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SOBRE LA THINNESS Y THINNESS PROPIA DE UN GRAFO

Los grafos con thinness acotada fueron definidos en [48] como una generalización de los
grafos de intervalos, con el propósito de desarrollar una heuŕıstica para el problema de
asignación de frecuencias en redes GSM. En esta tesis introducimos el concepto de thin-
ness propia, tal que los grafos con thinness propia acotada generalizan a los grafos de
intervalos propios. Estudiamos la complejidad computacional de problemas relacionados
al reconocimiento de grafos con thinness y thinness propia acotada por k, demostrando que
algunos son NP-completos y otros polinomiales; aunque los problemas de reconocimiento
siguen abiertos incluso para k = 2. El caso k = 1 corresponde a los grafos de intervalos y
de intervalos propios, respectivamente, y por lo tanto se reconocen en tiempo polinomial.

Describimos el comportamiento de la thinness y thinness propia bajo las operaciones
de grafos unión, suma y producto cartesiano. También estudiamos la relación entre ambos
parámetros con otros de la literatura como cutwidth, linear MIM-width, y anidamiento
de intervalos, que complementan a resultados previos sobre boxicidad y pathwidth. Fi-
nalmente describimos una amplia familia de problemas que pueden resolverse con técnicas
de programación dinámica en tiempo polinomial en grafos con thinness acotada, dada
cierta representación, generalizando a la familia list matrix partition definida en [28],
y luego para grafos con thinness propia acotada la extendemos para incluir los problemas
de dominación definidos en [2] y sus versiones pesadas.
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1. INTRODUCTION

1.1 Historical context

It is widely believed that NP-complete problems cannot be solved in polynomial time,
therefore much research has been done on the complexity of subproblems of NP-complete
problems.

The study of restricted graph classes is a classical field in graph theory. Some of these
classes are interesting in the context of graph algorithms because many classical problems
that are NP-complete for general graphs are tractable for them. In particular, interval
graphs were introduced by Hajos in 1957 [35], and are extensively used to model temporal
relationships and linear restrictions. They have applications in diverse areas like molecular
biology [4], ecology [16], archaeology [42], psychology [56, 17], information retrieval [31],
operations research [53], artificial intelligence [1], circuit design [69], medical diagnosis [51],
and bioinformatics [70].

A somewhat newer field is the study of structural graph width parameters. It started
in the 1980s with the introduction of algorithms based on the treewidth [7], which gen-
eralized algorithms for trees and series-parallel graphs. Soon after, the clique-width was
defined, which generalized algorithms for cographs and distance-hereditary graphs. Such
abstractions made it possible to rapidly find polynomial time algorithms for a number
of classical problems in quite large graph classes, by explaining observed similarities in
previous algorithms using the same underlying divide and conquer techniques. A rather
extreme case is Courcelle’s theorem [21], which states that any graph property definable in
monadic second-order logic can be decided in linear time for graphs of bounded treewidth.

Another relevant field emerged in the 1990s, called Parameterized Complexity, in a
series of articles by Downey and Fellows [25, 26]. The theory is an attempt to get a
better theoretical understanding of the source of the computational hardness in a given
problem, in order to deal with it in practice when the “source of hardness” parameter is
small. The basic complexity class is XP, for slicewise polynomial time, which contains
the parameterized problems for which the parameterization is meaningful : a problem with
parameter k belongs to XP if it can be solved in time nO(f(k)) where f is a computable
function depending only on k. But the most interesting class is FPT, for fixed-parameter
tractable, which is the subset of XP of problems solvable in time f(k) · nO(1).

In the following decades, FPT algorithms were found for many classical problems
with respect to width parameters, and for them the quest shifted to finding algorithms
with better f or smaller exponent of n [22]. But for some problems, like list coloring
parameterized by treewidth [29], there are hardness results which exclude them from
being in FPT under reasonable assumptions. Still some problems, of course, remain
NP-complete when restricted to graphs with such parameters bounded.

Another field related to this thesis is the study of the behavior of graphs parameters
under graph operations. A famous example of this was the Hedetniemi conjecture [36],
which stated that the chromatic number of the tensor product of two graphs equals the
minimum of their individual chromatic numbers. It remained open for more than fifty
years and was shown to hold for various classes, but it was finally disproven recently [63].

Graphs with bounded thinness were defined in [48] as a generalization of interval
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2 1. Introduction

graphs. A graph G = (V,E) is k-thin if there exist an ordering v1, . . . , vn of V and a
partition of V into k classes (V 1, . . . , V k) such that, for each triple (r, s, t) with r < s < t,
if vr, vs belong to the same class and vtvr ∈ E, then vtvs ∈ E. The minimum k such
that G is k-thin is called the thinness of G. The thinness is unbounded on the class of all
graphs, and interval graphs are exactly the 1-thin graphs. When the k-thin representation
of a graph is given, for a constant value k, some NP-complete problems as maximum
weighted independent set and bounded coloring with fixed number of colors can
be solved in polynomial time [48, 11]. These algorithms were respectively applied for
improving heuristics of two real-world problems: the frequency assignment problem
in GSM networks [48], and the double traveling salesman problem with multiple
stacks [11].

1.2 Current work

In this thesis we introduce the concept of proper thinness, such that graphs with bounded
proper thinness generalize proper interval graphs: graphs that are proper 1-thin are exactly
proper interval graphs (see Section 2.1 for a definition). We study the complexity of
problems related to the computation of these parameters; describe the behavior of the
thinness and proper thinness under three graph operations; and relate thinness and proper
thinness to other graph invariants.

Finally, we describe a wide family of problems that can be solved by dynamic pro-
gramming techniques in polynomial time for graphs with bounded thinness, when the
k-thin representation of the graph is given, generalizing for example list matrix partition
problems with bounded size matrix [28], and enlarge this family of problems for graphs
with bounded proper thinness, including domination-type problems in the literature (e.g.
classified in [2]) and their weighted versions, such as minimum weighted independent
dominating set, minimum weighted total dominating set, minimum perfect
dominating set and minimum weighted efficient dominating set.

The novel results presented in this work were previously published in [10]. Except
when explicitly attributed, all results can be assumed to be original, excluding those
clearly recognizable to be part of the mathematical folklore. The organization of the
thesis is the following:

In Section 2.1 we state the main definitions and present some basic results on thinness.
In Section 2.2, we study some problems related to the recognition of k-thin graphs and
proper k-thin graphs. We analyze the computational complexity of finding a suitable
vertex partition when a vertex ordering is given, and, conversely, finding a vertex ordering
when a vertex partition is given. In Section 2.3 we describe the behavior of the thinness
and proper thinness under three graph operations: union, join, and Cartesian product.
The first two results allow us to fully characterize k-thin graphs by forbidden induced
subgraphs within the class of cographs. The third result is used to show the polynomiality
of the t-rainbow domination problem for fixed t on graphs with bounded thinness.

In Section 3.1 we survey the relation of thinness and other width parameters in graphs.
In Section 3.2 we relate the proper thinness of interval graphs to other interval graph
invariants, as interval count and chains of nested intervals.

In Section 4.1 we describe a wide family of problems that can be solved in polynomial
time for graphs with bounded thinness, when the representation is given. In Section 4.3 we
extend that family to include dominating-like problems that can be solved in polynomial



1.3. Notation and terminology 3

time for graphs with bounded proper thinness.

1.3 Notation and terminology

All graphs in this work are finite, undirected, and have no loops or multiple edges. For
all graph-theoretic notions and notation not defined here, we refer to West [68]. Let G be
a graph. Denote by V (G) its vertex set, by E(G) its edge set, by G its complement, by
N(v) the neighborhood of a vertex v in G, by N [v] the closed neighborhood N(v) ∪ {v},
and by N(v) the non-neighbors of v. If X ⊆ V (G), denote by N(X) the set of vertices
not in X having at least one neighbor in X.

Denote by G[W ] the subgraph of G induced by W ⊆ V (G), and by G−W or G\W the
graph G[V (G) \W ]. A subgraph H (not necessarily induced) of G is a spanning subgraph
if V (H) = V (G).

Denote the size of a set S by |S|. A clique (resp. independent set) is a set of pairwise
adjacent (resp. nonadjacent) vertices. We use maximum to mean maximum-sized, whereas
maximal means inclusion-wise maximal. The use of minimum and minimal is analogous.

Denote by Kn the graph induced by a clique of size n. A claw is the graph isomorphic
to K1,3. Let H be a graph and t a natural number. The disjoint union of t copies of the
graph H is denoted by tH.

For a positive integer r, the (r × r)-grid is the graph whose vertex set is {(i, j) : 1 ≤
i, j ≤ r} and whose edge set is {(i, j)(k, l) : |i− k|+ |j − l| = 1, where 1 ≤ i, j, k, l ≤ r}.

