

Recall that ‘H contains no bipartite claw’ means H contains neither induced nor
non-induced subgraphs isomorphic to the bipartite claw. To prove Theorem 4.17, it
suffices to show that, if H is a graph containing no bipartite claw and the length of
each cycle of H is at most 4 or is a multiple of 3, then αmpHq � τmpHq. In addition, we
can assume that H is connected because clearly αmpHq (resp. τmpHq) is the minimum
of αmpH

1q (resp. τmpH
1q) among the components H 1 of H. The proof splits into two

parts according to whether or not H has some cycle of length at least 5. In both cases,
we obtain an upper bound on τmpHq and exhibit a collection of edge-disjoint maximal
matchings of the same size, which means that αmpHq � τmpHq. To produce these
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collections of edge-disjoint maximal matchings, we ultimately rely on edge-coloring
(via Theorem 4.30) tailored subgraphs of H.

The structure of this section is as follows. In Subsection 4.2.1, we present a struc-
ture theorem for graphs containing no bipartite claw that is used all along this section.
In Subsection 4.2.2, we completely describe those graphs not containing bipartite claw
that are Class 2 with respect to edge-coloring. In Subsection 4.2.3, we prove the main
results of this section (Theorems 4.16 and 4.17). Finally, in Subsection 4.2.4, we show
a linear-time recognition algorithm for matching-perfect graphs and a quadratic-time
one for clique-perfect graphs that follow from our main results.

4.2.1 Linear and circular structure of graphs containing no bipartite claw

In this subsection, we present a structure theorem for graphs containing no bipartite
claw that will prove very useful to us all along this section. In [30], the linear and
circular structure of net-freeXclaw-free graphs is studied. As the line graphs of graphs
containing no bipartite claw are the net-free X line graphs, the main result of this
subsection (Theorem 4.25 on page 93) can be regarded as describing a more explicit
linear and circular structure for the more restricted class of net-freeX line graphs.

Our structure theorem will be stated in terms of linear and circular concatenations
of two-terminal graphs that we now introduce. A two-terminal graph is a triple Γ �

pH, s, tq, where H is a graph and s and t are two different vertices of H, called the
terminals of Γ . We now introduce in some detail the two-terminal graphs depicted in
Figure 4.4. For each m ¥ 0, the m-crown is the two-terminal graph pH, s, tq where
VpHq � ts, t,a1,a2, . . . ,amu and EpHq � tstu Y tsai : 1 ¤ i ¤ mu Y ttai : 1 ¤ i ¤ mu.
The 0-crown and the 1-crown are called edge and triangle, respectively. For each m ¥ 2,
the m-fold is the two-terminal graph pH, s, tq where VpHq � ts, t,a1,a2, . . . ,amu and
EpHq � tsai : 1 ¤ i ¤ mu Y ttai : 1 ¤ i ¤ mu. The 2-fold is also called square. By
a crown we mean an m-crown for some m ¥ 0, and by a fold we mean an m-fold for
some m ¥ 2. Finally, K4 will also denote the two-terminal graph pK4, s, tq for any two
vertices s and t of the K4. We will refer to the crowns, folds, rhombus, and K4 as the
basic two-terminal graphs.

If Γ � pH, s, tq is a two-terminal graph, H is called the underlying graph of Γ , s is its
source, and t its sink. If Γ1 � pH1, s1, t1q and Γ2 � pH2, s2, t2q are two-terminal graphs,
the p-concatenation Γ1 &p Γ2 is the two-terminal graph pH, s1, t2q where H arises from
H1 Y H2 by identifying t1 and s2 into one vertex u and attaching p pendant vertices
adjacent to u. The 0-concatenation Γ1 &0 Γ2 is denoted simply by Γ1 & Γ2. If a two-
terminal graph Γ � pH, s, tq is such that NHrss X NHrts � H, we define its p-closure,
denoted Γ &p ÷, as the graph that arises by identifying s and t into one vertex u and
then attaching p pendant vertices adjacent to u. The 0-closure of Γ is simply denoted
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Figure 4.4: Basic two-terminal graphs with terminals s and t

(a) (b)

Figure 4.5: A linear and a circular concatenation the sequence Γ1, Γ2, Γ3, Γ4 of two-terminal
graphs, where Γ1 is a square, Γ2 and Γ4 are rhombi, and Γ3 is a triangle: (a) Underlying graph
of Γ1 & Γ2 &2 Γ3 &1 Γ4 and (b) Γ1 & Γ2 &2 Γ3 &1 Γ4 &3 ÷. Concatenation vertices are circled.

by Γ &÷.

Let Γ1, Γ2, . . . , Γn be a sequence of two-terminal graphs. A linear concatenation of
Γ1, Γ2, . . . , Γn is the underlying graph of the two-terminal graph Γ1&p1 Γ2&p2 � � �&pn�1 Γn

for some nonnegative integers p1,p2, . . . ,pn�1. The two-terminal graphs Γ1, Γ2, . . . , Γn
are called the links of the linear concatenation. The concatenation vertices of such a
linear concatenation are the n� 1 vertices that arise by identifying the sink of Γi with
the source of Γi�1 for each i � 1, 2, . . . ,n � 1. The two links Γi and Γi�1 are called
adjacent in the linear concatenation, for each i � 1, 2, . . . ,n � 1. The graph K1 will be
regarded as the linear concatenation of an empty sequence of two-terminal graphs.
See Figure 4.5(a) for an example of a linear concatenation. A circular concatenation
of Γ1, Γ2, . . . , Γn is any graph Γ1 &p1 Γ2 &p2 � � � &pn�1 Γn &pn ÷ for some nonnegative
integers p1,p2, . . . ,pn�1. The two-terminal graphs Γ1, Γ2, . . . , Γn are called the links of
the circular concatenation. The concatenation vertices of such a circular concatenation
are the n � 1 vertices that arise by identifying the sink of Γi with the source of Γi�1

for each i � 1, 2, . . . ,n � 1, as well as the vertex that arises by identifying the sink of
Γn with the source of Γ1. The two links Γi and Γi�1 are called adjacent in the circular
concatenation, for each i � 1, 2, . . . ,n � 1, as well as the links Γn and Γ1. See Figure
4.5(b) for an example of a circular concatenation. Each of the Γi’s is called a link of
either the linear or the circular concatenation.
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4.2.1.1 Structure of fat caterpillars

A caterpillar [69] is a connected graph containing no bipartite claw and having no cycle.
We call fat caterpillars to those connected graphs containing no bipartite claw and hav-
ing no cycle of length greater than 4. The fact that caterpillars have edge-dominating
paths gives them a very simple linear structure; namely, they are linear concatenations
(in our sense) of edge links [68]. We will show that fat caterpillars containing no A and
no net are linear concatenations of basic two-terminal graphs, like the graph depicted
in Figure 4.5(a). This result will be the last in the following sequence of three lemmas.

Lemma 4.18. Let H be a fat caterpillar containing no A and no net. Then, H has an edge-
dominating path P � u0u1 . . .uℓ having no long chords and no three consecutive short chords,
and such that each vertex v P VpHqzVpPq satisfies one the following assertions:

(i) v is a pendant vertex and the only neighbor of v is neither an endpoint of P nor the
midpoint of any short chord of P.

(ii) v has degree 2 and is a false twin of uj for some j P t1, 2, . . . , ℓ� 1u.

(iii) v has degree 3 and is a true twin of uj for some j P t1, ℓ� 1u such that uj�1 is adjacent
to uj�1.

Proof. If H is the underlying graph of an m-crown for some m ¥ 3, then the lemma
holds trivially by letting P be any path of H of length 2 whose endpoints are the two
vertices ofH of degreem�1. Therefore, without loss of generality, we will assume that
H is not the underlying graph of an m-crown for any m ¥ 3. Among the longest paths
of H without long chords, let us choose some path P � u0u1u2 . . .uℓ that maximizes
dHpu0q � dHpuℓq and, among those with maximal dHpu0q � dHpuℓq, we choose one
that minimizes mintdHpu0q,dHpuℓqu. We will show that P satisfies the thesis of the
lemma. Notice that P has no long chords by construction and that P has no three
consecutive short chords simply because H has no 5-cycle. The lemma follows from
the following four claims.

Claim 1. P is edge-dominating.

Proof of the claim. Suppose, by the way of contradiction, that P is not edge-dominating.
Since H is connected, there is some edge vw of H such that none of v and w is a vertex
of P and v is adjacent to uj for some j P t0, 1, 2, . . . , ℓu. Since H contains no bipartite
claw, j P t0, 1, ℓ�1, ℓu. Let us consider first the case j � 0. Then, the path vP must have
some long chord because it is longer than P. Since P has no long chords and H has no
cycle of length greater than 4, necessarily v is adjacent to u2. So, as H contains no A,
ℓ � 2. Then, as P 1 � u1u0vw is a path longer than P, P 1 must have some long chord;
i.e., w is adjacent tou1. In addition, tu0,u2,wu is a stable set becauseH has no 5-cycles.
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Moreover,NHpu0q � NHpu2q � NHpwq � tu1, vu becauseH contains noA. Now, P2 �

u1u0v is a path of the same length than P but the sum of the degrees of the endpoints
of P2 is dHpu1q � dHpvq ¡ 4 � dHpu0q � dHpu2q, which contradicts the choice of P.
The contradiction arose from assuming that j � 0. So, j � 0 and, symmetrically, j � ℓ.
Therefore, also by symmetry, we assume, without loss of generality, that j � 1. As
P3 � wvu1u2 . . .uℓ is longer than P, P3 must have some long chord. So, as H is a fat
caterpillar containing no A and no net, this means that w is adjacent to u2 and ℓ � 2.
But then, we find ourselves in the case j � ℓ by letting w play the role of v and vice
versa, which leads again to a contradiction. As this contradiction arose from assuming
that P was not edge-dominating, Claim 1 follows.

Claim 2. If v P VpHqzVpPq is pendant, then (i) holds.

Proof of the claim. Suppose that v P VpHqzVpPq is pendant. As P is edge-dominating,
NHpvq � tuju for some j P t0, 1, 2, . . . , ℓu. If j � 0, then vP would be a path longer
than P and without long chords, contradicting the choice of P. This contradiction
proves that j � 0 and, by symmetry, j � ℓ. Suppose, by the way of contradiction,
that uj is the midpoint of some short chord of P; i.e., uj�1 is adjacent to uj�1. Since H

contains no net and by symmetry, we assume, without loss of generality, that j � 1.
As vu1u0u2u3 . . .uℓ is longer than P, it must have some long chord; i.e., u1 is adjacent
to u3. Then, as H contains no A and P has no long chords, ℓ � 3 and dHpu0q �

dHpu3q � 2. So, P 1 � vu1u0u2 is a path of the same length that P without long chords
and such that dHpvq � dHpu2q ¥ 4 � dHpu0q � dHpu3q and mintdHpvq,dHpu2qu �

1   mintdHpu0q,dHpu3qu, which contradicts the choice of P. This contradiction arose
from assuming that v was adjacent to the midpoint of some short chord of P. Now,
Claim 2 follows.

Claim 3. If v P VpHqzVpPq has degree 2, then (ii) holds.

Proof of the claim. Let v P VpHqzVpPq of degree 2 and suppose, by the way of contra-
diction, that v is adjacent to two consecutive vertices of P; i.e., NHpvq � tuj,uj�1u

for some j P t0, 1, 2, . . . , ℓ � 1u. If j � 0, then vP would be a path without long
chords and longer than P, contradicting the choice of P. Therefore, j ¥ 1 and, by
symmetry, j ¤ ℓ� 1. The path u0u1 . . .ujvuj�1uj�2 . . .uℓ must have some long chord
because it is longer than P and, as P has no long chords, this means that ujuj�2 or
uj�1uj�1 is a chord of P. By symmetry, suppose, without loss of generality, thatujuj�2

is a chord of P. Then, j � ℓ � 2 since otherwise H would contain A. In addition,
NHpuℓq � tuℓ�2,uℓ�1u because P has no long chords and H contains no A. Hence,
dHpuℓq � 2   dHpuℓ�1q. Now, P 1 � u0u1 . . .uℓ�2vuℓ�1 is a path of the same length
than P but dHpu0q � dHpuℓ�1q ¡ dHpu0q � dHpuℓq. Because of the choice of P, P 1

must have some long chord and, necessarily, uj�1 is adjacent to uj�1. As uj adjacent
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to uj�2 implies j � ℓ � 2 and dHpuℓq � 2, uj�1 adjacent to uj�1 implies j � 1 and
dHpu0q � 2. Therefore, ℓ � 3, dHpu0q � dHpuℓq � 2, and NHpvq � tu1,u2u. Hence, as
H is connected and P is edge-dominating, every vertex v P VpHqzVpPq is adjacent to
u1 and/or to u2 only. If some vertex w P VpHqzVpPq were adjacent to u1 but not to u2,
then P2 � wu1u0u2 would be a path without long chords of the same length than P

and such that dHpwq � dHpu2q ¡ 4 � dHpu0q � dHpu3q, contradicting the choice of P.
This proves that each vertex w P VpHqzVpPq satisfies NHpwq � tu1,u2u. We conclude
that H is the underlying graph of an m-crown for some m ¥ 3, which contradicts our
initial hypothesis. This contradiction arose from assuming that v was adjacent to two
consecutive vertices of P. So, as P is edge-dominating and H has no cycle of length
greater than 4, necessarily NHpvq � tvj�1, vj�1u for some j P t1, 2, . . . , ℓ�1u. Suppose,
by the way of contradiction, that dHpujq ¡ 2 and let w be a neighbor of uj different
from uj�1 and uj�1. Then, as H contains no A and has no 5-cycle, ℓ � 2 and j � 1.
But then, wu1u2v is a path longer than P and without long chords, contradicting the
choice of P. This contradiction arose from assuming that dHpujq ¡ 2. Consequently,
uj is a false twin of v and (ii) holds. Hence, Claim 3 follows.

Claim 4. If v P VpHqzVpPq has degree at least 3, then (iii) holds.

Proof of the claim. Let v P VpHqzVpPq of degree at least 3. As P is edge-dominating
and H has no cycles of length greater than 4, NHpvq � tuj�1,uj,uj�1u for some j P

t1, 2, . . . , ℓ�1u. Asu0u1 . . .uj�1vujuj�1 . . .uℓ andu0u1 . . .uj�1ujvuj�1 . . .uℓ are longer
than P, they have at least one long chord each. So, if uj�1 were nonadjacent to uj�1,
then uj would be adjacent to uj�2 and to uj�2 and, therefore, vuj�1uj�2ujuj�2uj�1v

would be a 6-cycle of H, a contradiction. Therefore, uj�1 is adjacent to uj�1. As H

contains no A, j � 1 or j � ℓ�1. By symmetry, assume that NHpvq � tu0,u1,u2u. Sup-
pose, by the way of contradiction, that u1 is not a true twin of v. Then, there is some
w P NHpu1qztv,u0,u2u and, as P is edge-dominating and H has no cycle of length
greater than 4, w is pendant. Then, wu1u0u2u3 . . .uℓ is a path longer than P and with-
out long chords, a contradiction with the choice of P. This contradiction proves that
v is a true twin of u1 and (iii) holds. This completes the proof of Claim 4 and of the
lemma.

Lemma 4.19. Let H be a fat caterpillar containing no A and no net, let P � u0u1 . . .uℓ as
in the statement of Lemma 4.18, and suppose that ℓ ¥ 1. Then, H is the underlying graph
of Γ1 &p1 Γ2 &p2 � � � &pn�1 Γn for some basic two-terminal graphs Γ1, Γ2, . . . , Γn and some
nonnegative integers p1,p2, . . . ,pn�1 such that the source of Γ1 is u0 and the sink of Γn is uℓ.

Proof. The proof will be by induction on ℓ. If ℓ � 1, H is the underlying graph of an
edge link with source u0 and sink u1. Let ℓ ¥ 2 and assume that the claim holds when-
ever P has length less than ℓ. We will define a two-terminal graph Γ1 by considering
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several cases. In each case, we assume that the preceding cases do not hold.

Case 1. u0 is adjacent to some vertex v P VpHqzVpPq of degree 3.
Then, by assertions (i)–(iii) of Lemma 4.18, we have that v is a true twin of u1 and

NHpu0q � tv,u1,u2u. We define Γ1 to be the two-terminal graph with source u0 and
sink u2 and whose underlying graph is the subgraph of H induced by NHrvs. In par-
ticular, Γ1 is a K4.

Case 2. u0 is adjacent to some vertex in v P VpHqzVpPq of degree 2.
Then, by assertions (i)–(iii) of Lemma 4.18, we have that v is a false twin of u1

and each neighbor of u0 in VpHqzVpPq is also a false twin of u1. We define Γ1 as the
two-terminal graph with source u0 and sink u2, and whose underlying graph is the
subgraph ofH induced byNHru0sYtu2u. Notice that Γ1 is a crown or a fold, depending
on whether or not u0 is adjacent to u2.

As (i)–(iii) of Lemma 4.18 imply that each neighbor of u0 in VpHqzVpPq has degree
2 or 3, in the cases below we are assuming that u0 has no neighbors in VpHqzVpPq.

Case 3. u0 is adjacent to u2 and u1 is adjacent to u3.
Then, by assertions (i)–(iii) of Lemma 4.18, dHpu0q � 2 and dHpu1q � dHpu2q � 3.

Let Γ1 be the two-terminal graph with source u0 and sink u3, and whose underlying
graph is the subgraph of H induced by tu0,u1,u2,u3u. Then, Γ1 is a rhombus.

Case 4. u0 is adjacent to u2 and u1 is nonadjacent to u3.
As u1 is the midpoint of the short chord u0u2 and we are assuming that u0 has

no neighbors in VpHqzVpPq, assertions (i)–(iii) of Lemma 4.18 imply that u1 has no
neighbors in VpHqzVpPq. Therefore, as u1 is nonadjacent to u3, dHpu1q � 2. Let Γ1 be
the two-terminal graph whose source is u0 and sink u2, and whose underlying graph
is the subgraph of H induced by tu0,u1,u2u. Then, Γ1 is a triangle.

Case 5. u0 is nonadjacent to u2.
In this case, we define Γ1 as the two-terminal graph with source u0, sink u1, and

whose underlying graph is the induced subgraph of H induced by tu0,u1u. Then, Γ1

is an edge.

Once defined Γ1 as prescribed in Cases 1 to 5 above, we let j be such that uj is
the sink of Γ1, v1, v2, . . . , vp1 be the pendant vertices adjacent to uj, P 1 � ujuj�1 . . .uℓ,
and H 1 � H � ppVpΓ1qztujuq Y tv1, . . . , vp1uq. By construction, H 1 and P 1 satisfy the
statement of Lemma 4.18 by letting H 1 and P 1 play the roles of H and P, respectively.
If j � ℓ, then H is the underlying graph of Γ1 with source u0 and sink uℓ and the
lemma holds for H. If j   ℓ, by induction hypothesis, H 1 is the underlying graph of
some Γ2 &p2 Γ3 &p3 � � �&pn�1 Γn where each Γi is a basic two-terminal graphs and each
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pi ¥ 0, the source of Γ2 is uj, and the sink of Γn is uℓ. So, H is the underlying graph of
Γ1 &p1 Γ2 &p2 Γ3 &p3 � � � &pn�1 Γn where u0 is the source of Γ1 and uℓ is the sink of Γn.
Now, Lemma 4.19 follows by induction.

As a consequence of the two above results, we now prove a structural characteri-
zation for fat caterpillars containing no A and no net.

Lemma 4.20. Let H be a graph. Then, H is a fat caterpillar containing no A and no net if and
only if H is a linear concatenation of crowns, folds, rhombi, and K4’s where the K4 links may
occur only as the first and/or last links of the concatenation.

Proof. Suppose that H is a linear concatenation of a sequence Γ1, . . . , Γn of basic two-
terminal graphs such that if Γj is a K4 then j P t1,nu. Then, H contains no A and
no net because each 4-cycle of H has two nonconsecutive vertices adjacent to vertices
of the 4-cycle only and each triangle of H has at least one vertex of degree 2. More-
over, H has no cycle of length greater than 4 because each cycle of H is contained
in one of the links and, by construction, the links are basic. Suppose, by the way of
contradiction, that H contains a bipartite claw B. Let b0 be the center of B and let
b1, b2, and b3 be the neighbors of b0 in B. As b0 has degree at least 3 in H, b0 is a
concatenation vertex of H or a non-terminal vertex of a rhombus link. If b0 were the
non-terminal vertex of a rhombus links and, without loss of generality, b1 were the
remaining non-terminal vertex of the same link, then NHpb1q � tb0,b2,b3u, which
contradicts the choice of b0, b1, b2, and b3. Therefore, b0 is necessarily a concatena-
tion vertex of H. As each of b1, b2, and b3 is a non-pendant vertex, at least two of them
belong to the same link of H. Hence, we assume, without loss of generality, that b0 is
a terminal vertex of Γj for some j P t1, 2, . . . ,nu and b1 and b2 are two other vertices of
Γj. By construction, b1,b2 P NHpb0q, NHpb1qztb0,b2u � H, NHpb2qztb0,b1u � H, and
|pNHpb1q Y NHpb2qqztb0,b1,b2u| ¥ 2. So, since Γj is basic, necessarily Γj is a K4 and
either b1 or b2 is also a concatenation vertex of H. By symmetry, we assume, without
loss of generality, that j � 1, b0 is the source of Γ1, b1 is the sink of Γ1, and b2 and b3

are the non-terminal vertices of H. Then, NHrb2s � NHrb3s � tb0,b1,b2,b3u, contra-
dicting the choice of b0, b1, b2, and b3. This contradiction shows that H contains no
bipartite claw and we conclude that H is a fat caterpillar.

Conversely, let H be a fat caterpillar containing no A and no net. If H � K1, H
is the linear concatenation of an empty sequence of two-terminal graphs. Otherwise,
there is some path P � u0u1 . . .uℓ as in Lemma 4.18 and ℓ ¥ 1. Then, by Lemma 4.19,
H is the linear concatenation of basic two-terminal graphs. Moreover, as H contains
no A, the K4 links, if any, occur as first and/or last links of the concatenation, which
completes the proof of Lemma 4.20.
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The following two lemmas describe the structure of the remaining fat caterpillars;
i.e., those containing A or net.

