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Abstract

The thinness of a graph is a width parameter that generalizes some properties of inter-
val graphs, which are exactly the graphs of thinness one. Many NP-complete problems
can be solved in polynomial time for graphs with bounded thinness, given a suitable
representation of the graph. In this work we present a constructive O(n log(n))-time
algorithm to compute the thinness for any given tree, along with an optimal con-
sistent solution (ordering and partition). We use some intermediate results of this
construction to improve known bounds of the thinness in some special trees. We
also show the exact thinness of crown graphs CRn, and give new upper bounds for
the thinness of other graph classes (including grids GRr). Finally, we propose some
heuristics to construct a consistent solution for some more general graphs.

Keywords: trees, thinness, polynomial algorithm, crown graphs, grid graphs, heuris-
tics.
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Resumen

La thinness de un grafo es un parámetro de anchura que generaliza algunas propiedades
de grafos de intervalo, los cuales son exactamente los grafos con thinness uno. Muchos
problemas NP-completos pueden ser resueltos en tiempo polinomial para grafos de
thinness acotada, dada una representación adecuada. En este trabajo presentamos
una algoritmo constructivo con complejidad temporal O(n log(n)) para computar la
thinness de un árbol dado, junto a una solución óptima consistente (orden y par-
tición). Utilizamos resultados intermedios de esta construcción para mejorar cotas
conocidas de thinness en árboles para algunos casos. También mostramos la thin-
ness exacta the los grafos corona CRn, y damos una cota superior para la thinness
de otras clases de grafos (incluyendo grafos grilla GRr). Finalmente, proponemos
algunas heuŕısticas para construir una solución consistente para algunos grafos más
generales.

Palabras clave: árboles, thinness, algoritmo polinomial, grafos corona, grafos grilla,
heuŕısticas.
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CHAPTER 1

Introduction

The study of structural graph “width” parameters like tree-width, clique-width and
rank-width has been ongoing since at least three decades ago, and their algorithmic
use has also been increasing [5].
The concept of thinness of a graph was introduced for the first time in [10] as a new
graph invariant. The main intuition from the definition presented is a generalization
of interval graphs, which are exactly the graphs with thinness equal to one. This
concept is interesting because if a representation of a graph as a k-thin graph is
given for a constant value k, then some known NP-complete problems can be solved
in polynomial time. Some examples are the maximum weighted independent set
problem [10] and the bounded coloring with fixed number of colors [2].
The definition of k-thinness involves a vertex ordering and partition into k classes
satisfying certain properties. In that case, the order and partition are said to be
consistent. For a given order of the vertices of G, there exists a known algorithm to
compute an optimal consistent partition of the vertices of G with time complexity
O(n3), where n is the number of vertices in G [1], since the problem can be reduced
in linear time to the optimal coloring in an auxiliary co-comparability graph of n
vertices [7]. On the other hand, computing a consistent ordering of the vertices for
a given partition, or detect it does not exist, is NP-complete [1]. Very recently, by a
reduction from that problem, it was proved that deciding whether the thinness of a
graph is at most k, without any given order or partition, is NP-complete [15]. One
of the objectives of this thesis is to solve a part of this problem: we will show an
algorithm that computes the thinness of any tree in polynomial time. This will be
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Chapter 1. Introduction 5

the first non-trivial class in the literature for which we know how to compute the
thinness (and consistent order and partition of the vertices) efficiently.1 Some efforts
were made before to study the thinness of trees in [12].
For this algorithm, we will heavily rely on the proof and the algorithm shown in [9].
In fact, the structure of the proof and the algorithm are both very similar to those
shown there for another graph invariant, the Linear Maximum Induced Matching
Width, which is a known lower bound for the thinness [1].
The organization of this thesis is the following. There are two main sections with
new results. In the first one we will show how to compute in O(n log(n)) time and
memory the thinness of any tree with an optimal consistent partition and ordering
of the vertices. This result can also be generalized to forests. In the second main
section we will prove the exact thinness or some bounds related to the thinness for
some specific graph classes or graph families; in particular we are going to determine
the thinness of all complete m-ary trees and crowns CRn and we are also going to
show some new bounds for the thinness of trees and grids GRn.

1.1 Definitions and Preliminary Results

All graphs in this thesis are finite, undirected and have no loops or multiple edges.
For all graph-theoretic notions and notation not defined here, we refer to D. West’s
book [17].
Let G be a graph, we denote by V (G) the set of its vertices or nodes and by E(G)
the set of its edges. We denote by N(v) the neighborhood of a vertex v ∈ V , i.e.,
the set of vertices that are adjacent to v, and by N [v] the closed neighborhood of v:
N(v)∪ {v}. If X ⊆ V (G), we denote by N(X) the set of vertices not in X having at
least one neighbor in X, and by N [X] the closed neighborhood N(X) ∪X.
We denote by G[W ] the subgraph of G induced by a set W ⊆ V (G), and by G−W
or G \ W the graph G[V (G) \ W ]. We use G \ (u, v) to denote the graph with
vertices V (G) and edges E(G) \ {(u, v)}. A subgraph H of G is a spanning subgraph
if V (H) = V (G).
The degree of a vertex v in a graph G is the number of edges that have v as one of
their endpoints. A path is a list of ordered vertices where each vertex is adjacent to
the one before it, if any. A simple path is a path where each vertex appears at most
once. Two vertices are connected in a graph G if there exists a path starting on one
and ending on the other. A connected graph is one where all vertices are pairwise

1A polynomial-time algorithm and forbidden induced subgraphs characterization are known for
cographs [1], but the algorithm and proofs follow from their decomposition theorem without much
more complication.
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connected. A connected component or simply component of a graph G is a maximal
induced subgraph of G which is connected.
A cycle is a path with at least four vertices in which the first and last vertices are
equal, and no other vertex is repeated. A tree is a connected graph with no cycles.
A leaf of a tree T is a vertex with degree one in T . A rooted tree on vertex r is a
tree in which vertex r is labeled as the root, and we will usually denote it by Tr. The
ancestors of a vertex v in a rooted tree Tr are all vertices in the simple path between
v and r which are not v. Note that r has no ancestors in Tr. The descendants of a
vertex v in Tr are all vertices for which v is an ancestor in Tr. The direct children
or simply children of a vertex v are those neighbors of v which are also descendants.
Conversely, the direct parent or parent of a vertex v ̸= r is the only neighbor of v
which is also an ancestor of v. In rooted tree Tr, the vertex r does not have any
parent, while all other vertices have exactly one. The grandchildren of a vertex v are
the children’s children, and the grandparents are the parents’ parents.
A strict subtree of a tree T is a tree induced by some vertices of T which is different
from T .
Let T be a tree containing the adjacent vertices v and u. The dangling tree from v
in u, T ⟨v, u⟩, is the component of T \ (u, v) containing u.
A complete graph is a graph where all vertices are pairwise adjacent. We denote by
Kn the complete graph of n vertices. A clique of a graph G is a complete induced
subgraph of G. The maximum size (number of vertices) of a clique of G is denoted
by ψ(G).
Given k cliques Q1, Q2, . . . Qk and one vertex qi for each Qi, we say the graph G is a
tree of cliques if V (G) =

⋃k
i=1 V (Qi) and E(G) = S ∪

⋃k
i=1E(Qi), where S is a set of

edges of the form (qi, qj), such that the graph induced by the vertices {q1, q2, . . . , qk}
in G is a tree.
For a positive integer r, the (r × r)-grid, noted GRr, is the graph whose vertex set
is {(i, j) : 1 ≤ i, j ≤ r} and whose edge set is {((i, j), (k, l)) : |i − k| + |j − l| =
1, where 1 ≤ i, j, k, l ≤ r}.
A complete bipartite graph Kn,n is a graph whose vertices can be partitioned into two
subsets V1 and V2, both of size n, such that no edge has both endpoints in the same
subset, and every vertex v1 ∈ V1 is adjacent to every vertex v2 ∈ V2. The crown graph
CRn is the graph on 2n vertices obtained from a complete bipartite graph Kn,n by
removing a perfect matching.
A coloring of a graph is an assignment of colors to its vertices such that any two
adjacent vertices are assigned different colors. The minimum number of colors needed
to color G is called the chromatic number of G and denoted by χ(G).
A graph G is perfect whenever for every induced subgraph H of G, χ(H) = ψ(H).
A graph G is a comparability graph if there exists a partial order in V (G) such that
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two vertices of G are adjacent if and only if they are comparable by that order. A
graph G is a co-comparability graph if its complement G is a comparability graph.
A graph G is an interval graph if to each vertex v ∈ V (G) can be associated a closed
interval Iv = [lv, rv] of the real line, such that two distinct vertices u, v ∈ V (G) are
adjacent if and only if Iu∩ Iv ̸= ∅. The family {Iv}v∈V (G) is an interval representation
of G.
A graph G = (V,E) is k-thin if there exists an ordering σ = v1, . . . , vn of V and a
partition S of V into k classes such that, for each triple (r, s, t) with r < s < t, if
vr,vs belong to the same class and (vt, vr) ∈ E, then (vt, vs) ∈ E. An order and a
partition satisfying those properties are said to be consistent. We call the tuple (σ, S)
a consistent solution or consistent layout. The minimum k such that G is k-thin is
called the thinness of G, and we note it thin(G).
Let G be a graph and < an ordering of its vertices. The graph G< has V (G) as a
vertex set, and E(G<) is such that for v < w in the ordering, (v, w) ∈ E(G<) if and
only if there is a vertex z in G such that w < z, (z, v) ∈ E(G), and (z, w) /∈ E(G).
An edge of G< represents that its endpoints cannot belong to the same class in a
vertex partition that is consistent with the ordering <.

Theorem 1. [1, 2] Given a graph G and an ordering < of its vertices, the graph G<

has the following properties:

1. the chromatic number of G< is equal to the minimum integer k such that there
is a partition of V (G) into k sets that is consistent with the order <, and the
color classes of a valid coloring of G< form a partition consistent with <;

2. G< is a co-comparability graph;

3. if G is a co-comparability graph and < a comparability ordering of G, then G<

is a spanning subgraph of G.

Since co-comparability graphs are perfect [11], χ(G<) = ψ(G<). We thus have the
following.

Corollary 1.1. Let G be a graph, and k a positive integer. Then thin(G) ≥ k if and
only if, for every ordering < of V (G), the graph G< has a clique of size k.

The linear MIM-width of a graph G, denoted as lmimw(G), is the smallest integer
k such that the vertices of G can be arranged in a linear layout v1, . . . , vn in such
a way that for every i = 1, . . . , n − 1, the size of a maximum induced matching in
the bipartite graph formed by the edges of G with an endpoint in {v1, . . . , vi} and
the other one in {vi+1, . . . , vn} is at most k. This is the linear version of a parameter
called MIM-width [16], that is a lower bound for the linear MIM-width. It was proven
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in [1] that lmimw(G) ≤ thin(G). Moreover, a linear ordering v1, . . . , vn realizing the
thinness, satisfies that the size of a maximum induced matching in the bipartite
graph formed by the edges of G with an endpoint in {v1, . . . , vi} and the other one
in {vi+1, . . . , vn} is at most thin(G).
The path-width [13] of a graph is the minimum value of k such that the graph can
be obtained from a sequence of graphs G1, . . . , Gr each of which has at most k + 1
vertices, by identifying some vertices of Gi pairwise with some of Gi+1 (1 ≤ i < r).
In [10] it was proven that the thinness of a graph is at most the pathwidth plus one,
and that the gap may be high, since the pathwidth of a complete graph with r vertices
is r − 1, while its thinness is 1. Also it was proven in [6, 14] that the pathwidth of
the complete m-ary tree of height h is Θ(h).



CHAPTER 2

Polynomial Algorithm for Thinness of Trees

A considerable part of the ideas related to the construction of the algorithm to com-
pute the thinness (and a consistent ordering and partition of the vertices) we are
presenting in this section was inspired by an algorithm to compute the linear max-
imum induced matching width of a tree and an optimal layout [9], which was at
the same time inspired by the framework behind the path-width algorithm presented
in [6].

2.1 Path Layout Lemma

Lemma 1 (Path Layout Lemma). Let T be a tree. If there exists a path P =
(x1, . . . , xp) in T such that every connected component of T \N [P ] has thinness less
than or equal to k then thin(T ) ≤ k + 1. Moreover, given the consistent orderings
and partitions for the components in at most k classes we can in linear time compute
a consistent ordering and partition for T in at most k + 1 classes.

Proof. Using the consistent orderings {σT ⟨vi,j ,ui,j,m⟩} and partitions {ST ⟨vi,j ,ui,j,m⟩} into
k classes of the connected components T ⟨vi,j, ui,j,m⟩ of T \N [P ], we give the Algorithm
1 constructing an order σT and partition ST into k + 1 classes of the vertices of T ,
showing that thin(T ) ≤ k + 1. Here, vi,j corresponds to the neighbors of xi ∈ P
which are not themselves in P , and ui,j,m the neighbors of vi,j different from xi.
We will use Cc to denote the c-th class of ST , and CT ⟨vi,j ,ui,j,m⟩,c to the c-th class of
ST ⟨vi,j ,ui,j,m⟩. The ⊕ will denote the list append operation or the list concatenation
operation interchangeably.

9
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Algorithm 1 Consistent layout given the layouts of the dangling subtrees of a path.

function ConsistentLayout(T : tree, P = (x1, . . . , xp) : path, {σT ⟨vi,j ,ui,j,m⟩}:
orderings, {ST ⟨vi,j ,ui,j,m⟩}: partitions)

σT ← ∅
for class← 1, k + 1 do

Cclass ← ∅
end for
for xi ∈ P do

for vi,j ∈ N(xi) \ P do
σT ← σT ⊕ vi,j
Ck+1 ← Ck+1 ∪ {vi,j}
for ui,j,m ∈ N(vi,j) \ xi do

σT ← σT ⊕ σT ⟨vi,j ,ui,j,m⟩
for c← 1, k do

Cc ← Cc ∪ CT ⟨vi,j ,ui,j,m⟩,c
end for

end for
end for
σT ← σT ⊕ xi
Ck+1 ← Ck+1 ∪ {xi}

end for
ST ← {C1, . . . , Ck+1}
return σT , ST

end function
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Firstly, from the algorithm we can see that each vertex of T is added exactly once to
σT and to only one class of ST , and as those are the only operations performed in the
algorithm apart from the initialization of the consistent solution, it has linear time
complexity on the size of the tree. Now we must show that the ordering and partition
are consistent, meaning, there are no three vertices a < b < c in σT such that a and
b are in the same class of the partition, and (c, a) ∈ E(T ) and (c, b) ̸∈ E(T ).
We will prove it by contradiction, assuming there are three vertices a < b < c of T
that violate consistency. We will separate by cases and prove each one separately.

a ∈ N [P ], b ̸∈ N [P ], or a ̸∈ N [P ], b ∈ N [P ]: If one of {a, b} belongs to
N [P ] and the other does not, they are both added to different classes in ST , so
this triple is consistent.

a ̸∈ N [P ], c ∈ N [P ]: This cannot happen. The only vertices ofN [P ] adjacent
to vertices not in N [P ] are the vi,j for some i, j, and they are all appended to
the order before all their neighbors, so there cannot be a vertex a such that
a < vi,j and (vi,j, a) ∈ E(T ).

a ∈ N [P ], c ̸∈ N [P ]: As before, the only possibility for a is to be vi,j for
some i, j so as to be adjacent to a vertex c ̸∈ N [P ]. Also, the only vertices
not in N [P ] adjacent to vi,j are the ui,j,m for some m, so c = ui,j,m. And the
only possible vertices between vi,j and ui,j,m in the order are the vertices of
T ⟨vi,j, ui,j,m⟩, which means that b ∈ T ⟨vi,j, ui,j,m⟩. But then a ∈ N [P ] and
b ̸∈ N [P ], which means they are in different classes of the partition, and so this
triple is consistent.

Combining the last three cases, we see that, to violate consistency, the three
vertices must belong to N [P ], or none of the three can.