A dominating set in a graph is a set of vertices such that each vertex outside the set
has at least one neighbor in the set.

A coloring of a graph is an assignment of colors to its vertices such that any two
adjacent vertices are assigned different colors. The smallest number t such that G admits
a coloring with t colors (a t-coloring) is called the chromatic number of G and is denoted
by χ(G). A coloring defines a partition of the vertices of the graph into independent sets,
called color classes. List variations of the vertex coloring problem can be found in the
literature. For a survey on that kind of related problems, see [65]. In the list-coloring
problem, every vertex v comes equipped with a list of permitted colors L(v) for it.

For a symmetric matrix M over 0, 1, ∗, the M -partition problem seeks a partition of the
vertices of the input graph into independent sets, cliques, or arbitrary sets, with certain
pairs of sets being required to have no edges, or to have all edges joining them, as encoded
in the matrix M : Mii = 1 means the i-th set is a clique, while Mii = 0 means the i-th set
is an independent set; for i 6= j, Mij = 1 means every vertex of the i-th set is adjacent
to every vertex of the j-th set, while Mij = 0 means there are no edges from the i-th
set to the j-th set. Moreover, the vertices of the input graph can be equipped with lists,
restricting the parts to which a vertex can be placed. In that case the problem is know
as a list matrix partition problem. Such (list) matrix partition problems generalize (list)
colorings and (list) homomorphisms [28].

When discussing about algorithms and data structures, we denote by n the number of
vertices of the input graph G.

Given a graph G, a weight function w on V (G), and a subset S ⊆ V (G), the weight of
S, denoted by w(S) is defined as

∑
v∈S w(v).

A class of graphs is hereditary when if a graph G is in the class, then every induced
subgraph of G is in the same class.

A graph is a cograph if it contains no induced path of length four.



4 1. Introduction

A graph G(V,E) is a comparability graph if there exists an ordering v1, . . . , vn of V
such that, for each triple (r, s, t) with r < s < t, if vrvs and vsvt are edges of G, then so
is vrvt. Such an ordering is a comparability ordering. A graph is a co-comparability graph
if its complement is a comparability graph.



2. THINNESS

2.1 Definitions and basic results

A graph G = (V,E) is an interval graph if each vertex v ∈ V can be associated to a closed
interval Iv = [lv, rv] of the real line, such that two distinct vertices u, v ∈ V are adjacent
if and only if Iu ∩ Iv 6= ∅. The family {Iv}v∈V is an interval representation of G. An
undirected graph G is a proper interval graph if there is an interval representation of G in
which no interval properly contains another. In the same way, an undirected graph G is
a unit interval graph if there is an interval representation of G in which all the intervals
have the same length.

In 1969, Roberts [57] proved that the classes of proper interval graphs, unit interval
graphs, and interval graphs with no claw as induced subgraph coincide.

The right-end ordering of the vertices of an interval graph satisfies the following prop-
erty: for each triple (r, s, t) with r < s < t, if vtvr ∈ E, then vtvs ∈ E. In other words,
the neighbors of vertex t with index less than t are t − 1, t − 2, . . . , t − d for some d ≥ 0.
Moreover, a graph G is an interval graph if and only if there exists an ordering of its
vertices satisfying the property above [55, 52].

Proof. Suppose an interval graph has intervals Ir < Is < It ordered by the right-end. If
It ∩ Ir 6= ∅, then It ∩ Is 6= ∅ too, because l(It) ≤ r(Ir) ≤ r(Is), which implies the property.

If ordering v1 < . . . < vn satisfies the property, let m(i) be the minimum j such that
vj ∈ N [vi]. Then let Ii = [m(i), i]. 2

Let us repeat and extend the definition of k-thinness given in the introduction. A
graph G = (V,E) is k-thin if there exist an ordering v1, . . . , vn of V and a partition of V
into k classes such that, for each triple (r, s, t) with r < s < t, if vr, vs belong to the same
class and vtvr ∈ E, then vtvs ∈ E. An ordering and a partition satisfying those properties
are said to be consistent. The minimum k such that G is k-thin is called the thinness of
G and denoted by thin(G).

The thinness of a graph was introduced by Mannino, Oriolo, Ricci, and Chandran in
2007 [48]. Graphs with bounded thinness (thinness bounded by a constant value) are a
generalization of interval graphs, which are exactly the graphs of thinness 1, and capture
some of their algorithmic properties.

Let tK2 be the complement of a matching of size t.

Theorem 1: [48] For every t ≥ 1, thin(tK2) = t.

Proof. Let V = {x1, . . . , xt, y1, . . . , yt}, where (xi, yi) /∈ E. Define the partition V i =
{xi, yi}, and observe that any ordering is consistent with it. So the graph is t-thin.

Now suppose that there exists an ordering and a consistent partition in t − 1 classes.
Denote by f(V i) the first element of V i in the ordering. Clearly there exists at least one
pair {xj , yj} such that ∪if(V i) ∩ {xj , yj} = ∅. Assume w.l.o.g. that such pair is (x1, y1)
and x1 < y1.

Let V j be the class of x1. Then y1 is adjacent to f(V j) but not to x1. But f(V j) <
xi < yi, which is absurd. 2

5



6 2. Thinness

The right-end ordering of the vertices of a proper interval graph satisfies the following
property: for each triple (r, s, t) with r < s < t, if vtvr ∈ E, then vtvs ∈ E and vrvs ∈ E.
In other words, the neighbors of vertex t with index less than t are t− 1, t− 2, . . . , t− d,
and those with index greater than t are t + 1, t + 2, . . . , t + d′. Moreover, G is a proper
interval graph if and only if there exists an ordering of its vertices satisfying the property
above [24, 47].

We define the concept of proper thinness of graphs as follows.
A graph G = (V,E) is proper k-thin if there exist an ordering v1, . . . , vn of V and a

partition of V into k classes (V 1, . . . , V k) such that, for each triple (r, s, t) with r < s < t,
if vr, vs belong to the same class and vtvr ∈ E, then vtvs ∈ E and if vs, vt belong to
the same class and vrvt ∈ E, then vrvs ∈ E. Equivalently, G is proper k-thin if both
v1, . . . , vn and vn, . . . , v1 are consistent with the partition. In this case, the partition and
the ordering v1, . . . , vn are said to be strongly consistent, and the minimum k such that G
is proper k-thin is called the proper thinness of G and denoted by pthin(G).

Since k-thin graphs are defined as a generalization of interval graphs, proper k-thin
graphs arise naturally as a generalization of proper interval graphs. And from the defi-
nition it can be seen that a graph is proper 1-thin if and only if it is a proper interval
graph. Moreover, the proper thinness of the class of interval graphs is unbounded (See
Proposition 17).

2.2 Algorithmic aspects

We will deal in this section with some questions related to the recognition problem of
(proper) k-thin graphs. The recognition problem itself is open so far for both classes,
but we will show that, given a vertex ordering of a graph, we can find in polynomial
time a partition into a minimum number of classes which is (strongly) consistent with the
ordering. On the other hand, we will show that given a graph and a vertex partition, it
is NP-complete to decide if there exists an ordering of the vertices of the graph which is
(strongly) consistent with the partition.

Theorem 2: Given a graph G and an ordering < of its vertices, one can find in polynomial
time graphs G< and G̃< with the following properties:

(1) V (G<) = V (G̃<) = V (G);

(2) the chromatic number of G< (resp. G̃<) is equal to the minimum integer k such that
there is a partition of V (G) into k sets that is consistent (resp. strongly consistent)
with the order <, and the color classes of a valid coloring of G< (resp. G̃<) form a
partition consistent (resp. strongly consistent) with <;

(3) G< and G̃< are co-comparability graphs.

In particular, the minimum integer k as in (2) and a partition into k vertex sets can
be computed in polynomial time. Moreover, if G is a co-comparability graph and < a
comparability ordering of G, then G< and G̃< are spanning subgraphs of G.

Proof. Let G be a graph and < an ordering of its vertices. We will build a graph G<

such that V (G<) = V (G), and v < w are adjacent in G< if and only if they cannot belong
to the same class of a partition which is consistent with <. By definition of consistency,
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this happens if and only if there is a vertex z in G such that v < w < z, z is adjacent to
v and nonadjacent to w. So define E(G<) such that for v < w, vw ∈ E(G<) if and only
if there is a vertex z in G such that v < w < z, zv ∈ E(G) and zw 6∈ E(G).

We build G̃< in a similar way. In this case, for v < w, vw ∈ E(G̃<) if and only if
either there is a vertex z in G such that v < w < z, zv ∈ E(G) and zw 6∈ E(G) or there
is a vertex x in G such that x < v < w, xw ∈ E(G) and xv 6∈ E(G).