Lemma 4.21. Let H be graph. Then, H is a fat caterpillar containing A if and only if H has
an edge-dominating 4-cycle C � v1v2v3v4v1 and two different vertices x1, x2 P VpHqzVpCq

such that xi is adjacent to vi for i � 1, 2, each non-pendant vertex in VpHqzVpCq is a false
twin of v4 of degree 2, and one of the following holds:

(i) C is chordless.

(ii) v1v3 is the only chord of C and dHpv4q � 2.

(iii) C has two chords and dHpv3q � dHpv4q � 3.

Proof. The ‘if’ part is clear. In order to prove the ‘only if’, suppose that H is a fat cater-
pillar containing A. Then, there is some 4-cycle C � v1v2v3v4v1 and two different
vertices x1, x2 P VpHqzVpCq such that xi is adjacent to vi for i � 1, 2. As H con-
tains no bipartite claw and H is connected, C is edge-dominating in H. Therefore,
as H has no 5-cycle, each vertex in VpHqzVpCq is pendant or has exactly two neigh-
bors which are nonconsecutive vertices of C. If there are two non-pendant vertices
w1,w2 P VpHqzVpCq, then w1 and w2 are false twins because H contains no bipartite
claw. Therefore, we assume, without loss of generality, that each non-pendant vertex
in VpHqzVpCq is adjacent precisely to v1 and v3. Thus, if there is some non-pendant
vertex w P VpHqzVpCq, then w is a false twin of v4 because H contains no bipartite
claw and has no 5-cycle. If C is chordless, then (i) holds. If C has two chords, then, as
H contains no bipartite claw, dHpv3q � dHpv4q � 3 and (iii) holds. Suppose that C has
exactly one chord and assume, without loss of generality, that v1v3 is the only chord of
C. As H has no 5-cycle and contains no bipartite claw, dHpv4q � 2 and (ii) holds.

Lemma 4.22. Let H be a graph. Then, H is a fat caterpillar containing net but containing no
A if and only if H has some edge-dominating triangle C such that each vertex in VpHqzVpCq

is pendant.

Proof. The ’if’ part is clear. For the converse, suppose that H contains no bipartite
claw. Since H contains net, there are six different vertices v1, v2, v3, x1, x2, x3 such that
v1, v2, v3 are pairwise adjacent and vi is adjacent to xi for i � 1, 2, 3. As H contains no
bipartite claw and H is connected, C � v1v2v3v1 is edge-dominating in H. In addition,
as H contains no A, each vertex in VpHqzVpCq is pendant.

We close this sub-subsection with the following result that summarizes the struc-
ture of fat caterpillars.
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Theorem 4.23. A graph H is a fat caterpillar if and only if exactly one of the following condi-
tions holds:

(i) H is a linear concatenation of crowns, folds, rhombi, and K4’s where the K4 links may
occur only as the first and/or last links of the concatenation.

(ii) H is the circular concatenation edge &p1 edge &p2 edge &p3 edge &p4 ÷ for some
nonnegative integers p1,p2,p3,p4 such that p1,p2 ¥ 1.

(iii) H is the circular concatenation edge &p1 edge &p2 m-fold &p3 ÷ for some m ¥ 2 and
some nonnegative integers p1,p2,p3,p4 such that p1,p2 ¥ 1.

(iv) H is the circular concatenation edge &p1 edge &p2 m-crown &p3 ÷ for some m ¥ 1
and some nonnegative integers p1,p2,p3,p4 such that p1,p2 ¥ 1.

(v) H is the underlying graph of edge&p1K4&p2 edge for some nonnegative integers p1,p2.

(vi) H is the circular concatenation edge&p1 edge&p2 edge&p3÷ for some positive integers
p1,p2,p3.

4.2.1.2 Structure theorem for graphs containing no bipartite claw

To prove our structure theorem, we need to prove first the following lemma.

Lemma 4.24. Let H be a connected graph containing no bipartite claw and having some cycle
of length at least 5. Assume further that the 5-cycles of H are chordless and the 6-cycles of H
have no long chords and no three consecutive short chords. If C � u1u2 . . .uℓu1 is a longest
cycle of H, then C has no long chords and no three consecutive short chords and, for each vertex
v P VpHqzVpCq, one of the following assertions holds:

(i) v is pendant and its only neighbor is not the midpoint of any short chord of C.

(ii) v has degree 2 and is a false twin of uj for some j P t1, 2, . . . , ℓu.

As a result, H is a circular concatenation of crowns, folds, and rhombi.

Proof. C has length at least 5 by hypothesis and C is edge-dominating in H because H

contains no bipartite claw. If C had a long chord, then C would have length at least
7 (because we are assuming that the 6-cycles have no long chords) and, as a conse-
quence, H would contain a bipartite claw. Hence, C has no long chords. If C had three
consecutive short chords, then C would have length at least 7 (because we are assum-
ing that the 5-cycles are chordless and the 6-cycles have no three consecutive short
chords) and would imply that H contains a bipartite claw. This means that C has no
three consecutive short chords.
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Let v P VpHqzVpCq. As C is edge-dominating and H is connected, dHpvq ¥ 1.
Assume first that v is pendant. If the only neighbor of v were the midpoint of some
short chord of C, then C should have length at least 6 (because we are assuming that 5-
cycles are chordless) and, therefore, H would contain a bipartite claw, a contradiction.
Therefore, if v is pendant, then (i) holds. Assume now that v is non-pendant. As C

is a longest cycle of H, no two consecutive vertex of C are adjacent to v. Moreover, as
H contains no bipartite claw, v has no two neighbors at distance larger than 2 within
C. This means that if v had at least three neighbors, then C would be a 6-cycle and v

would be adjacent to every second vertex of C, but then H would contain a bipartite
claw. We conclude that v has exactly two neighbors and that this two neighbors are at
distance 2 within C; i.e., NHpvq � tuj�1,uj�1u for some j P t1, . . . , ℓu (from this point
on, subindices should be understood modulo ℓ) and, due to the fact that H contains
no bipartite claw and its 5-cycles are chordless, uj is a false twin of v. This proves that
if v is not pendant, then (ii) holds.

It only remains to prove that H is a circular concatenation of crowns, folds, and
rhombi. We claim that there is some k P t1, 2, . . . , ℓu such that uk is neither the mid-
point of any short chord of C nor a false twin of any vertex outside VpCq. Indeed, if no
vertex of C is a false twin of a vertex outside VpCq, the existence of k is guaranteed by
the fact that C has no three consecutive short chords. Suppose that, on the contrary,
there is some j P t1, . . . , ℓu such that uj is a false twin of a vertex outside VpCq. Then,
as C is a longest cycle of H, uj�1 is not the midpoint of a short chord of C and uj�1 is
not the false twin of any vertex outside VpCq because dHpuj�1q ¡ 2. Then, the claim
holds by letting k � j� 1. This concludes the proof of the claim.

Assume, without loss of generality, that uℓ is neither the midpoint of any short
chord nor a false twin of any vertex outside VpCq. Let v1, v2, . . . , vq be the pendant
vertices of H incident to uℓ. We create a new vertex u0 and we add the edge u0u1 and
the edges joining u0 to every false twin of u1 outside VpCq (if any). If uℓ is adjacent to
u2, then we also add an edge joining u0 to u2. Finally, we remove every edge joining uℓ

to a neighbor of u0. Let H 1 be the graph that arises this way and let P 1 � u0u1u2 . . .uℓ.
Clearly, H 1 and P 1 satisfy Lemma 4.18 by letting H 1 and P 1 play the roles of H and P,
respectively. So, by Lemma 4.19 and its proof, H 1 is the underlying graph of some
Γ1 &p1 Γ2 &p2 & � � � &pn�1 Γn where each Γi is a crown, a fold, or a rhombus, and each
pi ¥ 0. (Indeed, no Γi is a K4 because no vertex v P VpH 1qzVpP 1q has degree 3.) Finally,
H is the circular concatenation Γ1 &p1 Γ2 &p2 & � � �&pn�1 Γn &q ÷, where each link is a
crown, a fold, or a rhombus.

The next theorem is the main result of this subsection and proves that, except for
a few sporadic cases (assertions (i), (ii), and (iii) below), connected graphs containing
no bipartite claw are linear and circular concatenations of basic two-terminal graphs
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(assertion (iv)).

Theorem 4.25. Let H be a connected graph. Then, H contains no bipartite claw if and only if
at least one of the following assertions holds:

(i) H is spanned by a 6-cycle having a long chord or three consecutive short chords.

(ii) H has a 5-cycleC and a vertexu P VpCq such that: (1) each v P VpHqzVpCq is a pendant
vertex adjacent to u and (2) C has three consecutive short chords or u is the midpoint of
a chord of C.

(iii) H has a complete set Q of size 4 and there are two vertices q1,q2 P Q such that: (1) each
v P VpHqzVpQq is a pendant vertex adjacent to q1 or q2 and (2) there is at least one
pendant vertex adjacent to qi for i � 1, 2.

(iv) H is a linear or circular concatenation of crowns, folds, rhombi, and K4’s, where the K4

links may occur only in the case of linear concatenation and only as the first and/or last
links of the concatenation.

Proof. Suppose that H contains no bipartite claw and we will prove that at least one
of the assertions (i)–(iv) holds. Since H contains no bipartite claw and H is connected,
every cycle of H of length at least 5 is edge-dominating in H.

If H contains a 6-cycle C having a long chord or three consecutive short chords,
then, as H contains no bipartite claw, H is spanned by C and assertion (i) holds. So,
from now on, we assume, without loss of generality, that H contains no 6-cycle having
a long chord or three consecutive short chords.

Suppose now that H contains antenna. Then, H has some 5-cycle C � v1v2v3v4v5v1

and some vertex v P VpHqzVpCq such that v is adjacent to v2 and v1 is adjacent to v3.
If v were adjacent to any vertex of C different from v2, then H would have a 6-cycle
having a long chord, contradicting our assumption. If any vertex of C different from
v2 were adjacent to some vertex outside VpCq different from v, then H would contain
a bipartite claw. Therefore, as H is connected and C is edge-dominating, each vertex
v P VpHqzVpCq is a pendant vertex adjacent to v2. Thus, (ii) holds. So, from now on,
we assume, without loss of generality, that H contains no antenna.

Suppose now H has a 5-cycle C with three consecutive short chords. If there were
any vertex v P VpHqzVpCq adjacent to the two vertices v1 and v2 of C that are no mid-
points of any of these three short chords, then H would have a 6-cycle with three con-
secutive short chords, contradicting our assumption. Since H contains no antenna,
the midpoints of the chords of C have neighbors in VpCq only. Therefore, as C is
edge-dominating, each v P VpHqzVpCq is a pendant vertex adjacent to v1 or v2. If
there were two different vertices u1,u2 P VpHqzVpCq such that ui is adjacent to vi for
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i � 1, 2, then H would contain a bipartite claw. Hence, without loss of generality, each
v P VpHqzVpCq is a pendant vertex adjacent to v1 and (ii) holds. From now on, we
assume, without loss of generality that H has no 5-cycle with three consecutive short
chords.

Suppose now that H has a 5-cycle C � v1v2v3v4v5v1 with at least three chords.
Then, by hypothesis, C has exactly three chords and, without loss of generality, the
chords of C are v1v3, v1v4, and v3v5. As C is edge-dominating and H contains no an-
tenna, each vertex v P VpHqzVpCq is adjacent to v1 and/or to v3 only. Then, H �

rhombus &p1 m-crown &p2 ÷ for some p1,p2 ¥ 0 and some m ¥ 1 and, in particular,
(iv) holds. So, from now on, we assume, without loss of generality, that each 5-cycle
of H has at most two chords.

Suppose that H has a 5-cycle C � v1v2v3v4v5v1 with two crossing chords. Without
loss of generality, assume that v2v4 and v3v5 are the chords of C. As H contains no
antenna, v3 and v4 have neighbors in VpCq only. Suppose that there is some vertex
v P VpHqzVpCq such that v is adjacent simultaneously to v1, v2, and v5. SinceH contains
no bipartite claw, it follows that the only neighbors of v1 are v, v2, and v5, and the only
vertex outside VpCq adjacent simultaneously to v2 and v5 is v. So, since C is edge-
dominating, we conclude that H � rhombus &p1 rhombus &p2 ÷ for some p1,p2 ¥ 0
and, in particular, (iv) holds. So, without loss of generality, assume that there is no
vertex outside VpCq adjacent to v1, v2, and v5 simultaneously. Suppose now that there
is some vertex v P VpHqzVpCq which is adjacent to v2 and v5 and nonadjacent to v1.
Since H contains no bipartite claw, v1 has no neighbors apart from v2 and v5. So, since
C is edge-dominating, we conclude that H � rhombus &p1 m-fold &p2 ÷ for some
p1,p2 ¥ 0 and m ¥ 2 and, in particular, (iv) holds. Finally, assume, without loss of
generality, that there is no vertex v P VpHqzVpCq adjacent to v2 and v5 simultaneously.
Then, since C is edge-dominating, H � rhombus &p1 m1-crown &p2 m2-crown &p3 ÷

for some p1,p2,p3,m1,m2 ¥ 0 and (iv) holds.
Suppose thatH has a 5-cycleC � v1v2v3v4v5v1 with two noncrossing chords. With-

out loss of generality, assume that v1v3 and v1v4 are the chords of C. Since H con-
tains no antenna, vertices v2 and v5 have neighbors in VpCq only. If there were a ver-
tex outside VpCq which were adjacent to v1, v3, and v4, then H would have a 6-cycle
with a long chord, contradicting our assumption. Therefore, as C is edge-dominating,
H � m1-crown &p1 m2-crown &p2 m3-crown &p3 ÷ for some p1,p2,p3,m1 ¥ 0 and
some m2,m3 ¥ 1 and (iv) holds. Therefore, from now on, we assume, without loss of
generality, that each 5-cycle of H has at most one chord.

Suppose now that H has a 5-cycle C � v1v2v3v4v5v1 with exactly one chord. With-
out loss of generality, assume that the only chord is v1v3. Since H has no antenna, no
vertex outside VpCq is adjacent to v2. If there were some vertex outside VpCq adjacent



4.2. Clique-perfectness of complements of line graphs 95

to at least three vertices of C, then H would have a 5-cycle with at least two chords,
contradicting our hypothesis. Suppose that there is some vertex v P VpHqzVpCqwhich
is adjacent to two nonconsecutive vertices of C different from v1 and v3. Without
loss of generality, assume that the two neighbors of v are v1 and v4. Since H con-
tains no bipartite claw, v5 has no neighbors outside VpCq. As C is edge-dominating,
we conclude that H � m1-fold &p1 m2-crown &p2 m3-crown &p3 ÷ for some m1 ¥

2, m2 ¥ 1, and some m3,p1,p2,p3 ¥ 0. If, on the contrary, there is no vertex in
VpHqzVpCq adjacent to two nonconsecutive vertices of C different from v1 and v3, then
H � m1-crown &p1 m2-crown &p2 m3-crown &p3 m4-crown &p4 ÷ for some m1 ¥ 1
and some m2,m3,m4,p1,p2,p3,p4 ¥ 0. In both cases, (iv) holds. Hence, from now on,
we assume that every 5-cycle of H is chordless.

As we are assuming that H has no 6-cycle having a long chord or three consecutive
short chords and that each 5-cycle of H is chordless, if H has a cycle of length at least
5, then, by Lemma 4.24, H is a circular concatenation of crowns, folds, and rhombi,
which means that (iv) holds. So, we assume, without loss of generality, that each cycle
of H has length at most 4. But then, H is a fat caterpillar and assertion (iii) or (iv) holds
by virtue of Theorem 4.23.

Conversely, if H satisfies one of the assertions (i)–(iii), then clearly H contains no
bipartite claw. Finally, ifH satisfies assertion (iv), then alsoH contains no biparite claw
by reasoning as in the first part of the proof of Lemma 4.20.

Notice that, although those graphs satisfying (iii) are the underlying graphs of
edge &p1 K4 &p2 edge for positive integers p1,p2, we prefer to consider (iii) a sporadic
case.

4.2.2 Edge-coloring graphs containing no bipartite claw

The chromatic index χ 1pHq of a graph H is the minimum number of colors needed to
color all the edges of H so that no two incident edges receive the same color. Clearly,
χ 1pHq ¥ ∆pHq. In fact, Vizing [122] proved that for every graph H either χ 1pHq �

∆pHq or χ 1pHq � ∆pHq � 1. The problem of deciding whether a graph H satisfies
χ 1pHq � ∆pHq is NP-complete even for graphs having only vertices of degree 3 [74].
Interestingly, the problem of deciding whether or not χ 1pHq � ∆pHq can be solved in
linear time if H is contains no bipartite claw. Indeed, as H contains no bipartite claw
as a minor, it has bounded tree-width [106], which means that χ 1pHq can determined
via the algorithm devised in [129] (for the undefined notions see, e.g., Chapter 12 of
[46]). In this subsection, we give a structural characterization of those graphs having
no bipartite claw that satisfy χ 1 � ∆.

We need to introduce some terminology related to edge-coloring. A major vertex of
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P∗ SK4 K5 − e L5 SK5

Figure 4.6: Graphs P�, SK4, K5 � e, L5, and SK5

a graph is a vertex of maximum degree. IfH is a graph, the coreH∆ ofH is the subgraph
of H induced by the major vertices of H. Graphs H for which χ 1pHq � ∆pHq are Class
1, and otherwise they are Class 2. A graph H is critical if H is Class 2, connected,
and χ 1pH � eq   χ 1pHq for each e P EpHq. Some graphs needed in what follows are
introduced in Figure 4.6.

We rely on the following results.

Theorem 4.26 ([73]). If H is a connected Class 2 graph with ∆pH∆q ¤ 2, then the following
conditions hold:

(i) H is critical.

(ii) δpH∆q � 2.

(iii) δpHq � ∆pHq � 1, unless H is an odd chordless cycle.

(iv) Every vertex of H is adjacent to some major vertex of H.

Theorem 4.27 ([31]). Let H be a connected graph such that ∆pH∆q ¤ 2 and ∆pHq � 3.
Then, H is Class 1, unless H � P�.

Theorem 4.28 ([123]). If H is a graph of Class 2, then H contains a critical subgraph of
maximum degree k for each k such that 2 ¤ k ¤ ∆pHq.

Theorem 4.29 ([3]). There are no critical graphs having 4 or 6 vertices. The only critical
graphs having 5 vertices are C5, SK4, and K5 � e.

By exploiting our structure theorem for graphs containing no bipartite claw (The-
orem 4.25) and the results above, we give a structural characterization of all connected
Class 2 graphs within graphs containing no bipartite claw, as follows.

Theorem 4.30. Let H be a connected graph containing no bipartite claw. Then, χ 1pHq �

∆pHq if and only if none of the following statements holds:

(i) ∆pHq � 2 and H is an odd chordless cycle.

(ii) ∆pHq � 3 and H is the circular concatenation of a sequence of edges, triangles, and
rhombi, where the number of edge links equals one plus the number of rhombus links.
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(iii) ∆pHq � 4 and H � K5 � e, K5, L5, or SK5.

Proof. Let H be a connected graph containing no bipartite claw and such that χ 1pHq �

∆pHq. We need to prove that H satisfies (i), (ii), or (iii). Since the result holds trivially
if ∆pHq ¤ 2, we assume, without loss of generality, that ∆pHq ¥ 3. The proof splits
into three cases.

Case 1. ∆pH∆q ¤ 2.
We claim that H � K5 � e. Since P� contains a bipartite claw, if ∆pHq � 3 then

H would be Class 1 by Theorem 4.27, contradicting the hypothesis. Thus, ∆pHq ¥ 4.
By Theorem 4.26, δpH∆q � 2 and δpHq � ∆pHq � 1 ¥ 3. Suppose, by the way of
contradiction, that assertion (iv) of Theorem 4.25 holds for H. Since the vertices of H
that are not concatenation vertices have degree at most 3, all major vertices of H are
concatenation vertices. Since δpH∆q � 2, H is necessarily a circular concatenation of
crowns. Finally, since δpHq ¥ 3, each of the crowns of the concatenation is an edge and
H has no pendant vertices; i.e., H is a chordless cycle, contradicting ∆pHq ¥ 4. This
contradiction proves that assertion (iv) of Theorem 4.25 does not hold for H. Thus,
assertion (i), (ii), or (iii) of Theorem 4.25 holds for H. As δpHq ¥ 3, H has no pendant
vertices and necessarily |VpHq| � 5 or 6. So, since H is critical and ∆pHq ¥ 4, it follows
from Theorem 4.29 that H � K5 � e, as claimed.

Case 2. ∆pH∆q ¥ 3 and ∆pHq ¥ 4.
Suppose thatH has a 6-cycleC having a long chord. This implies thatC is spanning

in H because H is connected and contains no bipartite claw. In particular, |VpHq| ¤ 6.
Then, as we are assuming that∆pHq ¥ 4, Theorems 4.28 and 4.29 imply thatH contains
K5 � e and ∆pHq � 4. Therefore, as H has a spanning 6-cycle, H arises from K5 � e by
adding one vertex adjacent precisely to the two vertices of degree 3 of the K5 � e; i.e.,
H � SK5. So, for the remaining of this case, we assume that H has no 6-cycle having a
long chord.

As ∆pH∆q ¥ 3, there is some major vertex w0 of H that is adjacent in H to three
other major vertices w1,w2,w3 of H. Let W � tw0,w1,w2,w3u.