{a, b, c} ⊆ N [P ]: We begin by noting that no vertex vi,j is adjacent to another
vertex α in N [P ] such that α < vi,j, because vi,j is always added to the order
before their corresponding xi, which is the only vertex in N [P ] adjacent to vi,j.
This means that c = xi for some 1 ≤ i ≤ p. The only vertices adjacent to xi
that are lower in the order are all vi,j, and xi−1 if i > 1.

If a = vi,j for some j, then all vertices b such that a < b < xi are some vi,k for
some k > j. As (xi, vi,k) ∈ T , this triple is consistent. If, on the other hand,
a = xi−1, then again, b = vi,k for some k, which means it is also adjacent to xi,
and so this triple is also consistent.

{a, b, c} ⊆ T ⟨vi,j, ui,j,m⟩ for some i, j,m: Because σT ⟨vi,j ,ui,j,m⟩ is a sub-
sequence of σT , and all classes of ST ⟨vi,j ,ui,j,m⟩ are subsets of the corresponding
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classes of ST , the consistency is preserved between three vertices of the same
dangling tree.

a ∈ T ⟨vi,j, ui,j,m⟩, c ∈ T ⟨vi′,j′, ui′,j′,m′⟩ for some i ̸= i′, j ̸= j′,m ̸= m′:
Vertices in different dangling trees are not adjacent, so this cannot happen.

{a, c} ⊆ T ⟨vi,j, ui,j,m⟩, b ∈ T ⟨vi′,j′, ui′,j′,m′⟩ for some i ̸= i′, j ̸=
j′,m ̸= m′: Either all the vertices of T ⟨vi,j, ui,j,m⟩ are added before all the
vertices of T ⟨vi′,j′ , ui′,j′,m′⟩, or vice versa. This means that either a < b and
c < b, or b < a and b < c, so an inconsistent triple cannot be found this way.

We have proven that any possible triple in the order and partition generated by the
algorithm is consistent, and then the order and partition given by the algorithm are
consistent.

2.2 k-component Index Theorem

Definition 1 (k-neighbor). Let x be a vertex of a tree T , and v a neighbor of x in
T . If there exists a vertex u ̸= x neighbor of v such that thin(T ⟨v, u⟩) ≥ k, then v is
a k-neighbor of x.

Definition 2 (k-component index). The k-component index of x is the number of
k-neighbors of x, and we note it as D(x, k).

Lemma 2. If D(x, k) ≥ 3 for some vertex x in T , then thin(T ) ≥ k + 1. We say
that x is k-saturated in T .

Proof. Let x be a vertex in T such that D(x, k) ≥ 3. Let v1, v2, v3 be three neigh-
bors of x such that they have neighbors u1, u2, u3 respectively which satisfy that
thin(T ⟨vi, ui⟩) ≥ k. Let Ti = T ⟨vi, ui⟩ for i ∈ {1, 2, 3}. Let < be an ordering of the
vertices of T which is part of a consistent solution for T that minimizes the amount
of classes used in the partition. Let a and b be, respectively, the lowest and greatest
vertex in the order < that belong to any subtree Ti.
There must be at least one subtree Tj such that a ̸∈ Tj and b ̸∈ Tj. As thin(Tj) ≥ k,
we know that Tj< has a clique Q of size at least k. Let t be the greatest vertex
according to < that belongs to Q.
We know that a < t < b, because a is lower in the order than all the vertices in Tj,
and b is greater. Also, there is a simple path P between a and b that does not include
any vertex of Tj. Let us see why. If a and b belong to the same subtree Ti, then
there is a simple path P between the two that includes only vertices of Ti, because
Ti is a tree. If a and b belong to different subtrees Th and Ti, then the simple path is
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a→ · · · → uh → vh → x→ vi → ui → · · · → b, which does not include any vertex of
Tj.
Because P begins with a vertex which is lower than t in <, and finishes in a vertex
greater than t, there exist two adjacent vertices a′, b′ ∈ P such that a′ < t < b′. We
will see that a′ is adjacent in T< to all the vertices in Q, which means that there is a
clique of size k + 1 in T<.
We know that a′ < t < b′, and (b′, a′) ∈ E(T ), but (b′, t) ̸∈ E(T ), so this means that
a′ is adjacent to t in T<.
Now, given t′ < t a vertex of Q, let us see that (a′, t′) ∈ E(T<). As t′ is adjacent to t
in T<, there is a vertex c > t adjacent to t′ but not to t in Tj. As a

′ < t < c, a′ < c.
And as t′ < t < b′, t′ < b′. This leaves us with two possibilities:

a′ < t′: b′ is adjacent in T to a′ but not to t′, so a′ and t′ are adjacent in T<.

t′ < a′: c is adjacent in T to t′ but not to a′, so a′ and t′ are adjacent in T<.

This shows that every vertex of Q is adjacent to a vertex a′ in T<, and so T< has a
clique of size at least k + 1, which implies that thin(T ) ≥ k + 1.

Lemma 3. If thin(T ) ≥ k+1, then there exists a vertex x in T such that D(x, k) ≥ 3.

Proof. To prove this we first prove the following partial claim: if thin(T ) ≥ k+1 then
there exists a vertex x ∈ T such that D(x, k) ≥ 3; or there exists a strict subtree S of
T with thin(S) ≥ k+1. We will prove the contrapositive statement, so let us assume
that every vertex in T has D(x, k) < 3 and no strict subtree of T has thinness ≥ k+1
and show that then thin(T ) ≤ k. For every vertex x ∈ T , it must then be true that
D(x, k) ≤ 2 and that D(x, k+1) = 0. The strategy of this proof is to show that there
is always a path P in T such that all the connected components in T \ N [P ] have
thinness ≤ k − 1. When we have shown this, we proceed to use the Path Layout
Lemma, to get that thin(T ) ≤ k.
We begin by defining the following two sets of vertices:

X = {x | x ∈ V (T ) and D(x, k) = 2}

Y = {y | y ∈ V (T ) and D(y, k) = 1}

Case 1: X ̸= ∅
If xi and xj are in X, take the simple path P = (xi, ..., xj) connecting xi and xj.
Both xi and xj have at least one k-neighbor outside of P , as they each have only one
neighbor in P , and D(xi, k) = D(xj, k) = 2. This means that each element of P has
two dangling subtrees with thinness greater or equal to k; one in the direction of xi,
and another one in the direction of xj. So for all v ∈ P , D(v, k) ≥ 2. As we assumed
no vertex in T has more than 2 k-neighbors, D(v, k) = 2, and so v is also in X.
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The fact that every pair of vertices in X are connected by a path in X means that
X must be a connected subtree of T . Furthermore, this subtree must be a path,
otherwise there is a vertex w ∈ X with three neighbors in X, all of which have
D(x, k) = 2, meaning they have at least one k-neighbor different from w. Then,
D(w, k) ≥ 3, which cannot happen as w is in X.
We therefore conclude that all vertices in X must lie on some path P = (x1, ..., xp).
The final part of the argument lies in showing that we can apply the Path Layout
Lemma. For some xi ∈ P with i ∈ {2, ..., p − 1}, its k-neighbors are xi−1 and xi+1.
For x1, these neighbors are x2 and some x0 /∈ X. For xp, these neighbors are xp−1

and some xp+1 /∈ X. Vertices x0 and xp+1 only have one k-neighbor (x1 and xp re-
spectively) or else they would be in X. If we make P ′ = (x0, ..., xp+1), we then see
that every connected component in T \ N [P ′] must have thinness ≤ k − 1. By the
Path Layout Lemma, thin(T ) ≤ k.

Case 2: X = ∅, Y ̸= ∅
We construct the path P in a simple greedy manner as follows. We start with P =
(y1, y2), where y1 is some arbitrary vertex in Y , and y2 its only k-neighbor. Then, if
the last vertex in P has a k-neighbor y′ /∈ P , then we append y′ to P , and repeat this
process exhaustively. Since we look at finite graphs, we will eventually reach some
vertex yp such that either yp /∈ Y or the k-neighbor of yp is in P . We are then done
and have P = (y1, ..., yp), which is a path in T by construction.
One property of P is that no vertex yi ∈ P can have a k-neighbor outside P . In the
case of i = p, this is by construction. In the case of i ̸= p, if yi had a k-neighbor
outside P , it would have at least two k-neighbors (the other one being yi+1) which
cannot happen because X is empty. This means that T \N [P ] has no subtrees with
thinness greater than k − 1. By the Path Layout Lemma, thin(T ) ≤ k.
Case 3: X = ∅, Y = ∅
As both X and Y are empty, all vertices t ∈ T have no k-neighbors. Taking P = (t)
then gives us a path such that no subtree of T \N [P ] has thinness greater than k−1.
By the Path Layout Lemma, thin(T ) ≤ k.

We have proven the partial claim that if thin(T ) ≥ k + 1 then there exists a vertex
x ∈ T such that D(x, k) ≥ 3; or there exists a strict subtree S of T with thin(S) ≥
k + 1. To finish proving the theorem we need to show that if thin(T ) ≥ k + 1 then
there exists a vertex x ∈ T with D(x, k) ≥ 3. Assume that there is no vertex with
k-component index at least 3 in T . By the partial claim, there must then exist a strict
subtree S with thin(S) ≥ k + 1. But since we look at finite trees, we know that in S
there must exist a minimal subtree S0 with thinness k+1 with no strict subtree with
thinness > k. By the partial claim, S0 must contain a vertex x0 with DS0(x0, k) ≥ 3.
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But every dangling tree S0⟨v, u⟩ is a subtree of T ⟨v, u⟩, and so if DS0(x0, k) ≥ 3, then
DT (x0, k) ≥ 3 contradicting our assumption.

Directly from the two implications we proved we can summarize:

Theorem 2 (Classification of Thinness of Trees). Let T be a tree, then thin(T ) ≥ k+1
if and only if D(x, k) ≥ 3 for some vertex x in T .

Corollary 2.1. The thinness of an n-vertex tree T is O(log(n)). In fact thin(T ) ≤
log3(n+ 2).

Proof. Let us do an induction in the thinness of the tree.

Base case:
For any given tree T such that thin(T ) = 1, since n ≥ 1 we know that 1 ≤
log3(1 + 2) ≤ log3(n+ 2).

Inductive step:
Suppose the property holds for all trees such that their thinness is strictly less
than a given k > 1. Then for a given tree T such that thin(T ) = k, we want to
prove that thin(T ) = k ≤ log3(n+ 2), where n is the number of vertices in T .
Since thin(T ) = k, because of Theorem 2, there must exist a vertex x in T
such that D(x, k − 1) ≥ 3. We name T1, T2 and T3 the tree disjoint subtrees
of thinness equal to k− 1 such that they have their root adjacent to one of the
children of x. Without loss of generality, T1 has the lowest number of vertices
(we call it n1) among {T1, T2, T3}. Notice this implies that n ≥ 3n1+4 (implying
n1 ≤ n−4

3
), because of the three subtrees, x and their tree children. From the

Inductive Hypothesis we can say that thin(T1) ≤ log3(n1 + 2). Then

thin(T )− 1 = thin(T1) ≤ log3(n1 + 2) ≤ log3(
n− 4

3
+ 2)

Which implies that

thin(T ) ≤ log3(
n− 4

3
+ 2) + 1 = log3(3

ï
n− 4

3
+ 2

ò
) = log3(n+ 2).

Corollary 2.2. A nontrivial tree of thinness k has at least 3k−1+3
2

leaves. In partic-
ular, the thinness of a tree with ℓ leaves is at most log3(6ℓ− 9).

Proof. Let us do an induction in the thinness of the tree.
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Base case:
A nontrivial tree of thinness 1 has at least 2 leaves. Since every path has
thinness 1, every tree of thinness 2 has at least 3 leaves.

Inductive step:
Suppose the property holds for all trees with thinness at most k > 1, and let
T be a tree with thin(T ) = k + 1. By Theorem 2, there must exist a vertex x
in T such that D(x, k) ≥ 3. We name T1, T2 and T3 the tree disjoint subtrees
of thinness equal to k such that they have their root adjacent to one of the
neighbors of x. From the Inductive Hypothesis, each of T1, T2, T3 has at least
3k−1+3

2
leaves. Since some of them can be rooted at a leaf, we can ensure that

T has at least 33k−1+3
2
− 3 = 3k+3

2
leaves.

Theorem 2 also suggests how to build the minimum trees for each thinness value:

thin(T ) = 1 thin(T ) = 2 thin(T ) = 3

v v v

For each thinness value k, v is such that D(v, k − 1) = 3. The minimum tree with
thinness k can be constructed by replacing each leaf in the minimum tree with thin-
ness 2 into the minimum tree with thinness k − 1, thus achieving D(v, k) = 3 with
the minimum amount of vertices.
Compare this with the minimum trees with linear MIM-width 1, 2 and 3 [8]:
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lmimwidth(T ) = 1 lmimwidth(T ) = 2 lmimwidth(T ) = 3

v v v

These are pretty similar, except that the leaves in the trees with thinness k are
replaced by two vertices. This is because a theorem very similar to Theorem 2 is also
true for linear MIM-width [9], and the smallest tree with linear MIM-width 1 is the
path of two vertices, while for thinness 1 it is a single vertex. This produces slightly
bigger trees than for the thinness, which corresponds with the fact that the linear
MIM-width is a lower bound for the thinness.
Regarding the pathwidth, instead, the minimum trees are smaller, which also corre-
sponds with the fact that the pathwidth plus one is an upper bound for the thinness.
Again, a theorem similar to Theorem 2 holds for pathwidth [6], but with subtrees
instead of dangling trees.

pw(T ) = 1 pw(T ) = 2 pw(T ) = 3

v v v

2.3 Rooted Trees, k-critical Vertices and Labels

Our algorithm computing thinness will work on a rooted tree, processing it bottom-up.
We will choose an arbitrary vertex r of the tree T and denote by Tr the tree rooted
at r. During the bottom-up processing of Tr we will compute a label for various
subtrees. The notion of a k-critical vertex is crucial for the definition of labels.

Definition 3 (Rooted complete subtree). We define the rooted complete subtree
Tr[x] of Tr as the subtree of Tr rooted at x.
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Definition 4 (k-critical vertex). Let Tr be a rooted tree. We call a vertex x in Tr
k-critical if it has exactly two children v1 and v2 that have at least one child each, u1
and u2 respectively, such that thin(Tr[u1]) = thin(Tr[u2]) = k.

It could be the case that x has a k-neighbor index greater than 2 in Tr, even if in
Tr[x] it is equal to 2.

Lemma 4. If Tr has thinness k, then it has at most one k-critical vertex.

Proof. For a contradiction, let x and x′ be two k-critical vertices in Tr. There are
then four vertices, v1, v2, v

′
1, v

′
2, the two k-neighbors of x and the two neighbors

of x′ respectively, such that there exist dangling trees T ⟨v1, u1⟩, T ⟨v2, u2⟩, T ⟨v′1, u′1⟩,
T ⟨v′2, u′2⟩ that all have thinness k. If x and x′ have a descendant/ancestor relationship
in Tr, then assume without loss of generality that x′ is v1 or a descendant of v1. Let
p be the direct parent of x′. Then, as T ⟨v2, u2⟩ is a subtree of T ⟨x′, p⟩, and T ⟨v′1, u′1⟩
and T ⟨v′2, u′2⟩ are disjoint trees in different neighbors of x′, then DTr(x

′, k) = 3, and,
by Theorem 2, Tr should have thinness greater or equal than k + 1. Otherwise, all
the dangling trees are disjoint, thus DT (x, k) = DT (x

′, k) = 3 and we arrive to the
same conclusion.

Definition 5 (label and last type). Let Tr be a rooted tree with thin(Tr) = k. Then
label(Tr) consists of a list of decreasing numbers, (a1, ..., ap), where a1 = k, and
lastType(Tr) is an integer between 0 and 3 which will have the information of where
in the tree an ap-critical vertex lies, if it exists at all, according to the following list. If
p = 1 then we define the label as being simple, otherwise it is complex. The label(Tr)
and lastType(Tr) are defined recursively, with type 0 being a base case for singletons
and for stars, and with type 4 being the only one defining a complex label.