Let us see that < is a comparability ordering both for G< and G̃<. Suppose on the
contrary that there is a triple r < s < t in V (G) such that rs, st are edges of G< (resp.

G̃<) and rt is not an edge of G< (resp. G̃<). By definition of G< (resp. G̃<), there is
a vertex z such that r < s < t < z, zr ∈ E(G) and zt 6∈ E(G) (resp. either there is a
vertex z such that r < s < t < z, zr ∈ E(G) and zt 6∈ E(G), or there is a vertex x in G
such that x < r < s < t, xt ∈ E(G) and xr 6∈ E(G)). If zs 6∈ E(G), then rs is an edge
of G< (resp. G̃<), a contradiction. If zs ∈ E(G), then st is an edge of G< (resp. G̃<), a
contradiction as well. The case of x for G̃< is symmetric, if xs 6∈ E(G), then st is an edge
of G̃<, a contradiction. If xs ∈ E(G), then rs is an edge of G̃<, a contradiction as well.
So G< and G̃< are co-comparability graphs, being < a comparability ordering for G< and

G̃<, respectively.

As we have defined G< (resp. G̃<) such that V (G<) = V (G̃<) = V (G), and v < w are
adjacent in G< (resp. G̃<) if and only if they cannot belong to the same class of a partition
which is consistent (resp. strongly consistent) with <, it follows that there is a one-to-one
correspondence between partitions of V (G) consistent (resp. strongly consistent) with
< and colorings of G< (resp. G̃<). In particular, the minimum k such that there is a
partition of V (G) into k sets that is consistent (resp. strongly consistent) with < is the
chromatic number of G< (resp. G̃<). An optimum coloring of G< (resp. G̃<) can be
computed in polynomial time [32].

To complete the proof of the theorem, suppose now that G is a co-comparability graph
and < is a comparability ordering for G. Let v < w adjacent in G< (resp. G̃<). By
definition, there is a vertex z in G such that v < w < z, vz ∈ E(G) and wz 6∈ E(G) (resp.
either there is a vertex z in G such that v < w < z, vz ∈ E(G) and wz 6∈ E(G), or there
is a vertex x in G such that x < v < w, xw ∈ E(G) and xv 6∈ E(G)). If vw 6∈ E(G), being
G a comparability graph, vz 6∈ E(G), a contradiction. So vw ∈ E(G). This proves that
G< is a spanning subgraph of G. The case of x for G̃< is symmetric, if vw 6∈ E(G), being
G a comparability graph, xw 6∈ E(G), a contradiction. So in any case vw ∈ E(G). This
proves that G̃< is a spanning subgraph of G as well. 2

A direct consequence of this result is the following, that was already proved in [11] for
the case of thinness.

Corollary 3: If G is a co-comparability graph, thin(G) ≤ pthin(G) ≤ χ(G). Moreover, any
vertex partition given by a coloring of G and any comparability ordering for its complement
are strongly consistent.

As already observed in [11], the bound thin(G) ≤ pthin(G) ≤ χ(G) for co-comparability
graphs can be arbitrarily bad: for example, if G is a clique of size n, then thin(G) =
pthin(G) = 1 and χ(G) = n. However, it holds with equality for graphs tK2, because
thin(tK2) = pthin(tK2) = χ(tK2) = t (Theorem 1 and Corollary 3).
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We implemented the algorithms of Theorem 2 in order to classify all graphs of up to
8 vertices with respect to their thinness and proper thinness. The code and classification
is available in [23].

In contrast with Theorem 2, if a partition is given, it is NP-complete to decide the
existence of a (strongly) consistent ordering.

(Strongly) Consistent ordering with a given partition
Instance: A graph G = (V,E) and a partition of V into non-empty subsets.
Question: Does there exist a total order < of V (strongly) consistent with the given par-
tition?

The proof is based on a reduction from the following problem, which is known to be
NP-complete [34].

Non-Betweenness
Instance: A finite set A and a collection S of ordered triples of distinct elements of A.
Question: Does there exist a total order < of A such that for each (x, y, z) ∈ S, it is never
the case that x < y < z or z < y < x (i.e. y is not between x and z)?

We start with an easy lemma.

Lemma 4: Let G be a graph, < an ordering of V (G) and V1, . . . , Vk a partition of V (G)
that is consistent with <. Let {xi, yi} ⊆ Vi, for i = 1, 2, such that x1x2 and y1y2 are the
only edges between {x1, y1} and {x2, y2}. Then x1 < y1 if and only if x2 < y2.

Proof. By symmetry, let us assume that y1 is the biggest vertex according to <. Again
by symmetry, to prove the lemma it is enough to prove that x2 < y2. By definition of
consistency, since x2 and y2 are in the same class and y1 is adjacent to y2 but not to x2,
it is not possible that y2 < x2 < y1. 2

Theorem 5: The problem (Strongly) Consistent ordering with a given partition
is NP-complete.

Proof. First note that (Strongly) Consistent ordering with a given partition
is in NP, by using the total order of V as the certificate.

Now let us prove its NP-hardness. Given an instance (A,S) of Non-Betweenness,
build a graph G = (V,E) and a partition V0, V1, . . . V|S| of V as follows.

Fix an ordering of the triples in S. Vertices of V0 are in one-to-one correspondence
with elements of A. For i = 1, . . . , |S|, Vi has 3 vertices, and they are in a one-to-one
correspondence with the elements of the i-th triple in S. Let us call ai the element of Vi
that corresponds to a ∈ A, for i = 0, . . . , |S|.

Define the edges of G as follows: for each triple (x, y, z) ∈ S, let Vi be its corresponding
set. The only edge in the subgraph induced by {xi, yi, zi} is xizi. The remaining edges of
G are all the possible edges between vertices associated to the same a ∈ A.

Suppose first there is an ordering < consistent with the partition {V0, . . . , V|S|}. By
Lemma 4, for each 1 ≤ i ≤ |S|, the relative order of the vertices xi, yi, zi is the same as
the relative order of the vertices x0, y0, z0. By definition of consistency and since the only
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edge in the subgraph induced by {xi, yi, zi} is xizi, yi is not between xi and zi in that
order. So the order of the vertices in V0 gives a positive answer to the instance (A,S) of
Non-Betweenness.

Suppose now that there is a valid order< for the instance (A,S) of Non-Betweenness.
We can extend < to V (G) by making consecutive all the copies in V (G) of an element of
A. Now, let p < q < r be three vertices of G such that p, q belong to the same class Vi and
rp ∈ E(G). Since V0 is an independent set and the triples in S satisfy the non-betweenness
condition, r is not in Vi. So r and p correspond to the same element a of A, and since there
is at most one copy of an element of A in each Vi, q does not correspond to a copy of a.
But this contradicts the fact that all the vertices of G that correspond to a same element
of A are consecutive. So the situation cannot arise, and the extended order is consistent
with the partition. The case in which q, r belong to the same class Vi is identical, and
indeed the extended order is strongly consistent with the partition. 2

The computational complexity of the decision of existence of a (strongly) consistent
ordering when the number of sets in the partition is fixed is still open. So is the compu-
tational complexity of deciding if a graph is (proper) k-thin, even for fixed k ≥ 2. In the
case of proper thinness, the problem is open even within the class of interval graphs.

2.3 Thinness and graph operations

In this section we analyze the behavior of the thinness and proper thinness under different
graph operations, namely union, join, and Cartesian product. The first two results allow
us to fully characterize k-thin graphs by forbidden induced subgraphs within the class of
cographs. The third result is used to solve in polynomial time the t-rainbow domina-
tion problem for fixed t on graphs with bounded thinness.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = ∅. The union of
G1 and G2 is the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2), and the join of G1 and G2 is the
graph G1 ∨G2 = (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2) (i.e., G1 ∨G2 = G1 ∪G2).

Theorem 6: Let G1 and G2 be graphs. Then thin(G1 ∪ G2) = max{thin(G1), thin(G2)}
and pthin(G1 ∪G2) = max{pthin(G1), pthin(G2)}.

Proof. Since both G1 and G2 are induced subgraphs of G1 ∪G2, then thin(G1 ∪G2) ≥
max{thin(G1), thin(G2)} and the same holds for the proper thinness.