Suppose, by the way of contradiction, that |NHpwiqzW| ¥ 2 for each i � 1, 2, 3.
If |pNHpw1q Y NHpw2q Y NHpw3qqzW| ¥ 3, then, by Hall’s Theorem, H would con-
tain a bipartite claw, a contradiction. We conclude that there are two vertices x1, x2 P

VpHqzW such that x1 � x2 and NHpwiqzW � tx1, x2u for each i � 1, 2, 3. Then,
w0w1x1w2x2w3w0 is a 6-cycle having three long chords, a contradiction. As this con-
tradiction arose from assuming that |NHpwiqzW| ¥ 2 for each i � 1, 2, 3, there is some
j P t1, 2, 3u such that |NHpwjqzW| ¤ 1 and, in particular, ∆pHq � 4.

Suppose now that |pNHpw1q YNHpw2q YNHpw3qqzW| ¥ 2. Then, by Hall’s The-
orem and by symmetry, we assume, without loss of generality, that there are two
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different vertices x1, x2 P VpHqzW such that xi is adjacent to wi, for i � 1, 2, and
|NHpw3qzW| ¤ 1. As w3 is a major vertex, w3 is necessarily adjacent to w1 and w2.
As ∆pHq � 4 and H contains no bipartite claw, for each of w0 and w3, its only neigh-
bor outside W is either x1 or x2. By symmetry, we assume, without loss of generality,
that NHrw3s � W Y tx1u. Then, as H contains no bipartite claw and has no 6-cycle
having a long chord, NHrw0s � W Y tx1u, NHrw1s � W Y tx1u, NHrw2s � W Y tx2u,
NHpx1q � tw0,w1,w3u, and NHpx2q � tw2u. We conclude that H � L5.

Finally, suppose that |pNHpw1q YNHpw2q YNHpw3qqzW| � 1 and, consequently,
NHrw1s � NHrw2s � NHrw3s � W Y txu for some x P VpHqzW. If w0 is adjacent to
x, then H � K5. If, on the contrary, the neighbor of w0 outside W is x 1 � x, then, as H
contains no bipartite claw and has no 6-cycle having a long chord, H � L5.

Case 3. ∆pH∆q ¥ 3 and ∆pHq � 3.
As ∆pHq � 3, (iii) of Theorem 4.25 does not hold. Suppose, by the way of con-

tradiction, that (i) or (ii) of Theorem 4.25 holds for H. Then, |VpHq| � 5 or 6 and, by
Theorems 4.28 and 4.29, H contains a SK4. Therefore, as H contains no bipartite claw,
H is connected, and ∆pHq � 3, it follows that either H � SK4 or H arises from SK4 by
adding a pendant vertex adjacent to the vertex of degree 2 of the SK4, contradicting
the assumption that (i) or (ii) of Theorem 4.25 holds. We conclude that, necessarily, H
is a linear or circular concatenation as described in (iv) of Theorem 4.25. As ∆pHq � 3,
no link of the linear or circular concatenation is an m-crown for any m ¥ 3 or an m-
fold for any m ¥ 4. Moreover, if any of the links in the linear or circular concatenation
were a 2-crown, 3-fold, or K4, then H would be precisely the underlying graph of a
2-crown, 3-fold, or K4, and H would be Class 1, a contradiction. Therefore, H is a lin-
ear or circular concatenation of edges, triangles, squares, and rhombi. As ∆pHq � 3, if
any link of the concatenation is a triangle, square, or rhombus, then its adjacent links
in the concatenation are edges. Then, it is clear that there is a 3-edge-coloring of H if
and only if there is a coloring of only the edge links of H such that:

(1) Each two edge links that are adjacent to the same triangle link are colored with
different colors.

(2) Each two edge links that are adjacent to the same rhombus link are colored with
the same color.

(3) Each two adjacent edge links are colored with different colors.

So, if H is a linear concatenation, a greedy coloring of the edge links following
the order of their occurrence in the linear concatenation and following rules (1)–(3)
above, ends up successfully, implying that H has a 3-edge-coloring, a contradiction
with the fact that H is Class 2. So, H is a circular concatenation. Suppose, by the
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way of contradiction, that some link of the circular concatenation is a square. Then,
H � edge &p1 Γ2 &p2 � � � &pn�1 edge & square ÷ and, as H is not 3-edge-colorable,
edge &1 edge &p1 &Γ1 &p1 Γ2 &p2 � � � &pn�1 edge &1 edge is a linear concatenation of
edges, triangle, squares, and rhombi that is no 3-edge-colorable, a contradiction to
what we have just shown. This contradiction proves that H is a circular concatenation
of edges, triangles, and rhombi only.

We will now prove that if H is a circular concatenation of edges, triangles, and
rhombi such that∆pH∆q ¥ 3 and∆pHq � 3, thenH is Class 2 if and only ifHhas exactly
one more edge links than rhombus links. As ∆pH∆q ¥ 3, H has at last one rhombus
link. So, without loss of generality, H � edge&p1 Γ2 &p2 � � �&pn�1 edge&rhombus&÷.
Notice that H is Class 2 if and only if there is no 3-edge-coloring of the edge links of
H 1 � edge&p1 Γ2 &p2 � � �&pn�1 edge satisfying rules (1)–(3) above and such that the first
and the last link of H 1 are colored with the same color. Moreover, H 1 is not 3-edge-
colorable satisfying rules (1)–(3) above if and only if the graph H2, that arises from
H 1 by contracting each triangle link to a vertex and contracting each pair formed by
a rhombus link followed by an edge also to a vertex, consists of precisely two edges;
i.e., H 1 has two more edge links than rhombus links. We conclude that H has exactly
one more edge links than rhombus links; i.e., (ii) holds. This completes Case 3 and the
proof of the ’only if’ part of the theorem.

Notice also that we have just proved that if (ii) holds for H, then by the analysis in
Case 3, H is Class 2. As a result, the ‘if’ part of the theorem is also proved because, if
(i) or (iii) holds for H, then H is clearly Class 2.

Corollary 4.31. The critical graphs containing no bipartite claw are the odd cycles, K5 � e,
and those graphs H satisfying ∆pHq � 3 that are circular concatenations of edges, triangles,
and rhombi having exactly one more edge links than rhombus links and without pendant edges.

4.2.3 Matching-perfect graphs

As mentioned in the beginning of this section, in order to prove Theorems 4.16 and
4.17, it suffices to prove the theorem below, which is the main result of this subsection.

Theorem 4.32. Let H be a connected graph containing no bipartite claw and such that the
length of each cycle of H is at most 4 or is a multiple of 3. Then, αmpHq � τmpHq.

To prove that αmpHq � τmpHq in Theorem 4.32, we combine upper bounds on
τmpHq with lower bounds on αmpHq. For instance, the next lemma states a simple yet
useful upper bound on τmpHq.

Lemma 4.33. If H is a graph and v1 and v2 are two adjacent vertices of H, then the set of
edges of H that are incident to v1 and/or to v2 is a matching-transversal of H. In particular,
τmpHq ¤ dHpv1q � dHpv2q � 1.
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Proof. No matching M of H disjoint from EHpv1q Y EHpv2q is maximum because MY

tv1v2u is a larger matching of H.

A partial k-edge-coloring of a graph H is a map φ : EpHq Ñ t0, 1, 2, . . . ,ku such that,
for each pair of incident edges e1, e2 of H, φpe1q � φpe2q implies φpe1q � φpe2q � 0.
If φpeq � 0, e is said to be colored with color φpeq; otherwise, e is said to be uncolored.
A k-edge-coloring of H is a partial k-edge-coloring that colors all edges of H. The color
classes of a partial k-edge-coloring are the sets ξ1, ξ2, . . . , ξk where ξj is the set of edges
of H colored by φ with color j, for each j � 1, 2, . . . , k.

We complement the upper bounds on τm with lower bounds on αm obtained with
the help of a special kind of partial edge-colorings that we call profuse-colorings. A
k-profuse-coloring of a graph H is a partial k-edge-coloring φ : EpHq Ñ t0, 1, 2, . . . ,ku
such that, for each edge e of H (either colored or not), there are edges of H incident to
e that are colored with at least k� 1 different colors. We say that a k-profuse-coloring
φ is maximal if, for each uncolored edge, there are edges incident to it that are colored
with the k different colors (i.e., no uncolored edge can be colored while keeping the
coloring a k-profuse-coloring). We now show that the maximum value of k for which
a graph H has a k-profuse coloring is precisely αmpHq. Hence, in order to prove that
αmpHq ¥ k it will suffice to exhibit a k-profuse-coloring of H.

Lemma 4.34. Let H be a graph. Then, the following assertions are equivalent:

(i) αmpHq ¥ k.

(ii) H has a k-profuse-coloring.

(iii) H has a maximal k-profuse-coloring.

Indeed, the collection of color classes of a maximal k-profuse-coloring of H is a matching-
independent set of size k.

Proof. Let us prove first that (i) ñ (iii). Suppose that αmpHq ¥ k. Then, there is a
collection M � tM1,M2, . . . ,Mku of k pairwise disjoint maximal matchings of H. Let
φM : EpHq Ñ t0, 1, 2, . . . ,ku be defined by

φMpeq � i if and only if e PMi, for each e P EpHq and each i � 1, . . . ,k.

Notice that φMpeq � 0 if and only if e R M1 YM2 Y � � � YMk. We claim that φM is a
maximal k-profuse-coloring of H. Since each Mi is a matching, φM is a partial edge-
coloring ofH. Let e be any edge ofH. Assume first that e PMj for some j P t1, 2, . . . , ku.
For each i � 1, 2, . . . , k and each i � j, the maximality of Mi implies that there is some
edge ei of H incident to e such that φMpeiq � i. So, the set tei : i � ju consists of
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k�1 edges incident to e that are colored with k�1 different colors. Assume now that
e R M1 YM2 Y � � � YMk. For each each i � 1, 2, . . . , k, the maximality of Mi implies
that there is some edge ei of H incident to e such that φMpeiq � i. We conclude that
φM is a maximal k-profuse-coloring of H and (iii) holds.

We now prove that (ii) ñ (i). Suppose (ii) holds and let φ : EpHq Ñ t0, 1, 2, . . . ,ku
be a k-profuse coloring of H. Then, for each i � 1, 2, . . . , k, the color class ξi � φ�1piq

is a matching of H. For each i � 1, 2, . . . , k, let Mi be any maximal matching of H
containing ξi and let e be any edge of H. As φ is a k-profuse-coloring, there are k� 1
edges e1, e2, . . . , ek of H incident to e such that φpe1q,φpe2q, . . . ,φpek�1q are positive
and pairwise different. So, as ei P ξφpeiq and Mφpeiq is a matching containing ξφpeiq,
e R Mφpeiq for each i � 1, 2, . . . , k � 1. This proves that each edge e of H belongs
to at most one of M1, M2, . . . , Mk. Thus, by construction, M � tM1,M2, . . . ,Mku

is a collection of k disjoint maximal matchings of H and αmpHq ¥ k; i.e., (i) holds, as
desired. Since (iii) trivially implies (ii), this completes the proof the equivalence among
(i)–(iii). Finally, notice that if φ is maximal, then Mi � ξi because each e P EpHqzξi is
incident to some edge in ξi. Therefore, if φ is maximal, then tξ1, . . . , ξku is a collection
of k disjoint maximal matchings, proving the last assertion of Lemma 4.34.

We state the following immediate consequence of Lemma 4.34 for future reference.

Corollary 4.35. LetH be a graph and letφ be a maximal k-profuse-coloring ofH. Then, every
matching-transversal of H has at least one edge colored with color i for each i � 1, 2, . . . , k.

More upper bounds on τm and lower bounds on αm will be proved later in this
subsection. Some of them depend on the degrees of what we call hubs. The hubs of a
graph are the vertices of degree at least 3. The minimum hub degree δhpHq of a graph H

is the infimum of the degrees of the hubs of H. Notice that δhpHq ¥ 3 for any graph H

and that δhpHq � �8 if and only ifH has no hubs. A hub is minimum if its degree is the
minimum hub degree. An edge of a graph is hub-covered if at least one of its endpoints
is a hub. A graph H is hub-covered if each of its edges is hub-covered. Equivalently, H
is hub-covered if and only if its hub set is edge-dominating. A graph is hub-regular if
all its hubs have the same degree. Equivalently, a graph H is hub-regular if and only
if δhpHq � ∆pHq or δhpHq � �8.

The proof of Theorem 4.32 splits into two parts. In Sub-subsection 4.2.3.1, we con-
sider the case when H has some cycle of length greater than 4 (which is necessarily a
cycle of length 3k for some k ¥ 2). Later, in Sub-subsection 4.2.3.2, we show how to
deal with the case when H has no cycle of length greater than 4.
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4.2.3.1 Graphs having some cycle of length 3k for some k ¥ 2

The main result of this sub-subsection is the theorem below, which is the restriction
of Theorem 4.32 to graphs containing some cycle of length 3k for some k ¥ 2.

Theorem 4.36. Let H be a connected graph containing no bipartite claw and such that the
length of each cycle of H is at most 4 or is a multiple of 3. If H has some cycle of length 3k for
some k ¥ 2, then αmpHq � τmpHq.

Theorem 4.36 will follow by considering separately the cases when the graph is
hub-covered (Lemma 4.42) and when it is not hub-covered (Lemma 4.43).

From the structure lemma below, whose proof is immediate, it follows that if a
graph H containing no bipartite claw is such that the length of each of its cycles is at
most 4 or is a multiple of 3 and H contains a cycle of length 3k for some k ¥ 2, then H

is triangle-free.

Lemma 4.37. Let H be a connected graph containing no bipartite claw such that the length of
each cycle is at most 4 or is a multiple of 3. If H contains some cycle C of length 3k for some
k ¥ 2, then one of the following conditions holds:

(i) H arises from C6 by adding 1, 2, or 3 long chords.

(ii) C is chordless and each vertex v P VpHqzVpCq is either: (1) a false twin of a vertex of C
of degree 2 in H or (2) a pendant vertex adjacent to a vertex of C.

In particular, H is triangle-free.

We begin the case of hub-covered graphs with the following upper bound on τm.

Lemma 4.38. Let H be a triangle-free graph containing no bipartite claw. If v is any hub
of H, then the set of edges of H incident to v is a matching-transversal of H. In particular,
τmpHq ¤ δhpHq.

Proof. Let v be any minimum hub of H and let w1, w2 and w3 be three of its neigh-
bors in H. If EHpvq were not a matching-transversal of H, there would be a maximal
matching M of H disjoint from EHpvq. Then, for each i � 1, 2, 3, there would be some
ei PM incident towi and non-incident to v. AsH is triangle-free,wi would be the only
endpoint of ei in tw1,w2,w3u, for each i � 1, 2, 3. But then, tvw1, vw2, vw3, e1, e2, e3u

would be the edge set of a bipartite claw contained in H, a contradiction. This contra-
diction proves that EHpvq is a matching-transversal of H and that τmpHq ¤ δhpHq.

The counterpart of the above upper bound on τmpHq is the following lemma from
which we deduce sufficient conditions for δhpHq being also a lower bound on αmpHq.
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Lemma 4.39. Let H be a triangle-free graph containing no bipartite claw. Then, there exists a
set F of hub-covered edges of H such that the graph H 1 � HzF is hub-regular and has the same
hub set and the same minimum hub degree as H.

Proof. Let H be a counterexample to the lemma with minimum number of edges. If H
were hub-regular, the lemma would hold by letting F � H. So, H is not hub-regular;
i.e., ∆pHq ¡ δhpHq. Let v be any hub of H that is not minimum.

We claim that v has some neighbor w in H which is not a minimum hub. Suppose,
by the way of contradiction, that all the neighbors of v are minimum hubs. By con-
struction, v has at least four neighbors w1,w2,w3,w4 and let W � tv,w1,w2,w3,w4u.
As H is triangle-free and wi is a hub, |NHpwiqzW| ¥ δhpHq � 1 for each i � 1, 2, 3.
Then, δhpHq � 3, since otherwise, Hall’s Theorem would imply that v is the center of a
bipartite claw contained in H. Similarly, Hall’s Theorem forces |pNHpw1qYNHpw2qY

NHpw3qqzW| ¤ 2. So, δhpHq � 3 and there are two different vertices x1, x2 outside
W such that NHpw1q � NHpw2q � NHpw3q � tv, x1, x2u and, by symmetry, also
NHpw4q � tv, x1, x2u. Then, H contains a bipartite claw, a contradiction. This contra-
diction proves that v has some neighbor w which is not a minimum hub, as claimed.

Let w be a neighbor of v which is not a minimum hub of H. Then, vw is a hub-
covered edge ofH andH1 � Hztvwu has the same hub set and the same minimum hub
degree as H. By minimality of the counterexample H, the lemma holds for H1. Hence,
there exists a set F1 of hub-covered edges of H1 such that H 1 � H1zF1 is hub-regular
and has the same hub set and the same minimum hub-degree as H1. By construction,
F � F1 Y tvwu is a set of hub-covered edges of H such that H 1 � HzF is hub-regular
and H 1 has the same hub set and the same minimum hub degree as H. So, the lemma
holds for H, contradicting the choice of H. This contradiction proves the lemma.

Lemma 4.40. Let H be a triangle-free graph containing no bipartite claw. If H is hub-covered
and has at least one edge, then αmpHq ¥ δhpHq.

Proof. By Lemma 4.39, there exists a set F of hub-covered edges of H such that H 1 �

HzF is hub-regular and has the same hub set and the same minimum hub degree as
H. Since H has at least one edge and H is hub-covered, H has at least one hub; i.e.,
3 ¤ δhpHq   �8. By construction, H 1 is also hub-covered and ∆pH 1q � δhpH

1q �

δhpHq ¥ 3. SinceH 1 is a subgraph ofH,H 1 is also triangle-free and contains no bipartite
claw. By Theorem 4.30, χ 1pH 1q � ∆pH 1q; i.e., there is an edge-coloring φ 1 of H 1 using
∆pH 1q � δhpHq colors. Let φ : EpHq Ñ t0, 1, 2, . . . , δhpHqu be defined by φpeq � φ 1peq

for each e P EpH 1q and φpeq � 0 for each e P EpHqzEpH 1q. Since H is hub-covered,
φ is a δhpHq-profuse-coloring of H by construction. Thus, by Lemma 4.34, αmpHq ¥

δhpHq.
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From Lemmas 4.38 and 4.40, we can determine αm and τm for all connected hub-
covered triangle-free graphs containing no bipartite claw.

Lemma 4.41. If H is a connected hub-covered triangle-free graph containing no bipartite claw
and having at least one edge, then αmpHq � τmpHq � δhpHq.

By Lemma 4.37 and the above lemma, we settle Theorem 4.36 for hub-covered
graphs, as follows.

Lemma 4.42. LetH be a connected graph containing no bipartite claw and such that the length
of each cycle of H is at most 4 or is a multiple of 3. If H has a cycle of length 3k for some k ¥ 2
and H is hub-covered, then αmpHq � τmpHq � δhpHq.

Finally, we also settle Theorem 4.36 for graphs that are not hub-covered.

Lemma 4.43. LetH be a connected graph containing no bipartite claw and such that the length
of each cycle of H is at most 4 or is a multiple of 3. If H has a cycle of length 3k for some k ¥ 2
and H is not hub-covered, then αmpHq � τmpHq � 3.

Proof. AsH is not hub-covered and has at least one edge, Lemma 4.33 implies τmpHq ¤

3. So, we just need to prove that αmpHq ¥ 3. Since the length of C is a multiple of 3,
there is a 3-edge-coloring of C, φ 1 : EpCq Ñ t1, 2, 3u such that each three consecutive
edges of C are colored with three different colors by φ 1. Let φ : EpHq Ñ t0, 1, 2, 3u
be defined by φpeq � φ 1peq for each e P EpCq and φpeq � 0 for each e P EpHqzEpCq.
Since H is connected and contains no bipartite claw, C is edge-dominating in H and,
consequently, φ is a 3-profuse-coloring of H. By virtue of Lemma 4.34, αmpHq ¥ 3, as
needed.

Clearly, Lemmas 4.42 and 4.43 together imply Theorem 4.36.

4.2.3.2 Graphs having no cycle of length greater than 4

As Theorem 4.36 is now proved, to complete the proof of Theorem 4.32, it only remains
to prove the theorem below, which is the main result of this sub-subsection.

Theorem 4.44. If H is a fat caterpillar, then αmpHq � τmpHq.

To begin with, the next lemma provides several upper bounds on τm.

Lemma 4.45. Let H be a graph containing no bipartite claw and having no 5-cycle and let v
be a hub of H. Then:

(i) If v has degree at least 5 in H, then EHpvq is a matching-transversal of H and, in partic-
ular, τmpHq ¤ dHpvq.
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(ii) Suppose that v has degree 4 in H. Then, τmpHq ¤ 5. If NHpvq does not induce 2K2 in
H, then EHpvq is a matching-transversal of H and, in particular, τmpHq ¤ 4.

(iii) Suppose that v has degree 3 in H. Then, τmpHq ¤ 5. If NHpvq induces 3K1 in H, then
EHpvq is a matching-transversal of H and, in particular, τmpHq ¤ 3. If NHpvq induces
K2 Y K1 in H, then τmpHq ¤ 4.

Proof. If EHpvq is a matching-transversal of H, then τmpHq ¤ dHpvq and there is noth-
ing left to prove. Therefore, we assume, without loss of generality, that EHpvq is not a
matching-transversal of H. Therefore, there exists a maximal matching M of H such
that MXEHpvq � H. Because of the maximality of M, for each neighbor w of v there is
exactly one edge ew PM that is incident to w. Notice that there could be two different
neighbors w1 and w2 of v such that ew1 � ew2 .

We claim that |tew | w P NHpvqu| ¤ 2. Suppose, by the way of contradiction, that
there are three different edges ew1 , ew2 , ew3 for somew1,w2,w3 P NHpvq. Then, v is the
center of a bipartite claw contained in H with edge set tvw1, ew1 , vw2, ew2 , vw3, ew3u,
a contradiction. This contradiction proves the claim. Therefore, as each edge ew is
incident to at most two vertices of NHpvq, in particular, dHpvq ¤ 4. So far, we have
proved (i).