– Type 0: In this type of trees, r is a leaf, i.e. Tr is a singleton, or all children
of r are leaves. label(Tr) = (1) and lastType(Tr) = 0.

– Type 1: Trees of this type are not Type 0 trees, and have no k-critical vertex.
label(Tr) = (k) and lastType(Tr) = 1.

– Type 2: r is the k-critical vertex of trees of this type. label(Tr) = (k) and
lastType(Tr) = 2.

– Type 3: In these trees a child of r is k-critical. label(Tr) = (k) and lastType(Tr) =
3.

– Type 4: There is a k-critical vertex uk in Tr that is neither r nor a child
of r. Let w be the parent of uk. Then label(Tr) = k ⊕ label(Tr \ Tr[w]), and
lastType(Tr) = lastType(Tr \ Tr[w]).
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In type 4 we note that thin(Tr \ Tr[w]) < k since otherwise uk would have three
k-neighbors (two children in the tree and also its parent) and by Theorem 2 we would
then have thin(Tr) = k + 1. Therefore, all numbers in label(Tr \ Tr[w]) are smaller
than k and a complex label is a list of decreasing numbers. We also note that each
element of a complex label corresponds to the thinness of some subtree of Tr, with
the first element being the thinness of Tr. We now give a Proposition that for any
vertex x in Tr will be used to compute label(Tr[x]) and lastType(Tr[x]) based on the
labels of the subtrees rooted at the children and grand-children of x. The subroutine
underlying this Proposition will be used when reaching vertex x in the bottom-up
processing of Tr.
Let us first prove the following Lemma, which will be useful when proving Proposition
1:

Lemma 5. Let Tr be a rooted tree on r, and x be a vertex of Tr. Let x be a vertex
of Tr with children Child(x). Define k = maxv∈Child(x){thin(Tr[v])}, meaning, the
maximum thinness of a subtree rooted on a child of x. If no descendant of x is
k-critical, then no descendant v of x has DTr[x](v, k) ≥ 3.

Proof. For there to be some v such that D(v, k) ≥ 3, v should have at least 3 k-
neighbors. As v has no more than one parent, at least 2 of those k-neighbors must
be children of v. And v cannot have more than 2 children k-neighbors, as this would
mean that DTr[v](v, k) ≥ 3. This would then mean that thin(Tr[v]) ≥ k+1. But then
some child subtree of x has thinness greater or equal than k+1, which cannot happen
by the definition of k. So v has exactly 2 k-children, and so is a k-critical vertex. But
this also cannot happen by the statement, which means that v cannot exist.

Proposition 1. Let x be a vertex of Tr with children Child(x), and assume we
are given label(Tr[v]) and lastType(Tr[v]) for all v ∈ Child(x). Let k the max-
imum thinness of a child subtree of x as in Lemma 5. Also define Nk = {v ∈
Child(x) | thin(Tr[v]) = k}, meaning, the set of children for whom the subtrees
rooted at them have thinness k. Denote Nk = {v1, ..., vq} , li = label(Tr[vi]), and
ti = lastType(Tr[vi]). Define dk = DTr[x](x, k) by noting that dk = |{vi ∈ Nk | vi has
child uj with thin(Tr[uj]) = k}|. Given this information, we can find label(Tr[x]) and
lastType(Tr[x]) as follows.

– Case 0: x is a leaf or all children of x are leaves, and then label(Tr[x]) = (1)
and lastType(Tr[x]) = 0.

– Case 1: x is not a leaf and not all children of x are leaves, and for every vi ∈
Nk, li is simple and ti is equal to 1 or 0, and dk ≤ 1. Then, label(Tr[x]) = (k),
and lastType(Tr[x]) = 1.
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– Case 2: For every vi ∈ Nk, li is simple and ti is equal to 1 or 0, but dk = 2.
Then, label(Tr[x]) = (k) and lastType(Tr[x]) = 2.

– Case 3: For every vi ∈ Nk, li is simple and ti is equal to 1 or 0, but dk ≥ 3.
Then, label(Tr[x]) = (k + 1), and lastType(Tr[x]) = 1.

– Case 4: |Nk| ≥ 2 and for some vi ∈ Nk, either li is a complex label, or ti is
equal to either 2 or 3. Then, label(Tr[x]) = (k + 1), and label(Tr[x]) = 1.

– Case 5: |Nk| = 1, l1 is a simple label and t1 is equal to 2. Then, label(Tr[x]) =
(k), and lastType(Tr[x]) = 3.

– Case 6: |Nk| = 1, l1 is either complex or t1 is equal to 3, and k /∈ label(Tr[x] \
Tr[w]), where w is the parent of the k-critical vertex in Tr[v1]. Then, label(Tr[x]) =
k ⊕ label(Tr[x] \ Tr[w]), and lastType(Tr[x]) = lastType(Tr[x] \ Tr[w]).

– Case 7: |Nk| = 1, l1 is either complex or t1 is equal to 3, and k ∈ label(Tr[x] \
Tr[w]), where w is the parent of the k-critical vertex in Tr[v1]. Then, label(Tr[x]) =
k + 1, and lastType(Tr[x]) = 1.

Proof. We will assume for the time being that this Proposition covers all possible
trees, as we will prove later. Now, we will prove that each case assigns values to
label and lastType according to Definition 5. We will use k as it was used in the
Proposition, meaning to signify the maximum thinness of a child subtree of x.
We go case by case, proving that the thinness and the type of Tr[x] are correctly
determined to show that label and lastType are assigned the correct values.

Case 0: As x is a leaf or all children of x are leaves, Tr[x] is a type 0 tree.
As the assignments in Case 0 are the same as the assignments for type 0 trees,
they are correct.

Case 1: We must prove two things: that thin(Tr[x]) = k, to show that
label(Tr[x]) is being assigned the correct value; and that Tr[x] is a type 1 tree,
to show that lastType(Tr[x]) is being assigned the correct value and that Tr[x]
has a simple label.

thin(Tr[x]) = k: All children subtrees of x which have thinness k are type
0 or 1 trees, meaning that they do not have any k-critical vertex. As seen
in Lemma 5, this means that no descendant v of x has DTr[x](v, k) ≥ 3.
On the other hand, as dk ≤ 1, DTr[x](x, k) = 1, and so there is no vertex
u ∈ Tr[x] such that DTr[x](u, k) ≥ 3. By Theorem 2, thin(Tr[x]) ≤ k.
Given that there is at least one child v of x such that thin(Tr[v]) = k,
thin(Tr[x]) ≥ k, and so thin(Tr[x]) = k.
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Tr[x] is a type 1 tree: First of all, Tr[x] is not a type 0 tree, as x is not
a leaf and not all children of x are leaves. We must now show that it has
no k-critical vertex. We know that there are no k-critical vertices in any
child subtree of x, so we must only show that x is not a k-critical vertex,
and this is given by the fact that dk ≤ 1.

By Definition 5, this tree should have label(Tr[x]) = (k) and lastType(Tr[x]) =
1, which are the values that the Proposition assigns.

Case 2:

thin(Tr[x]) = k: Again by Lemma 5, x has no descendant k-saturated in
Tr[x]. And, as dk = 2, DTr[x](x, k) = 2, and so x is not k-saturated in Tr[x].
As there is no vertex k-saturated in Tr[x], and as in Case 1, thin(Tr[x]) ≥ k,
thin(Tr[x]) = k.

Tr[x] is a type 2 tree: As dk = 2, x is a k-critical vertex. There are no
other k-critical vertices in Tr[x], and so this is a type 2 tree.

Case 3:

thin(Tr[x]) = k+1: dk ≥ 3, which means that x is a k-saturated vertex in
Tr[x]. So we have thin(Tr[x]) ≥ k+1. By Lemma 5, no vertex v other than
x is k-saturated in Tr[x], which in turn means that v is not k+1-saturated.
As there is no child subtree of x with thinness greater than k, x is also not
k + 1-saturated, and so thin(Tr[x]) ≤ k + 1 by Theorem 2. This means
that thin(Tr[x]) = k + 1.

Tr[x] is a type 1 tree: As dk ≥ 3, x has at least three grandchildren, which
means that it is not a type 0 tree. We must then show that there is no
k + 1-critical vertex in Tr[x]. As no strict subtree of Tr[x] has thinness
equal to k+1, there cannot be a vertex with two k+1-neighbors in Tr[x],
and so by definition there is no k + 1-critical vertex in Tr[x].

Case 4:

thin(Tr[x]) = k+1: There is some vi ∈ Nk for which either li is a complex
label, meaning that Tr[vi] is a type 4 tree; or ti is either 2 or 3, meaning
that Tr[vi] is a type 2 or 3 tree. In both cases we know that Tr[vi] has a
k-critical vertex. Let u be the k-critical vertex in Tr[vi], and let p be the
parent of u in Tr[x]. As |Nk| ≥ 2, there exists a vertex vj ∈ Nk, vj ̸= vi. As
thin(Tr[vj]) = k and Tr[vj] is a subtree of Tr[x]⟨u, p⟩, thin(Tr[x]⟨u, p⟩) ≥ k.
This, compounded with the fact that u is k-critical, means that u is k-
saturated in Tr[x], and so thin(Tr[x]) ≥ k + 1.
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As no strict subtree of Tr[x] has thinness greater than k, we know that there
is no descendant k + 1-critical vertex, and so by Lemma 5, no descendant
of x is k + 1-saturated. For the same reason, x is not k + 1-saturated, as
it has no k + 1-neighbors in Tr[x]. This means that thin(Tr[x]) ≤ k + 1.
With both results we arrive at the conclusion that thin(Tr[x]) = k + 1.

Tr[x] is a type 1 tree: As seen earlier, Tr[x] has no k + 1-critical vertex.
Also, it is not a type 0 tree, as it contains some k-critical vertex in some
of its subtrees. We see then that the definition of type 1 trees matches.

Case 5:

thin(Tr[x]) = k: x has only one child v such that thin(Tr[v]) = k. Also,
Tr[v] is a type 2 tree, and so v is its only k-critical vertex. All other vertices
in Tr[v] have less than two children k-neighbors. Also, there is no other
k-critical vertex in Tr[x], as all other children subtrees of x have thinness
lower than k, and x has only one child subtree with thinness k. As shown
in the proof of Lemma 5, if a vertex u is k-saturated, it must have at least
two child k-neighbors. This means that the only vertex that could be k-
saturated in Tr[x] is v. But for this to be true, x should be a k-neighbor
of v, which means that there should be another neighbor u of x for which
thin(Tr[u]) = k. As v is the only vertex in Nk, this cannot happen, and so
there is no k-saturated vertex in Tr[x]. This gives us thin(Tr[x]) ≤ k. As
there is some subtree of Tr[x] with thinness equal to k, thin(Tr[x]) ≥ k,
and so thin(Tr[x]) = k.

Tr[x] is a type 3 tree: In this case, v, which is a child of x, is k-critical,
and so this tree matches the definition of a type 3 tree.

Case 6:

thin(Tr[x]) = k: We start by noting that thin(Tr[x]) ≥ k, as it contains at
least one subtree with thinness k, namely Tr[v1].

As Tr[v1] is a type 3 or 4 tree, it has a k-critical vertex u ̸= v1. With
w being the parent of u, we know that k /∈ label(Tr[x] \ Tr[w]), and so
thin(Tr[x]\Tr[w]) ̸= k. Also, we know that there is no vertex in Tr[x] other
than u with two or more child k-neighbors. This is because, by Lemma 4, u
is the only k-critical vertex in Tr[v1], and there are no other child subtrees
of x with thinness greater or equal to k, which means that x has no more
than one k-neighbor, and that there are no vertices in other subtrees which
have child k-neighbors. This means that there is no vertex in Tr[x] \ Tr[w]
which has more than one child k-neighbor, which in turn means that there
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is no k-saturated vertex in Tr[x] \ Tr[w]. So, thin(Tr[x] \ Tr[w]) ≤ k. This
leaves us with thin(Tr[x] \ Tr[w]) < k, as it must be different from k as
seen earlier.

As seen in the proof of Lemma 5, the only possible k-saturated vertex in
Tr[x] is the one with at least two children k-neighbors, meaning u. But
as thin(Tr[x] \ Tr[w]) < k, w is not a k-neighbor of u, which tells us that
u has only two k-neighbors and so is not k-saturated. We arrive at the
conclusion that thin(Tr[x]) ≤ k, and so thin(Tr[x]) = k.

Tr[x] is a type 4 tree: The k-critical vertex in Tr[x] is u, which is a descen-
dant of v1, and so is neither x nor a child of x. This is the definition of a
type 4 tree.

To finish this case, we note that the label and the lastType of Tr[x] are assigned
exactly as written in the definition of a type 4 tree.

Case 7:

thin(Tr[x]) = k+1: As Tr[v1] is a type 3 or 4 tree, it has a k-critical vertex
u ̸= v1. Also, as k ∈ label(Tr[x] \ Tr[w]), thin(Tr[x] \ Tr[w]) ≥ k. This
means that u is k-saturated, and so thin(Tr[x]) ≥ k + 1.

Let us see that there is no k + 1-saturated vertex in Tr[x] to see that
thin(Tr[x]) = k + 1. For there to be a k + 1-saturated vertex y, it must
have at least two child k + 1-neighbors, which means that there must be
two vertices z1 and z2 such that thin(Tr[z1]) = thin(Tr[z2]) = k + 1, with
Tr[z1] and Tr[z2] disjoint subtrees. As k is the maximum thinness of a
subtree of Tr[x], this cannot happen.

Tr[x] is a type 1 tree: First we note that Tr[x] is not a type 0 tree, as it
has at least one k-neighbor. We also note that, as seen earlier, Tr[x] has
no k+1-critical vertices, because no vertex has two child k+1-neighbors.
This then follows the definition of a type 1 tree.

We have gone through each case of the Proposition showing that the assignments
of labels and lastTypes correspond to the tree types in Definition 5. Now we will
continue by showing that every possible tree is covered by exactly one of these eight
cases. Observe the decision tree in Figure 2.1. We will show that cases of Proposition
1 correspond to cases in the decision tree, and with that prove that exactly one case
applies to every rooted tree. In the following case analysis, k represents the maximum
thinness of a child subtree of Tr[x], as in the Proposition.

Case 0: This case is reached if and only if x is a leaf or all its children are
leaves, and so corresponds to Case 0 in Proposition 1.
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Is x a leaf or all children of x are leaves?
YES

NO

Case 0
thin(Tr[x]) = 1 and
Tr[x] is a type 0 tree

Is there a child vi of x such that
Tr[vi] contains a k-critical vertex?

NO YES
What is the value
of DTr[x](x, k)?

≤ 1 = 2 ≥ 3

Are there children vj ̸= vi
of x where thin(Tr[vj ]) = k?

YES
NO

Is it the root vi ∈ Tr[vi]
that is the k-critical vertex?

YES
NO

Is thin(Tr[x] \ Tr[w]) = k for
w parent of k-critical node?

NO

YES

Case 1
thin(Tr[x]) = k and
Tr[x] is a type 1 tree

Case 2
thin(Tr[x]) = k and
Tr[x] is a type 2 tree

Case 3
thin(Tr[x]) = k + 1 and
Tr[x] is a type 1 tree

Case 4
thin(Tr[x]) = k + 1 and
Tr[x] is a type 1 tree

Case 5
thin(Tr[x]) = k and
Tr[x] is a type 3 tree

Case 6
thin(Tr[x]) = k and
Tr[x] is a type 4 tree

Case 7
thin(Tr[x]) = k + 1 and
Tr[x] is a type 1 tree

Figure 2.1: A decision tree corresponding to the case analysis of Proposition 1. Here,
Tr and k are defined as in the Proposition.
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Case 1: Firstly, this case is not reached if x is a leaf or all its children are
leaves, which matches the first condition of Case 1. Secondly, it is reached if and
only if Tr[x] has no child subtree with a k-critical vertex, and DTr[x](x, k) ≤ 1.
We know Tr[vi] does not have a k-critical vertex if and only if it has thinness
lower than k or is a type 0 or type 1 tree by Definition 5, which is the second
condition of Case 1. And the third condition, dk ≤ 1, is given by the fact that
DTr[x](x, k) ≤ 1.