Let G1 and G2 be two graphs with thinness (resp. proper thinness) t1 and t2, respec-
tively. Let v1, . . . , vn1 and (V 1

1 , . . . , V
t1
1 ) be an ordering and a partition of V (G1) which

are consistent (resp. strongly consistent). Let w1, . . . , wn2 and (V 1
2 , . . . , V

t2
2 ) be an order-

ing and a partition of V (G2) which are consistent (resp. strongly consistent). Suppose
without loss of generality that t1 ≤ t2. For G = G1 ∪ G2, define a partition V 1, . . . , V t2

such that V i = V i
1 ∪ V i

2 for i = 1, . . . , t1 and V i = V i
2 for i = t1 + 1, . . . , t2, and define

v1, . . . , vn1 , w1, . . . , wn2 as an ordering of the vertices. By definition of union of graphs, if
three ordered vertices according to the order defined in V (G1 ∪G2) are such that the first
and the third are adjacent, either the three vertices belong to V (G1) or the three vertices
belong to V (G2). Since the order and the partition restricted to each of G1 and G2 are
the original ones, the properties required for consistency (resp. strong consistency) are
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satisfied. 2

Theorem 7: Let G1 and G2 be graphs. Then thin(G1 ∨ G2) ≤ thin(G1) + thin(G2) and
pthin(G1∨G2) ≤ pthin(G1)+pthin(G2). Moreover, if G2 is complete, then thin(G1∨G2) =
thin(G1).

Proof. Let G1 and G2 be two graphs with thinness (resp. proper thinness) t1 and t2,
respectively. Let v1, . . . , vn1 and (V 1

1 , . . . , V
t1
1 ) be an ordering and a partition of V (G1)

which are consistent (resp. strongly consistent). Let w1, . . . , wn2 and (V 1
2 , . . . , V

t2
2 ) be an

ordering and a partition of V (G2) which are consistent (resp. strongly consistent). For
G = G1 ∨ G2, define a partition with t1 + t2 sets as the union of the two partitions, and
v1, . . . , vn1 , w1, . . . , wn2 as an ordering of the vertices.

Let x, y, z be three vertices of V (G) such that x < y < z, xz ∈ E(G), and x and y
are in the same class of the partition of V (G). Then, in particular, x and y both belong
either to V (G1) or to V (G2). If z belongs to the same graph, then yz ∈ E(G) because
the ordering and partition restricted to each of G1 and G2 are consistent. Otherwise, z is
also adjacent to y by the definition of join.

We have proved that the defined partition and ordering are consistent, and thus that
thin(G1∨G2) ≤ thin(G1)+thin(G2). The proof of the strong consistency, given the strong
consistency of the partition and ordering of each of G1 and G2, is symmetric and implies
pthin(G1 ∨G2) ≤ pthin(G1) + pthin(G2).

Suppose now that G2 is complete (in particular, t2 = 1). Since G1 is an induced
subgraph of G1 ∨ G2, then thin(G1 ∨ G2) ≥ thin(G1). For G = G1 ∨ G2, define a par-
tition V 1, . . . , V t1 such that V 1 = V 1

1 ∪ V 1
2 and V i = V i

1 for i = 2, . . . , t1, and define
v1, . . . , vn1 , w1, . . . , wn2 as an ordering of the vertices.

Let x, y, z be three vertices of V (G) such that x < y < z, xz ∈ E(G), and x and
y are in the same class of the partition of V (G). If z belongs to V (G2), then z is also
adjacent to y, because it is adjacent to every vertex in G− z. If z belongs to V (G1), then
x, y, and z, belong to V (G1) due to the definition of the order of the vertices, and thus
yz ∈ E(G) because the ordering and partition restricted to G1 are consistent. This proves
thin(G1 ∨G2) ≤ thin(G1), and therefore thin(G1 ∨G2) = thin(G1). 2

The following lemma shows a way of obtaining graphs with high thinness, using the
join operator.

Lemma 8: If G is not complete, then thin(G ∨ 2K1) = thin(G) + 1.

Proof. By Theorem 7, thin(G ∨ 2K1) ≤ thin(G) + thin(2K1) = thin(G) + 1. On the
other hand, as G ∨ 2K1 contains G as induced subgraph, thin(G ∨ 2K1) ≥ thin(G).

First notice that if thin(G) = 1 but G is not complete, then G ∨ 2K1 contains C4 as
induced subgraph, so it is not an interval graph, and thin(G ∨ 2K1) ≥ 2, as claimed.

Suppose then that thin(G) = k > 1 and thin(G ∨ 2K1) = k as well, and let < be an
ordering of the vertices of G∨ 2K1 consistent with a partition V 1, . . . , V k. Let v, v′ be the
vertices of the graph 2K1, and suppose v < v′. Without loss of generality we may assume
v ∈ V k. As thin(G) = k, V k ∩ V (G) 6= ∅. Since v′ > v, v′ is nonadjacent to v, and v′

is adjacent to all the vertices in V k ∩ V (G), v has to be the smallest vertex in V k. Let
z ∈ V k ∩ V (G) and suppose there is a vertex x > z in V (G). As x is adjacent to v′, it



2.3. Thinness and graph operations 11

is adjacent to z as well. So, we can define a new order <′ on V (G ∨ 2K1) that preserves
the order < in V 1 ∪ V k−1 ∪ {v} and such that the vertices of V k − {v} are the largest.
By the observations above, this order <′ is still consistent with the partition V 1, . . . , V k.
But it is also consistent with the partition V 1′, . . . , V k ′ in which V 1′ = V 1 ∪ V k − {v},
V i′ = V i for 1 < i < k, and V k ′ = {v}. This implies that thin(G) < k, a contradiction
that completes the proof of the theorem. 2

Cographs were defined in [18], where it was shown that they are exactly the graphs
with no induced path of length four. Cographs admit a full decomposition theorem. Let
the trivial graph be the one with one vertex only.

Proposition 9: [18] Every cograph that is not trivial is either the union or the join of two
smaller cographs.

We will use this structural property along with the theorems about thinness of union
and join of graphs to prove the following.

Theorem 10: Let G be a cograph and t ≥ 1. Then G has thinness at most t if and only if
G contains no (t+ 1)K2 as induced subgraph.

Proof. The only if part holds by Theorem 1, because the class of k-thin graph is
hereditary for every k.

We will prove the if part by induction on the number of vertices of the cograph G.
If G is a trivial graph, then thin(G) = 1 and the theorem holds. If G is not trivial, by
Proposition 9, it is either union or join of two smaller cographs G1 and G2, with thinness
t1 and t2, respectively.

Suppose first G = G1 ∪ G2. By Theorem 6, thin(G) = max{t1, t2}. If t1 (resp. t2) is
greater than one, then by inductive hypothesis G1 (resp. G2) contains t1K2 (resp. t2K2)
as induced subgraph, and so does G.

Suppose now that G = G1 ∨ G2. If one of them is complete (suppose without loss
of generality G2), then, by Theorem 7, thin(G) = t1. If t1 is greater than one, then
by inductive hypothesis G1 contains t1K2 as induced subgraph, and so does G. If none
of them is complete, then, by that fact and the inductive hypothesis, G1 contains t1K2

and G2 contains t2K2 as induced subgraph. As t1K2 ∨ t2K2 = (t1 + t2)K2, G contains
(t1 + t2)K2 as induced subgraph, thus thin(G) ≥ t1 + t2 (Theorem 1). By Theorem 7,
thin(G) ≤ t1+t2, and therefore thin(G) = t1+t2. This finishes the proof of the theorem. 2

A characterization by minimal forbidden induced subgraphs for k-thin graphs, k ≥ 2,
is open.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The Cartesian product G1�G2

is a graph whose vertex set is the Cartesian product V1 × V2, and such that two vertices
(u1, u2) and (v1, v2) are adjacent in G1�G2 if and only if either u1 = v1 and u2 is adjacent
to v2 in G2, or u2 = v2 and u1 is adjacent to v1 in G1.

Theorem 11: Let G1 and G2 be graphs. Then thin(G1�G2) ≤ thin(G1)|V (G2)| and
pthin(G1�G2) ≤ pthin(G1)|V (G2)|.
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Proof. Let G1 = (V1, E1) be a k-thin (resp. proper k-thin) graph, and let v1, . . . , vn1

and (V 1
1 , . . . , V

k
1 ) be an ordering and a partition of V1 which are consistent (resp. strongly

consistent). Let G2 = (V2, E2), n2 = |V2|, and w1, . . . , wn2 an arbitrary ordering of V2.
Consider V1 × V2 lexicographically ordered with respect to the orderings of V1 and V2
above. Consider now the partition {V i,j}1≤i≤k, 1≤j≤n2 such that V i,j = {(v, wj) : v ∈ V i

1}
for each 1 ≤ i ≤ k, 1 ≤ j ≤ n2. We will show that this ordering and partition of V1 × V2
are consistent (resp. strongly consistent). Let (vp, wi), (vq, wj), (vr, w`) be three vertices
appearing in that ordering in V1 × V2.

Case 1: p = q = r. In this case, the three vertices are in different classes, so no
restriction has to be satisfied.