Suppose that dHpvq � 3 and let NHpvq � tw1,w2,w3u. Suppose, by the way of
contradiction, that EHpvq Y FHpvq is not a matching-transversal of H. Then, there is
some maximal matching M 1 such that M 1 X pEHpvq Y FHpvqq � H. Because of the
maximality ofM 1, for each i � 1, 2, 3, there is an edge e 1wi

PM 1. Then, v is the center of
a bipartite claw whose edge set is tvw1, e 1w1 , vw2, e 1w2 , vw3, e 1w3u, a contradiction. This
contradiction proves that EHpvq Y FHpvq is a matching-transversal of H. In particular,
τmpHq ¤ 3� |FHpvq|. This proves (iii) when NHpvq is not a complete. So, assume that
NHpvq is a complete. Since H has no 5-cycle, every vertex x P VpHqzNHrvs having at
least one neighbor in NHpvq, has exactly one neighbor in NHpvq. So, since H contains
no bipartite claw, there is at least one vertex in NHpvq that has degree 3 in H. Assume,
without loss of generality, that w1 has degree 3 in H. Then, by Lemma 4.33, τmpHq ¤

dHpvq � dHpw1q � 1 � 5. This completes the proof of (iii).
Finally, we consider the case dHpvq � 4. Since |tew | w P NHpvqu| ¤ 2 and

each edge ew is incident to at most two neighbors of v, we assume, without loss of
generality, that ew1 � ew2 � w1w2 and ew3 � ew4 � w3w4. In particular, the graph
induced by NHpvq contains 2K2. Moreover, since H has no 5-cycle, NHpvq induces 2K2.
To complete the proof of (ii) it only remains to prove that τmpHq ¤ 5. Suppose, by the
way of contradiction, that EHpvq Y tw1w2u is not a matching-transversal. Then, there
is maximal matching M 1 of H such that M 1 X pEHpvq Y tw1w2uq � H. Because of the
maximality ofM 1, for eachw P NHpvq, there is some edge e 1w PM 1 incident tow. Since
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w1w2 R M 1, ew1 � ew2 . Since w3 is nonadjacent to w1 and w2, ew3 is different from
ew1 and ew2 . We conclude that v is the center of a bipartite claw contained in H whose
edge set tvw1, e 1w1 , vw2, e 1w2 , vw3, e 1w3u. This contradiction proves that EHpvqYtw1w2u

is a matching-transversal, which means that τmpHq ¤ 5. This completes the proof of
(ii) and of the lemma.

We now prove a lower bound on αm (Lemma 4.48), which is the last of the next
three lemmas.

Lemma 4.46. Let H be a graph. If v is a vertex of H that is neither the center of a bipartite
claw nor a vertex of a 5-cycle, at most two of the neighbors of v have degree at least 4 each.

Proof. Suppose, by the way of contradiction, that there exists some vertex v of H that
is neither the center of a bipartite claw nor a vertex of 5-cycle and such that v has three
different neighbors w1,w2,w3 in H such that dHpwiq ¥ 4 for each i � 1, 2, 3. Since
dHpwiq ¥ 4 for each i � 1, 2, 3, each wi is adjacent to at least one vertex xi different
from v,w1,w2,w3.

We claim that tw1,w2,w3u is a stable set of H. Suppose, by the way of contradic-
tion, that tw1,w2,w3u is not a stable set of H. By symmetry, we assume, without loss
of generality, that w1 is adjacent to w2. Since there is no 5-cycle passing through v, x3

is different from x1 and x2. Thus, x1 � x2 and NHpw1q � tv,w2,w3, x1u because v is
not the center of a bipartite claw. So, as dHpv1q ¥ 4, necessarily w1 is adjacent to w3

and w1x1w2vw3w1 is a 5-cycle of H passing through v, which is a contradiction. This
contradiction proves that tw1,w2,w3u is a stable set of H.

Since tw1,w2,w3u is a stable set and dHpwiq ¥ 4, there are three pairwise different
vertices xi1, xi2, xi3 P NHpwiqztv,w1,w2,w3u, for each i � 1, 2, 3. By Hall’s Theorem,
there are some j1, j2, j3 P t1, 2, 3u such that M � tw1x1j1 ,w2x2j2 ,w3x3j3u is a matching
of H of size 3. Then, tvw1, vw2, vw3uYM is the edge set of a bipartite claw with center
v, a contradiction. This contradiction completes the proof of the lemma.

Lemma 4.47. LetH be a graph containing no bipartite claw and having no 5-cycle. If δhpHq ¥

4, then there exists a set F of hub-covered edges of H such that the graph H 1 � HzF is hub-
regular and has the same hub set and the same minimum hub degree as H.

Proof. Suppose, by the way of contradiction, that the lemma is false and let H be a
counterexample to the lemma with minimum number of edges. IfHwere hub-regular,
then the lemma would hold for H by letting F � H, a contradiction. Hence, H is
not hub-regular; i.e., ∆pGq ¡ δhpGq. Let v be a hub of H that is not minimum. As
δhpGq ¥ 4, the vertex v has at least 5 neighbors. So, since H contains no bipartite
claw and has no 5-cycle, Lemma 4.46 implies that v has some neighbor w that is not
a hub (because δhpHq ¥ 4). Then, since vw is not incident to any minimum hub of
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H, H1 � Hztvwu has the same hub set and the same minimum hub degree as H. The
proof ends exactly as the one of Lemma 4.39.

Lemma 4.48. Let H be a graph containing no bipartite claw and having no 5-cycle. If H is
hub-covered, has at least one edge, and δhpHq ¥ 4, then αmpHq ¥ δhpHq.

Proof. By Lemma 4.47, there exists a set F of hub-covered edges of H such that H 1 �

HzF is hub-regular and has the same hub set and the same minimum hub degree as
H. As H is hub-covered and has at least one edge, δhpHq   �8. Then, H 1 is also hub-
covered and ∆pH 1q � δhpH

1q � δhpHq ¥ 4. Since H 1 is a subgraph of H, H 1 contains
no bipartite claw and has no 5-cycle. Therefore, by Theorem 4.30, χ 1pH 1q � ∆pH 1q;
i.e., there is an edge-coloring φ 1 of H 1 using ∆pH 1q � δhpHq colors. Let φ : EpHq Ñ

t0, 1, 2, . . . , δhpHqu be such that φpeq � φ 1peq for each e P EpH 1q and φpeq � 0 for
each e P EpHqzEpH 1q. Since H is hub-covered, φ is a δhpHq-profuse-coloring of H by
construction. Thus, by Lemma 4.34, αmpHq ¥ δhpHq.

The next two lemmas settle Theorem 4.44 for fat caterpillars containing A or net.

Lemma 4.49. Let H be a fat caterpillar containing A. Then, αmpHq � τmpHq. More
precisely, there are some C � v1v2v3v4v1 and x1, x2 P VpHqzVpCq as in the statement of
Lemma 4.21 and one of the following assertions holds:

(i) C is chordless and

αmpGq � τmpGq �

$&
%

3 if dHpv3q � dHpv4q � 2

δhpHq otherwise.

(ii) v1v3 is the only chord of C, dHpv4q � 2, and

αmpGq � τmpGq �

$&
%

4 if dHpv2q ¥ 4 and δhpHq � 3

δhpHq otherwise.

(iii) C has two chords, dHpv3q � dHpv4q � 3, and

αmpGq � τmpGq �

$&
%

5 if each of v1 and v2 has degree at least 5

4 otherwise.

Proof. Let C � v1v2v3v4v1 and x1, x2 P VpHqzVpCq as in the statement of Lemma 4.21.
In particular, each non-pendant vertex in VpHqzVpCq is a false twin of v4 of degree
2. Notice that αmpHq ¥ 3 because a 3-profuse-coloring of H arises by coloring the
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Figure 4.7: Some profuse-colorings for the proof of Lemma 4.49

edges in EpCq Y tv1x1, v2x2u as in Figure 4.7(a) and leaving the remaining edges of H
uncolored.

We claim that if δhpHq ¥ 4 then τmpHq ¤ δhpHq. On the one hand, if some min-
imum hub of H is adjacent to some pendant vertex, then τmpHq ¤ δhpHq because of
Lemma 4.33. On the other hand, if δhpHq ¥ 4 and the minimum hubs ofH are adjacent
to non-pendant vertices only, then v3 is the only minimum hub of H and Lemma 4.45
implies that τmpHq ¤ δhpHq because dHpv3q � δhpHq ¥ 4 and NHpv3q does not induce
2K2. Hence, the claim follows.

The proof splits into three cases corresponding to assertions (i)–(iii) of Lemma 4.21.

Case 1. C is chordless.
Suppose first that dHpv3q � dHpv4q � 2 or δhpHq � 3. If dHpv3q � dHpv4q � 2

or some vertex of degree 3 is adjacent to a pendant vertex, then αmpHq � τmpHq � 3
because τmpHq ¤ 3 by Lemma 4.33 and we have seen that αmpHq ¥ 3. Otherwise,
the only minimum hub is v3 and NHpv3q induces 3K1 which also leads to αmpHq �

τmpHq � 3 because τmpHq ¤ 3 by Lemma 4.45 and we have seen that αmpHq ¥ 3. So,
if dHpv3q � dHpv4q � 2 or δhpHq � 3, then (i) holds.

Suppose now that neither dHpv3q � dHpv4q � 2 nor δhpHq � 3 holds. Then, H
is hub-covered and δhpHq ¥ 4 which implies that αmpHq � τmpHq � δhpHq because
αmpHq ¥ δhpHq by Lemma 4.48 and τmpHq ¤ δhpHq. So, also in this case, (i) holds.

Case 2. v1v3 is the only chord of C and dHpv4q � 2.
Assume first that dHpv2q ¥ 4 and δhpHq � 3. Necessarily, dHpv3q � 3. Hence, as

dHpv4q � 2, Lemma 4.33 implies that τmpHq ¤ 4. Let y2 be a neighbor of v2 outside
VpCq different from x2. Then, αmpHq ¥ 4 because a 4-profuse-coloring of H arises
by coloring the subgraph of H induced by VpCq Y tx1, x2,y2u as in Figure 4.7(b) and
leaving the remaining edges of H uncolored. We have proved that, if dHpv2q ¥ 4 and
δhpHq � 3, then αmpHq � τmpHq � 4 and, in particular, (ii) holds.

Assume now that, on the contrary, dHpv2q � 3 or δhpHq ¥ 4. If the former holds,
then αmpHq � τmpHq � 3 � δhpHq because we know that αmpHq ¥ 3 and Lemma 4.33
would imply that τmpHq ¤ 3. If the latter holds, thenαmpHq � τmpHq � δhpHq because
H is hub-covered and Lemma 4.48 would imply that αmpHq ¥ δhpHq and because we
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have proved that τmpHq ¤ δhpHqwhenever δhpHq ¥ 4. We conclude that if dHpv1q � 3
or δhpHq ¥ 4, then αmpHq � τmpHq � δhpHq and (ii) holds.

Case 3. C has two chords and dHpv3q � dHpv4q � 3.
Assume v1 or v2 has degree 4. Then, Lemma 4.45 implies that τmpHq ¤ 4. In

addition, a 4-profuse-coloring of H arises by coloring the edges of the subgraph of H
induced by VpCq Y tx1, x2u as in Figure 4.7(c) and leaving all the remaining edges of
H uncolored. In particular, αmpHq ¥ 4. So, in this case, αmpHq � τmpHq � 4 and (iii)
holds.

Assume now that each of v1 and v2 has degree at least 5 and, for each i � 1, 2,
let yi be a neighbor of vi outside VpCq different from xi. As dHpv3q � dHpv4q � 3,
Lemma 4.33 implies that τmpHq ¤ 5. In addition, αmpHq ¥ 5 because a 5-profuse-
coloring of H arises by coloring the subgraph of H induced by VpCq Y tx1, x2,y1,y2u

as in Figure 4.7(d) and leaving the remaining edges of H uncolored. Hence, in this
case, αmpHq � τmpHq � 5 and (iii) holds.

Lemma 4.50. Let H be a fat caterpillar containing net but containing no A. Then, H has
some edge-dominating triangle C such that each v P VpHqzVpCq is pendant and αmpHq �

τmpHq � δhpHq.

Proof. That H has an edge-dominating cycle C such that each v P VpHqzVpCq is pen-
dant follows from Lemma 4.22. As the hubs of H are the vertices of C and each of
them is adjacent to some pendant vertex, Lemma 4.33 implies that τmpHq ¤ δhpHq.
For the proof of the lemma to be complete, it suffices to show that αmpHq ¥ δhpHq.
If δhpHq ¥ 4, then, as H is hub-covered, αmpHq ¥ δhpHq by Lemma 4.48. Finally,
if δhpHq � 3, then αmpHq ¥ 3 because a 3-profuse-coloring of H arises by 3-edge-
coloring the net induced in H by tv1, v2, v3,u1,u2,u3u and leaving the remaining edges
of H uncolored.

In order to settle Theorem 4.44, it only remains to prove the next result.

Theorem 4.51. Let H be a fat caterpillar containing no A and no net. Then, for each k ¥ 1,
αmpHq ¥ k if and only if τmpHq ¥ k.

By Lemma 4.20, fat caterpillars containing no A and not net are certain linear
concatenations of basic two-terminal graphs. To begin with, the following lemma,
whose proof is straightforward, enumerates the values of αm and τm for the underly-
ing graphs of each of the basic two-terminal graphs.

Lemma 4.52. The underlying graphs of each of the basic two-terminal graphs satisfy αm �

τm. Moreover:
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• For the underlying graph of the edge, αm � τm � 1.

• For the underlying graph of the triangle, the rhombus, and the K4, αm � τm � 3.

• For the underlying graph of the m-crown, αm � τm � m� 1, for each m ¥ 2.

• For the underlying graph of the m-fold, αm � τm � m, for each m ¥ 2.

Our proof of Theorem 4.51 is indirect. The theorem clearly holds for k � 1. In the
remaining of this sub-subsection, we deal separately with cases k � 2, k � 3, k � 4,
k � 5, and finally k ¥ 6. Case k � 2 of Theorem 4.51 can be derived from Theorem 4.4,
as follows.

Lemma 4.53. Let H be a fat caterpillar. Then, αmpHq ¥ 2 if and only if τmpHq ¥ 2.

Proof. The ‘only if’ part is trivial. For the converse, suppose, by the way of contradic-
tion, that τmpHq ¥ 2 but αmpHq ¤ 1. So, if G � LpHq, then τcpGq ¥ 2 and τcpGq ¤ 1.
Hence, by Theorem 4.4, G contains an induced Q2n�1 for some n ¥ 1. As G is the
complement of a line graph, necessarily G contains an induced Q3 (� 3-sun) and, as
a result, H contains a bipartite claw, a contradiction. This contradiction proves the ’if’
part and the lemma follows.

Case k � 3 can be dealt as follows.

Lemma 4.54. Let H be a fat caterpillar containing no A and no net and having at least one
edge. Then, αmpHq ¥ 3 if and only if τmpHq ¥ 3. In fact, both inequalities hold if and only if
H satisfies all of the following assertions:

(i) For each pair of adjacent vertices v1 and v2, dHpv1q � dHpv2q � 1 ¥ 3.

(ii) Each 4-cycle of H has at most two vertices of degree 2 in H.

(iii) H is not the underlying graph of triangle &p triangle for any p ¥ 0.

Proof. Since αmpHq ¤ τmpHq, clearly αmpHq ¥ 3 implies τmpHq ¥ 3. Suppose that
τmpHq ¥ 3. Then, (i) holds because of Lemma 4.33. If there were some 4-cycle C �

v1v2v3v4v1 such that dHpv1q � dHpv2q � dHpv3q � 2, then tv1v2, v2v3u would be a
matching-transversal of H, contradicting τmpHq ¥ 3. Similarly, if H were the underly-
ing graph of triangle &p triangle for some p ¥ 0, then the two edges of H that are not
incident to the concatenation vertex are a matching-transversal of H, another contra-
diction. These contradictions prove that (ii) and (iii) also hold.

To complete the proof of the lemma, let us assume that (i)–(iii) hold and we will
prove that αmpHq ¥ 3, or, equivalently, that H has a 3-profuse-coloring. As H is a fat
caterpillar containing no A and no net, Lemma 4.20 implies that H is the underlying
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graph of Γ1 &p1 Γ2 &p2 � � �&pn�1 Γn where each Γi is a basic two-terminal graph and each
pi ¥ 0. If n � 1, then H is the underlying graph of some two-terminal graph different
from an edge and a square and H admits a 3-profuse-coloring by Lemma 4.52. So,
assume that n ¥ 2.

Case 1. H is the underlying graph of Γ1 &p Γ2 where each of Γ1 and Γ2 is an edge or a triangle
and p ¥ 0.

By (iii), assume, without loss of generality, that Γ1 is an edge. If Γ2 is also an edge,
then (i) implies that p ¥ 1 and clearly αmpHq ¥ 3 because a 3-profuse-coloring of
H arises by coloring with three different colors any three edges of H and leaving the
remaining edges of H uncolored. If, on the contrary, Γ2 is a triangle, then also αmpHq ¥

3 because a 3-profuse-coloring of H arises by coloring the edge of Γ1 and the two edges
of Γ2 incident to the concatenation vertex with three different colors and leaving the
remaining edges of H uncolored.

Case 2. H does not fulfils Case 1.
For each i � 1, . . . ,n, let Pi be some shortest path in Γi joining its two terminal

vertices. Then, P � P1P2 . . .Pn is a chordless path in H and let P � u0u1 . . .uℓ where
u0 is the source of Γ1 and uℓ is the sink of Γn. Consider a coloring of the edges of P
with the colors 1, 2, and 3, such that any three consecutive edges of P receive three
different colors. As P is edge-dominating, every edge of H is incident to at least two
differently colored edges, except for the edges incident to u0 and uℓ. Assume without
loss of generality that u0u1 is colored with color 1 and u1u2 with color 2. We make the
edges incident to u0 adjacent to at least two differently colored edges as follows:

(1) If there are at least two edges joining u0 to vertices outside P, we color two of
these edges using colors 2 and 3.

(2) If there is exactly one vertex u 1 outside P adjacent to u0, then Γ1 is a triangle or
a rhombus (because (ii) ensures that Γ1 is not a square). In particular, u1 is also
adjacent to u 1 and we color u1u

1 with color 3.

(3) If there is no vertex outside P adjacent to u0, then Γ1 is an edge and, by (i), u1 is
adjacent to some vertex u 1 outside P. We color u1u

1 with color 3.

Symmetrically, let x be the color of uℓ�1uℓ, y be the color of uℓ�2uℓ�1, and z P

t1, 2, 3uztx,yu. We make the edges incident to uℓ adjacent to at least two differently
colored edges as follows:

(1’) If there are at least two edges joining uℓ to vertices outside P, we color two of
these edges using colors y and z.
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(2’) If there is exactly one vertex u2 outside P adjacent to uℓ, then u2 is adjacent to
uℓ�1 (as in (2)). If there were an edge incident to uℓ�1 colored with color z, then,
n � 2, Γ2 is a triangle, and either Γ1 is an triangle or an edge, contradicting the
hypothesis. So, we color the edge uℓ�1u

2 with color z.

(3’) If there is no vertex outside P adjacent to uℓ, then Γn is an edge and uℓ�1 is
adjacent to some vertex u2 outside P (as in (3)). If there were some edge incident
to uℓ�1 colored with color z, then n � 2 and Γ1 is an edge or a triangle, which
would contradict our hypothesis because Γ2 is a triangle. So, we color uℓ�1u

2

with color z.

The resulting partial 3-edge-coloring is a 3-profuse-coloring of H because each
edge of H is incident to at least two differently colored edges. Hence, αmpHq ¥ 3,
as needed.

For case k � 4, we prove the following.

Lemma 4.55. Let H be a fat caterpillar containing no net and no A and having at least one
edge. Then, αmpHq ¥ 4 if and only if τmpHq ¥ 4. In fact, both inequalities hold if and only H

satisfies all of the following conditions:

(i) For each pair of adjacent vertices v1 and v2, dHpv1q � dHpv2q � 1 ¥ 4.

(ii) No block of H is a complete of four vertices.

(iii) Each vertex of degree 3 that is not a cutpoint has only neighbors of degree at least 3.

(iv) The neighborhood of each cutpoint of degree 3 induces K2 Y K1 in H.

Proof. By Lemma 4.20, H is the underlying graph of some Γ1 &p1 Γ2 &p2 � � � &pn�1 Γn

where each Γi is a basic two-terminal graph and eachpi ¥ 0. For each i � 1, 2, . . . ,n�1,
let vi be the concatenation vertex of H that arises by identifying the sink of Γi with
the source of Γi�1 and let v0 be the source of Γ1 and vn be the sink of Γn. Clearly, the
cutpoints of H are the concatenation vertices v1, v2, . . . , vn�1 and the underlying graph
of each Γi is a block of H.

Since αmpHq ¤ τmpHq, αmpHq ¥ 4 implies that τmpHq ¥ 4. Suppose now that H
satisfies τmpHq ¥ 4. Then, H satisfies (i) because of Lemma 4.33. If some block of H
were a complete of size four, this block would have at least three vertices of degree 3
in H (because H contains no A and has no 5-cycle) and the edges of the K3 induced
by these three vertices would be a matching-transversal of H. So, since τmpHq ¥ 4, H
satisfies (ii). If there were a vertex v of H of degree 3 that were not a cutpoint and had
a neighbor of degree less than 3, then, up to symmetry, either: (1) v is a non-terminal
vertex of Γ1 and Γ1 is a rhombus, or (2) v is the source of Γ1 and Γ1 is a 2-crown or a 3-fold.



4.2. Clique-perfectness of complements of line graphs 113

If (1) holds, the edges of the triangle induced by NHrv0s form a matching-transversal
of H of size 3. If (2) holds, EHpv0q is a matching-transversal of H of size 3. In either
case, we reach a contradiction to τmpHq ¥ 4. This contradiction proves that H satisfies
(iii). Finally, if v is a cutpoint of H of degree 3, then NHpvq induces a disconnected
graph with three vertices; i.e., NHpvq induces 3K1 or K2 Y K1. But, if NHpvq induces
3K1, then, by Lemma 4.45, τmpHq ¤ 3. This proves that H satisfies (iv). Altogether, we
have proved that, if τmpHq ¥ 4, then H satisfies conditions (i)–(iv).