Case 2 and 3: This proofs are very similar as the one for Case 1, and so they
are omitted.

Case 4: In this case of the Proposition, the condition dictates that some child
subtree Tr[vi] with thinness k must be of type 2, 3, or 4. This happens if and
only if Tr[vi] has a k-critical vertex, which is one of the conditions checked in
the decision tree. The following condition is true if and only if |Nk| ≥ 2, which
is the other condition in the Proposition. Finally, given that in a Case 4 tree
there is at least one k-critical vertex, x has at least one grandchild, and so the
statement “Is x a leaf or all children of x are leaves?” is not true. This last
remark will be applied to all following cases, because all of their corresponding
trees will contain at least one k-critical vertex.

Case 5: |Nk| = 1 if and only if there are no two vertices vi ̸= vj such that
thin(Tr[vi]) = thin(Tr[vj]) = k, and so this two conditions correspond to each
other. And t1 = 2 if and only if Tr[v1] is a type 2 tree, which means that v1 is
the k-critical vertex in Tr[v1], which in turn is the last condition in the decision
tree before reaching Case 5. Of course, Case 5 trees do have a k-critical vertex,
because v1 is a k-critical vertex, so that condition in the decision tree is correct
as well.

Case 6 and 7: The only difference between these cases is if k is either included
or not in label(Tr[x] \ Tr[w]), which is the last condition in the decision tree. In
both cases |Nk| = 1, which as we have seen is already checked in the decision
tree, and also Tr[v1] is a type 3 or 4 tree, which happens if and only if Tr[v1]
has a k-critical vertex different from v1. This is the contrary to the condition to
enter Case 5 in the decision tree. Lastly, |Nk| = 1, which as seen is also checked
in the decision tree.

This proves that every possible tree is covered by the cases in Proposition 1. Combined
with the fact that each case assigns the label and lastType following Definition 5, we
have shown that the thinness of every possible tree can be calculated as the first
element of its label following this case analysis.



Chapter 2. Polynomial Algorithm for Thinness of Trees 26

2.4 Computing Thinness of Trees and Finding a Consistent So-
lution

The subroutine underlying Proposition 1 will be used in a bottom-up algorithm that
starts out at the leaves and works its way up to the root, computing labels and
lastTypes of subtrees Tr[x]. However, in cases 6 and 7 we need the label and lastType
of Tr[x] \ Tr[w], which is not a complete subtree rooted at any vertex of Tr. Note
that the label and lastType of Tr[x] \ Tr[w] are again given by a recursive call to
Proposition 1, and then the label is stored as a suffix of the complex label of Tr[x], and
the lastType is the same. We will compute these labels and lastTypes by iteratively
calling Proposition 1, substituting the recursion by iteration. We first need to carefully
define the subtrees involved when dealing with complex labels.
From the definition of labels it is clear that only type 4 trees lead to a complex label. In
that case we have a tree Tr[x] of thinness k and a k-critical vertex uk that is neither x
nor a child of x, and the recursive definition gives label(Tr[x]) = k⊕label(Tr[x]\Tr[w])
for w the parent of uk. Unravelling this recursive definition, we have the following:

Definition 6. Let x be a vertex in Tr, and let h = |label(Tr[x])|. Denote label(Tr[x]) =
(a1, . . . , ah). Then ω(Tr[x]) is a list (ω1, . . . , ωh) of vertices in Tr[x] in which ωh =
x, and every other ωi with 1 ≤ i < h is the parent of the ai-critical vertex in
Tr[x] \ (Tr[ω1] ∪ · · · ∪ Tr[ωi−1]). We will use ω(Tr[x])i to denote the element num-
ber i of the list, or simply use ωi when it is clear which tree we are referring to.

Now, in the first level of a recursive call to Proposition 1 the role of Tr[x] is taken
by Tr[x] \ Tr[ω1], and in the next level it is taken by (Tr[x] \ Tr[ω1]) \ Tr[ω2] etc. The
following definition gives a shorthand for denoting these trees.

Definition 7. Let x be a vertex in Tr, and label(Tr[x]) = (a1, a2, . . . , ap). For any
non-negative integer s, the tree Tr[x, s] is the subtree of Tr[x] obtained by removing all
trees Tr[ωi] from Tr[x], where ai ≥ s. In other words, if q is such that aq ≥ s > aq+1,
then Tr[x, s] = Tr[x] \ (Tr[ω1] ∪ Tr[ω2] ∪ · · · ∪ Tr[ωq]).

To ease the following proofs, we will define the following list of vertices.

Definition 8. Let x be a vertex in Tr. Let h = |label(Tr[x])|. Denote label(Tr[x]) =
(a1, . . . , ah). Then φ(Tr[x]) is the list of vertices (φ1, . . . , φh−1), where φi ∈ Tr[x] is
the ai-critical vertex in Tr[x]. We will use φ(Tr[x])i to denote the element number i
of the list, or simply use φi when it is clear which tree we are referring to.

Note that each ωi is the parent of the corresponding φi, except when i = |label(Tr[x])|,
in which case there is no φi.
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Lemma 6. Some important properties of Tr[x, s] are the following. Let Tr[x, s],
label(Tr[x, s]), and q be as in the definition. Then

1. if s > a1, then Tr[x, s] = Tr[x]

2. label(Tr[x, s]) = (aq+1, . . . , ap)

3. thin(Tr[x, s]) = aq+1 < s

4. thin(Tr[x, s+ 1]) = s if and only if s ∈ label(Tr[x])

5. Tr[x, s+ 1] ̸= Tr[x, s] if and only if s ∈ label(Tr[x])

Proof. These follow from the definitions. We will show a proof for the last one:
Backward direction: Let s = aq for some 1 ≤ q ≤ p. Then Tr[x, s + 1] = Tr[x] \
(Tr[ω1] ∪ · · · ∪ Tr[ωq−1]) and Tr[x, s] = Tr[x] \ (Tr[ω1] ∪ · · · ∪ Tr[ωq]). These two trees
are clearly different.
Forward direction: Let Tr[x, s] = Tr[x] \ (Tr[ω1] \ · · · \ Tr[ωq]) and Tr[x, s + 1] =
Tr[x] \ (Tr[ω1]∪ · · · ∪Tr[ωq0 ]) with q0 < q and q0 > aq (because numbers in a label are
strictly descending). aq < s+ 1 and aq ≥ s, ergo aq = s.

Lemma 7. Let x ∈ V (Tr), and let u be a child of x in Tr. Let s ∈ N such that Tr[x, s]
and Tr[u, s] are not empty, that is to say, s is greater both than the last element of
label(Tr[x]) and than the last element of label(Tr[u]). Let T

∗
s = Tr[x, s]∩ Tr[u]. Then

T ∗
s = Tr[u, s], meaning, the child subtree of Tr[x, s] rooted at u is equal to Tr[u, s].

Proof. We will do induction on s, and prove that T ∗
s = Tr[u, s]. Let a1 = label(Tr[x])1.

Base case, s > a1: In this case, Tr[x, s] = Tr[x]. Note that label(Tr[x])1 ≥
label(Tr[u])1, because Tr[u] is a subtree of Tr[x] and so its thinness is smaller or
equal to thin(Tr[x]). So Tr[u, s] = Tr[u]. Then

T ∗
s = Tr[x, s] ∩ Tr[u] = Tr[x] ∩ Tr[u] = Tr[u] = Tr[u, s]

Inductive step, s ≤ a1: We will assume the statement holds for s+ 1, meaning
that T ∗

s+1 = Tr[u, s+1]. Note that this implies that Tr[u, s+1] is a child subtree
of Tr[x, s+ 1]. We have four possible cases here:

1. s /∈ label(Tr[x]), s /∈ label(Tr[u]): This means by Lemma 6 that Tr[x, s] =
Tr[x, s+ 1], and that Tr[u, s] = Tr[u, s+ 1]. This in turn shows that

T ∗
s = Tr[x, s] ∩ Tr[u] = Tr[x, s+ 1] ∩ Tr[u] = T ∗

s+1 = Tr[u, s+ 1] = Tr[u, s]
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2. s ∈ label(Tr[x]), s /∈ label(Tr[u]): This means that Tr[u, s+1] has thinness
smaller than s, while Tr[x, s + 1] has thinness s. This also means that
Tr[u, s] = Tr[u, s+ 1], which gives us T ∗

s+1 = Tr[u, s]. Let i be the position
of s in label(Tr[x]). As s is not the last element of label(Tr[x]), v = φ(Tr[x])i
exists as a vertex in Tr[x].

The fact that Tr[u, s+ 1] has thinness smaller than s tells us in particular
that it has no s-critical vertices. Also, by inductive hypothesis, Tr[u, s+1]
is a subtree of Tr[x, s+ 1]. These two facts together show that v, which is
an s-critical vertex in Tr[x, s+1], cannot be in Tr[u, s+1]. As v is outside
Tr[u, s + 1] = Tr[u, s], also w = ω(Tr[x])i is. As Tr[x, s] is not empty, w
is not x but instead is a descendant of x in Tr[x, s+ 1]. The only vertices
removed from Tr[x, s+ 1] to get Tr[x, s] are w and its descendants, which
are not descendants of u and so are not in T ∗

s+1. We conclude then that
T ∗
s = T ∗

s+1 = Tr[u, s].

3. s /∈ label(Tr[x]), s ∈ label(Tr[u]): This means that Tr[u, s+1] has thinness
s, while Tr[x, s+ 1] has thinness smaller than s. But this cannot happen,
as by inductive hypothesis Tr[u, s + 1] is a subtree of Tr[x, s + 1], and so
must have thinness smaller or equal to that of Tr[x, s+ 1]. This case then
is nonexistent.

4. s ∈ label(Tr[x]), s ∈ label(Tr[u]): As s is not the last element of label(Tr[x]),
label(Tr[x, s + 1]) has at least two elements, and so Tr[x, s + 1] is a type
4 tree. This means that there is an s-critical vertex v ∈ φ(Tr[x]) in
Tr[x, s + 1]. By a similar argument, there is also an s-critical vertex
v′ ∈ φ(Tr[u]) in Tr[u, s+ 1].

By Lemma 4 there can only be one s-critical vertex in Tr[x, s + 1] and
in Tr[u, s + 1], because their thinness is s. By the inductive hypothesis,
Tr[u, s + 1] is a subtree of Tr[x, s + 1], and so their s-critical vertices are
the same, in other words, v′ = v. As both s-critical vertices are the same,
the parents are also the same, and so the subtree U removed when going
from Tr[x, s + 1] to Tr[x, s] is the same as the one removed when going
from Tr[u, s+ 1] to Tr[u, s]. So we have

Tr[u, s] = Tr[u, s+ 1] \ U
= T ∗

s+1 \ U
= Tr[x, s+ 1] ∩ Tr[u] \ U
= Tr[x, s] ∩ Tr[u]
= T ∗

s
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Corollary 2.3. Let Tr, x and u be as in Lemma 7. If s ∈ label(Tr[x]) and s ∈
label(Tr[u]), T

∗
s+1 = Tr[u, s+ 1].

Proof. That s be both in label(Tr[x]) and in label(Tr[u]) means that s + 1 is bigger
than the last element of both labels, and so the conditions for Lemma 7 are satisfied
for s+ 1.

Note that, for any s, the tree Tr[x, s] is defined only after we know label(Tr[x]). In
the algorithm, we compute label(Tr[x]) by iterating over increasing values of s until
s > thin(Tr[x]) since by Lemma 6.1 we then have Tr[x, s] = Tr[x]. This poses a
problem: we cannot know which subtrees to calculate the labels for until we have
finished with all subtrees. To solve this, each iteration of the loop will correctly
compute the label of another subtree called Tunion[x, s], which is not always equal to
Tr[x]. Nonetheless, for s > thin(Tr[x]), the equality Tunion[x, s] = Tr[x, s] = Tr[x]
will hold, and so calculating labels for these subtrees will aid in calculating labels for
bigger subtrees.

Definition 9. Let x be a vertex in Tr with children v1, . . . , vd. Tunion[x, s] is then
equal to the tree induced by x and the union of all Tr[vi, s] for 1 ≤ i ≤ d. More
technically, Tunion[x, s] = Tr[V

′] where V ′ = x ∪ V (Tr[v1, s]) ∪ ... ∪ V (Tr[vd, s]).

Given a tree T , we find its thinness by rooting it at an arbitrary vertex r, and
computing labels by processing Tr bottom-up. The answer is given by the first element
of label(Tr[r]), which by definition is equal to thin(T ). At a vertex x of Tr which is
a leaf or all their children are leaves we initialize by label(Tr[x]) ← (1), according
to Definition 5. When reaching a higher vertex x we compute the label of Tr[x] by
calling function MakeLabel(Tr, x) defined in Algorithm 2.

Lemma 8. Given labels at descendants of vertex x in Tr, MakeLabel(Tr, x) com-
putes label(Tr[x]) as the value of cur label and lastType(Tr[x]) as the value of cur type.

Proof. Assume that x has children v1, . . . , vd, and denote their set of labels as L =
{l1, . . . , ld}. MakeLabel keeps variables cur label and cur type that are updated
maximally k times in a for loop, where k is the biggest number in any label of children
of x. The following claim will suffice to prove the lemma, since for s > thin(Tr[x]),
we have Tunion[x, s] = Tr[x].
Claim: At the end of the iteration number s of the for loop the value of cur label is
equal to label(Tunion[x, s+ 1]), and cur type is equal to lastType(Tunion[x, s+ 1]).

Base case: We have to show that before the first iteration of the loop we have
cur label = label(Tunion[x, 1]) and cur type = lastType(Tunion[x, 1]). As no
li ∈ L has 0 as an element by Definition 5, then Tunion[x, 1] is by definition the
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Algorithm 2 Compute cur label = label(Tr[x]) and cur type = lastType(Tr[x])

function MakeLabel(Tr: tree, x : vertex)
cur label← (1)
cur type← 1
{v1, . . . , vd} ← children of x in Tr
for s← 1, maxdi=1{ first element of label(Tr[vi]) } do
{l′1, . . . , l′d} ← {label(Tr[vi, s+ 1]) | 1 ≤ i ≤ d}
{t′1, . . . , t′d} ← {lastType(Tr[vi, s+ 1]) | 1 ≤ i ≤ d}
Ns ← {vi | 1 ≤ i ≤ d, s ∈ l′i}
ds ← |{vi | vi ∈ Ns, vi has a child uj s.t. s ∈ label(Tr[uj, s+ 1])}|
if Ns ̸= ∅ then

case ← the case from Prop. 1 applying to s, {l′1, . . . , l′d}, {t′1, . . . , t′d}, Ns

and ds
cur label← as given by case in Prop. 1 (s⊕ cur label if Case 6)
cur type← as given by case in Prop. 1

end if
end for

end function

singleton vertex x and by Proposition 1 the label of this tree is (1), which is
what cur label is initialized to, and its last type is 1, which is what cur type is
initialized to.

Inductive step: We assume cur label = label(Tunion[x, s]) at the start of iteration
number s of the for loop and show that at the end of the iteration cur label =
label(Tunion[x, s+ 1]).

The first thing done in the for loop is the computation of {l′i | 1 ≤ i ≤ d, l′i =
label(Tr[vi, s+1])}. By Lemma 6.2, label(Tr[vi, s+1]) is contained in label(Tr[vi])
for all i, therefore l′1, . . . , l

′
d are trivial to compute. Next, the {t′1, . . . , t′d} are

calculated, following the same strategy as for the labels. Afterwards Ns is set
as the set of all children of x whose labels contain s, and ds as the number of
vertices in Ns that themselves have children whose labels contain s. Let us first
look at what happens when Ns = ∅:
By Lemma 6.5, for every child vi of x, Tr[vi, s+1] = Tr[vi, s] if s /∈ label(Tr[vi]).
Therefore, if Ns is empty, then Tunion[x, s + 1] = Tunion[x, s], and from the
inductive hypothesis, label(Tunion[x, s+1]) = cur label, and indeed when Ns = ∅
then iteration s of the loop does not alter cur label.