Case 2: p = q < r. In this case, (vp, wi) and (vq, wj) are in different classes. So
suppose G1 is proper k-thin and (vq, wj), (vr, w`) belong to the same class, i.e., j = `.
Vertices (vp, wi) and (vr, w`) are adjacent in G1�G2 if and only if i = ` and vpvr ∈ E1.
But then (vp, wi) = (vq, wj), a contradiction.

Case 3: p < q = r. In this case, (vq, wj) and (vr, w`) are in different classes. So
suppose G1 is k-thin and (vp, wi), (vq, wj) belong to the same class, i.e., i = j. Vertices
(vp, wi) and (vr, w`) are adjacent in G1�G2 if and only if i = ` and vpvr ∈ E1. But then
(vr, w`) = (vq, wj), a contradiction.

Case 4: p < q < r. Suppose first G1 is k-thin (resp. proper k-thin) and (vp, wi), (vq, wj)
belong to the same class, i.e., i = j and vp, vq belong to the same class in G1. Vertices
(vp, wi) and (vr, w`) are adjacent in G1�G2 if and only if i = ` and vpvr ∈ E1. But then
j = ` and since the ordering and the partition are consistent (resp. strongly consistent) in
G1, vrvq ∈ E1 and so (vr, w`) and (vq, wj) are adjacent in G1�G2. Now suppose that G1

is proper k-thin and (vq, wj), (vr, w`) belong to the same class, i.e., j = `. Vertices (vp, wi)
and (vr, w`) are adjacent in G1�G2 if and only if i = ` and vpvr ∈ E1. But then i = j
and since the ordering and the partition are strongly consistent in G1, vpvq ∈ E1 and so
(vp, wi) and (vq, wj) are adjacent in G1�G2. 2

Corollary 12: If G is (proper) k-thin then G�Kt is (proper) kt-thin. In particular, if G is
a (proper) interval graph then G�Kt is (proper) t-thin.

For a graph G(V,E) and an integer t, we say that f is a t-rainbow dominating function
if it assigns to each vertex v ∈ V a subset of {1, . . . , t} such that ∪u∈N(v)f(u) = {1, . . . , t}
for all v with f(v) = ∅. Consider the following generalization of the dominating set
problem.
t-rainbow domination problem
Instance: A graph G = (V,E).
Find: a t-rainbow dominating function that minimizes

∑
v∈V |f(v)|.

The t-rainbow domination problem is equivalent to minimum dominating set
of G�Kt [13]. As a consequence of Corollary 12 and the last remark in Section 3.1, it can
be solved in polynomial time on graphs with bounded thinness for fixed values of t. This
generalizes the polynomiality for interval graphs, recently proved by Hon, Kloks, Liu, and
Wang in [38] (the algorithm for t = 2 is claimed in [37]). The problem for proper interval
graphs was stated as an open question by Brešar and Kraner Šumenjak in [13].

The behavior of thinness and proper thinness under many of the graph products defined
in the literature was later studied in [12].



3. OTHER PARAMETERS

3.1 Thinness and other width parameters

Many width parameters are defined in the literature. In this section we compile the
results relating the thinness with some of them, namely pathwidth [59], treewidth [5, 60],
clique-width [19], cutwidth [45], MIM-width [66], and boxicity [58].

In [48] it was proved that the thinness of a graph is at most the pathwidth plus one,
and that the gap may be high, since the pathwidth of a complete graph with r vertices is
r − 1, while its thinness is 1.

Proof. If (X1, . . . , Xt) is a path decomposition of width k−1, let’s see we can construct
a k-partition with a consistent ordering.

First, we say that a path decomposition of width k − 1 is smooth if |Xi| = k for all i
and each pair of adjacent bags differ in exactly one vertex. Any path decomposition can
be converted to a smooth one, preserving the width, see [8].

So we can assume that the path decomposition is smooth. The ordering v1, . . . , vn will
be the same as the ordering in which the vertices appear in the path decomposition (the
ones from X1 can be in any relative order between them). Let’s define X(i) as the bag
with the minimum index in which vi appears.

To create the classes of the k-partition, for each i we put all vertices of Xi in distinct
classes (at first we distribute the ones from X1, then the one of X2 −X1 goes to the class
used by the one of X1 −X2, and so on).

For each i, all the neighbors of vi that are before it in the ordering are also in the bag
X(i), by definition of path decomposition. Therefore, all of them are in different classes.

Now consider the class in which one of those neighbors vj is. We’ll see that there isn’t
another vertex vk in the class such that j < k < i. If such a vertex exists, then vj and vk
couldn’t share a bag, but since vj ∈ X(i) then vj ∈ X(k) by definition, which is absurd.
2

On the other hand, in [15] it was proved that the boxicity is a lower bound for the
thinness of a graph, and it was pointed out that the difference can be large, as an (r× r)-
grid has boxicity 2 and thinness Θ(r).

Proof. Given a k-thin representation of G, we have to give an interval graph represen-
tation I1, . . . , Ik of G.

Define Ih as follows:

• Ih[V h] = G[V h]

• Ih[V \ V h] is a clique

• if u ∈ V \ V h, let r be the minimum such that (u, vhr ) ∈ E. Then let (u, vhi ) ∈ Eh

for all i ≥ r.

2

The vertex isoperimetric peak of a graphG, denoted as bv(G), is defined as maxs minX⊂V,|X|=s |N(X)|.
The thinness of the grid was estimated by using the following result, that was also used

13
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in [6] to give a lower bound of the thinness of a complete binary tree. We will use it as
well to estimate the thinness of complete m-ary trees.

Lemma 13: [15] For every graph G, thin(G) ≥ bv(G)/∆(G).

Proof. First we need the following lemma:
If for a graph G there exists an integer s such that every X ⊂ V of size s satisfies

|δout(X)| ≥ k, then thin(G) ≥ k/∆(G).
Here δout(X) is the outer boundary of X, the set of vertices in V −X with at least one

neighbor in X.
To prove the lemma:
If thin(G) = t, take a partition V1, . . . , Vt and a consistent ordering v1, . . . , vn. Let S

be the set containing the last s vertices of the ordering.
For any i, let x be the lowest vertex in Vi ∩ δout(S). Then it is adjacent to a vertex of

S, say y. Now, this y must be adjacent to all of Vi∩δout(S), by the definition of consistent
ordering. This implies that |Vi ∩ δout(S)| ≤ ∆.

Therefore,

|δout(S)| =
∑
i

|Vi ∩ δout(S)| ≤ t∆

and so there are t ≥ |δout(S)|/∆ ≥ k/∆ classes. 2

Interval graphs have thinness 1 and unbounded clique-width [33], while cographs have
clique-width 2 [20] and unbounded thinness, because tK2 is a cograph for every t, so the
parameters are not comparable.

Complete graphs have high treewidth and thinness 1, and trees instead have treewidth
1 but we have the following result.

Theorem 14: For every fixed value m, the thinness of the complete m-ary tree on n vertices
is Θ(log n).

Proof. In [67] it was proved that the vertex isoperimetric peak of the complete m-ary
tree of height h is Θ(h). On the other hand, it was proved in [27, 62] that the pathwidth of
the complete m-ary tree of height h is Θ(h). As the thinness of a graph is upper bounded
by the pathwidth plus one [48] and using Lemma 13, it follows that the thinness of the
complete m-ary tree of height h is Θ(h), and this proves the theorem. 2

The cutwidth of a graph G, denoted as cutw(G), is the smallest integer k such that
the vertices of G can be arranged in a linear layout v1, . . . , vn in such a way that for every
i = 1, . . . , n− 1, there are at most k edges with one endpoint in {v1, . . . , vi} and the other
in {vi+1, . . . , vn}.

Theorem 15: For every graph G, thin(G) ≤ cutw(G) + 1. Moreover, a linear layout real-
izing the cutwidth leads to a consistent partition into at most cutw(G) + 1 classes.

Proof. Let G be a graph of cutwidth k, and let v1, . . . , vn such that for every i =
1, . . . , n − 1, there are at most k edges with one endpoint in {v1, . . . , vi} and the other
in {vi+1, . . . , vn}. Let G< be the graph defined as in Theorem 2 for the order v1, . . . , vn.
Since G< is a co-comparability graph, its chromatic number equals the size of a maximum



3.2. Interval graphs with high proper thinness 15

clique of it [49]. Suppose that G< has a clique H of size k + 2, and let vi be the vertex
of higher index in H. By definition of G<, for each i′ < i such that vi′ ∈ H, there exists
j > i such that vj is adjacent to vi′ and not adjacent to vi. So, there are at least k + 1
edges with one endpoint in {v1, . . . , vi} and the other in {vi+1, . . . , vn}, a contradiction. 2

The gap may be high, as for example on cliques.
The linear MIM-width of a graph G, denoted as lmimw(G), is the smallest integer k

such that the vertices of G can be arranged in a linear layout v1, . . . , vn in such a way
that for every i = 1, . . . , n − 1, the size of a maximum induced matching in the bipartite
graph formed by the edges of G with an endpoint in {v1, . . . , vi} and the other one in
{vi+1, . . . , vn} is at most k. This is the linear version of a parameter called MIM-width [66],
that is a lower bound for the linear MIM-width.