To complete the proof of the lemma, we assume that H satisfies conditions (i)–(iv)
and we will prove that αmpHq ¥ 4, or, equivalently, by Lemma 4.34, that H has a 4-
profuse-coloring. To begin with, we prove the following claims about H.

Claim 1. Each of Γ1 and Γn is either an edge, m-crown for some m ¥ 3, or m-fold for some
m ¥ 4.

Proof of the claim. Indeed, each of Γ1 and Γn is different from triangle and square be-
cause of (i), different from 2-crown, 3-fold, and rhombus because of (iii), and different
from K4 because of (ii). As each of Γ1 and Γn is basic, the claim follows.

Claim 2. If there is a maximal 4-profuse-coloring φ of H and there are at least three edges of
Γj incident to the same terminal vertex of Γj, then each terminal vertex of Γj is incident to four
edges of H colored by φ.

Proof of the claim. Without loss of generality, assume that there are at least three edges
of Γj incident to vj. As Γj is basic, there are also at least three edges of Γj incident to
vj�1 and Γj is either an m-crown for some m ¥ 2 or an m-fold for some m ¥ 3. So,
if dHpvjq � 3, then j � n and either Γn would be a 2-crown or a 3-fold, contradicting
Claim 1. Therefore, dHpvjq ¥ 4 and, symmetrically, dHpvj�1q ¥ 4. In addition, neither
NHpvjq nor NHpvj�1q induces 2K2 in H and, by Lemma 4.45, EHpvjq and EHpvj�1q are
matching-transversals of H. Hence, by Corollary 4.35, the maximality of φ implies
that each of vj and vj�1 is incident to four edges of H colored by φ.

Claim 3. If n ¥ 2, Γn�1 and Γn are both edges, pn�1 � 2, and there is some 4-profuse-
coloring of H, then either n � 2 or there is some 4-profuse-coloring of H that colors at least
two of the edges incident to vn�2.

Proof of the claim. Suppose that n ¥ 3 and we have to prove that there is a 4-profuse-
coloring of H that colors at least two edges incident to vn�2. Let φ be a 4-profuse-
coloring of H that maximizes the number of colored edges incident to vn�2 and, with-
out loss of generality, assume that φ is maximal. Suppose, by the way of contradic-
tion, that φ colors at most one edge incident to vn�2. As φ is maximal, the four edges
incident to vn�1 are colored by φ and, in particular, vn�2vn�1 is colored. So, by hy-
pothesis, all edges incident to vn�2 different from vn�2vn�1 are uncolored. If there



114 Chapter 4. Clique-perfect graphs

were an edge joining vn�2 to some non-cutpoint vertex of H, then this edge would be
uncolored and, at the same time, incident to at most three colored edges, contradict-
ing the maximality of φ. Therefore, pn�1 � 0 and Γn�2 is an edge. As vn�3vn�2 is
uncolored and vn�2vn�1 is the only colored edge incident to vn�2, there are at least
three colored edges incident to vn�3 such that each of them is colored differently from
vn�2vn�1. If there were some pendant edge p incident to vn�3 and colored differently
from vn�2vn�1, then, by coloring vn�3vn�2 with the color of p and uncoloring p, a
new 4-profuse-coloring of H arises that colors at least two edges incident to vn�2, a
contradiction with the choice of φ. This contradiction shows that there are at least
three colored edges of Γn�2 incident to vn�3. So, by Claim 2, vn�4 is incident to four
colored edges. Let e be any of the colored edges incident to vn�3 but not to vn�4 such
that e is colored differently from vn�2vn�1. Then, coloring vn�3vn�2 with the color of
e and uncoloring e, a new 4-profuse-coloring of H arises that colors two of the edges
edges incident to vn�2, contradicting the choice of φ. This contradiction arose from
assuming that φ does not color at least two edges incident to vn�2. So, the claim fol-
lows.

Claim 4. If H has a 4-profuse-coloring, Γ1 is an edge, n ¥ 2, p1 � 1, and NHpv1q induces
K2 Y 2K1 in H, then there is a 4-profuse-coloring φ of H that colors the only edge of H joining
two neighbors of v1.

Proof of the claim. Let φ 1 be a maximal 4-profuse-coloring of H and let e be the only
edge of H joining two vertices in NHpv1q. As dHpv1q � 4 and NHpv1q does not induce
2K2, Lemma 4.45 implies that EHpv1q is a matching-transversal of H and the four edges
incident to v1 are colored by φ 1 because of the maximality of φ 1 and because of Corol-
lary 4.35. If φ 1 colors e, the claim holds by letting φ � φ 1. So, suppose that e is not
colored by φ 1. Then, the maximality of φ 1 implies that e is incident to at least four
other edges of H.

Suppose first that e is incident to exactly four edges of H; i.e., either Γ2 is triangle
and dHpv2q � 4, or Γ2 is rhombus. Let w be an endpoint of e different from v2 and let
e 1 � v1w. Let e2 be a pendant edge incident to v1 and colored differently from each
of the colored edges incident to w. Notice that the maximality of φ, Lemma 4.33, and
Corollary 4.35 imply that the four edges of H incident to e are colored by φ 1 using four
different colors. So, if we defineφ : EpHq Ñ t0, 1, 2, 3, 4u to be asφ 1 except thatφ colors
e and e2 with color φ 1pe 1q and e 1 with color φ 1pe2q, then φ is a 4-profuse-coloring of
H that colors e, as claimed.

It only remains to consider the case when e is incident to more than four edges of
H. Necessarily, Γ2 is a triangle and dHpv2q ¥ 5. Let w be the non-terminal vertex of
Γ2. Suppose that there is some pendant edge p incident to v2 that is colored by φ 1. By
permuting, if necessary, the colors of the edges of H incident to v1 that are different
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from v1v2, we assume, without loss of generality, that v1w is colored differently from
p. Then, by coloring e with the color of p and uncoloring p, a new 4-profuse-coloring
of H arises that colors e, as claimed. So, from now on, we assume, without loss of
generality, that there is no pendant edge incident to v2 colored byφ 1. So, asdHpv2q ¥ 5,
Lemma 4.45 and Corollary 4.35 imply that there are four edges incident to v2 colored
by φ 1 and, necessarily, three of them are edges of Γ3. By Claim 2, there are four colored
edges incident to v3. Therefore, if we let e 1 be any edge of Γ3 incident to v2 but not to
v3 and colored by φ 1 differently from v1w, then by coloring e with the color of e 1 and
uncoloring e 1, a new 4-profuse-coloring of H arises that colors e, as claimed.

Claim 5. If H has a 4-profuse-coloring, Γ1 � edge, n ¥ 2, and p1 ¥ 1, then there is a
4-profuse-coloring of H that colors at least two pendant edges incident to v1.
Proof of the claim. Suppose, by the way of contradiction, that φ is a 4-profuse-coloring
of H that maximizes the number of colored pendant edges incident to v1 and that,
nevertheless, φ colors at most one pendant edge incident to v1. Since p1 ¥ 1, there is
at least one uncolored pendant edge incident to v1. Then, the maximality of φ means
that there are four colored edges incident to v1. As Γ1 is an edge and there is at most
one colored pendant edge incident to v1, there are at least three colored edges of Γ2

incident to v1. Then, by Claim 2, there are four colored edges incident to v2. Let e be
any colored edge of Γ2 incident to v1 but not to v2 and let p be any of the uncolored
pendant edges incident to v1. If we color p with the color of e and uncolor e, a new
4-profuse-coloring of H arises that colors one more pendant edge incident to v1 than
φ, contradicting the choice of φ. This contradiction proves that the claim holds.

We turn back to the proof of the lemma. The proof proceeds by induction on the
number of cutpoints of H. Clearly, the cutpoints of H are the n�1 vertices v1, . . . , vn�1.
Consider first the case when H has no cutpoints; i.e., n � 1. Then, H is the underlying
graph of Γ1 which, by Claim 1, is an edge, m-crown for some n ¥ 3, or m-fold for
some m ¥ 2. If Γ1 were an edge, then dHpv0q � dHpv1q � 1 � 1, which contradicts (i).
Therefore, if n � 1, then H is m-crown for some m ¥ 3 or m-fold for some m ¥ 4 and,
by Lemma 4.52, αmpHq ¥ 4.

Assume that n ¥ 2 and that the lemma holds for graphs with less than n � 1
cutpoints. Suppose that H has some cutpoint of degree 3; i.e., there is some j P

t1, 2, . . . ,n � 1u such that vj has degree 3 in H. By (iv), NHpvjq induces K2 Y K1 in
H. Therefore, pj � 0 and, by symmetry, assume, without loss of generality, that
Γj is an edge and Γj�1 is either a triangle or a rhombus. Let H1 be the graph that
arises from H by first removing all vertices and edges from Γj�1, Γj�2, . . . , Γn, except
for the vertices of NHrvjs and the edges incident to vj, and, then, adding one pen-
dant edge p incident to vj. Notice that H1 can be regarded as the underlying graph of
Γ1 &p1 Γ2 &p1 . . . &pj�1 Γj &2 edge. Clearly, H1 satisfies (i)–(iv) and, by induction hy-
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pothesis, there is a 4-profuse-coloring of H1. By Claim 3, there is a 4-profuse-coloring
φ1 of H1 that colors at least two of the edges of H1 incident to vj�1. So, by permut-
ing, if necessary, the pendant edges incident to vj in H1, we assume, without loss of
generality, that φ1 colors some edge incident to vj�1 with color φ1ppq. Let H2 be the
graph that arises from H by first removing all vertices an edges of Γ1, Γ2, . . . , Γj, except
for the vertices of NHrvjs and the edges incident to vj, and, then, adding one pendant
edge incident to vj. The graph H2 can also be regarded as the underlying graph of
edge &1 Γj�1 &pj�1 Γj�2 &pj�2 � � � &pn�1 Γn. By Claim 4, there is a maximal 4-profuse-
coloringφ2 ofH2 that colors the only edge e joining two neighbors of vj. By permuting,
if necessary, the pendant edges incident to vj, we assume, without loss of generality,
that φ2 colors e differently from the edge of Γj. Moreover, by permuting, if necessary,
the colors of φ2, we assume without loss of generality, that φ1 and φ2 color the edge
of Γj and each of the edges of Γj�1 incident to vj in exactly the same way. Thus, there
is no edge of H where φ1 and φ2 differ and the partial edge-coloring φ that results by
merging φ1 and φ2 is easily seen to be 4-profuse-coloring of H, as desired. Therefore,
from now on, we assume, without loss of generality, that H has no cutpoint of degree
3.

Suppose now that there is some j P t1, 2, . . . ,nu such that Γj is a rhombus. LetH1 be
the graph that arises fromH by removing all the vertices and edges from Γj, Γj�1, . . . , Γn
except for the vertices of NHrvj�1s and the edges incident to vj�1, and let H2 the graph
that arises from H by removing all vertices and edges from Γ1, Γ2, . . . , Γj except for the
vertices of NHrvjs and the edges incident to vj. Moreover, as H has no cutpoint of de-
gree 3, dH1pvj�1q ¥ 4, from which it follows that H1 satisfies (i)–(iv) and, by induction
hypothesis, H1 admits a 4-profuse-coloring φ1. Similarly, dH2pvj�1q ¥ 4 and H2 ad-
mits a 4-profuse-coloring φ2. By Claim 5, we assume, without loss of generality, that
φi colors both edges of Γj that belong toHi, for i � 1, 2. By permuting, if necessary, the
colors of φ2, we assume, without loss of generality, that φ1 and φ2 color the four edges
of Γj that belong to H1 or H2 using 4 different colors. Then, let φ : EpHq Ñ t0, 1, 2, 3, 4u
defined as φ1 in EpH1q, as φ2 in EpH2q, and that leaves the only edge of Γj that belongs
neither to H1 nor to H2 uncolored. Clearly, φ is a 4-profuse-coloring of H, as desired.

It only remains to consider the case when H has no cutpoins of degree 3 and no Γj

is a rhombus; i.e., the case when δhpHq ¥ 4. Then, as (i) ensures that H is hub-covered
and since H has at least one edge, Lemma 4.48 implies that αmpHq ¥ δhpHq ¥ 4, which
completes the proof of the lemma.

The following lemma settles case k � 5.

Lemma 4.56. Let H be a fat caterpillar containing no A and no net and having at least one
edge. Then, αmpHq ¥ 5 if and only if τmpHq ¥ 5. In fact, both inequalities hold if and only if
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H satisfies all of the following assertions:

(i) For each pair of adjacent vertices v1 and v2, dHpv1q � dHpv2q � 1 ¥ 5.

(ii) No block of H is a complete of four vertices.

(iii) No cutpoint of H has degree 3 in H.

(iv) The neighborhood of each vertex of degree 4 induces 2K2 in H.

Proof. Since αmpHq ¤ τmpHq, αmpHq ¥ 5 implies τmpHq ¥ 5. Suppose now that H
satisfies τmpHq ¥ 5. Then, H satisfies (i) because of Lemma 4.33. If there were some
block of H of size four, it would have at least three vertices of degree 3 in H (because
H contains no A and has no 5-cycle) and the edges of the K3 induced by these three
vertices would be a matching-transversal ofH, contradicting τmpHq ¥ 5. So,H satisfies
(ii). Since the neighborhood of a cutpoint induces a disconnected graph, ifH had some
cutpoint of degree 3, then, by Lemma 4.45, τmpHq ¤ 4. Hence, H satisfies (iii). Finally,
Lemma 4.45 implies that H satisfies (iv). Hence, we have proved that if τmpHq ¥ 5,
thenH satisfies (i)–(iv). To complete the proof of the lemma, we assume thatH satisfies
conditions (i)–(iv) and we will show that αmpHq ¥ 5, or, equivalently, by Lemma 4.34,
that H has a 5-profuse-coloring.

By virtue of Lemma 4.20,H is the underlying graph of some Γ1&p1Γ2&p2 � � �&pn�1Γn

where each Γi is a basic two-terminal graph and each pi ¥ 0. Clearly, the underlying
graph of each Γi is a block of H. Therefore, because of (ii), none of Γ1, Γ2, . . . , Γn is a
K4. For each i � 1, 2, . . . ,n � 1, let vi be the concatenation vertex of H that arises by
identifying the sink of Γi with the source of Γi�1. Let v0 be the source of Γ1 and let vn
be the sink of Γn. We make the following claims.

Claim 1. Each of Γ1 and Γn is either an edge, m-crown for some m ¥ 4, or m-fold for some
m ¥ 5.

Proof of the claim. Indeed, each of Γ1 and Γn is different from triangle, square, 2-crown,
3-fold, and rhombus because of (i), different from 3-crown and 4-fold because of (iv),
and different from K4 because of (ii). The claim follows.

Claim 2. If there is a maximal 5-profuse-coloring φ of H and there are at least three edges of
Γj incident to the same terminal vertex of Γj, then each terminal vertex of Γj is incident to five
edges of H colored by φ.

Proof of the claim. Without loss of generality, suppose that there are at least three edges
of Γj incident to vj. As Γj is basic, there are also at least three edges of Γj incident to
vj�1 and Γj is either and m-crown for some m ¥ 2 or an m-fold for some m ¥ 3. If
dHpvjq � 3, then j � n and Γn is either a 3-crown or a 4-fold, contradicting Claim 1.



118 Chapter 4. Clique-perfect graphs

So, dHpvjq ¥ 4 and, symmetrically, dHpvj�1q ¥ 4. In addition, neither NHpvjq nor
NHpvj�1q induces 2K2 and, by (iv), dHpvjq ¥ 5 and dHpvj�1q ¥ 5. Hence, Lemma 4.45,
Corollary 4.35, and the maximality of φ imply that each of vj and vj�1 is incident to
five edges colored of H by φ, as claimed.

Claim 3. If H has a 5-profuse-coloring and Γj is a triangle of H, then there is a 5-profuse-
coloring of H that colors the three edges of Γj.

Proof of the claim. By the way of contradiction, assume that the claim is false. Hence,
there is some link Γj that is a triangle and some 5-profuse-coloring φ of H that maxi-
mizes the number of colored edges of Γj such that, nevertheless, φ does not color the
three edges of Γj. Without loss of generality, assume that φ is maximal. Let w be the
non-terminal vertex of Γj. By Claim 1 and (iii), dHpvj�1q ¥ 4 and dHpvjq ¥ 4. Sup-
pose, by the way of contradiction, that dHpvjq � 4. Then, Lemma 4.33 implies that
the set of five edges EHpvjq Y EHpwq is a matching-transversal of H and, by the max-
imality of φ and Corollary 4.35, these five edges are colored by φ, contradicting the
fact that not all the edges of Γj are colored. So, necessarily dHpvjq ¥ 5 and, symmet-
rically, dHpvj�1q ¥ 5. Let e be any uncolored edge of Γj and assume, without loss of
generality, that e is incident to vj. As dHpvjq ¥ 5, there are five colored edges incident
to vj because of Lemma 4.45, Corollary 4.35, and the maximality of φ. If there were
some pendant edge p incident to vj and colored differently from vj�1w (if colored),
then, by coloring e with the color of p and uncoloring p, a new 5-profuse-coloring
of H that colors one more edge of Γj would arise, contradicting the choice of φ. This
contradiction proves that among the colored edges incident to vj, there are at least
three of them that are edges of Γj. Therefore, by Claim 2, there are five colored edges
incident to vj�1. Symmetrically, if e were incident to vj�1, then there would be five
colored edges incident to vj�2. Finally, let c P t1, 2, 3, 4, 5u different from the colors of
the colored edges of Γj and different from the colors of vjvj�1 (if present and colored)
and vj�2vj�1 (if present and colored). Let φ 1 be the partial edge-coloring of H defined
as φ except that φ 1 colors e with color c and uncolors the edge of H incident to e col-
ored by φ with color c. By construction, φ 1 is a 5-profuse-coloring of H and φ 1 colors
one more edge of Γj than φ, a contradiction with the choice of φ. This contradiction
proves that φ colors all the edges of Γj and the claim holds.

Claim 4. If H has a 5-profuse-coloring, Γ1 is an edge, n ¥ 2, and p1 ¥ 1, then there is a
5-profuse-coloring φ of H that colors at least two pendant edges incident to v1.

Proof of the claim. By the way of contradiction, suppose that there is 5-profuse-coloring
φ of H that maximizes the number of colored pendant edges incident to v1 and that,
nevertheless, φ colors at most one pendant edge incident to v1. Without loss of gen-
erality, assume that φ is maximal. Since p1 ¥ 1, there is still at least one uncolored
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pendant edge incident to v1. Then, the maximality of φ implies that there are five col-
ored edges incident to v1 and, as there is at most one pendant colored edge incident
to v1, there are at least four colored edges of Γ2 incident to v1. By Claim 2, there are
five colored edges incident to v2. Let e be any of the colored edges of Γ2 incident to
v1 but not to v2 and let p be any of the uncolored pendant edges incident to v1. If we
color p with the color of e and uncolor e, a new 5-profuse-coloring of H arises that col-
ors one more pendant edge incident to v1 than φ, contradicting the choice of φ. This
contradiction proves the claim.

We turn back to the proof of the lemma. The proof proceeds by induction on the
number of cutpoints of H. Consider the case H has no cutpoints; i.e., n � 1. Then H is
the underlying graph of Γ1 which, by Claim 1, is an edge, m-crown for some m ¥ 4, or
m-fold for some m ¥ 5. If H were an edge, v0 and v1 would be two adjacent pendant
vertices ofH anddHpv0q�dHpv1q�1 � 1, which would contradict (i). So,H ism-crown
for some m ¥ 4 or m-fold for some m ¥ 5 and, by Lemma 4.52, αmpHq ¥ 5.

Assume now that n ¥ 2 and that the lemma holds for graphs with less than n� 1
cutpoints. Suppose first that H has a cutpoint of degree 4 and let j P t1, 2, 3, . . . ,n� 1u
such that dHpvjq � 4. Because of (iv), NHpvjq induces 2K2 in H. Therefore, pj � 0 and
each of Γj and Γj�1 is a triangle or a rhombus. If one of Γj and Γj�1 is a triangle and the
other is a rhombus, we assume, without loss of generality, that Γj is the one that is a
triangle. Let H 1 be the graph that arises from H by contracting Γj�1 to a vertex. Then,
H 1 is the underlying graph of Γ1 &p1 Γ2 &p2 � � �&pj�1 Γj &pj�1 Γj�2 &pj�2 � � �&pn�1 Γn and
H 1 satisfies (i)–(iv). By induction hypothesis, H 1 has a 5-profuse-coloring φ 1. Without
loss of generality, assume that φ 1 is maximal. If Γj is a rhombus, the maximality of
φ 1 implies that φ 1 colors all the edges of Γj. If, instead, Γj is a triangle, then Claim 3
allows us to assume that φ 1 colors all the edges of Γj. Then, we define a new partial
5-edge-coloring φ : EpHq Ñ t0, 1, 2, 3, 4, 5u as follows. Let φ coincide with φ 1 in those
edges of H that are neither of Γj nor of Γj�1 and we define φ on the edges of Γj and
Γj�1 depending on how φ 1 colors the edges of Γj as described in Figure 4.8, where
a,b, c,d, e is a permutation of the colors 1, 2, 3, 4, 5. Clearly, φ is a 5-profuse-coloring
of H and αmpHq ¥ 5, as desired. Therefore, from now on, we assume that dHpviq ¥ 5
for each i � 1, 2, . . . ,n� 1.