Otherwise, we have |Ns| > 0 and make a call to the subroutine given by
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Proposition 1 for loop iteration s Explanation
Tr[x] Tunion[x, s+ 1] Tree needing label
k s Max thinness of children

Tr[v1], . . . , Tr[vd] Tr[vi, s], . . . , Tr[vd, s] Subtrees of children
l1, . . . , ld l′1, . . . , l

′
d Child labels

t1, . . . , td t′1, . . . , t
′
d Child lastTypes

Nk Ns Children with max thinness
dk ds Root k-component index

label(Tr[x] \ Tr[w]) cur label This is also label(Tunion[x, s+ 1] \ Tr[w])

Table 2.1: Correspondence between values computed in Proposition 1 and variables
in MakeLabel.

Proposition 1 to compute label(Tunion[x, s + 1]) and argue first that the vari-
ables used in that call correspond to the variables used in Proposition 1 to
compute label(Tr[x]). The correspondence is given in Table 2.1. Most of
these are just observations: Tunion[x, s + 1] corresponds to Tr[x] in Propo-
sition 1, and Tr[v1, s + 1], . . . , Tr[vd, s + 1] corresponds to Tr[v1], . . . , Tr[vd].
{l′i | 1 ≤ i ≤ d, l′i = label(Tr[vi, s+1])} correspond to {label(Tr[v])|v ∈ Child} in
Proposition 1, and similarly for the t′i with the ti. Ns is defined in the algorithm
so that it corresponds to Nk in Proposition 1. Since |Ns| > 0, some vi has s in
its label l′i. By Lemma 6.3 and 6.4, we can infer that s is the maximum thinness
of all Tr[vi, s+ 1], therefore s corresponds to k in Proposition 1.

It takes a bit more effort to show that ds computed in iteration s of the for
loop corresponds to dk = DTr[x](x, k) in Proposition 1 – meaning we need to
show that ds = DTunion[x,s+1](x, s). Consider vi, a child of x. In accordance with
MakeLabel we say that vi contributes to ds if vi ∈ Ns and vi has a child
uj with s in its label. We thus need to show that vi contributes to ds if and
only if vi is an s-neighbor of x in Tunion[x, s+ 1]. Observe that by Lemma 6.4,
thin(Tr[vi, s + 1]) = thin(Tr[uj, s + 1]) = s if and only if s is in the labels of
both Tr[vi] and Tr[uj]. If s /∈ label(Tr[uj, s + 1]), then thin(Tr[uj, s + 1]) < s,
and if this is true for all children of vi, then vi is not an s-neighbor of x in
Tunion[x, s + 1]. If s /∈ label(Tr[vi, s + 1]), then thin(Tr[vi, s + 1]) < s and no
subtree of Tr[vi, s + 1] can have thinness s. However, if s ∈ label(Tr[uj, s + 1])
and s ∈ label(Tr[vi, s+1]) (this is when vi contributes to ds), then, by Corollary
2.3, Tr[uj, s + 1] must be a child subtree of Tr[vi, s + 1]. This means that
Tr[uj, s+ 1] ⊆ Tunion[x, s+ 1], and we conclude that vi is an s-neighbor of x in
Tunion[x, s+ 1] if and only if vi contributes to ds, so ds = DTunion[x,s+1](x, s).
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Lastly, we show that if Tunion[x, s+1] is a Case 6 or Case 7 tree – that is, |Ns| = 1,
and Tr[v1, s + 1] is a type 3 or type 4 tree, with w being the parent of an s-
critical vertex – then cur label has the value corresponding to label(Tr[x]\Tr[w])
in Proposition 1, which would in this case be label(Tunion[x, s + 1] \ Tr[w]).
We know, by definition of label and Lemma 6.5, that Tr[vi, s + 1] \ Tr[vi, s] =
Tr[w] ∩ Tr[vi, s+ 1]. As Tr[w] is contained entirely in Tr[vi], we have that

Tr[w] ∩ Tr[vi, s+ 1] = Tr[w] ∩ Tunion[x, s+ 1]

But since |Ns| = 1, for every j ̸= i, Tr[vj, s+ 1] \ Tr[vj, s] = ∅. Therefore

Tunion[x, s+ 1] \ Tunion[x, s] = Tr[w] ∩ Tunion[x, s+ 1]

which in turn gives us

Tunion[x, s+ 1] \ (Tr[w] ∩ Tunion[x, s+ 1]) = Tunion[x, s+ 1] \ Tr[w] = Tunion[x, s]

But by the induction assumption,

cur label = label(Tunion[x, s]) = label(Tunion[x, s] \ Tr[w])

Thus cur label corresponds to label(Tr[x] \ Tr[w]) in Proposition 1.

We have now argued for all the correspondences in Table 2.1. By that, we
conclude from Proposition 1 and the inductive assumption that cur label =
label(Tunion[x, s+ 1]) at the end of the s-th iteration of the for loop in Make-
Label. It runs for k iterations, where k is equal to the biggest number in any
label of the children of x, and cur label is then equal to label(Tunion[x, k + 1]).
Since k ≥ thin(Tr[vi]) for all i, by definition Tr[vi, k + 1] = Tr[vi] for all
i, and thus Tunion[x, k + 1] = Tr[x]. Therefore, when MakeLabel finishes,
cur label = label(Tr[x]).

Theorem 3. Given any tree T , thin(T ) can be computed in O(n log(n))-time.

Proof. We find thin(T ) by bottom-up processing of Tr and returning the first element
of label(Tr). After correctly initializing at leaves and vertices whose children are all
leaves, we make a call to MakeLabel for each of the remaining vertices. Correctness
follows by Lemma 8 and induction on the structure of the rooted tree. We will now
show that each call runs in O(log(n)) time to prove the time complexity.
Let m be the biggest number in any label of children of x, which is O(log(n)) by
Corollary 2.1. For every integer s from 1 to m, the algorithm checks how many labels
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of children of x contain s to compute Ns, and how many labels of grandchildren of
x contain s to compute ts. The labels are sorted in descending order; therefore the
whole loop goes only once through each of these labels, each of length O(log(n)).
Other than this, MakeLabel only does a constant amount of work. Therefore,
MakeLabel(Tr, x), if x has a children and b grandchildren, takes time proportional
to O(log(n)(a + b)). As the sum of the number of children and grandchildren over
all vertices of Tr is O(n) we conclude that the total runtime to compute thin(T ) is
O(n log(n)).

Theorem 4. A consistent solution using thin(T ) classes can be found in O(n log(n))-
time.

Proof. Given T we first run the algorithm computing thin(T ) to find the label and
lastType of every full rooted subtree in Tr. We give a recursive algorithm that uses
these labels in tandem with ConsistentLayout presented in the Path Layout
Lemma. We call it on a rooted tree where labels of all subtrees are known. For
simplicity we call this rooted tree Tr even though in recursive calls this is not the
original root r and tree T . The layout algorithm goes as follows:

0. Calculate critical(x) as the k′-critical vertex, if it exists, of each subtree Tr[x]
of Tr, where k

′ is the thinness of Tr[x].

1. Let thin(Tr) = k and use critical(r) to find a path P in Tr such that all trees
in Tr \ N [P ] have thinness lower than k. The path depends on the type of Tr
as explained in detail below.

2. Repeat this algorithm starting from step 1 recursively on every rooted tree in
Tr \N [P ] to obtain consistent solutions; to this end, we need the correct label
for every vertex in these trees.

3. Call ConsistentLayout on Tr, P and the solutions provided in step 2.

First, let us see how to calculate the critical vertices of Step 0. To calculate critical(v)
for some subtree Tr[v], checking critical(u) for each child of v is sufficient. We use k′

to denote the thinness of Tr[v].

Type 0 and 1 trees : These do not contain any k′-critical vertex, so there is no
critical(v).

Type 2 trees : v is the k′-critical vertex, so critical(v) = v

Type 3 trees : We know that some child u of v is the root of a type 2 tree. We
check every child of v to find the only child subtree Tr[u] with thinness k′ that
is a type 2 tree, and we set critical(v) = critical(u).
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Type 4 trees : Some child subtree will have thinness k′ and will also have a k′-
critical vertex, by definition of a type 4 tree. We can then treat it as a type 3
tree and check the lastTypes of the child subtrees with thinness k′ to see which
one has a k′-critical vertex.

This procedure can be done in O(n) by traversing the whole tree in a bottom-up
fashion.
Let us proceed with the next steps. Algorithm 3 shows an implementation in pseu-
docode of steps 1 to 3.

Algorithm 3 Consistent solution of a given tree and its labels, lastTypes, and critical
vertices.

1: function ConsistentSolution(Tr, {label(x)}, {lastType(x)}, {critical(x)})
2: k ← label(Tr[r])1
3: P ← FindPath(Tr)
4: for x ∈ Tr do
5: Update label(x) if necessary, as determined by lastType(Tr[r]).
6: end for
7: solutions← ∅
8: for each connected component T ′ of Tr[r] \N [P ] do
9: Add to solutions the result of
10: ConsistentSolution(T ′, {label(x)}, {lastType(x)}, {critical(x)}).
11: end for
12: return ConsistentLayout(Tr, P , solutions)
13: end function

Every tree in the forest T \ N [P ] is equal to a dangling tree T ⟨v, u⟩ where v is a
neighbor of some x ∈ P .
We observe that if thin(T ) = k, then by definition thin(T ⟨v, u⟩) = k if and only if
v is a k-neighbor of x. It follows that every tree in T \ N [P ] has thinness at most
k − 1 if and only if no vertex in P has a k-neighbor that is not in P . We use this
fact to show that, for every type of tree, the function FindPath can effectively find
a satisfying path in the following way:

Type 0 trees : Choose P = (r). Since |T \N [r]| = 0 in these trees, this must be
a satisfying path.

Type 1 trees : These trees contain no k-critical vertices, which by definition
means that for any vertex x in Tr, at most one of its children is a k-neighbor
of x. Choose P to start at the root r, and as long as the last vertex in P has
a k-neighbor v, v is appended to P . This set of vertices is obviously a path
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in Tr. No vertex in P can possibly have a k-neighbor outside of P , therefore
all connected components of T \ N [P ] have thinness lower or equal to k − 1.
Furthermore, all components of T \ N [P ] are full rooted subtrees of Tr and so
the labels are already known.

Type 2 trees : In these trees the root r is k-critical. We look at the trees rooted
in the two k-neighbors of r, Tr[v1] and Tr[v2]. By Remark 4 these must both be
Type 1 trees, and so we find paths P1, P2 in Tr[v1] and Tr[v2] respectively, as
described above. Gluing these paths together at r we get a satisfying path for
Tr, and we still have correct labels for the components T \N [P ].

Type 3 trees : In these trees, r has exactly one child v such that Tr[v] is of type
2 and none of its other children have thinness k. We choose P as we did above
for Tr[v]. Vertex r is clearly not a k-neighbor of v, or else DT (v, k) = 3. Every
other vertex in P has all their neighbors in Tr[v]. Again, every tree in T \N [P ]
is a full rooted subtree, and every label is known.

Type 4 trees : In these trees, Tr contains precisely one vertex w ̸= r such that w
is the parent of a k-critical vertex, x. This w is simply the parent of critical(r).

Clearly, the tree Tr[w] is a type 3 tree with thinness k. We find a path P that is
satisfying in Tr[w] as described above. w is still not a k-neighbor of x, therefore
P is a satisfying path.

There is a peculiarity in case 4. Namely, we have one connected component of T \N [P ]
that is not a full rooted subtree of Tr, that is Tr \Tr[w]. Thus, for every ancestor y of
w, Tr[y] \ Tr[w] is not a full rooted subtree either, and we need to update the labels
of these trees to maintain correctness.
As each Tr[y] contains the k-critical vertex x, it has thinness greater or equal to k.
Also, as Tr[y] is a subtree of Tr, it has thinness lower or equal to k. These two facts
tell us that thin(Tr[y]) = k, which means that k is the first element of its label. Also,
they are all type 4 trees, because they each have the parent w of x as a descendant.
This means that w = ω(Tr[y])1 for each y. With this, we see that Tr[y] \ Tr[w] is by
definition equal to Tr[y, k], whose label is the result of removing the first position from
label(Tr[y]). We then update every label(y) to reflect this change before proceeding
with the recursive call.
To prove that these operations are performed a number of times proportional to
O(n log n), we have to make a more in-depth analysis:
Firstly, each vertex is added to a single path, so the operation of adding a vertex to
a path is made a number of times proportional to n. Every time we add a vertex, we
check its neighbors. In a tree, the number of edges is n−1, so again, this operation is
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done a linear number of times. The only thing remaining is to prove the complexity
of the label update operations.
Each single operation is of constant complexity when using appropiate data struc-
tures, as it consists of simply removing the first element of a list. Each update
operation removes one element from a label, and as seen earlier, each label has at
most thin(T ) ∈ O(log n) elements. As we do not remove the same element from a
label twice, we do at most O(n log n) label updates in the whole algorithm.
So, even though any single call to FindPath could possibly have a bigger complexity
than O(log n), in total the amount of operations executed inside this function, along
with the label updates, has complexity O(n log n).
We follow the proof by noting that each recursive call to ConsistentSolution
reduces the thinness of the remaining trees by one. We then see that the function
ConsistentLayout is called with a tree containing v at most thin(Tr) times for
any vertex v in Tr. Remembering that thin(Tr) ∈ O(log n), and that Consistent-
Layout has linear time complexity, we conclude that the operations performed in
the calls to ConsistentLayout also have a total time complexity of O(n log n).

Corollary 4.1. For any given tree T , thin(T )− lmimw(T ) ≤ 1.

Proof. In this section, for a given tree with thin(T ) = k, we showed a way to divide
it into paths so that we could apply the Path Layout Lemma recursively (up to k
levels in total) and construct an optimal consistent solution. That is to say we can
always show a path P in T such that all connected components in T \ N [P ] have
thinness at most k − 1 and we can find paths of this form recursively. Similarly, on
the paper presented in [9], for a given tree T such that lmimw(T ) = l, it is shown a
way to divide the tree into paths (up to l+1 levels in total). The construction of the
solution for linear MIM-width is of course different but we are interested here in the
fact that we can guarantee that T can be divided this way. As a result, considering
that we have a tree divided recursively into paths for up to l+1 levels, we can simply
apply the Path Layout Lemma presented on this work from that construction and get
a consistent solution using at most l + 1 partitions. Since it was proven in [1] that
lmimw(G) ≤ thin(G) for any graph G, we can say that for a tree T the thinness and
the linear MIM-width differ at most in one.



CHAPTER 3

Thinness of Graph Classes

We present here some bounds for the thinness of trees and grids, we compute exactly
the thinness of complete m-ary trees and crowns, and we use our algorithm to find
new bounds for the thinness of general graphs.

3.1 Thinness of Complete m-ary Trees

The height of a rooted tree is the maximum number of edges in a simple path from
the root to a leaf. Notice that a rooted tree of height h has h + 1 levels of vertices,
being the root the only vertex at level 1, and saying that a vertex has level t + 1 if
and only if its parent has level t. It was proven in [1] that for a fixed value m, the
thinness of a complete m-ary tree on n vertices is Θ(log(n)), and it was also proven
in [12] that the thinness of a non-trivial tree is less than or equal to its height; but,
until now, it was an open problem to compute the exact thinness of a complete m-ary
tree.

Theorem 5. Let be m an integer number greater or equal than 3 and T a complete
m-ary tree with height h, then thin(T ) =

⌈
h+1
2

⌉
.

Proof. For a given m ≥ 3 we proceed by induction on h.