Theorem 16: For every graph G, lmimw(G) ≤ thin(G). Moreover, a linear ordering
v1, . . . , vn realizing the thinness, satisfies that the size of a maximum induced match-
ing in the bipartite graph formed by the edges of G with an endpoint in {v1, . . . , vi} and
the other one in {vi+1, . . . , vn} is at most thin(G).

Proof. Let k = thin(G) and consider a k-thin representation of G, with ordering < of
V (G), namely v1 < · · · < vn, and a partition of V (G) into k classes. Let 1 ≤ i ≤ n − 1
and let M be a maximum induced matching in the bipartite graph formed by the edges of
G with an endpoint in {v1, . . . , vi} and the other one in {vi+1, . . . , vn}. Suppose vrvt and
vsvq belong to M , with r < s ≤ i, t, q ≥ i+ 1. If vr and vs belong to the same class of the
partition, by definition of k-thin representation, vsvt is also an edge, a contradiction with
the fact that M is an induced matching. So, |M | ≤ k, thus lmimw(G) ≤ thin(G). 2

As a corollary, given a graph G provided with a k-thin representation, a wide family of
problems known as Locally Checkable Vertex Subset and Vertex Partitioning
problems can be solved in nO(k) time [66], as this holds for MIM-width k and a suitable
ordering. This family of problems is not comparable (inclusion-wise) with the one in
Section 4.1, but encompasses maximum weighted independent set and minimum
weighted dominating set.

3.2 Interval graphs with high proper thinness

In this section we first show that proper thinness of the class of interval graphs is un-
bounded. Then we relate the proper thinness of interval graphs to other interval graphs
invariants, like interval count. A family of interval graphs with arbitrarily large proper
thinness is the following.

Let h ≥ 1, and define clawh as the graph obtained from the complete ternary tree of
height h by adding all the edges between a vertex of the tree and its ancestors. It is easy
to see that clawh is an interval graph for every h ≥ 1 (an interval representation of claw3

can be seen in Figure 3.1). The graph claw1 is the claw.

Proposition 17: [61] For any h ≥ 1, pthin(clawh) = h+ 1.

Proof. Let h ≥ 1. We will label the vertices of G = clawh as vij such that 0 ≤ i ≤ h,

1 ≤ j ≤ 3i, v01 is the root of the ternary tree, and for each 0 ≤ i ≤ h− 1, 1 ≤ j ≤ 3i, the
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Fig. 3.1: An interval representation of claw3.

children of vij are vi+1
3j−2, v

i+1
3j−1, and vi+1

3j . Let us consider an ordering < and a partition
of V (G) that are strongly consistent. Without loss of generality, by symmetry, we may
assume vi2 < vi1 < vi3 for every i ≥ 1.

Let us show now that for every 0 ≤ i′ < i ≤ h, vi1 and vi
′
1 cannot be in the same

class of the partition. Otherwise, if vi1 < vi
′
1 then the fact of vi2 < vi1 < vi

′
1 , vi2v

i′
1 ∈ E(G)

and vi2v
i
1 6∈ V (G) contradicts the definition of strong consistency, and if vi

′
1 < vi1 then the

fact of vi
′
1 < vi1 < vi3, v

i
3v

i′
1 ∈ E(G) and vi3v

i
1 6∈ V (G) contradicts the definition of strong

consistency.

So, v01, . . . , v
h
1 are all in different classes of the partition and pthin(clawh) ≥ h + 1.

On the other hand, a partition of the vertices according to its height in the tree, and a
postorder of the vertices of the tree are strongly consistent. Thus pthin(clawh) = h + 1.
2

This example is also a classical example of a graph with high interval count and high
length of a chain of nested intervals. We will relate the proper thinness of interval graphs
to these two interval graphs invariants.

The interval count of an interval graph G is the minimum number of different interval
sizes needed in an interval representation of G (see for example [14, 44]). Graphs with
interval count at most k are also known as k-length interval graphs.

A k-nested interval graph is an interval graph admitting an interval representation in
which there are no chains of k + 1 intervals nested in each other [43]. It is easy to see
that k-nested interval graphs are a superclass of k-length interval graphs. We have also
the following property.

Proposition 18: [50] Every k-nested interval graph is proper k-thin.

Proof. Let G be a k-nested interval graph and consider an interval representation of
G with no chains of k+ 1 intervals nested in each other. It is a known result that we may
assume that all the interval endpoints are distinct. We label each interval by the length of
the longest chain of nested intervals ending in it, and these labels define the partition of
the vertices into classes, that are at most k. Now, we order the vertices according to their
intervals by the right endpoint (left to right). That order is consistent with the partition
in which the only class contains all vertices of G, so, in particular, it is consistent with
every other partition refining it. Let us see that the consistency is strong. Let r < s < t
such that s and t are in the same class of the partition. Let Ir, Is, It their corresponding
intervals. By definition of the classes, Is 6⊆ It, otherwise the length of the longest chain
of nested intervals ending in Is would be strictly greater than the one for It. As the right
endpoint of It is greater than the one of Is, it follows that the left endpoint of It is also
greater than the one of Is. Thus, if Ir intersects It, it intersects Is as well. So, the ordering
and the partition are strongly consistent and G is proper k-thin. 2
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Fig. 3.2: A sketch of graph Gk and an interval representation of it.

Graphs with interval count one are known as unit interval graphs, while 1-nested
interval graph are equivalent to proper interval graphs. In [57] it is shown that unit
interval graphs are equivalent to proper interval graphs. So the classes proper 1-thin,
1-length interval and 1-nested interval are equivalent. We will see that for higher numbers
the equivalence does not necessarily hold.

Indeed, in [30, Theorem 5, p. 177], Fishburn shows that, for every k ≥ 2, there are
2-nested interval graphs that are not k-length interval.

We will describe a family of graphs that show that, for every k ≥ 3, there are proper
3-thin graphs that are not k-nested interval.

Let k ≥ 1. Let Gk with 3k + 1 vertices is defined as follows. Its vertex-set is Vk =
Ak ∪ Bk ∪Wk, where Ak = {a1, . . . , ak}, Bk = {b1, . . . , bk} and Wk = {v1, . . . , vk, vk+1}.
The subgraph induced by Wk is a clique with k + 1 vertices; a1 (resp., b1) is adjacent to
v1. Then, for any 1 < i ≤ k, ai (resp., bi) is adjacent to ai−1 (resp., to bi−1), and to vj for
any j ≥ i. See Figure 3.2 for a sketch of Gk and an interval representation of it.

The graph G1 is the claw, which is not proper interval. For higher values of k, we have
the following property.

Proposition 19: [50] For any k ≤ 2, Gk is proper 3-thin, but in every interval representa-
tion of it, if Ij is the interval corresponding to vj , it holds Ik+1 ⊆ Ik ⊆ · · · ⊆ I1.

Proof. Consider the ordering a1, . . . , ak, b1, . . . , bk, v1, . . . , vk, vk+1, and the three classes
Ak, Bk and Wk. It is easy to see that they are strongly consistent.

Let 1 ≤ i ≤ k − 1. Notice that aiai+1vi+1bi+1bi induce a path of length five on Gk. In
every interval representation of it, the interval Ii+1 is between the intervals corresponding
to ai and bi and disjoint to them. As the five vertices are adjacent to vi, it follows that
the Ii+1 ⊆ Ii. Finally, by the shape of interval representations of a path of length five,
each of the intervals corresponding to ak and bk contains an endpoint of Ik. As vk+1 is
neither adjacent to ak nor to bk, Ik+1 ⊆ Ik. 2

The following characterization was proved for k-nested interval graphs.
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Lemma 20: [43] An interval graph is k-nested interval if and only if it has an interval
representation which can be partitioned into k proper interval representations.

This lemma and the family of graphs Gk show that even if the vertices of a proper
k-thin graph can be partitioned into k sets of vertices each of them inducing a proper
interval graph, it is not always the case that it has an interval representation which can
be partitioned into k proper interval representations.



4. PROBLEMS ON GRAPHS OF BOUNDED THINNESS

4.1 Solving combinatorial optimization problems on graphs with bounded
thinness

Since a k-thin graph G does not contain (k + 1)K2 as induced subgraph (Theorem 1),
it has at most |V (G)|2k maximal cliques [54]. In particular, the maximum weighted
clique problem can be solved in polynomial time on graphs with bounded thinness, by
simple enumeration of the maximal cliques of the graph [64].