Next, we assume that Γj is a rhombus for some j. As Claim 1 implies that neither
Γ1 nor Γn is rhombus, 2 ¤ j ¤ n � 1. Let H1 be the graph that arises from H by
removing all the vertices and edges of Γj, Γj�1, . . . , Γn except for the vertices ofNHrvj�1s

and the edges incident to vj�1. Let H2 be the graph that arises from H by removing
all the vertices and edges of Γ1, Γ2, . . . , Γj except the vertices of NHrvjs and the edges
incident to vj. Then, we can regard H1 as the underlying graph of Γ1 &p1 Γ2 &p2 � � �&pj�2

Γj�1 &pj�1�1 edge and H2 as the underlying graph of edge &pj�1 Γj�1 &pj�1 Γj�2 &pj�2
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Figure 4.8: Rules for transforming φ 1 into φ in the proof of Lemma 4.56. Here a,b, c,d, e
represents any permutation of the colors 1, 2, 3, 4, 5 and rule (a), (b), or (c) apply depending
on whether each of Γj and Γj�1 is a triangle or a rhombus.

� � � &pn�1 Γn. Since we are assuming that dHpvj�1q ¥ 5 and dHpvjq ¥ 5, H1 and H2

satisfy conditions (i)–(iv). By induction hypothesis, there are 5-profuse colorings of
H1 and H2. By Claim 4, we can assume that the 5-profuse-colorings of H1 and H2 are
such that the two edges of Γj incident to vj�1 are colored by the 5-profuse-coloring of
H1 and the two edges of Γj incident to vj are colored by the 5-profuse-coloring of H2.
By permuting, if necessary, the colors in the 5-profuse-coloring of H2, we can assume
that the four edges of Γj that are incident to some terminal vertex of Γj are colored by
these profuse colorings using four different colors. So, a 5-profuse-coloring ofH arises
by merging the profuse-colorings of H1 and H2 and letting the edge joining the two
non-terminal vertices of Γj uncolored. Thus, by Lemma 4.34, αmpHq ¥ 5. So, from this
point on, we assume that no Γi is a rhombus.

Because of (iii) and because we are assuming that no cutpoint of H has degree 4,
each of the vertices v1, v2, . . . , vn�1 has either degree 2 or degree at least 5. In addition,
since each of Γ1 and Γn is either an edge, m-crown for some m ¥ 4, or m-fold for some
m ¥ 5, each of v0 and vn has degree 1 or at least 5. Finally, since no Γi is rhombus orK4,
each vertex of H different from v0, v1, . . . , vn has degree at most 2. So, δhpHq ¥ 5. Since
H has at least one edge and H is hub-covered (because of (i)), Lemma 4.48 implies that
αmpHq ¥ δhpHq ¥ 5, which completes the proof.

Finally, for the k ¥ 6 we prove the following.

Lemma 4.57. Let H be a fat caterpillar containing no A and no net and having at least one
edge. If k ¥ 6, then the following assertions are equivalent:

(i) αmpHq ¥ k.

(ii) τmpHq ¥ k.

(iii) H is hub-covered and δhpHq ¥ k.

Proof. Clearly, (i) implies (ii) because αmpHq ¤ τmpHq. As k ¥ 6 and H has at least one
edge, Lemma 4.48 shows that (iii) implies (i). For the proof to be complete, it suffices
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to show that (ii) implies (iii). Suppose that τmpHq ¥ k. Since k ¥ 6, H is hub-covered
because of Lemma 4.33. By virtue of Lemma 4.20, H is the underlying graph of some
Γ1 &p1 Γ2 &p2 � � �&pn�1 Γn where each Γi is a basic two-terminal graph and each pi ¥ 0.
If there were some i P t1, 2, . . . ,nu such that Γi is a rhombus or K4, then the two non-
terminal vertices of Γi would be two adjacent vertices of degree 3 and Lemma 4.33
would imply that τmpHq ¤ 5, a contradiction. Therefore, each Γi is an m-crown for
some m ¥ 0 or an m-fold for some m ¥ 2. Let vi the vertex of H that arises by
identifying the sink of Γi and the source of Γi�1 and let v0 be the source of Γ1 and vn be
the sink of Γn. Then, each vi has degree 2 in H or has a neighbor in H of degree 2 in H.
Therefore, for each i � 1, 2, . . . ,n, either dHpviq � 2 or dHpviq ¥ k � 1 because given
any neighbor w of degree 2 of vi the inequality dHpviq � 1 � dHpwq � dHpviq � 1 ¥ k

must hold because of Lemma 4.33. Notice also that, since Γ1 is a crown or a fold,
either dHpv0q � 1 or dHpv0q ¥ k because if v0 is not pendant then EHpv0q is clearly a
matching-transversal of H. Symmetrically, either dHpvnq � 1 or dHpvnq ¥ k. Finally,
all vertices of H different from v0, v1, . . . , vn are vertices of degree 2 because no block
of H is a rhombus or K4. We conclude that δhpHq ¥ k�1. Since k�1 ¥ 5, Lemma 4.45
implies that τmpHq ¤ δhpHq. Since we are assuming τmpHq ¥ k, δhpHq ¥ k. Thus, (ii)
implies (iii) and the proof is complete.

As we have proved Lemmas 4.49 and 4.50 and all the cases of Theorem 4.51, now
Theorem 4.44 follows. This, together with Theorem 4.36, imply Theorem 4.32, from
which the main results of this section (Theorems 4.16 and 4.17) follow.

4.2.4 Recognition algorithm and computing the parameters

The reader acquainted with the theory of tree-width and second order logic may notice
the following. Since forbidding the bipartite claw as a subgraph or as a minor are
equivalent, graphs containing no bipartite claw have bounded tree-width [106] and
have a linear-time recognition algorithm [14]. Moreover, as the characterization in
Theorem 4.17 can be expressed in counting monadic-second order logic with edge set
quantifications (see [39]), its validity can be verified in linear time within any graph
class of bounded tree-width [27, 38]. In particular, matching-perfect graphs can be
recognized in linear time. Nevertheless, the resulting algorithm is not elementary.
Instead, below we propose a very elementary linear-time recognition algorithm for
matching-perfect graphs which relies on depth-first search only.

Let H be a graph. We denote by H1 the graph that arises from H by removing all
vertices that are pendant in H. We denote by H2 some maximal induced subgraph of
H having no vertices that are pendant in H and no two vertices that are false twins
of degree 2 in H. Finally, we denote by H3 some maximal induced subgraph of H
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having no two vertices that are false twins of degree 2 in H. We claim that there is
an elementary linear-time algorithm that either computes H3 or determines that H
contains a bipartite claw. Let us consider an algorithm that keeps a list Lpvq for each
vertex v ofH and that stores at each vertex v ofH a boolean variable indicating whether
or not the vertex is marked for deletion. Initially, all the list are empty and no vertex
is marked for deletion. The algorithm proceeds by visiting every vertex v of H and,
for each neighbor u P NHpvq that was not marked for deletion and such that NHpuq �

tv,wu for some w P VpHq, we do the following: if w is already in the list of Lpvq, then
we mark u for deletion, otherwise we add w to Lpvq. To make the algorithm linear-
time, we stop whenever we attempt to add a third vertex to any of the lists Lpvq as this
means that v is the center of a bipartite claw. If all vertices of H are visited and no
bipartite claw is detected, then we output as H3 the subgraph of H induced by those
vertices not marked for deletion. The algorithm is clearly correct and linear-time. So,
it follows that there is an elementary algorithm that either computes H1, H2, and H3

in linear time or detects that H contains a bipartite claw.

We now claim that there is also an elementary linear-time algorithm to decide
whether a given graph is a fat caterpillar and, if affirmative, compute a matching-
transversal of minimum size. To begin with, we proceed as in the preceding para-
graph in order to either compute H1, H2, and H3, or detect that H contains a bipartite
claw. If the latter occurs, we can be certain that H is not a fat caterpillar and stop. So,
without loss of generality, assume that H1, H2, and H3 were successfully computed in
linear time. If H1 is a triangle and each vertex of H1 has some neighbor in H outside
H1, then Lemma 4.50 implies that H is a fat caterpillar and the set of edges incident
to any minimum hub of H is a matching-transversal of minimum size. Suppose now
that H2 is spanned by a 4-cycle C having at least two consecutive vertices adjacent in
H to some vertex outside H2. Let C � v1v2v3v4v1 where v1 and v2 are adjacent to some
vertex outside H2 and v4 is the only vertex of H2 that may have false twins of degree
2 in H. In this case, it is straightforward to determine whether or not H is a fat cater-
pillar and, if affirmative, compute a matching-transversal of minimum size in linear
time thanks to Lemma 4.49. Assume now that neither H1 is a triangle such that each
vertex of H1 is adjacent in H to some vertex outside H1, nor H2 is spanned by a 4-cycle
having at least two consecutive vertices adjacent in H to vertices outside H2. Then, by
Lemmas 4.49 and 4.50, H is a fat caterpillar if and only if H is a fat caterpillar contain-
ing no A and no net. Therefore, by Lemma 4.20, H is a fat caterpillar if and only if H
is a linear concatenation of basic two-terminal graphs where the K4 links may occur
only as the first and/or last links of the concatenation. So, H is a fat caterpillar if and
only if H3 is a linear concatenation of edge, triangle, rhombus, and K4 links where the
K4 links may occur only as the first/and or last link of the concatenation and no vertex
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of a rhombus link has a false twin of degree 2 in H. Equivalently, H is a fat caterpillar
if and only if H3 satisfies each of the following conditions:

(1) Each of the blocks of H3 is an edge, a triangle, a diamond, or a K4

(2) Each block of H3 has at most two cutpoints

(3) The cutpoints of the diamond blocks are vertices of degree 2 in the diamond.

(4) Each K4 block has at most one cutpoint.

(5) Each cutpoint of H3 belongs to at most two blocks of H3 that are not pendant
edges.

(6) No vertex of a diamond block of H3 of degree 2 in H has a false twin in H.

All these conditions can be easily verified in linear time once the blocks and the
cutpoints of H3 are determined, which in its turn can be done in linear time by per-
forming a depth-first search [112]. Finally, if all these conditions are met, H is a fat
caterpillar containing no A and no net and a matching-transversal of H of minimum
size can be determined in linear time as follows from the characterizations given in
Lemmas 4.53 to 4.57.

Suppose now that we need to determine whether a given graph H is matching-
perfect and assume, without loss of generality, that H has more than 6 vertices. We
begin by deciding whether H is a fat caterpillar as in the preceding discussion. If H is
found to be a fat caterpillar, we are done because we know that H is matching-perfect
and stop. Therefore, assume without loss of generality that H is not a fat caterpillar.
Then, H is matching-perfect if and only if H is matching-perfect and contains a cycle
of length 3k for some k ¥ 2. So, by Lemma 4.37, if H is matching-perfect, then H3 is
a chordless cycle of length 3k for some k ¥ 2. Conversely, if H3 is a chordless cycle of
length 3k for some k ¥ 3, clearly H is matching-perfect by Theorem 4.17. This shows
that we can decide in linear time whether H is matching-perfect. Finally, if there is any
edge e � uv of H3 that is not hub-covered in H, then EHpuq Y EHpvq is a matching-
transversal of H of minimum size by Lemma 4.43; otherwise, if v is any minimum hub
v of H, then EHpvq is a matching-transversal of H of minimum size by Lemma 4.42.

Theorem 4.58. There is a simple linear-time algorithm that decides whether a given graph H

is matching-perfect and, if affirmative, computes a matching-transversal of H of minimum size
within the same time bound.

In particular, if H is matching-perfect, we can also determine the common value
of αmpHq and τmpHq in linear time. We do not know if it is possible to also compute
a matching-independent set of maximum size within the same time bound. Notice
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however that the only non-constructive argument used in the proofs of Subsection
4.2.3 is the existence of optimal edge-colorings for some Class 1 graphs containing no
bipartite claw. This meas that, using an algorithm such the as the one given in [129]
to produce the necessary edge-colorings, our proofs in Subsection 4.2.3 can actually
be turned into a procedure to compute a matching-independent set of maximum size
for any given matching-perfect graph.

Let G be graph on n vertices which is the complement of a line graph. We can
compute a root graph H of G in Opn2q time by relying on [89, 107] and then decide
whether G is clique-perfect by determining whether H is matching-perfect as above.
Thus, we conclude the following.

Theorem 4.59. There is an Opn2q-time algorithm that given a graph G, which is the comple-
ment of a line graph, decides whether or not G is clique-perfect and, if affirmative, computes a
minimum clique-transversal of G within the same time bound.

Notice that the bottleneck of the algorithm is computing a root graph H of G.

4.3 Clique-perfectness of gem-free circular-arc graphs

In [17], clique-perfect graphs were characterized within Helly circular-arc graphs (The-
orem 4.5 on page 76). The problem of charactering which circular-arc graphs are
clique-perfect is still open. In this section, we characterize clique-perfect graphs by
minimal forbidden induced subgraphs within gem-free circular-arc graphs. In fact,
we show that, within gem-free circular-arc graphs, being perfect, clique-perfect, coor-
dinated, or hereditary K-perfect, are all equivalent.

Theorem 4.60. Let G be a gem-free circular-arc graph. Then, the following statements are
equivalent:

(i) G is clique-perfect.

(ii) G is coordinated.

(iii) G is hereditary K-perfect.

(iv) G is perfect.

(v) G has no odd holes.

Proof. Along this proof, denote by C1, C2, and C3, the families of minimally not clique-
perfect, minimally not coordinated, and minimally not hereditary K-perfect graphs,
respectively, and let C � C1 Y C2 Y C3. Clearly, odd holes are in C1 X C2 X C3. If
we prove that the odd holes are the only graphs in C, then the equivalence among
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(i), (ii), (iii), and (v) follows. The equivalence between (iv) and (v) is an immediate
consequence of the Strong Perfect Graph Theorem (Theorem 2.3).

Suppose, by the way of contradiction, that there exists a graph H in C that is not an
odd hole. As H P C1 Y C2 Y C3, H is not balanced. Hence, by Theorem 3.54, H has an
odd hole or contains an induced 3-pyramid. If H had an odd hole, then the minimality
of the graphs in C1, C2, and C3 would imply that H is an odd hole, contradicting the
hypothesis. Therefore, H contains an induced 3-pyramid. Let P � VpHq such that P
induces a 3-pyramid in H and let W � P such that W induces a C4 in H.

We claim that VpHqzW is complete to W in H. Indeed, let w1w2w3w4w1 be the
hole induced by the vertices of W in H and let PzW � tu1,u2u. Let v be an arbitrary
vertex of VpHqzW. If v P PzW, then v is complete to W by construction. So, without
loss of generality, suppose that v P VpHqzP. Let k � |NHpvq XW|. By Lemma 2.8 and
symmetry, we can assume, without loss of generality, that NHpvq XW � tui : 1 ¤

i ¤ ku. If k � 0 or k � 1, tu1,w2,u2,w4, vu would induce C4 Y K1 in H, which is not a
circular-arc graph, a contradiction. If k � 2 or k � 3, tv,w2,u1,w4,w1u would induce
a gem in H, another contradiction. We conclude that k � 4, which proves that VpHqzP
is complete to W in H, as claimed.

Since H is gem-free, H �W is P4-free. Since H is K2,3-free, H �W is 3K1-free. So,
H�W is a P4-free bipartite graph and, as we saw in the proof of Corollary 3.16, this
means that each component of H�W is a complete bipartite graph. Since HrWs �

C4 � 2K2 and W is anticomplete to VpHqzW in H, H is the disjoint union of at least
three complete bipartite graphs.

We claim that H R C1. In fact, as H has disconnected complement, let H1 and H2 be
two graphs having at least one vertex each such that H � H1 �H2. Then, as noted in
[85, 87], αcpHq � mintαcpH1q,αcpH2qu and τcpHq � mintτcpH1q, τcpH2qu. So, if H P C1,
the minimality of H would ensure that αcpHiq � τcpHiq for each i � 1, 2 and the
conclusion would be that αcpHq � τcpHq, contradicting H P C1. This proves the claim.

So, necessarily, H P C2 Y C3; i.e., H is minimally not coordinated or minimally not
hereditary K-perfect. In particular, γcpHq � ∆cpHq or KpHq is imperfect and, in either
case,H has no universal vertices; i.e., each component ofH has at least two vertices. Let
H1,H2, . . . ,Ht be the components of H and, for each i � 1, 2, . . . , t, let tA1

i,A2
iu be the

bipartition of the complete bipartite graph Hi. Then, the cliques of H are of the form
A

j1
1 YA

j2
2 Y� � �YA

jt
t where j1, . . . , jt P t1, 2u. Notice thatγcpHq � 2t�1 and∆cpHq � 2t�1

(indeed, each vertex of H belongs to 2t�1 cliques of H), which contradicts the fact that
H P C2, and that KpHq � 2tK2 which is a cograph and, in particular, perfect, which
contradicts H P C3, as desired.





Chapter 5

Graphs having the Kőnig property and
edge-perfect graphs

This chapter is organized as follows.

• In Section 5.1, we give some background about graphs having the Kőnig prop-
erty and about edge-perfect graphs.

• In Section 5.2, we prove a characterization of graphs having the Kőnig property
in terms of forbidden strongly splitting subgraphs, which is a strengthened ver-
sion of a characterization due to Korach, Nguyen, and Peis [82] by forbidden
configurations: (1) First, we show that one of their forbidden configurations is
redundant and can be omitted; (2) then, we reformulate the resulting character-
ization in terms of forbidden subgraphs; (3) finally, we strengthen the formula-
tion by restricting the way in which the forbidden subgraphs may occur.

• In Section 5.3, we use our characterization of graphs having the Kőnig property
in order to prove a characterization of edge-perfect graphs by forbidden edge-
subgraphs.

The results of this chapter appeared in [49].

5.1 Background

5.1.1 Graphs having the Kőnig property

Recall from the Introduction that a graph G has the Kőnig property is its matching
number νpGq equals its transversal number τpGq. This means that Kőnig’s match-
ing theorem [77] can be regarded as asserting that bipartite graphs have the Kőnig
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C3 barbell K4

Figure 5.1: C3, barbell, and K4

property. Graphs having the Kőnig property have received considerable attention
[28, 44, 81, 82, 86, 90, 93, 94, 99, 103, 111]. The study of graphs having the Kőnig prop-
erty from a structural point of view has its origins in the works of Sterboul [111] and
Deming [44] who, independently, gave the first structural characterization for these
graphs. In [51], Edmonds devised the first polynomial-time algorithm for maximum
matching in general graphs, for which he introduced the notions of blossoms, stems,
and flowers. Let G be a graph and let M be a matching of G. An M-blossom is an odd
cycle of length 2k�1 for some k ¥ 1 such that k of its edges are edges ofM. AnM-stem
is either an exposed vertex or an even M-alternating path having an M-unsaturated
vertex in one end and an edge of M in the other; the M-unsaturated vertex and the
vertex at the other end are called, respectively, the root and the tip of the stem. An
M-flower consists of a blossom and a stem whose only common vertex are the base of
the blossom and the tip of the stem. In [111], Sterboul defined an M-posy to consist
of two (not necessarily disjoint) blossoms joined by an odd M-alternating path that
starts and ends in edges of M and whose endpoints are the bases of the two blossoms.
He observes that if an M-posy exists, one M-posy can be found whose only vertex of
each blossom belonging to the path is its base. The characterization is as follows.

Theorem 5.1 ([44, 111]). Let G be a graph. The following assertions are equivalent:

(i) G has the Kőnig property (i.e., τpGq � νpGq).

(ii) For every maximum matching M, there exists an M-flower or an M-posy.

(iii) For some maximum matching M, there is an M-flower or an M-posy.

Deming [44] continues the analysis and also devises a polynomial-time algorithm
for recognizing graphs having the Kőnig property and, if affirmative, computing a
maximum independent set. Nevertheless, the fact that the two blossoms that define
an M-posy may intersect does not give a simple forbidden subgraph characterization
of graph having the Kőnig property.

In [93], Lovász proved a characterization of graphs having the Kőnig property, re-
stricted to graphs having a perfect matching by means of what he called nice subgraphs.
An even subdivision of an edge uv consists in replacing the edge uv by two new ver-
tices w1 and w2 together with three edges uw1, w1w2, and w2v. An even subdivision of
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v v

triangular flower triangular pair tetrahedral
configuration configuration configuration configuration

Figure 5.2: Forbidden configurations for graphs having the Kőnig property

a graph G is either the graph G itself or any of the graphs that arise from G by succes-
sive application of even subdivisions. A subgraph H of a graph G is nice if G � VpHq

has a perfect matching. The aforementioned characterization is stated below. For the
barbell graph, see Figure 5.1.

Theorem 5.2 ([93]). A graph with a perfect matching has the Kőnig property if and only if it
has no even subdivision of barbell or K4 as a nice subgraph.

In [82], Korach, Nguyen, and Peis extended Lovász’s result to a characterization
of all graphs having the Kőnig property by, what we call, forbidden configurations. A
configuration of a graph G is an ordered pair ξ � pS,Mq where S is a subgraph of G,
M is a maximum matching of G, and S belongs to one of the four families of graphs
represented in Figure 5.2, where dashed edges stand for M-alternating paths start-
ing and ending in edges of M, solid edges stand for M-alternating paths starting and
ending in edges not belonging to M, and the vertex v is M-unsaturated. The graph
S is said the underlying graph of ξ. The characterization by Korach et al. by forbidden
configurations is the following.

Theorem 5.3 ([82]). A graph has the Kőnig property if and only if it has none of the configu-
rations in Figure 5.2.

Notice that if we require that each induced subgraph of a graph G have the Kőnig
property, then G should be bipartite because the chordless odd cycles do not have the
Kőnig property. Recall from the Introduction that, instead, edge-perfect graphs are
those graphs such that the Kőnig property holds for each of their ’edge subgraphs’. If
F is any set of edges, we will denote by VpFq the set of endpoints of the edges belong-
ing to F; i.e., VpFq �

�
ePF e by regarding each edge e as the set of its endpoints. With

this notation, the edge-subgraphs of a graph G are the induced subgraphs G� VpFq for
some F � EpGq. Clearly, edge-perfect graphs form a superclass of the class of bipartite
graphs and a subclass of the class of graphs having the Kőnig property. Moreover,
both inclusions are proper, as shown by the paw (which is edge-perfect but not bipar-
tite) and the graph that arises from C6 by adding a short chord (which has the Kőnig
property but is not edge-perfect).
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IfC is a chordless odd cycle of a graphG, let a savior ofC be a vertex v ofVpGqzVpCq
such that NGpvq � VpCq. Let a two-twin pair be a pair of false twins of degree 2 and
let NpGq be the family of the neighborhoods of the vertices in each two-twin pair;
i.e., NpGq � tNGpvq : v has degree 2 and has a false twin in Gu. Finally, let GP be the
edge-subgraph of G that arises by removing the endpoints of all the pendant edges of
G. In [47] and [48], edge-perfect graphs were characterized by the presence of saviors
and by the absence in GP of chordless odd cycles with forbidden pairs.