Base case:

For h = 0 and h = 1, since they are interval graphs, thin(T ) = 1. Then the
condition thin(T ) =

⌈
h+1
2

⌉
holds.

37
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Inductive step:

Assume the property holds for all m-ary trees of height less or equal than a
given h ≥ 1. We want to see the property also holds for h+ 1.

Let T be a complete m-ary tree with height h + 1. Let x be the only vertex
at level 1; v1, v2, . . . , vm the level 2 vertices; and ti,1, ti,2, ..., ti,m the vertices
adjacent to vi at level 3. Then by the inductive hypothesis we can say that
thin(T ⟨vi, ti,j⟩) =

⌈
h
2

⌉
.

Since there are at least three vertices vi, each one with at least one dangling tree
T ⟨vi, ti,j⟩, D(x,

⌈
h
2

⌉
) ≥ 3. Due to Theorem 2, we have that thin(T ) ≥

⌈
h
2

⌉
+ 1.

On the other hand, applying the Path Layout Lemma with P = (x) shows us
that thin(T ) ≤

⌈
h
2

⌉
+ 1. As

⌈
h
2

⌉
+ 1 =

⌈
h+2
2

⌉
, we have that

⌈
h+2
2

⌉
≤ thin(T ) ≤⌈

h+2
2

⌉
, and so the property holds for h+ 1.

Theorem 6. Let T be a complete binary tree with height h, then thin(T ) =
⌈
h+1
3

⌉
.

Proof. First we prove that thin(T ) ≥
⌈
h+1
3

⌉
. We proceed by induction on h.

Base case:

For h ∈ {0, 1, 2}, since T is an interval graph, thin(T ) = 1 ≥
⌈
h+1
3

⌉
.

Inductive step:

Suppose the property holds for all trees of height less of equal than h (with
h ≥ 2), we want to see that the property is true for any given tree T of height
h+ 1.

Let T be a complete binary tree with height h+1. We name some of the vertices
of the first 4 levels as described in the following figure:

x

v1

v3

v5

v4

v6

v2
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From the inductive hypothesis we know that thin(T ⟨v3, v5⟩) ≥
⌈
h−2+1

3

⌉
=

⌈
h−1
3

⌉
and thin(T ⟨v4, v6⟩) ≥

⌈
h−1
3

⌉
. In addition to that, since that T ⟨v3, v5⟩ is isomor-

phic to an induced subgraph of T ⟨x, v2⟩, we can also say that thin(T ⟨x, v2⟩) ≥
thin(T ⟨v3, v5⟩) ≥

⌈
h−1
3

⌉
.

These conditions imply that D(v1,
⌈
h−1
3

⌉
) ≥ 3, so due to Theorem 2 we can say

that thin(T ) ≥
⌈
h−1
3

⌉
+ 1 =

⌈
h−1+3

3

⌉
=

⌈
h+2
3

⌉
. Then the property holds for

h+ 1.

Now we show that thin(T ) ≤
⌈
h+1
3

⌉
. By proceed by an induction on h.

Base case:

For h ∈ {0, 1, 2}, since T is an interval graph, thin(T ) = 1; then the property
is true since 1 ≤

⌈
h+1
3

⌉
.

Inductive step:

Suppose the property holds for some height h ≥ 2 and for all heights lesser than
h; we want to see that the property is also true for h+ 1.

Let T be a complete binary graph with height h+ 1. Let us call the vertices of
the first 4 levels of T as it is shown in the next figure:

v1

v2

v4

t1 t2

v5

t3 t4

v3

v6

t5 t6

v7

t7 t8

Due to the inductive hypothesis we know that thin(T ⟨vi, tj⟩) ≤
⌈
h−1
3

⌉
. This

means that for all trees T ⟨vi, tj⟩ there exists a consistent ordering and partition
of its vertices in no more than

⌈
h−1
3

⌉
classes. We can then apply the Path

Layout Lemma with P = (v2, v1, v3) to deduce that thin(T ) ≤
⌈
h−1
3

⌉
+ 1 =⌈

h−1+3
3

⌉
=

⌈
h+2
3

⌉
.

We proved
⌈
h+1
3

⌉
≤ thin(T ) ≤

⌈
h+1
3

⌉
.
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3.2 Improving the Diameter Bound for Trees

The diameter of a tree is the maximum number of edges in a simple path joining
two vertices. From [12] it can be shown by construction that it is always possible to
have a consistent solution for a given tree with approximately diameter

2
classes. In this

subsection we are going to adjust this bound.

Theorem 7 (Upper Bound Diameter Theorem). Let T be a tree and d its diameter,
then thin(T ) ≤

⌈
d+1
4

⌉
. Moreover, if the maximum degree of a vertex in T is at most

3, then thin(T ) ≤
⌈
d+3
6

⌉
.

Proof. Let m be the maximum degree among all vertices of T . If d is even, consider
the complete m-ary tree T ′ with height h′ = d

2
. Since the diameter of T ′ is equal to

2h′ = d and it is an complete m-ary tree, and every vertex of T has degree at most
m, T is an induced subgraph of T ′. This implies that thin(T ) ≤ thin(T ′). Now from
the result proven in Theorem 5 we can say that

thin(T ′) =

°
h′ + 1

2

§
=

¢
d
2
+ 1

2

•
=

°
d+ 2

4

§
By transitivity, if d is even, thin(T ) ≤

⌈
d+2
4

⌉
.

If d is odd, consider the tree T ′′ obtained by joining the roots of two complete (m−1)-
ary trees of height h′′ = d−1

2
by an edge (notice that every vertex that is not a leaf has

degree m in T ′′). The diameter of T ′′ is equal to 2h′′ + 1 = d. Let P be a maximum
length path in T , and uv the middle edge of that path. Every leaf w of T such that u
is not in the path between w and v is at distance at most h′′ from v, otherwise there
will be a path of length greater than d in T . Symmetrically, every leaf w of T such
that v is not in the path between w and u is at distance at most h′′ from u. This and
the way of building T ′′ shows that T is an induced subgraph of T ′′ in this case. This
implies that thin(T ) ≤ thin(T ′′). Now from the Path Layout Lemma applied to the
path uv, and the result proven in Theorem 5, we can say that

thin(T ′′) ≤
°
h′′ − 1

2

§
+ 1 =

¢
d−1
2
− 1

2

•
+ 1 =

°
d− 3

4

§
+ 1 =

°
d+ 1

4

§
By transitivity, if d is odd, thin(T ) ≤

⌈
d+1
4

⌉
. It is easy to see that we can combine the

even and odd case and say that for every tree T with diameter d, thin(T ) ≤
⌈
d+1
4

⌉
.

For m ≤ 3 and d odd, we can use Theorem 6 instead of Theorem 5, obtaining

thin(T ) ≤
⌈ d−1

2
−1

3

⌉
+ 1 =

⌈
d+3
6

⌉
. For d even, we make a similar construction by

joining the roots of three complete binary trees to a new vertex x, and applying the
Path Layout Lemma to the path x, thin(T ) ≤

⌈
d+4
6

⌉
. Again, we can combine the even
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and odd case and say that for every tree T with diameter d and maximum degree at
most 3, thin(T ) ≤

⌈
d+3
6

⌉
.

Corollary 7.1. The thinness of a tree T of n vertices and diameter d is at most
min(

⌈
d+1
4

⌉
, log3(n+ 2)).

Corollary 2.2 establishes an upper bound for the thinness of a graph in terms of the
number of leaves. Let us call an almost-leaf a vertex which is not a leaf that has
at most one neighbor that is not a leaf. Using some ideas from [3], we can prove
this other bound, useful for trees with a big number of leaves but a small number of
internal vertices of degree greater than two after trimming the leaves.

Theorem 8. Let T be a tree with t almost-leaves, t ≥ 2. Then thin(T ) ≤ t− 1.

Proof. We start by trimming all the leaves of T , obtaining a tree T ′. The leaves of
T ′ are the almost-leaves of T . We then root T ′ at a leaf and start a new class of the
partition, containing the root. If a vertex has one child, then it is assigned to the
same class as its parent. If it has more than one child, then one child is assigned to
the same class as its parent, and the other children are assigned to a new class each.
So, we have at most t− 1 classes.
Now we order the vertices of T ′ by postorder (meaning, setting the children of a
vertex to be all smaller than the vertex), and we add the trimmed leaves adjacent to
a vertex v right before v and in its same class.
We will now show that the order and the partition are consistent. Suppose x < y < z,
with x, y in the same class of the partition and (z, x) ∈ E(T ). Notice that z cannot
be a leaf of T , since, by the way of defining the order, if w is a leaf then its only
neighbor is greater than it. So z is a vertex of T ′. If x is a leaf of T , then y is also
a leaf of T adjacent to z, since we added the trimmed leaves adjacent to a vertex v
right before v. If x is not a leaf in T , then z is the parent of x in T ′, since we have
ordered T ′ by postorder. By the way of defining the ordering and the classes, either
x and z are in the same class or x is the greatest vertex in his class, contradicting the
existence of y; moreover, no vertex between x and z in the order of V (T ′) belongs
to the same class as x, so y must be a leaf of T adjacent to z, otherwise the vertex
adjacent to y in T has to be in the same class and between y and z. This completes
the proof of consistency.

3.3 Thinness of CRn

Recall that the crown graph CRn (also known as Hiraguchi graph) is the graph on
2n vertices obtained from a complete bipartite graph Kn,n by removing a perfect
matching.
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It was proven in [4] that thin(CRn) ≥ n
2
; here we will show the exact thinness and a

consistent ordering and partition of the vertices for CRn.

Theorem 9. Thinness(CRn) = max(1, n− 1)

Proof. The vertices of the CRn graph are defined as V = {x1, x2, . . . , xn, y1, y2, . . . , yn},
and the edges as E = {(xi, yj) : 1 ≤ i, j ≤ n, i ̸= j}.
Some other definitions we are going to use:

X := {x1, x2, . . . , xn} and Y := {y1, y2, . . . , yn}.

We define mirror(v) as yi if v = xi or as xi if v = yi.

Given an order of the vertices, we say v is a little vertex if v < mirror(v).

Similarly, for a set of vertices A, we define Littles(A) as the set of vertices in
the graph that belong to A and are little vertices.

Given an order and a partition of the vertices, and a triple (r, s, t), we say they
“break the consistency” meaning that r < s < t and r and s belong to the same
class and there is and edge between r and t but there is no edge between s and
t.

Claim 9.1. If xi and xj (or yi and yj) with i ̸= j are both little vertices, then they
cannot belong to the same class in a consistent solution.

Proof. Suppose, without loss of generality, that xi < xj. If xi and xj belonged to the
same class, then the triple (xi, xj, yj) would break the consistency.

Notice that, since for each pair of vertices (xi, yi) there is exactly one little vertex,
by the pigeonhole principle, X or Y should contain at least half of the little vertices
in the whole graph. This implies that max(|Little(X)|, |Little(Y )|) ≥

⌈
n
2

⌉
. Then,

because of Claim 9.1, in a consistent solution there are at least
⌈
n
2

⌉
little vertices all

in different classes, and so thin(CRn) ≥
⌈
n
2

⌉
. This is the bound we knew for now,

which was proved in [4].

Claim 9.2. If, in a consistent solution, x ∈ X and y ∈ Y belong to the same class and
x < y, then y must be the last vertex or the penultimate vertex of the order in Y .

Proof. Suppose the contrary, then there exist two distinct vertices y′ and y′′ in Y
such that y < min(y′, y′′). Clearly one of y′ or y′′ is not mirror(x), let us assume that
y′′ ̸= mirror(x). But then (x, y, y′′) would break the consistency.
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Claim 9.3. If, in a consistent solution, x ∈ X and y ∈ Y with x < y belong to the
same class and y is the penultimate vertex in Y , then the last vertex in Y must be
y′ = mirror(x).

Proof. Let us call ylast to the last vertex in Y . Suppose ylast ̸= mirror(x). Then the
triple (x, y, ylast) would be breaking the consistency.

Claim 9.4. Given y, y′ ∈ Y , x, x′ ∈ X, y ̸= y′ and x ̸= x′, such that, in a consistent
solution:

x and y belong to the same class;

x′ and y′ belong to the same class;

x < y;

x′ < y′;

then at least one of {y, y′} is not a little vertex.

Proof. Without loss of generality let us assume that y < y′. By Claim 9.2 we know
that y must be the last vertex or the penultimate vertex of the order in Y ; but since
y < y′, we can say that y and y′ are respectively the penultimate and last vertex of
the order in Y . Now by Claim 9.3 we can say that y′ and mirror(x) must be the
same vertex. And since x < y′, this implies that y′ is not a little vertex.

We are now going to show that in a consistent solution, the number of classes con-
taining a little vertex is at least n − 1. In other words, that at most one class can
contain two little vertices, one of X and one of Y , since by Claim 9.1 no class can
contain more than one little vertex of either X or Y .

Suppose, on the contrary, that there are 4 distinct little vertices x, x′, y and y′ such
as {x, x′} ∈ X and {y, y′} ∈ Y , x and y belong to the same class, x′ and y′ belong to
the same class.
By Claim 9.4, it is neither possible that x < y and x′ < y′, nor that x > y and x′ > y′.
Suppose then, without loss of generality, that x < y and x′ > y′. By Claim 9.2, x′

and y can only be the last or penultimate vertices in X and Y , respectively. Without
loss of generality, let us assume x′ > y. Notice as mirror(x′) > x′ > y the vertex y
cannot be the last vertex in Y ; implying that y is the penultimate vertex in Y . Let us
call ỹ the last vertex in Y . We can say ỹ = mirror(x′), since it is the only vertex in
Y which is greater than y, which is the penultimate vertex in Y . However, by Claim
9.3, ỹ = mirror(x); then x′ = x, a contradiction.
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By the arguments above, there is at most one pair of little vertices (x, y) such that
they belong to the same class. Then there must be at least

|Littles(X)|+ |Littles(Y )| − 1 = n− 1

different classes containing the little vertices, which implies thin(CRn) ≥ n− 1.

Now let us see that n − 1 classes are enough for a consistent solution to the CRn

graph with n > 1.
If n is even, we define the order of the vertices σ and the partition S according to
Algorithm 4. Similarly, if n is odd, we define the order of the vertices σ and the
partition S according to Algorithm 5. The only difference of the odd case is how
we assign the last vertices, but the rest of the algorithm is exactly the same. Notice
the algorithms output the ordering and a list of classes containing the set of vertices
corresponding to each class.
We can show that the partition and ordering are consistent by seeing that all triples
of vertices satisfy the consistency condition. Given a triple (r, s, t) such as r < s < t
we can see all possibilities:

r = xi: If r and s belong to different classes then the consistency is already
satisfied. The vertex s belongs to the same class of r only when s = xi+1; and,
by construction, t = yi or t = yi+1+c or t = xi+1+c with c ≥ 1.

t = yi: (xi, yi) /∈ E, so (r, s, t) satisfies the consistency.

t = yi+1+c: (xi, yi+1+c) ∈ E but also (xi+1, yi+1+c) ∈ E, so (r, s, t) satisfies
the consistency.

t = xi+1+c: (xi, xi+1+c) /∈ E, so (r, s, t) satisfies the consistency.

r = yi: If r and s belong to different classes then the consistency is already
satisfied. The vertex s belongs to the same class of r only when s = yi−1; and,
by construction, t = xi+c or t = yi+c with c ≥ 1.

t = xi+c: (yi−1, xi+c) ∈ E but also (yi, xi+c) ∈ E, so (r, s, t) satisfies the
consistency.

t = yi+c: (yi−1, xi+c) /∈ E, so (r, s, t) satisfies the consistency.