The maximum weighted independent set problem can be solved in polynomial
time on graphs with bounded thinness, when an ordering and a partition that are consistent
are given [48]. In the same hypothesis, the capacitated coloring problem (in which
there is an upper bound αj on the number of vertices of color j) can be solved in polynomial
time, if the number of colors s is fixed [11]. As a byproduct, in the same paper it is
shown that the capacitated coloring can be solved in polynomial time for co-comparability
graphs, if the number of colors s is fixed, in contrast with the case in which the bounds
αj are all equal to a fixed number h, that is NP-complete, even for two subclasses of
co-comparability graphs: permutation graphs (for h ≥ 6) [46] and interval graphs (for
h ≥ 4) [9]. The hardness on interval graphs implies the hardness for graphs of bounded
thinness, since interval graphs are the graphs with thinness 1.

Both algorithms, the one for maximum weighted independent set and the one for
capacitated coloring with fixed number of colors, are based on dynamic programming.
One of the main results in this work is a generalization of these algorithmic results. We
describe now a generic problem that can be solved for graphs with bounded thinness, given
the representation. We call it the linear weighted list matrix partition problem,
and is defined as follows:
Instance:

• A graph G = (V,E).

• A family of arbitrary nonnegative weights w1, . . . , wt on V .

• A family of nonnegative weights b1, . . . , bp on V bounded by a fixed polynomial in n
(p fixed, q(n) the bound for the weights).

• Each vertex v has a list L(v) of combinations of the sets S1, . . . , Sr to which it can
belong (that may include the empty combination).

• An r × r symmetric matrix M over 0, 1, ∗, stating the adjacency conditions on the
sets Sj , such that for 1 ≤ i < j ≤ r, Mii = 1 means Si is a clique, Mii = 0 means
Si is an independent set, Mij = 1 means all the edges joining Si and Sj have to be
present, Mij = 0 means there are no edges from Si to Sj .

• A family of restrictions on the weight of the intersection and of the union of some
families of sets. Such restrictions can be expressed as

– 0 ≤ liJ∩ ≤ bi(
⋂

j∈J Sj) ≤ uiJ∩, such that 1 ≤ i ≤ p, J ⊆ {1, . . . , r}.

19
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– 0 ≤ liJ∪ ≤ bi(
⋃

j∈J Sj) ≤ uiJ∪, such that 1 ≤ i ≤ p, J ⊆ {1, . . . , r}.

Notice that some of these restrictions can be of cardinality, if the corresponding
weight function bi is constant.

• A set of constants cij , where 1 ≤ i ≤ t and 1 ≤ j ≤ r.

Question: find sets S1, . . . , Sr (r fixed, not necessarily disjoint), Sj ⊆ V for 1 ≤ j ≤ r,
satisfying the restrictions, in order to maximize

∑
1,j cijwi(Sj).

The family of problems that can be modeled within this framework includes weighted
variations of list matrix partition problems with matrices of bounded size, which in
turn generalize coloring, list coloring, list homomorphism, equitable coloring
with different objective functions, all for fixed number of colors (or graph size in the case
of homomorphism), clique cover with fixed number of cliques, maximum weighted
independent set, and other graph partition problems. It models also sum-coloring
and its more general version optimum cost chromatic partition problem [40] for fixed
number of colors, but it does not include dominating-like problems.

Now we will provide a polynomial time algorithm for this problem, assuming we are
given a k-thin representation of G, with ordering < of V , namely v1 < · · · < vn, and
partition of V into k classes V 1, . . . , V k.

We will solve it as a shortest or longest path problem (according to minimization or
maximization of the objective function) in an auxiliary acyclic digraph D = (X,A) whose
nodes correspond to states and whose arcs are weighted and labeled. The total weight of
the path is the value of the objective function in the solution that can be built by using the
arc labels. We will used the term “nodes” for the digraph D in order to avoid confusion
with the vertices of the graph G.

A state is a tuple, containing:

• A number 1 ≤ s ≤ |VG| indicating that we are considering the subgraph Gs of G,
induced by v1, . . . , vs.

• Nonnegative parameters liJ∩, uiJ∩, liJ∪, uiJ∪, for 1 ≤ i ≤ p, J ⊆ {1, . . . , r}; they are
at most 2r+2p, and each of them may take a nonnegative value at most nq(n), which
is an upper bound for bi(V ), for every 1 ≤ i ≤ p.

• A family of nonnegative parameters {αij}1≤i≤k;1≤j≤r, meaning that we cannot pick
for Sj a vertex of the first αij vertices of the set V i of the partition; there are kr
such parameters and each of them may take a nonnegative value at most n− 1.

• A family of nonnegative parameters {βij}1≤i≤k;1≤j≤r, meaning that we cannot pick
for Sj a vertex on the last βij vertices of the set V i of the partition; there are kr
such parameters and each of them may take a nonnegative value at most n− 1.

The total number of states is then at most n2kr+1(nq(n))2
r+2p, that is polynomial in

n, since k, r, and p are constant and q(n) is polynomial in n.

The digraph D will have nodes that correspond to possible states, organized in layers
X0, X1, . . . , Xn such that X0 contains only one node x0, and the layer Xs contains the
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states whose first parameter is s. The layer Xn contains also only one node, correspond-
ing to the state (n, {liJ∩}, {uiJ∩}, {liJ∪}, {uiJ∪}, {αij}, {βij}), where the parameters
{liJ∩}, {uiJ∩}, {liJ∪}, {uiJ∪} are the ones in the original formulation of the problem and
αij = βij = 0 for every 1 ≤ i ≤ k, 1 ≤ j ≤ r.

All arcs of A have the form (u,w) with u ∈ Xs and w ∈ Xs+1, for some 0 ≤ s ≤ n− 1.
We associate with each node of X a suitable problem, in the same framework, whose

parameters correspond to the parameters in the state, but with additional constraints
associated with the parameters {αij} and {βij}.

We will define the arcs in such a way that a node is reachable from the node in the
layer X0 if and only if the associated problem has a solution. The length of the path will
be the weight of the solution, and the set of arc labels will encode the solution. Let us
describe the arcs of the digraph.

Let w be a node with parameters (1, {liJ∩}, {uiJ∩}, {liJ∪}, {uiJ∪}, {αij}, {βij}).
Let 1 ≤ ` ≤ k such that v1 ∈ V `. For each J̃ ∈ L(v1) (in particular J̃ ⊆ {1, . . . , r}),

such that:

1.1 For each j ∈ J̃ , β`j = α`j = 0.

1.2 For each J ⊆ J̃ , liJ∩ ≤ bi(v1) ≤ uiJ∩.

1.3 For each J 6⊆ J̃ , liJ∩ = 0.

1.4 For each J such that J ∩ J̃ 6= ∅, liJ∪ ≤ bi(v1) ≤ uiJ∪.

1.5 For each J such that J ∩ J̃ = ∅, liJ∪ = 0.

We add an arc from x0 to w, labeled by J̃ and of weight
∑

1≤i≤t;j∈J̃ cijwi(v1). If no

J̃ satisfies conditions 1.1–1.5, no arc ending in w is added. If more than one arc x0w was
added, we can keep only the one with maximum (resp. minimum) weight if we are solving
a maximization (resp. minimization) problem.

Note that if we add the arc x0w labeled by J̃ , then the solution Sj = {v1} for j ∈ J̃ ,
Sj = ∅ for j 6∈ J̃ has weight

∑
1≤i≤t;j∈J̃ cijwi(v1) and satisfies the state described by w:

condition 1.1 says that v1 (the first and last vertex of V ` in G1) is allowed to be picked for
every set Sj for j ∈ J̃ ; conditions 1.2–1.5 say that the assignment does not violate weight
constraints.

Let w be a node with parameters (s, {liJ∩}, {uiJ∩}, {liJ∪}, {uiJ∪}, {αij}, {βij}),
1 < s ≤ n.

Let 1 ≤ ` ≤ k such that vs ∈ V `. For each J̃ ∈ L(vs), such that:

s.1 For each j ∈ J̃ , β`j = 0.

s.2 For each j ∈ J̃ , α`j < |V ` ∩ {v1, . . . , vs}|.

s.3 For each J ⊆ J̃ , bi(vs) ≤ uiJ∩.

s.4 For each J such that J ∩ J̃ 6= ∅, bi(vs) ≤ uiJ∪.