Theorem 5.4 ([47, 48]). A graph G is edge-perfect if and only if each chordless odd cycle of G
has a savior that is either a pendant vertex or belongs to some two-twin pair or, equivalently,
if and only if GP has no chordless odd cycle containing at most one vertex from each pair in
NpGq.

These characterizations were used to identify some graph classes within which
there are polynomial-time recognition algorithms for edge-perfect graphs [47] and to
prove that the problem of recognizing edge-perfect graphs is NP-hard in general [48].
Originally, edge-perfect graphs were defined in [53] in connection with packing and
covering games introduced in [45]. In fact, in [48], based on the NP-hardness of the
recognition of edge-perfect graphs, it is deduced that the recognition of matrices defin-
ing totally balanced packing games is NP-hard, answering a question raised in [45].
This is in contrast with the case of matrices defining totally balanced covering games,
which can be recognized in polynomial time [121].

5.2 The Kőnig property in terms of forbidden subgraphs

We will first show that it is not possible to extend Theorem 5.2 to a characterization of
all graph having the Kőnig property by forbidden nice subgraphs. That is, we cannot
drop the hypothesis that G has a perfect matching by adding some extra forbidden
nice subgraphs. It is not possible to do so because, while the relation “is a nice sub-
graph of” is clearly transitive, the Kőnig property is not always inherited by the nice
subgraphs (as the example given in Figure 5.3 shows). Suppose, by the way of con-
tradiction, that it were possible to characterize the whole class of graphs having the
Kőnig property by forbidden nice subgraphs. Consider Figure 5.3, where a graph is
displayed on the left and a nice subgraph of it on the right. Since the graph on the
right does not have the Kőnig property, it should have some nice subgraph Φ which
is forbidden in the characterization whose existence we are assuming. Then, by tran-
sitivity, the forbidden nice subgraph Φ would also be a nice subgraph of the graph
on the left, which would contradict the fact that the graph on the left does have the
Kőnig property. This contradiction proves that Theorem 5.2 cannot be extended to a
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Figure 5.3: The Kőnig property is not always inherited by the nice subgraphs. The graph
on the left has the Kőnig property while its bold edges correspond to a nice subgraph of it
(depicted also on the right) that does not have the Kőnig property.

characterization by forbidden nice subgraphs of all graphs having the Kőnig property.
Instead, our approach towards obtaining a similar result holding for all graphs will
be to replace nice subgraphs by splitting subgraphs (to be defined after Lemma 5.5) and
later by strongly splitting subgraphs (to be defined on page 133).

Let G be a graph and let X be a subset of VpGq. We say that X is a splitting set of G
if and only if there is some maximum matching M of G such that no edge of M joins
a vertex of X to a vertex of G � X. If so, we say that M is split by X. The next lemma
gives a sufficient condition for a subgraph of a graph having the Kőnig property to
also have the Kőnig property.

Lemma 5.5. Let G be a graph having the Kőnig property and let H be a subgraph of G. If
VpHq is a splitting set of G and νpHq � νpGrVpHqsq, then H also has the Kőnig property.

Proof. Suppose that VpHq is a splitting set of G and νpHq � νpGrVpHqsq. Let M be a
maximum matching of G split by VpHq; i.e., there is no edge of M joining a vertex of H
to a vertex of G� VpHq. Let MH be the set of edges of M joining two vertices of VpHq
and let MG�VpHq be the set of edges of M joining two vertices of G � VpHq. Since M

is a maximum matching of G and M is split by VpHq, MH is a maximum matching of
GrVpHqs. Since νpHq � νpGrVpHqsq, there is maximum matching M 1

H of H such that
|M 1

H| � |MH|. Therefore, M 1 �M 1
HYMG�VpHq is a maximum matching of G. Then,

νpGq � νpHq � νpG� VpHqq ¤ τpHq � τpG� VpHqq ¤ τpGq. (5.1)

Since G has the Kőnig property, both inequalities in (5.1) hold with equality and, nec-
essarily, νpHq � τpHq and νpG � VpHqq � τpG � VpHqq. This proves that H has the
Kőnig property.

The above lemma leads us to introduce the notion of splitting subgraphs as follows.
Let G be a graph and let H be a subgraph of G. We will say that H is a splitting subgraph
of G if and only if VpHq is a splitting set of G and H has a perfect or near-perfect
matching. Notice that if H has a perfect or near-perfect matching, νpHq � νpGrVpHqsq

holds trivially. Therefore, we have the following corollary of Lemma 5.5 showing that,
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contrary to the case of nice subgraphs, the Kőnig property is always inherited by the
splitting subgraphs.

Corollary 5.6. If a graph has the Kőnig property, then each of its splitting subgraphs has the
Kőnig property.

Notice that if G has a perfect matching, then H is a splitting subgraph of G if and
only if H has a perfect matching and H is a nice subgraph of G. Since all the graphs
involved in Theorem 5.2 have perfect matchings, the result still holds if we replace
‘nice subgraphs’ by ‘splitting subgraphs’:

Theorem 5.2 in terms of splitting subgraphs ([93]). A graph with a perfect matching
has the Kőnig property if and only if it has no even subdivision of barbell or K4 as a
splitting subgraph.

We will show that, contrary to the case of nice subgraphs, the whole class of graph
having the Kőnig property can be characterized by means of splitting subgraphs. That
is, when Theorem 5.2 is reformulated in terms of forbidden splitting subgraphs as
above, the hypothesis that G has a perfect matching can be dropped by simply adding
some extra forbidden splitting subgraphs. The characterization of the graphs having
the Kőnig property by forbidden splitting subgraphs will follow from the characteri-
zation by Korach et al. (Theorem 5.3). To begin with, the lemma below shows that it
is not essential to forbid the flower configurations in Theorem 5.3 because forbidding
triangular configurations prevents both triangular and flower configurations from oc-
curring.

Lemma 5.7. If a graph has a flower configuration, then it also has a triangular configuration.

Proof. Assume that a graph G has some flower configuration ξ � pS,Mq. Let v be the
M-unsaturated vertex of S and let w be the vertex of S of degree 3 in S. Let P be the
path of S joining v to w and let C be the only cycle of S. Notice that M 1 �M△ EpPq is
also a maximum matching of G because P is an M-alternating even path of G and v is
M-unsaturated. Therefore, pC,M 1q is a triangular configuration ofG, which completes
the proof.

Next we observe that the occurrence of the three remaining configurations coin-
cides with the occurrence of their underlying graphs as splitting subgraphs.

Lemma 5.8. Let G be a graph and let S be a subgraph of G. Then, S is the underlying graph
of a triangular, triangular pair, or tetrahedral configuration of G if and only if S is a splitting
subgraph of G which is an even subdivision of C3, barbell, or K4, respectively.
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Proof. Assume that there is some splitting subgraph S of G which is an even subdi-
vision of C3, barbell, or K4. By definition, VpSq is a splitting set of G; i.e., there is a
maximum matching M of G such that no edge of M joins a vertex of S with a vertex of
G�VpSq. Let MS be the set of edges of M that join two vertices of S and let MG�VpSq

be the set of edges of M that join two vertices of G � VpSq. By construction, MS is
a maximum matching of GrVpSqs. Since S is an even subdivision of C3, barbell, or
K4, there is a perfect or near-perfect matching RS of S. Notice that RS is unique up
to isomorphisms of S. As S is a spanning subgraph of GrVpSqs, |RS| � |MS|. Then,
M 1 � RS YMG�VpSq is a maximum matching of G. By construction, pS,M 1q is a tri-
angular, triangular pair, or tetrahedral configuration of G depending on whether S is
an even subdivision of C3, barbell, or K4, respectively.

Conversely, assume that S is the underlying graph of a triangular, triangular pair,
or tetrahedral configuration ξ � pS,Mq of G. By definition, VpSq is a splitting set of
G and S has a perfect or near-perfect matching. Thus, S is a splitting subgraph of G.
We conclude that S is a splitting subgraph of G which is an even subdivision of C3,
barbell, or K4 depending on whether ξ is a triangular, triangular pair, or tetrahedral
configuration, respectively.

Therefore, the characterization by Korach et al. can be reformulated in terms of
splitting subgraphs:

Theorem 5.3 in terms of splitting subgraphs. A graph has the Kőnig property if and
only if it has no even subdivision of any of the graphs in Figure 5.1 as a splitting sub-
graph.

Notice that the above statement is precisely a characterization of the whole class of
graphs having the Kőnig property in terms of splitting subgraphs of the kind that we
were looking for. Indeed, it arises from the reformulation of Theorem 5.2 in terms of
forbidden splitting subgraphs by dropping the hypothesis that G has a perfect match-
ing and adding the even subdivisions of C3 as the extra forbidden splitting subgraphs.

Finally, we will prove Theorem 5.9, which is a strengthened characterization of
graphs with the Kőnig property obtained by restricting the way in which the forbid-
den subgraphs may occur. For the purpose of formulating our characterization, we
introduce the notion of strongly splitting subgraphs as follows. Let G be a graph. A
subset X of VpGq is a strongly splitting set if there is a maximum matching M of G such
that no edge of M joins a vertex of X to a vertex of G� X and no vertex of X is adjacent
to any M-unsaturated vertex of G� X. A subgraph H of G is a strongly splitting subgraph
if VpHq is a strongly splitting set of G and H has a perfect or near-perfect matching.

Clearly, strongly splitting sets are splitting sets, and strongly splitting subgraphs
are splitting subgraphs. Moreover, the notion of strongly splitting subgraph is indeed
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more restrictive than that of splitting subgraph. For instance, K5 has K4 as splitting
subgraph but not as strongly splitting subgraph. More generally, if H has a perfect
matching, then H � K1 has H as splitting subgraph but not as strongly splitting sub-
graph.

The theorem below is the main result of this section and shows that the forbidden
splitting subgraphs for the class of graphs having the Kőnig property can be forced to
occur as strongly splitting subgraphs.

Theorem 5.9. A graph has the Kőnig property if and only if it has no even subdivision of any
of the graphs in Figure 5.1 as a strongly splitting subgraph.

Proof. Since strongly splitting subgraphs are splitting subgraphs, Corollary 5.6 implies
that if G has the Kőnig property then no strongly splitting subgraph of G is an even
subdivision of any of the graphs in Figure 5.1. Therefore, it suffices to prove that if G
does not have the Kőnig property then G has a strongly splitting subgraph which is
an even subdivision of one of the graphs in Figure 5.1.

Suppose that G does not have the Kőnig property. By Theorem 5.3 and Lemma 5.7,
G has a triangular, triangular pair, or tetrahedral configuration ξ � pS,Mq. Denote by
U the set of M-unsaturated vertices of G� VpSq.

Case 1. ξ � pS,Mq is a triangular configuration.
Let v be the M-unsaturated vertex of S and suppose, by the way of contradiction,

that there is a vertex s P VpSq adjacent to some vertex u P U. Since M is maximum
and u is M-unsaturated, s is M-saturated. In particular, s � v. Since S is a chordless
odd cycle, there is exactly one even path P in S joining s to v. By construction, uP
is an M-alternating path joining the M-unsaturated vertices u and v; i.e., uP is an M-
augmenting path, a contradiction with the fact thatM is maximum. This contradiction
proves that there is no edge joining a vertex of S and a vertex of U. We conclude that
if G has a triangular configuration ξ � pS,Mq then S is a strongly splitting subgraph
of G which is an even subdivision of C3. From now on, we assume, without loss of
generality, that G has no triangular configuration.

Case 2. ξ � pS,Mq is a triangular pair configuration.
Suppose, by the way of contradiction, that there is a vertex s P VpSq adjacent to

some vertex u P U. Let w1 and w2 be the two vertices of S of degree 3 in S. Let P
be the path in S joining w1 to w2 and let Ci be the cycle of S through wi for i � 1, 2.
If s P VpPq, let Q be the subpath of P that joins s to w1 and, by symmetry, we can
assume that Q is odd. If, on the contrary, s P VpSqzVpPq, we can assume without loss
of generality that s P VpC2qztw2u and let Q be the odd path in S joining s to w1 (which
exists because C2 is odd). In both cases, uQ is an M-alternating even path of G where
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u is not saturated byM. Therefore, M 1 �M△EpuQq is a maximum matching ofG and
pC1,M 1q is a triangular configuration of G, a contradiction. This contradiction proves
that there is no edge joining a vertex of S and a vertex of U. We conclude that if G has
a triangular pair configuration ξ � pS,Mq and G has no triangular configuration, then
S is a strongly splitting subgraph of G which is an even subdivision of barbell.

Case 3. ξ � pS,Mq is a tetrahedral configuration.
Letw1,w2,w3,w4 be the set of vertices of S of degree 3 in S. For each i, j P t1, 2, 3, 4u

such that i � j, let Pi,j be the path of S joining wi to wj but not passing through wk

for any k � i, j. Without loss of generality, we assume that the vertices w1,w2,w3,w4

are labeled in such a way that the path Pi,i�1 starts and ends in edges not belonging
to M for each i � 1, 2, 3, 4 (superindices should be understood modulo 4). For each
pairwise different i, j,k P t1, 2, 3, 4u, let Ci,j,k be the cycle of S passing through wi,
wj, and wk but not passing through wℓ where ℓ � i, j,k. Suppose, by the way of
contradiction, that there is a vertex s P VpSq that is adjacent to some vertex u P U. By
symmetry, we can assume that s P VpP1,2q or s P VpP1,3q. Suppose first that s P VpP1,2q.
Since P1,2 is odd, there is an even subpath Q of P1,2 joining s to wj for j � 1 or j � 2.
(Eventually P is the empty path starting and ending in wj.) Without loss of generality,
assume that Q joins s to w1. Since uQP1,3 is an M-alternating even path and u is M-
unsaturated, M 1 � M△ EpuQP1,3q is a maximum matching of G and pC2,3,4,M 1q is a
triangular configuration of G, a contradiction. Necessarily, s P VpP1,3q. Since P1,3 is
odd, there is an odd subpath Q of P joining s to w1 or w3. Without loss of generality
assume that Q joins s to w1. Since uQ is an M-alternating even path and u is M-
unsaturated, M 1 � M △ EpuQq is a maximum matching of G and pC1,2,4,M 1q is a
triangular configuration of G, a contradiction. This contradiction proves that there is
no edge between VpSq and U. We conclude that if G has a tetrahedral configuration
pS,Mq and G has no triangular configuration, then S is a strongly splitting subgraph
of G which is an even subdivision of K4.

We proved that if G does not have the Kőnig property then G has a strongly split-
ting subgraph which is an even subdivision of C3, barbell, or K4, which concludes the
proof.

Notice that if G is a graph having a perfect matching and H is a strongly split-
ting subgraph of G, then H is a nice subgraph of G and H has a perfect matching. In
addition, the even subdivisions of C3 clearly do not have perfect matchings (because
they have an odd number of vertices). Therefore, for graphs with a perfect matching,
Theorem 5.9 reduces precisely to Lovász’s characterization (Theorem 5.2).

The aim of our characterization is not to address the recognition problem, which
was already addressed in [44]. Instead, the usefulness of our characterization is on the
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structural side: given that a graph does not have the Kőnig property, our result ensures
that an even subdivision of C3, barbell, or K4 occurs as a strongly splitting subgraph. As
an example of this, in the next section, we use Theorem 5.9 to derive a characterization
of edge-perfect graphs by forbidden edge-subgraphs.

5.3 Edge-perfectness and forbidden edge-subgraphs

Notice that the class of edge-perfect graphs is not closed by taking induced subgraphs.
Indeed, the paw is edge-perfect but contains an induced C3 which is not edge-perfect.
This simple example shows that the class of edge-perfect graphs cannot be charac-
terized by forbidden induced subgraphs. Instead, we will characterize edge-perfect
graphs by forbidden edge-subgraphs. Before turning into the proof of the characteri-
zation, we observe the following two facts.

Lemma 5.10. If F is an edge-subgraph of H and H is an edge-subgraph of G, then F is an
edge-subgraph of G.

Proof. Let E1 be a set of edges of H such that H�VpE1q � F and let E2 be a set of edges
of G such that G � VpE2q � H. Then, G � VpE1 Y E2q � F where E1 Y E2 is a set of
edges of G because H is a subgraph of G.

Lemma 5.11. Let G be a graph. If G has an odd cycle whose vertex set induces an edge-
subgraph of G, then G has an edge-subgraph which is a chordless odd cycle.

Proof. Suppose that G has an odd cycle whose vertex set induces an edge-subgraph
of G and let C be the shortest such odd cycle. It suffices to prove that C is chordless.
Suppose, by the way of contradiction, that C has some chord e � xy. Since C is odd,
its vertices can be labeled in such a way that C � v1v2 . . . v2k�1v1, where v1 � x and
v2p�1 � y for some p P t1, 2, 3, . . . ,k� 1u. Now C 1 � v1v2v3 . . . v2p�1v1 is an odd cycle
of G and GrVpC 1qs is an edge-subgraph of GrVpCqs because GrVpC 1qs � GrVpCqs �

Vptxjxj�1 | 2p � 2 ¤ j ¤ 2kuq. Since GrVpC 1qs is an edge-subgraph of GrVpCqs and
GrVpCqs is an edge-subgraph of G, by Lemma 5.10, GrVpC 1qs is an edge-subgraph of
G. Therefore, C 1 is an odd cycle of G that induces an edge-subgraph of G and C 1

is shorter than C, a contradiction with the choice of C. This contradiction arose by
assuming that C had some chord. So, GrVpCqs is an edge-subgraph of G which is a
chordless odd cycle, which completes the proof.

The chordless odd cycles and K4 are not edge-perfect because they do not even
have the Kőnig property. Therefore, these graphs cannot be edge-subgraphs of any
edge-perfect graph. The following result shows that, conversely, if a graph without
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isolated vertices is not edge-perfect, it is because it contains a chordless odd cycle or
K4 as an edge-subgraph.

Theorem 5.12. A graph with no isolated vertices is edge-perfect if and only if it has neither a
chordless odd cycle nor K4 as an edge-subgraph.

Proof. As we have just discussed, if a graph is edge-perfect then no edge-subgraph of
it can be a chordless odd odd cycle or K4. Conversely, let G be a graph with no isolated
vertices that is not edge-perfect. Then, G has at least one edge-subgraph that does not
have the Kőnig property. Let H be an edge-subgraph of G with minimum number of
vertices that does not have the Kőnig property. AsH does not have the Kőnig property,
there is some component H 1 of H that does not have the Kőnig property. In particular,
H 1 consists of at least two vertices.

We claim that H 1 is the only component of H having at least two vertices. Suppose,
by the way of contradiction, that H has some other component H2 having at least two
vertices. If EH2 is the set of edges of H joining vertices of H2, then H � VpEH2q �

H � VpH2q is an edge-subgraph of H that does not have the Kőnig property because
one of its components is still H 1. By Lemma 5.10, H�VpH2q is also an edge-subgraph
of G. Since H � VpH2q does not have the Kőnig property and has less vertices than
H, this contradicts the minimality of H. This contradiction shows that H 1 is the only
component of H having at least two vertices.

We now show that the fact that G has no isolated vertices implies that H is con-
nected; i.e., H � H 1. Indeed, since G has no isolated vertices, for each isolated vertex v

of H (i.e., v P VpHqzVpH 1q) there is some edge ev P EpGq that is incident to v. If ev were
incident to some vertex of H 1 then ev would be an edge of H, which would contradict
the fact that v does not belong to the component H 1 of H. Therefore, ev is not incident
to any vertex of H 1 for any v P VpHqzVpH 1q. Since H is an edge-subgraph of G, there
is some EH � EpGq such that G� VpEHq � H. So, if EI � tev : v P VpHqzVpH 1qu then
G� VpEH Y EIq � H 1, which proves that H 1 is an edge-subgraph of G. Since H 1 does
not have the Kőnig property, the minimality of H implies that H � H 1, as claimed.

Since H does not have the Kőnig property, Theorem 5.9 ensures that there is a
strongly splitting subgraph S of H which is an even subdivision of C3, barbell, or K4.
We claim that HrVpSqs is an edge-subgraph of H. Indeed, since S is a strongly splitting
subgraph of H, there is a maximum matching M of H such that no edge of M joins
a vertex of S with a vertex of H � VpSq and such that no vertex of S is adjacent to an
M-unsaturated vertex of H�VpSq. Let E1 be the set of edges of M joining two vertices
of H�VpSq, and let E2 be the set of edges of H incident to some M-unsaturated vertex
of H � VpSq. Since H is connected, for each M-unsaturated vertex of H � VpSq there
is at least one edge incident to it in E2. Also notice that since S is strongly splitting



138 Chapter 5. Graphs having the Kőnig property and edge-perfect graphs

subgraph, no edge of E2 is incident to a vertex of S. We conclude that HrVpSqs �
H� VpE1 Y E2q, which shows that HrVpSqs is an edge-subgraph of H, as claimed.

Finally, we claim that H has a chordless odd cycle or K4 as an edge-subgraph.

Case 1. S is an even subdivision of C3.
Then, S is an odd cycle of H whose vertex set induces an edge-subgraph of H. By

Lemma 5.11, H has an edge-subgraph which is a chordless odd cycle, as claimed.