It is easy to see that the assignment done for the last vertices holds the consistency.
Since in the main loop of the algorithm we are assigning 4 vertices to 2 new classes;

and in the even case we are using one extra class for the last 4 vertices;

and in the odd case we are not using new classes for the last 2 vertices;

we can say that both algorithms use exactly n− 1 classes.
We proved thin(CRn) ≥ n−1 and thin(CRn) ≤ n−1, which concludes the proof.
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Algorithm 4 Consistent layout of a CRn graph for even n > 1.

function ConsistentLayoutCR(x1, x2, . . . xn: vertices in X, y1, y2, . . . yn: ver-
tices in Y )

σ ← ∅ ▷ the ordering starts out empty
for odd i ∈ [1..n− 3) do

▷ in each iteration we set the order and classes of 4 vertices
σ ← σ ⊕ (xi, yi+1, xi+1, yi)
Ci ← {xi, xi+1}
Ci+1 ← {yi+1, yi}

end for
σ ← σ ⊕ (xn−1, yn, yn−1, xn) ▷ We set the order and class of the remaining

vertices.
Cn−1 ← {xn−1, yn, xn, yn−1}
S ← {C1, . . . , Cn−1}

return σ, S
end function

Algorithm 5 Consistent layout of a CRn graph for odd n > 1.

function ConsistentLayoutCR(x1, x2, . . . xn: vertices in X, y1, y2, . . . yn: ver-
tices in Y )

σ ← ∅ ▷ the ordering starts out empty
for odd i ∈ [1..n− 2) do

▷ in each iteration we set the order and classes of 4 vertices
σ ← σ ⊕ (xi, yi+1, xi+1, yi)
Ci ← {xi, xi+1}
Ci+1 ← {yi+1, yi}

end for
σ ← σ ⊕ (xn, yn) ▷ We set the order and class of the remaining vertices.
Cn−1 ← Cn−1 ∪ {xn}
Cn−2 ← Cn−2 ∪ {yn}
S ← {C1, ..., Cn−1}

return σ, S
end function
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3.4 Bound for GRr

Recall that, for a positive integer r, the (r × r)-grid, noted GRr, is the graph whose
vertex set is {(i, j) : 1 ≤ i, j ≤ r} and whose edge set is {((i, j), (k, l)) : |i−k|+|j−l| =
1, where 1 ≤ i, j, k, l ≤ r}.
We know from [10] that n

4
≤ thin(GRr) ≤ r + 1; here we are slightly adjusting the

upper bound and we are showing an additional lemma.
We will start by showing the following lemma, so as to ease the next proofs.

Definition 10. Given a consistent solution Ω with ordering σ and partition S of the
vertices in a graph G, we define prevΩ(vi) for vi ∈ V (G) as the last vertex vj before
vi in σ such that vj and vi belong to the same class in S, if such vertex exists. We
use prev(vi) when the solution can be implied from the context.

Lemma 9. An ordering σ = (v1, . . . , vn) and partition S of the vertices of a graph G
are consistent if and only if for every vertex vi in σ either:

there is no j < i such that vj belongs to the same class as vi in S; or

let vj = prev(vi), and let H be the set of neighbors vh of vj such that h > i.
Then every vertex in H is a neighbor of vi.

Proof. We will prove the lemma by proving both directions of the implication.
=⇒) Suppose we have a consistent ordering σ = (v1, . . . , vn) and partition S of the
vertices of a graph G. We know by definition of consistency that for each triplet
(r, s, t) such that vr < vs < vt, if vr and vs belong to the same class in S and
(vr, vt) ∈ E(G), then (vs, vt) ∈ E(G). Now suppose there exists a vertex vi that
contradicts the lemma. This means that there is a vertex vj = prev(vi) and another
vertex vh ∈ N [vj] such that i < h and (vi, vh) /∈ E(G). Notice this triple (vj, vi, vh) is
contradicting the consistency, since vj and vi both belong to the same class, (vr, vh)
is an edge in G, and (vi, vh) is not an edge in G, so such a vertex cannot exist.
⇐=) Suppose we have an ordering σ = {v1, . . . , vn} and partition S of the vertices of
a graph G and the conditions of this implication are valid for this solution. We must
show that this solution is consistent. Suppose that this is not the case, meaning, there
are three vertices (vi, vj, vk), with i < j < k, such that vi and vj belong to the same
class C in S, and vk is a neighbor of vi but not of vj. Let r < j such that vr is the
last member of C before vj according to σ which is a neighbor of vk. Let s > r such
that vs is the first vertex in C after vr. Note both these numbers exist in the range
[i, j], because vi is a neighbor of vk and vj is not. Then, vs is not a neighbor of vk, as
vr is the last neighbor of vk in C before vj. Both vr and vs belong to the same class,
and vr is adjacent to vk, while vs is not. As k > j ≥ s, and vr = prev(vs), this means
that the condition stated in the lemma is not met on vj, which is a contradiction.
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Theorem 10 (GRr bound). Let there be a consistent ordering σ and partition S of
the vertices of GRr using k classes such that all of the following are true:

1. (r, 1) < (r, 2) < · · · < (r, r − 1) < (r, r) < (r − 1, r) < · · · < (2, r) < (1, r).

2. (r − 1, r − 1) < (r, r).

3. If there is a vertex v in the same class C as (r, r) in S which is lower or equal to
(r, r− 1) according to σ, then there is no neighbor w of v greater than (r, r− 1)
in σ other than (r, r).

Then GRr+3 is (k + 2)-thin.

Proof. Given the consistent solution Ω with ordering σ and partition S into k classes
of the vertices of GRr such that its vertices satisfy the conditions in the statement,
we will construct a solution Ω′ with ordering σ′ and partition S ′ into k + 2 classes
in a graph that has GRr+3 as an induced subgraph and show that Ω′ is consistent.
Since GRr+3 will be induced, the induced relative ordering and partition will also be
consistent. Following Lemma 9, we will show that every vertex v in this construction
meets that either prevΩ′(v) does not exist, or every neighbor of prevΩ′(v) greater
than v is also a neighbor of v, and that will be enough to show that the solution is
consistent.
The vertices of the form (i, j) with 1 ≤ i, j ≤ n will belong to the same classes in S ′

as in S, and their relative order in σ′ will be the same as in σ. Regarding the vertices
outside that square, (r+1, r) and (r, r+1) will belong to the same class as (r, r), and
we will assign the rest of the vertices to two extra classes A and B. All the vertices
of the forms (i, r + 3) and (r + 3, i) will belong to class A in S ′. Also, if r is odd, all
the vertices of the forms (2i, r + 2) and (r + 2, 2i) will belong to class A, and if r is
even, all the vertices of the forms (2i− 1, r+2) and (r+2, 2i− 1) will belong to class
A. All the remaining vertices will belong to class B.
The order σ′ will be defined by the following pseudocode. Supposing σ and r are
global variables, the method extendOrder will return σ′ (notice the classes are already
predefined). Here, we use σ[v, u] to denote the contiguous subarray of σ which starts
with v and ends with u. We use σ[, u] to denote σ[σ0, u] and σ[v, ] to denote σ[v, σ|σ|].
We use successorσ(v) to denote the vertex immediately after v in σ. We use ⊕
to denote the array concatenation operation, or the vertex appending operation, as
appropriate. Lastly, given a vertex (i, j) of GRr+3, (i, j) + (x, y) corresponds to the
vertex (i+ x, j + y).

1: function extendOrder()
2: σ′ ← [(r + 2, 1)]
3: if r is odd then
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4: arrowRight((r + 3, 1))
5: next ← (r, 2)
6: else
7: next ← (r, 1)
8: end if
9: horizontalArrows(σ0, next)
10: corner()
11: nextInSigma ← verticalArrows((r, r), (r − 1, r))
12: σ′ ← σ′ ⊕ σ[nextInSigma, ]
13: end function
14: function horizontalArrows(previous: vertex, next: vertex)
15: while next ̸= (r, r + 1) do
16: σ′ ← σ′ ⊕ σ[previous, next]
17: arrowLeft(next + (1, 0))
18: arrowRight(next + (3, 1))
19: previous ← successorσ(next)
20: next ← next + (0, 2)
21: end while
22: end function
23: function arrowLeft(from: vertex)
24: σ′ ← σ′ ⊕ [from, from + (1, 1), from + (2, 0)]
25: end function
26: function arrowRight(from: vertex)
27: σ′ ← σ′ ⊕ [from, from + (−1, 1), from + (−2, 0)]
28: end function
29: function corner()
30: σ′ ← σ′ ⊕ (r + 1, r + 1)
31: σ′ ← σ′ ⊕ (r, r + 1)
32: σ′ ← σ′ ⊕ (r + 2, r + 2)
33: σ′ ← σ′ ⊕ (r + 3, r + 1)
34: σ′ ← σ′ ⊕ (r + 3, r + 2)
35: σ′ ← σ′ ⊕ (r + 3, r + 3)
36: σ′ ← σ′ ⊕ (r + 2, r + 3)
37: σ′ ← σ′ ⊕ (r + 1, r + 2)
38: σ′ ← σ′ ⊕ (r, r + 2)
39: σ′ ← σ′ ⊕ (r + 1, r + 3)
40: σ′ ← σ′ ⊕ (r, r + 3)
41: σ′ ← σ′ ⊕ (r − 1, r + 2)
42: σ′ ← σ′ ⊕ (r − 1, r + 1)
43: end function
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44: function verticalArrows(previous: vertex, next: vertex)
45: σ′ ← σ′ ⊕ σ[previous, next]
46: σ′ ← σ′ ⊕ [(r − 2, r + 2), (r − 1, r + 3)]
47: next ← next + (−1, 0)
48: while next.first ≥ 1 do
49: σ′ ← σ′ ⊕ σ[previous, next]
50: arrowDown(next + (0, 1))
51: previous ← successorσ(next)
52: arrowUp(next + (1, 3))
53: next ← next + (−2, 0)
54: end while
55: return previous
56: end function
57: function arrowUp(from: vertex)
58: σ′ ← σ′ ⊕ [from, from + (−1, 1), from + (0, 2)]
59: end function
60: function arrowDown(from: vertex)
61: σ′ ← σ′ ⊕ [from, from + (−1,−1), from + (0,−2)]
62: end function

Now, we will go line by line showing that each vertex addition to σ′ satisfies the
condition on Lemma 9. When proving the correctness of a line, we will use v to
refer to the vertex currently being added to σ′. We will use v.1 to denote the first
coordinate of v, and v.2 to denote the second coordinate of v.

2: σ′ ← ((r + 2, 1))
There is no prevΩ′(v), so the condition is satisfied.

4: arrowRight((r + 3, 1))
Replacing in the function arrowRight the parameter from with v, the vertices
added to σ′ are (r + 3, 1), (r + 2, 2), (r + 1, 1). Notice that here, r is odd, so
(r + 2, 1) belongs to class B.

(r + 3, 1): This vertex belongs to class A, and so there is no prevΩ′(v).

(r + 2, 2): This vertex belongs to class A, as r is odd. prevΩ′(v) is then
v′ = (r + 3, 1). The neighbors of v′ are (r + 2, 1) and (r + 3, 2), which are
also neighbors of v, so the condition is satisfied.

(r + 1, 1): This vertex belongs to class B. prevΩ′(v) is then (r + 2, 1). Its
only neighbors other than v are (r+3, 1) and (r+2, 2), which are already
in σ′, so the condition is satisfied.
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9: horizontalArrows(σ0, next)
The internal while statement of horizontalArrows will stop only when next
= (r, r + 1). When finishing one cycle, we add (0, 2) to next, and so this while
will stop only if the second coordinate of the original value of next has the same
parity as r + 1. If r is odd, we call this function with next = (r, 2), and r + 1
is even. If r is even, we call this function with next = (r, 1), and r + 1 is odd.
We see then that the loop always terminates.

We will prove that horizontalArrows maintains consistency. For that, we will
prove that before each cycle the following preconditions are met:

1. next + (2, 0) is the last vertex in A contained in σ′.

2. Either there is no vertex in B contained in σ′, or the last vertex in B
contained in σ′ is next + (1,−1).

3. The vertex denoted by “previous” is in σ, and all vertices in σ[, previous]
except previous are already in σ′.

4. All vertices of the form (r + i, j) are already in σ′, with 1 ≤ i ≤ 3 and
j < next.2.

5. All vertices in σ′ belonging to a class in S are also in σ.

6. “next” is of the form (r, i), with r − i odd.

First, we will see that the preconditions are met before entering the loop.

1. If r is odd, next + (2, 0) = (r + 2, 2), which as seen in the justification of
line 4 is the last vertex inA added to σ′. If r is even, next+(2, 0) = (r+2, 1),
which is the only vertex in σ′, and also belongs to A, because it is of the
form (r + 2, 2i− 1).

2. If r is odd, as per the justification of line 4, the last vertex in B already in
σ′ is (r + 1, 1) = next + (1,−1). If r is even, there is no vertex belonging
to B in σ′ yet.

3. The vertex denoted by “previous” is the first vertex in σ, and there are no
vertices belonging to σ in σ′ yet.

4. If r is odd, next.2 = 2. Vertices (r + 1, 1), (r + 2, 1) and (r + 3, 1) were
already added. If r is even, next.2 = 1, so there are no vertices of the form
(r + i, j).

5. All vertices added to σ′ are of either class A or B, which are not in S.

6. If r is odd, next.2 = 2. If r is even, next.2 = 1. In both cases, r − next.2
is odd and next.1 = r.
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Now, we will go line by line in the while loop showing that consistency is
preserved, assuming the preconditions described above are true.

28: σ′ ← σ′ ⊕ σ[previous, next]
We know that σ is a consistent ordering for the vertices in GRr, and all
vertices added to σ′ belonging to a class in S also are in σ. For every
vertex u ∈ σ[previous, next], if prevΩ(u) exists, then either:

– prevΩ(u) is of the form (i, j) with i, j < r, which means it has no
neighbors outside the ones in σ and so consistency is preserved, as it
meets the condition in Lemma 9; or

– prevΩ(u) is of the form (r, i) with i < next.2. By the preconditions
stated, the only neighbor of prevΩ(u) outside σ is already in σ′, so
again consistency is preserved.

29: arrowLeft(next + (1, 0))
Following the definition of “arrowLeft”, the vertices added here are, in
order:

1. v = next+(1, 0): This vertex belongs to B, as its first coordinate is r+
1. By precondition 2, if prevΩ′(v) exists, it is equal to next+(1,−1) =
v + (0,−1) = v′. By precondition 4, v′ + (1, 0) and v′ + (0,−1) are
already in σ′. Its only remaining neighbor apart from v is v′+(−1, 0),
which we will see is also in σ′.
After line 28, all vertices belonging to σ[, next] are in σ′. Because of the
conditions on the statement of this theorem, along with precondition 6,
we see that v′ + (−1, 0), which is of the form (r, i) with i < next.2, is
in σ[, next], and so it was already added to σ′.
Thus, there are no neighbors of v′ not yet added to σ′ apart from v,
and then the condition in Lemma 9 is met.

2. v = next+ (2, 1): This vertex belongs to B, regardless of the parity of
r. This is because r − v.2 is even, and v.1 = r + 2. Then prevΩ′(v) =
next + (1, 0) = v + (−1,−1) = v′. The neighbors of v′ are:

– v′ + (−1, 0) = next, which is already in σ′;

– v′ + (0,−1), which by precondition 4 is already in σ′;

– v′ + (1, 0) = next + (2, 0), which by precondition 1 is already in
σ′; and

– v′ + (0, 1) = v.

3. v = next + (3, 0): This vertex belongs to class A, as v.1 = r + 3. By
precondition 1, prevΩ′(v) = next+(2, 0) = v′. The neighbors of v′ are:

– v′ + (−1, 0) = next + (1, 0), already in σ′;
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– v′ + (0,−1), which by precondition 4 is already in σ′;

– v′ + (1, 0) = v; and

– v′ + (0, 1) = next + (2, 1), just added to σ′.

30: arrowRight(next + (3, 1))
Following the definition of “arrowRight”, the vertices added here are, in
order:

1. v = next+ (3, 1): This vertex belongs to class A, as v.1 = r+3. Thus
prevΩ′(v) = next + (3, 0) = v′. The neighbors of v′ are:

– v′ + (0,−1) = next + (3, 0), added to σ′ on line 29;

– v′ + (−1, 0) = next + (2, 1), also added to σ′ on line 29; and

– v′ + (0, 1) = v.