Case 2. S is an even subdivision of barbell.
Let w1 and w2 be the vertices of S of degree 3 in S, let Ci be the cycle of S through

wi for i � 1, 2 and let P be the path of S joining w1 to w2. Let P � x1x2x3 . . . x2k�1

where x1 � w1 and x2k�1 � w2. Let E3 � EpC2q and let E4 � txjxj�1 | 2 ¤ j ¤

2ku. Then, HrVpC1qs is an edge-subgraph of HrVpSqs because HrVpC1qs � HrVpSqs �

VpE3 Y E4q. Since HrVpSqs is an edge-subgraph of H, by Lemma 5.10, HrVpC1qs is an
edge-subgraph of H. Thus, C1 is an odd cycle of H whose vertex set induces an edge-
subgraph of H and, by Lemma 5.11, H has an edge-subgraph which is a chordless odd
cycle, as claimed.

Case 3. S is an even subdivision of K4.
Let W be the set of vertices of S of degree 3 in S. For each w,w 1 P W, let Pw,w 1

be the path in S joining w to w 1 and not passing through any vertex of Wztw,w 1u. If
Pw,w 1 has length 1 for each w,w 1 P W, then S � HrVpSqs is an edge-subgraph of H
which is a K4, and the claim holds. Therefore, we assume without loss of generality
that there are two vertices w1,w2 PW such that Pw1,w2 has length greater than 1. Let
w3 and w4 be the remaining two vertices of W. Let C be the cycle of S through w2, w3,
and w4, but not through w1. For each i � 2, 3, 4, let Pw1wi � yi

1y
i
2y

i
3 . . .yi

2ki�1 where
yi

1 � w1 and yi
2ki�1 � wi and let Fi � tyi

jy
i
j�1 | 1 ¤ j ¤ 2ki � 1u. Notice that HrVpCqs

is an edge-subgraph of HrVpSqs because HrVpCqs � HrVpSqs � VpF2 Y F3 Y F4q. Since
HrVpSqs is an edge-subgraph of H, by Lemma 5.10, HrVpCqs is an edge-subgraph of
H and, by Lemma 5.11, H has an edge-subgraph which is a chordless odd cycle, as
claimed.

Thus, we proved that H has a chordless odd cycle or K4 as an edge-subgraph. Since
H is an edge-subgraph of G, Lemma 5.10 implies that G has a chordless odd cycle or
K4 as edge-subgraphs, which completes the proof.

We would like to draw attention to the role played by our characterization of graphs
having the Kőnig property (Theorem 5.9) in the above proof. Indeed, the fact that S
is a strongly splitting subgraph of H was key in the proof of the claim that HrVpSqs is
an edge-subgraph of H, because it guarantees that there is no M-unsaturated vertex
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of S such that each edge incident to it were also incident to some vertex of S and, in
particular, no edge of E2 is incident to a vertex of S.

Finally, we present the characterization of edge-perfectness by forbidden edge-
subgraphs also for graphs that may have isolated vertices. Notice that when taking an
edge-subgraph H of a graph G, the isolated vertices of G are never removed. There-
fore, H has at least as many isolated vertices as G. That explains why in the theorem
below we must forbid edge-subgraphs with an arbitrary number of isolated vertices.

Theorem 5.13. A graph is edge-perfect if and only it has neither K4 Y tK1 nor C2k�1 Y tK1

as an edge-subgraph for any k ¥ 1 and any t ¥ 0.

Proof. If G is edge-perfect then all its edge-subgraphs have the Kőnig property and, in
particular, G has neither K4 Y tK1 nor C2k�1 Y tK1 as an edge-subgraph for any k ¥ 1
and any t ¥ 0.

Conversely, assume that G is not edge-perfect. Let t be the number of isolated
vertices of G. Then, the graph G 1 that arises from G by removing its t isolated vertices
is also not edge-perfect. By Theorem 5.13, G 1 has K4 or C2k�1 for some k ¥ 1 as
an edge-subgraph. So, G has K4 Y tK1 or C2k�1 Y tK1 for some k ¥ 1 as an edge-
subgraph.





Chapter 6

Final remarks

In Chapter 3, we studied the problem of characterizing balanced graphs by minimal
forbidden induced subgraphs within different graph classes. The main results of the
chapter are summarized in Table 6.1.

Sections 3.4 to 3.6 were devoted to address the problem when restricted to the
classes of complements of bipartite graphs, line graphs of multigraphs, and comple-
ments of line graphs of multigraphs, and to show that balanced graphs are recogniz-
able in linear time within each of these graph classes. We observed that the character-
ization of balanced graphs within line graphs leads naturally to the characterization
within line graphs of multigraphs because adding true twins preserves balancedness.
Nevertheless, the same does not hold for complements of line graphs of multigraphs
because adding false twins does not always preserve balancedness. Indeed, for each
multigraph H in Figure 3.2, light lines are those that correspond to vertices in LpHq for
which adding a false twin may destroy balancedness. It would be interesting to have a
general criterion to decide when a false twin of a vertex can be added to a graph while
preserving balancedness. Such a result would have somewhat simplified our proof
of the characterization of balancedness within complements of line graphs of multi-
graphs. In order to be able to characterize balanced graphs within larger graph classes,
we may need to develop more convenient tools to prove balancedness of graphs. For
instance, although the proofs in Subsection 3.6.4 are very similar among themselves,
each of them had to be addressed separately. A natural step towards generalizing our
results within line graphs of multigraphs and their complements would be to attempt
to characterize balanced graphs within claw-free graphs and their complements. The
decomposition of claw-free graphs proposed in [35] could prove useful in such an at-
tempt.

In Sections 3.7 to 3.9, we considered the problem of characterizing balanced graphs
by minimal forbidden subgraphs within three subclasses of the class of circular-arc
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Minimal forbidden induced
Graph class subgraphs for balancedness Reference

complements of 1-pyramid, 2-pyramid, Theorem 3.15
bipartite graphs and 3-pyramid

line graphs of odd holes, 3-sun, Theorem 3.23
multigraphs 1-pyramid, and 3-pyramid

complement of line 3-sun, 2-pyramid, 3-pyramid, Theorem 3.29
graphs of multigraphs C5, C7, U7, and V7.

{net,U4,S4}-free circular-arc graphs odd holes, pyramids, C7, Corollary 3.49
(contains all Helly circular-arc graphs) V2t�1

p , D2t�1, and X2t�1
p

claw-free circular-arc graphs odd holes, pyramids, and C7 Theorem 3.52
(contains all proper circular-arc graphs)

gem-free circular-arc graphs odd holes and 3-pyramid Theorem 3.54

Table 6.1: Minimal forbidden induced subgraphs for balancedness within the graph classes
studied in Chapter 3

graphs, including a superclass of each of two of the most studied subclasses of circular-
arc graphs: the class of Helly circular-arc graphs and the class of proper circular-arc
graphs. Interestingly, a careful reading of the proof of Theorem 3.44 reveals that the
hypothesis that the graph is a Helly circular-arc graph (and not merely a circular-
arc graph) is only used in the proofs of Claim 1 and Claim 2, and in the latter case
only for t � 2. So, along the proof we indeed identified all circular-arc graphs that
are minimally not balanced and whose unbalanced cycles have length at least 7 and
have only short chords. Therefore, a possible road towards extending the proof of
Theorem 3.44 to the entire class of circular-arc graphs could be that of finding some
property of the chords of the unbalanced cycles within circular-arc graphs in general
that could serve as a substitute for Claim 1. A different approach would be to take
Theorem 3.47 as a starting point and study the balancedness of circular-arc graphs
containing net, U4, or S4 as induced subgraph. We managed to do so when restricting
ourselves to claw-free and gem-free graphs. A better understanding of the structure
of circular-arc graphs would be of help to overcome these restrictions. The complete
characterization of balanced graphs by minimal forbidden induced subgraphs within
circular-arc graphs in general, remains unknown. The sun S5 is an example of circular-
arc graph that is minimally not balanced but that does not belong to any of the classes
of circular-arc graphs discussed in Chapter 3. We do not know if there are further
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Minimal forbidden induced
Graph class subgraphs for clique-perfectness Reference

complements of line graphs 3-sun and Ck for each k ¥ 5 Theorem 4.16
that is not a multiple of 3

gem-free circular-arc graphs odd holes Theorem 4.60

Table 6.2: Minimal forbidden induced subgraphs for clique-perfectness within the graph
classes studied in Chapter 4

examples of such graphs. Notice that the complete suns St with t odd and t ¥ 7 are not
circular-arc graphs. We remark that the problem of characterizing balanced graphs by
minimal forbidden induced subgraphs remains unsolved even within chordal graphs.

In Chapter 4, we considered the problem of characterizing clique-perfect by mini-
mal forbidden induced subgraphs. The main results are summarized in Table 6.2.

We devoted Section 4.2 to characterizing clique-perfect graphs by minimal forbid-
den induced subgraphs within complements of line graphs and showed that clique-
perfect graphs can be recognized in Opn2q time within the same class, where n is the
number of vertices of the input graph. Similarly to the case of balanced graphs, the
characterization of clique-perfect graphs within line graphs proved in [16] (stated here
as Theorem 4.15) extends naturally to complements of line graphs because adding
true twins preserves clique-perfectness. Nevertheless, as adding false twins does not
always preserve clique-perfectness, from our characterization within complement of
line graphs it does not immediately follow a characterization of clique-perfect graphs
within complements of line graphs of multigraphs. In general, the problem of char-
acterizing clique-perfect graphs within claw-free graphs and their complements re-
mains unsolved. A different partial answer was given in [16], where clique-perfect
graphs were characterized within claw-free hereditary clique-Helly graphs. In Sub-
section 4.2.1, we gave a structure theorem for graphs containing no bipartite-claw,
which are precisely those graphs whose line graphs are net-free. It would be inter-
esting to study to which extent a characterization of the same type can be formulated
for some superclass of net-free line graphs.

In Section 4.3, we proved that clique-perfect graphs coincide with perfect graphs
within gem-free circular-arc graphs. This means that clique-perfect graphs can be rec-
ognized in polynomial time within gem-free circular-arc graphs. In [17], a minimal
forbidden induced subgraph characterization of clique-perfect graphs within Helly
circular-arc graphs was given (see Theorem 4.5). It is easy to see that the approach
used in Section 3.7 to extend Theorem 3.44 to Corollary 3.49, works also for extend-
ing the characterization of clique-perfect graphs within Helly circular-arc graphs in
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Graph class Forbidden subgraphs Reference

graphs having even subdivisions of C3, barbell, and K4 Theorem 5.9
the Kőnig property as strongly splitting subgraphs

edge-perfect graphs K4 Y tK1 and C2k�1 Y tK1 Theorem 5.13
as edge subgraphs for k ¥ 1, t ¥ 0

Table 6.3: Main results of Chapter 5

Theorem 4.5 to a characterization of clique-perfect graphs within {net,U4,S4}-free X
{1-pyramid,2-pyramid,3-pyramid}-free circular-arc graphs. Nevertheless, characteriz-
ing clique-perfect graphs by forbidden induced subgraphs within all {net,U4,S4}-free
circular-arc graphs seems more difficult. The characterization of clique-perfect graphs
by forbidden induced subgraphs is open even within proper circular-arc graphs. For
coordinated graphs, the characterization remains unresolved even within both Helly
circular-arc graphs and proper circular-arc graphs. It is not hard to see that the results
in [17] imply a characterization of hereditary K-perfect graphs within Helly circular-
arc graphs. As circular-arc graphs are a natural generalization of interval graphs and
interval graphs are known to have perfect clique graph [70], we feel that it would be in-
teresting to study hereditary K-perfect graphs further within circular-arc graphs like,
for instance, proper circular-arc graphs.

The problem of determining the complexity of the recognition problem of clique-
perfect graphs remains open in general. Neither it is known to be polynomial-time
solvable nor was it shown to belong to any class of problems considered to be hard.

In Chapter 5, we studied the problem of characterizing graphs having the Kőnig
property and edge-perfect graphs by means of certain types of forbidden subgraphs.
In Section 5.2, we proved a characterization of graphs having the Kőnig property by
means of strongly splitting subgraphs. In Section 5.3, we used this result to prove a
characterization of edge-perfect graphs by forbidden edge-subgraphs. Edge-perfect
graphs are those graphs whose edge-subgraphs have the Kőnig property. It would
be interesting to know if a simple characterization as the one we proved for the edge-
perfect graphs is also possible for those graphs whose edge-subgraphs are Class 1 (i.e.,
satisfy the edge-coloring property for edges). The results of Chapter 5 are summarized
in Table 6.3.
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Glossary of notation

|S| size of a set S, 9
X△ Y symmetric difference of the sets X and Y, 9
G complement of G, 9
G� vw graph G plus the edge vw, 9
G� v graph G minus the vertex v, 9
G�W graph G minus the vertex set W, 9
G� e graph G minus the edge e, 9
GzF graph G minus the edge set F, 9
GrWs subgraph of G induced by W, 9
G1 �G2 join of G1 and G2, 11
H1 YH2 disjoint union of the graphs or multigraphs H1 and H2, 13
tH disjoint union of t copies of a graph or hypergraph H, 13
G1 △AB G2 merging of t-blooms A and B of G1 and G2, 31
pH underlying graph of the multigraph H, 13
Γ1 &p Γ2 p-concatenation of two-terminal graphs Γ1 and Γ2, 83
Γ &p ÷ p-closure of a two-terminal graph Γ , 83
αpGq stability number of G, 4
αcpGq clique-independence number of G, 5
αmpGq matching-independence number of G, 82
δpGq minimum degree of G, 10
δhpGq minimum hub degree of G, 101
∆pGq maximum degree of G, 10
∆pFq maximum degree of a family F of sets, 77
∆cpGq maximum clique-degree of G, 77
G∆ core of G, 96
γpFq chromatic index of a family F of sets, 77
γcpGq clique-chromatic index of G, 77
θpGq clique covering number, 4
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156 Glossary of notation

νpGq matching number of G, 4
τpGq transversal number of G, 4
τcpGq clique-transversal number of G, 5
τmpGq matching-transversal number of G, 82
χpGq chromatic number of G, 3
χ 1pGq chromatic index of G, 95
ωpGq clique number of G, 3
G

bip bipartite complement of G, 30
Cn chordless cycle on n vertices, 10
dGpvq degree of v in G, 10
pdHpvq underlying degree of v in a multigraph H, 13
EGpvq set of edges incident to v in G, 10
Kn complete graph on n vertices, 10
LpRq line graph of a graph or multigraph R, 13
LpHq line graph (or representative graph) of a multigraph H, 80
NGpvq neighborhood of v in G, 10
NGrvs closed neighborhood of v in G, 10
NGpWq common neighborhood of the set of vertices W in G, 10
NGpeq common neighborhood of the edge e in G, 10
Pn chordless path on n vertices, 10
PpGq pruned graph of G, 49
RpGq representative graph of G, 36
Wn wheel on n vertices, 10



Index

0-, 1-, 2-, 3-pyramid, 2
1-, 2-braid, 13
3-sun, 2
6-pan, 12

A (graph), 12
A1, A2, A3, 37
adjacent links, 84
alternating path, 12
anchor, 15
antenna, 12
anticomplete to each other, 10
antihole, 11
augmenting path, 12

B1, B2, . . . , B16, 39
B 1

16, 50
balanced graph, 1, 20
balanced hypergraph, 80
balanced matrix, 1, 20
barbell, 128
basic two-terminal graph, 83
bicoloring, 52

of a submatrix of a matching-matrix,
52

bipartite claw, 12
bipartite complement, 29
bipartite graph, 2, 11
bipartition, 11
block, 11
-bloom, 31
braid, 12, 13
bridge, 11
bull, 12

C2, 13
caterpillar graph, 85
center of a bipartite claw, 12
chain graph, 30
chord, 10
chordless path or cycle, 10
chromatic index, 77, 95
chromatic number, 3
circular concatenation, 84
circular-arc graph, 2, 15
circular-arc model, 15
Class 1, 96
Class 2, 96
claw, 12
clique, 1, 10
clique covering number, 4
clique graph, 78
clique hypergraph, 79
clique number, 3
clique-chromatic index, 77
clique-complete graph, 75
clique-distinguishable vertices, 23
clique-Helly graph, 14
clique-independence number, 5
clique-independent set, 5
clique-matrix, 1, 10
clique-perfect graph, 5, 74
clique-transversal number, 5
clique-transversal set, 5
closed neighborhood, 10
closure, 83
cograph, 16
color class, 100
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common neighborhood, 10
complete bipartite graph, 11
complete graph, 10
complete set, 10
complete sun, 21
complete to each other, 10
component, 11

of a multigraph, 13
concatenation, 83
concatenation vertices, 84
configuration, 129
connected graph, 11
connected multigraph, 13
consecutive short chords, 10
contain a graph, 11
contain a multigraph, 13
contain an induced graph, 11
contract, 9
coordinated graph, 77
core, 96
critical graph, 96
crossing chord, 11
crown, 83
cutpoint, 11
cycle, 10

n-cycle, 10
of a multigraph, 13

D2t�1, 59
degree, 10
diamond, 12
disjoint union, 13
distance, 10
dominating, 11
domino, 15
dual edge-coloring property, 79
dual hypergraph, 79
dual Kőnig property, 79
dually chordal graph, 5

E (graph), 12
edge (two-terminal graph), 84

edge-coloring, 100
edge-coloring property, 77, 79
edge-dominating, 11
edge-perfect graph, 6, 129
edge-subgraph, 6, 129
edge-vertex incidence matrix, 9
edges of a path or cycle, 10
endpoint of a path, 10
even cycle, 11
even subdivision, 128
extended odd sun, 2, 21

false twins, 10
fat caterpillar graph, 85
flower, 128
fold, 83
forbidden configuration, 129
forbidden induced subgraph, 11
forest, 11
fractional set covering polytope, 1
fractional set packing polytope, 1
-free, 11

G2, 15
G3, 15
G5, 15
G6, 15
G9, 15
gem, 12
generalized sun, 74
graph having the Kőnig property, 6, 127

Hall’s theorem, 12
Hamiltonian cycle, 11
Helly circular-arc graph, 15
Helly circular-arc model, 15
Helly property, 14, 80
hereditary, 11
hereditary K-perfect graph, 78
hereditary clique-Helly graph, 1
hole, 11
hub, 101
hub-covered edge, 101



Index 159

hub-covered graph, 101
hub-regular graph, 101
hyperedge, 79
hyperedge-vertex incidence matrix, 79
hypergraph, 79

ideal matrix, 1
identify, 31
improper edge, 74
incident edges, 13
indifference graph, 30
induced subgraph, 9
integral polytope, 1
intersection graph, 2
interval graph, 2
isolated vertex, 10

join, 11

K-perfect graph, 78
K2,3, 15
K4 (two-terminal graph), 84
K5 � e, 96
kite, 12
Kőnig property, 4, 79

graph having the Kőnig property, 6,
127

Kőnig’s edge-coloring theorem, 77
Kőnig’s matching theorem, 4
Kőnig-Egerváry graph, 6

L-balanced multigraph, 36
L-clique, 31
L5, 96
length, 10
line graph, 2, 13

of a hypergraph, 80
of a multigraph, 13

linear concatenation, 84
link, 84
long chord, 11

M-alternating path, 12
M-augmenting path, 12

m-crown, 84
M-flower, 128
m-fold, 84
M-posy, 128
M-saturated vertex, 11
M-stem, 128
M-unsaturated vertex, 12
major vertex, 95
matching, 11

of a multigraph, 13
matching number, 4
matching-distinguishable edges, 38
matching-independence number, 82
matching-independent set, 82
matching-matrix, 36
matching-perfect graph, 82
matching-transversal number, 82
matching-transversal set, 82
maximal matching, 12, 13
maximal profuse-coloring, 100
maximum clique-degree, 77
maximum degree, 10

of the family of sets, 77
maximum matching, 12
midpoint of a chord, 10
midpoint of a short chord, 10
minimal forbidden induced subgraph, 11
minimally not G graph, 11
minimum degree, 10
minimum hub, 101
minimum hub degree, 101
module, 16
multiple edge, 41
multiple of a graph, 67
multitree, 13

N1, 78
near-perfect matching, 12
neighborhood, 10
neighborhood node, 16
net, 12
nice subgraph, 6, 129
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non-proper edge, 74
nonseparable graph, 11
nontrivial component, 11
nornal hypergraph, 80

obstacle, 64
odd cycle, 11
odd generalized sun, 74
odd sun, 21

P�, 96
parallel node, 16
partial edge-coloring, 100
partial hypergraph, 80
path, 10

n-path, 10
of a multigraph, 13

paw, 12
pendant edge, 10
pendant vertex, 10

of a multigraph, 13
perfect graph, 1, 3
Perfect Graph Theorem, 4
perfect matching, 12
perfect matrix, 1
posy, 128
profuse-coloring, 100
proper circular-arc graph, 66
proper cycle, 74
proper induced subgraph, 9
pruned graph, 48
pseudo-split graph, 21
pyramid graphs, 12

representative graph, 36
of a hypergraph, 80

rhombus, 84
root graph, 13

saturated vertex, 11
savior, 130
series node, 16
short chord, 10

simple edge, 41
sink, 83
SK4, 96
SK5, 96
source, 83
spanning subgraph, 9
split by, 131
split graph, 21
splitting set, 131
splitting subgraph, 131
square, 84
stability number, 4
stable set, 10
star, 31
stem, 128
strong module, 16
Strong Perfect Graph Theorem, 1
strongly chordal graph, 2
strongly splitting set, 133
strongly splitting subgraph, 133
subgraph, 9
submultigraph, 13
sun, 21

t-bloom, 31
t-generalized sun, 74
t-sun, 21
totally balanced matrix, 2
touching

at, 9
subgraphs, 9
submultigraphs, 13

transversal number, 4
tree, 11
triad, 31
triangle, 10
triangle (two-terminal graph), 84
trivial component, 11
trivial module, 16
trivially perfect graph, 23
true twins, 10
twin edges, 50
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twin vertices, 10
two-terminal graph, 83
two-twin pair, 130

U4, 12
U7, 12
unbalanced cycle, 20
uncolored edge, 100
underlying graph

of a configuration, 129
of a multigraph, 13
of a two-terminal graph, 83

universal vertex, 10
unsaturated vertex, 12

V2t�1
p , 59

V7, 12

W4, 12

X2t�1
p , 59
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