2. v = next + (2, 2): This vertex belongs to class A, as v.1 = r + 2 and
r − v.2 is odd. Thus prevΩ′(v) = next + (3, 1) = v′. The neighbors of
v′ are:

– v′ + (0,−1) = next + (2, 1), added to σ′ on line 29;

– v′ + (−1, 0) = next + (1, 2), also added to σ′ on line 29; and

– v′ + (0, 1) = v + (1, 0), which is a neighbor of v.

3. v = next + (1, 1): This vertex can belong to two possible classes.
If next = (r, r − 1), then v belongs to the same class C as (r, r).
Otherwise, it belongs to class B, as v.1 = r + 1.
If v belongs to class C, prevΩ′(v) is the last element of C in σ that is
lower or equal to (r, r − 1), if it exists. This is because all elements
of σ[, (r, r− 1)] are already in σ′, and there are no elements belonging
to a class in S apart from the ones in σ, according to precondition 5.
Because of condition 3 on the statement of this theorem, there are
no neighbors of prevΩ′(v) = w belonging to σ which are not yet in
σ′, except (r, r), which is also a neighbor of v. We need to see then
that the remaining neighbors of w - the ones which do not belong to
σ - are either also neighbors of v or are lower than v in σ′ to confirm
consistency. Here, we have three cases. Either:

(a) w has no neighbors outside σ, in which case the condition holds;

(b) w is of the form (r, i), in which case its only neighbor z outside σ
is (r + 1, i), which by precondition 4 is already in σ′; or

(c) w is of the form (i, r), which actually cannot happen because of
the first condition on the statement of this theorem.

If, in the other hand, v belongs to class B, prevΩ′(v) = next+ (2, 1) =
v′. All of the neighbors of this vertex except v itself are already in σ′,
so consistency is preserved when adding v.
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Lastly, we prove that when beginning an iteration of the loop, the precon-
ditions are preserved. For that, we prove that at the end of every iteration
except the last one, the preconditions are met. For the following proof, let
next′ and previous′ be the values of next and previous when starting an itera-
tion, respectively. Note that next′ + (0, 2) = next because of line 32, and that
previous = successorσ(next

′) because of line 31.

1. The last vertex v in A added to σ′ is next′ + (2, 2) = next + (2, 0).

2. The last vertex v in B added to σ′ is next′ + (1, 1) = next + (1,−1).
3. As next′ is not the last element of σ, successorσ(next

′) exists, and by
definition is inside of σ. Also, all elements in σ[, previous′] are already in
σ′ because of this same precondition, and the elements in σ[previous′, next′]
were added in line 28. All elements in σ[, previous] except previous are then
already in σ′.

4. By this same precondition, we know that all vertices of the form (r+ i, j′)
with 1 ≤ i ≤ 3 and j′ < next′.2 are already in σ′. We have to prove
that the remaining vertices are already in σ′, namely, the ones of the form
(r+ i, j) with next′.2 ≤ j < next.2. These are all added on lines 29 and 30
of the loop, except for next′ + (1,−1), which by precondition 2 is already
in σ′.

5. All vertices outside σ added to σ′ belong to classes A and B. The only
vertex which could belong to the class C of (r, r) is next′ + (1, 1), but this
one belongs to class B if this is not the last iteration.

6. As next′ is of the form (r, i), with r − i odd, next = next′ + (0, 2) also
meets this criteria.

10: corner()
For each line in corner(), we will use v to denote the vertex being added.

42: v = (r + 1, r + 1) is of class B. Then prev(v) is then (r + 2, r), which was
added in the last iteration of the while loop in horizontalArrows. All its
neighbors are already in σ′.

43: v = (r, r + 1) is of the same class C as (r, r). Then prev(v) = (r + 1, r),
which was added in the last iteration of the while loop in horizontalArrows.
All its neighbors except (r, r) are already in σ′, and (r, r) is also neighbor
of v.

44: v = (r + 2, r + 2) is of class B. Then prev(v) = (r + 1, r + 1), added
in line 42. All its neighbors except (r + 1, r + 2) are already in σ′, and
(r + 1, r + 2) is also neighbor of v.
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45: v = (r + 3, r + 1) is of class A. Then prev(v) = (r + 2, r + 1), added in
the last iteration of the while loop in horizontalArrows. All its neighbors
except (r + 3, r + 1) itself are already in σ′.

46: v = (r + 3, r + 2) is of class A. Then prev(v) = (r + 3, r + 1), added in
line 45. All its neighbors except (r + 3, r + 2) itself are already in σ′.

47: v = (r + 3, r + 3) is of class A. Then prev(v) = (r + 3, r + 2), added in
line 46. All its neighbors except (r + 3, r + 3) itself are already in σ′.

48: v = (r + 2, r + 3) is of class A. Then prev(v) = (r + 3, r + 3), added in
line 47. All its neighbors except (r + 2, r + 3) itself are already in σ′.

49: v = (r + 1, r + 2) is of class A. Then prev(v) = (r + 2, r + 3), added
in line 48. All its neighbors except (r + 1, r + 3) are already in σ′, and
(r + 1, r + 3) is also neighbor of v.

50: v = (r, r+2) is of class B. Then prev(v) = (r+2, r+2), added in line 44.
All of its neighbors are already in σ′.

51: v = (r + 1, r + 3) is of class A. Then prev(v) = (r + 1, r + 2), added in
line 49. All its neighbors except (r + 1, r + 3) itself are already in σ′.

52: v = (r, r+3) is of class A. Then prev(v) = (r+1, r+3), added in line 51.
All its neighbors except (r, r + 3) itself are already in σ′.

53: v = (r− 1, r+2) is of class A. Then prev(v) = (r, r+3), added in line 52.
All its neighbors except (r − 1, r + 3) are already in σ′, and (r − 1, r + 3)
is also neighbor of v.

54: v = (r− 1, r+1) is of class B. Then prev(v) = (r, r+2), added in line 50.
All its neighbors are already in σ′.

11: nextInSigma ← verticalArrows((r, r), (r − 1, r))
For simplicity, we omit this part of the proof, since it is analogous to horizon-
talArrows. Notice in this case there are vertices outside GRr+3 ((0, r + 2) for
example), but this construction can be used to have a consistent solution in
GRr+3 since it is an induced graph.

12: σ′ ← σ′ ⊕ σ[nextInSigma, ]
We know that σ is a consistent ordering for the vertices in GRr, and the only
vertices in σ′ belonging to a class in S that are not in σ are (r, r+1) and (r+1, r),
which belong to the same class as (r, r). For every vertex u ∈ σ[nextInSigma, ],
if prevΩ(u) exists, then either:

prevΩ(u) is of the form (i, j) with i, j < r, which means it has no neighbors
outside the ones in σ and so consistency is preserved, as it meets the
condition in Lemma 9;
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Figure 3.1: An example ordering and partition of the vertices of the GR7 graph
following the construction described in Theorem 10.

prevΩ(u) is of the form (r, i) with i < next.2. By the preconditions stated,
the only neighbor of prevΩ(u) outside σ is already in σ′, so again consis-
tency is preserved; or

prevΩ(u) is (r+1, r) or (r, r+1), for which all neighbors are already in σ′.

Given a consistent solution in GRr using k classes, we showed by construction a
consistent solution using k + 2 classes for a graph for which GRr+3 is an induced
subgraph.

Lemma 10. The construction given in Theorem 10 preserves the preconditions 1 to
3 in the statement.

Proof.

1. (r+3, 1) < (r+3, 2) < · · · < (r+3, r+3− 1) < (r+3, r+3) < (r+3− 1, r) <
· · · < (2, r + 3) < (1, r + 3) Notice all vertices here belong to class A in the
construction. The method horizontalArrows guarantees that the vertices of the
form (r + 3, i) will respect the relative order until corner. Then corner places
the vertices (r+3, r+1), (r+3, r+2), (r+3, r+3), (r+2, r+3), (r+1, r+3)
and (r, r+ 3) in that order until verticalArrows. Then in verticalArrows all the
vertices of the form (i, r + 3) are placed in order.
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Figure 3.2: Base cases of Theorem 11. The number on the vertices correspond to their
relative order in the solution. The vertices in V1 are shown in red and the vertices in
V2 are shown in blue.

2. (r + 3− 1, r + 3− 1) < (r + 3, r + 3) This condition holds from the order given
by corner.

3. If there is a vertex v in the same class C as (r + 3, r + 3) in S which is lower
or equal to (r + 3, r + 3 − 1) according to σ, then there is no neighbor w of
v greater than (r + 3, r + 3 − 1) in σ other than (r + 3, r + 3) Notice all the
neighbors from vertices that come before (r+3, r+3) in A only belong to A or
B. Then all the vertices placed by horizontalArrows (which are all the vertices
from A before corner) preserves this condition since corner is called after it.
Then for the vertices placed in corner in class A before (r+3, r+3), which are
(r + 3, r + 1) and (r + 3, r + 2), also preserve the condition.

Theorem 11. thin(GRr) ≤
⌈
2r
3

⌉
Proof. We will do induction on the value of r, proving that there is a consistent
solution with

⌈
2r
3

⌉
classes that satisfies the conditions in Theorem 10.

For the base case we show it for r ∈ {1, 2, 3}
r = 1: order:[(1, 1)], class V1 : [(1, 1)]. Then thin(GR1) ≤ 1 ≤

⌈
2·1
3

⌉
.

r = 2: order:[(1, 1), (2, 1), (2, 2), (1, 2)], class V1 : [(1, 1)], class V2 : [(1, 2), (2, 2), (2, 1)].
Then thin(GR2) ≤ 2 ≤

⌈
2·2
3

⌉
.

r = 3: order:[(1, 1), (2, 2), (2, 1), (3, 1), (3, 2), (3, 3), (2, 3), (1, 3), (1, 2)], class V1 :
[(1, 1), (2, 2)], class V2 : [(1, 2), (1, 3), (2, 3), (3, 3), (3, 2), (3, 1)]. Then thin(GR3) ≤
2 ≤

⌈
2·3
3

⌉
.

For the inductive step we want to show that the property also holds for k′ + 3 in the
case we know it is true for all smaller cases. Since the property is true for k′ due to
the inductive hypothesis, simply by using the GRr bound and lemma 10 we can say
that the property holds for k′ + 3.
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3.5 Heuristics

We will now show how our algorithm can be used as a heuristic for other graph classes
that are not trees.

Theorem 12. Given a tree of cliques G, there is an O(n log(n)) algorithm that
returns a consistent solution using k classes guaranteeing that k − thin(G) ≤ 1.

Proof. Given the tree of cliques G obtained from the cliques {Q1, Q2, . . . Qt} and the
set of edges S between vertices from {q1, q2, . . . qt}, we will prove the statement with
help of the O(n log(n)) algorithm on trees we proposed on this work plus a heuristic
construction.
Let us call T to the forest induced by the vertices {q1, q2, . . . qt}. Notice thin(T ) ≤
thin(G). We run the algorithm we proposed on each tree of T , and with this method
can easily we obtain a consistent order and partitions of the vertices on T . We will
use this information to generate a consistent solution in G. For all the vertices in
{q1, q2, . . . qt} we will use the exact same classes and keep the relative order of the
vertices. For all the rest of the vertices we will use one extra class A and we will set
the ordering this way: exactly after qi we put all the other vertices that belong to Qi

(the order does not matter because of the symmetry).
Since we are using k = thin(T ) + 1 classes and thin(T ) ≤ thin(G), we can say that,
if the construction is consistent, k − thin(G) = thin(T ) + 1 − thin(G) ≤ 1. The
construction has a complexity of O(t log(t) + (n− t)) which is also O(n log(n)). Now
we show the construction is indeed consistent. For that we are going to see that all
triples (r, s, t) such that r < s < t satisfy the consistency condition. Given a triple,
we define p as the number of vertices of the triple that belong to the extra class A.

p = 0:
We know all the vertices of the triple belong to V (T ). Since this triple was
consistent in T , by construction, the property holds; since the relative order,
the classes and the edges between those vertices remained invariant.

p = 1:
There is exactly one vertex x on the triple that belongs to V (Qi)− qi for some
i.

If x = r or x = t:
Notice that if (r, t) /∈ E the consistency holds for this triple. Since p = 1
the only option to break the consistency will be in the case r = qi and
t = x, because by construction x comes after qi in the order and there
is no other neighbor of x that does not belong to the same class. If this
happens, by construction, all vertices between r and t belong to V (Qi)−qi;
but since p = 1 there is no such s that breaks the consistency in this case.
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If x = s:
Notice that if r and s belong to different classes the consistency holds.
Also r and s cannot belong to the same class because p = 1.

p = 2:
There are exactly two different vertices x and y in V (G)− V (T ) on the triple.
Without loss of generality suppose x < y.

If r = x and s = y:
Notice that if (r, t) /∈ E then the consistency holds. Since p = 2, t cannot
be one of the vertices in Qi − qi, also t is not qi because by construction
the vertex qi comes exactly before all the vertices in Qi − qi. Because of
this, none of the neighbors of r is a candidate to break the consistency.

Else:
If we are not in the case r = x and s = y, since p = 2, r and s cannot
belong to the same class, because one of them will be inside V (G)− V (T )
and the other outside.

p = 3:
We know all vertices belong to V (G)− V (T ). If (r, t) /∈ E the condition holds.
So let us suppose r and t both belong to Qi − qi for a certain i. Notice that
since s must be between r and t in the order and, by construction, all vertices
between a pair of vertices in Qj − qj belong to Qj − qj, the only possibility is
that the vertex s also belongs to Qi − qi. Because Qi is a clique, (r, t) is an
edge in G but, for the same reason, (s, t) is also an edge. So the consistency
condition holds.

Theorem 13. Given a graph G and a set of vertices S in V (G), then G is (|S| +
thin(G− S))-thin.

Proof. Let us prove the statement by construction.
The vertices in G−S retain the exact same class as a given optimal consistent solution
in G− S in the solution for G. We are going to use one extra class for each vertex in
S. Notice that we are using exactly |S|+thin(G−S) classes. Regarding the ordering,
we are going to put first all the vertices that are in S in any order, and after those
we put the vertices from G− S preserving the relative order we mentioned.
Let us see why this solution is consistent by analyzing the consistency property on
all triples of vertices. We have to see that for each (r, s, t) such that r < s < t if r
and s belong to the same class and (r, t) ∈ E, then there must be an edge between
s and t. Given a triple (r, s, t) of the solution we proposed such that r < s < t, if r
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and s belong to different classes the condition holds. If r and s belong to the same
class, notice that neither r nor s belong to S since by construction all of those vertices
belong to different classes. Also by construction t is not in S since t comes after r
and s in the ordering and all vertices in S come before. But the triple (r, s, t) with
vertices only in V (G − S) must be consistent in G, because they were consistent in
G−S and the relative order, the classes and edges between them remained invariant.
Since we showed a consistent solution using (|S|+ thin(G− S)) different classes, the
statement holds.

Corollary 13.1. Given a graph G and a set of vertices S in V (G) such that G− S
forms a tree of cliques and |S| = O(min(log(n), d)), then thin(G) = O(min(log(n), d)).

Note that these results could be used as a heuristic for the more general problem of
computing the thinness of an arbitrary graph.



CHAPTER 4

Future Work

Some points left for future work:

Characterize graphs G that have a subset of vertices S such that G−S is a forest
and |S| = O(min(log(n), d)). For this cases we can guarantee O(min(log(n), d))
thinness.

Characterize graphs G that have a subset of vertices S such that G − S is a
tree of cliques and |S| = O(min(log(n), d)). For this cases we can guarantee
O(min(log(n), d)) thinness.

Investigate if computing the thinness of a tree is achievable in linear time.

Try to extend the ideas presented in the k-component index theorem to compute
the thinness of other classes of graphs, in particular chordal graphs.

Can a similar algorithm be defined for identifying the proper thinness of a tree?
And for its independent and complete thinness?
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