We add an arc from u to w, labeled by J̃ and of weight
∑

1≤i≤t;j∈J̃ cijwi(vs), where u
has parameters (s− 1, {l′iJ∩}, {u′iJ∩}, {l′iJ∪}, {u′iJ∪}, {α′ij}, {β′ij}), such that:
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s′.1 Let 1 ≤ j ≤ r. If there exists j′ ∈ J̃ such that Mjj′ = 0, then β′`j = max{β`j −
1, |N(vs)∩V `∩{1, . . . , s−1}|}, and for 1 ≤ i ≤ k, i 6= `, β′ij = max{βij , |N(vs)∩V i∩
{1, . . . , s− 1}|}. Otherwise, β′`j = max{0, β`j − 1}, and for 1 ≤ i ≤ k, i 6= `, β′ij = βij .

s′.2 Let 1 ≤ j ≤ r. If there exists j′ ∈ J̃ such that Mjj′ = 1, then

α′`j = max{min{|V ` ∩ {1, . . . , s − 1}|, α`j}, |N(vs) ∩ V ` ∩ {1, . . . , s − 1}|}, and for

1 ≤ i ≤ k, i 6= `, α′ij = max{αij , |N(vs) ∩ V i ∩ {1, . . . , s − 1}|}. Otherwise, α′`j =

min{|V ` ∩ {1, . . . , s− 1}|, α`j}, and for 1 ≤ i ≤ k, i 6= `, α′ij = αij .

s′.3 For each J ⊆ J̃ , l′iJ∩ = max{0, liJ∩ − bi(vs)} and u′iJ∩ = uiJ∩ − bi(vs).

s′.4 For each J 6⊆ J̃ , l′iJ∩ = liJ∩ and u′iJ∩ = uiJ∩.

s′.5 For each J such that J ∩ J̃ 6= ∅, l′iJ∪ = max{0, liJ∪− bi(vs)} and u′iJ∪ = uiJ∪− bi(vs).

s′.6 For each J such that J ∪ J̃ = ∅, l′iJ∪ = liJ∪ and u′iJ∪ = uiJ∪.

If no J̃ satisfies conditions s.1–s.4, no arc ending in w is added. If more than one arc
from the same vertex u to w was added, we can keep only the one with maximum (resp.
minimum) weight if we are solving a maximization (resp. minimization) problem.

That is, if an arc is added, the arc corresponds to the choice of adding the vertex vs to
the sets {Sj}j∈J̃ , the conditions required imply that the choice is valid for w in the case
that the state described by u admits a solution, the label of the arc keeps track of the
choice made, and the cost corresponds to the weight that the choice adds to the objective
function.

Note that if we add the arc uw labeled by J̃ , then for a solution {S′j}1≤j≤r for Gs−1
satisfying the state described by u, then the solution {Sj}1≤j≤r for Gs such that Sj =
S′j ∪ {vs} for j ∈ J̃ , Sj = S′j for j 6∈ J̃ satisfies the state described by w. Conditions

s.1 and s.2 say that vs (the last vertex of V ` in Gs) is allowed to be picked for every set
Sj for j ∈ J̃ . Condition s′.1 ensures on one hand that the conditions imposed by the
parameters {βij} in w are satisfied by the solution of u, and, on the other hand, that if
j′ ∈ J̃ and 1 ≤ j ≤ r are such that Mjj′ = 0 then no neighbor of vs belongs to S′j , as
required. Similarly, condition s′.2 ensures on one hand that the conditions imposed by the
parameters {αij} in w are satisfied also by the solution of u, and, on the other hand, that
if j′ ∈ J̃ and 1 ≤ j ≤ r are such that Mjj′ = 1 then all vertices in S′j are adjacent to vs,
as required. These conditions strongly use that the order and the partition are consistent.
Finally, conditions s.3–s.4, and s′.3–s′.6 ensure that the solution does not violate weight
constraints.

Moreover, the difference of weight of the solution {Sj}1≤j≤r with respect to {S′j}1≤j≤r
is exactly

∑
1≤i≤t;j∈J̃ cijwi(vs).

In that way, a directed path in the digraph corresponds to an assignment of vertices
of the graph to lists of sets and its weight is the value of the objective function for the
corresponding assignment.

The digraph has a polynomial number of nodes and can be built in polynomial time.
Since it is acyclic, both the longest path and shortest path can be computed in linear time
in the size of the digraph by topological sorting.
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Remark 1: The thinness is not preserved by the complement operation of graphs (see for
instance Theorem 1). However, for every fixed k, the same problem can be solved for the
complement G of a k-thin graph G, simply by swapping ones and zeroes in the restriction
matrix M .

4.2 Hardness results for relaxed problems

In the previous section, linear weighted list matrix partition (LWLMP) was defined
as an optimization problem. In this section we will only refer to the decision version of
the problem in order to show hardness results.

After we published our algorithm for the LWLMP problem assuming a k-thin represen-
tation is given, subsequent work [3] showed that the conditions for the algorithm telling
that some parameters have to be bounded are, in some sense, necessary: the relaxation of
any of these conditions make the problem NP-hard for interval graphs.

The same paper also proved that the LWLMP problem is W[1]-hard with respect to r,
which means that there is no FPT algorithm under the standard complexity assumption
that FPT 6= W[1]. Note that our algorithm has time complexity nO(2r) for interval
graphs, and we now know that we cannot hope for a f(r) ·nO(1) algorithm, where f is any
function depending only on r.

We will proceed to describe these results, which depend on the weighted locally
bounded list coloring (WLBLC) problem, defined as follows:
Instance:

• A graph G = (V,E) with vertex weights w.

• Integers q and k.

• A partition V 1, . . . , V q of V .

• A list of qk integer bounds Wij with
∑

j Wij =
∑

v∈V i w(v) for all i.

• Each vertex has a list L(v) ⊆ {1, . . . , k}.

Question: decide whether there exists a k-coloring of G, so that the sum of weights of
vertices with color j in V i equals Wij for all (i, j), and the color of v belongs to L(v) for
all v.

This problem is NP-complete, since it is trivially in NP and generalizes the 3-
coloring problem. But note that the LWLMP problem is a generalization of this one
(relaxing the bounds on some of the parameters), because of the following mapping:

• The strategy is to have r = qk sets, where Sij will contain the vertices in partition
i and color class j.

• Matrix M consists of 0 for entries of the same color class, and the rest of entries are
∗.

• If v ∈ V i, L(v) = {a1, . . . , ad} is mapped to {ai1, . . . , aid}.

• Restrictions: the Sij form a partition of V ; and the weighted cardinality of Sij is
Wij . This implies that we only need p = 2, where b1 is the constant function 1, and
b2 = w.



24 4. Problems on graphs of bounded thinness

The paper proves that the WLBLC problem remains NP-complete under a number of
constraints, which in turn imply similar statements for relaxed versions of the LWLMP
problem.

Theorem 21 (1 of [3]): WLBLC is weakly NP-complete in edgeless graphs, even if k = 1,
q = 1 and |L(v)| = 2 for all v.

Corollary 22: If bi in LWLMP is not polynomially bounded in n, the problem is weakly
NP-complete in edgeless graphs, even if r = 1, p = 2, |L(v)| = 2 for all v and without
matrix M and a linear function.

Theorem 23 (2 of [3]): WLBLC is NP-complete in edgeless graphs, even if q = 1, without
L, and w is polynomially bounded in n.

Corollary 24: If r in LWLMP is not fixed, the problem is NP-complete in edgeless graphs,
even if p = 2, and without M and a linear function.

Theorem 25 (3 of [3]): WLBLC is NP-complete in star forests, even if q = 1 and with-
out w.

Corollary 26: If r in LWLMP is not fixed, the problem is NP-complete in star forests, even
if p = 1, b constant, and without L, M and a linear function.

Theorem 27 (4 of [3]): WLBLC is NP-complete in linear forests, even if q = 1, |L(v)| = 2
for all v, and without w.

Corollary 28: If r in LWLMP is not fixed, the problem is NP-complete in linear forests,
even if p = 1, b constant, and |L(v)| = 2 for all v, and without M and a linear function.

Theorem 29 (5 of [3]): WLBLC is NP-complete in star forests, even if k = 2, |L(v)| = 2
for all v, and without w.

Corollary 30: If k in LWLMP is not fixed, the problem is NP-complete in star forests, even
if p = 1, b constant, and |L(v)| = 2 for all v, and without M and a linear function.

Theorem 31 (6 of [3]): WLBLC is NP-complete in linear forests, even if k = 2, |L(v)| = 2
for all v, and without w.

Corollary 32: If k in LWLMP is not fixed, the problem is NP-complete in linear forests,
even if p = 1, b constant, and |L(v)| = 2 for all v, and without M and a linear function.

Note that edgeless graphs, linear forests and star forests are interval graphs (indeed,
edgeless graphs and linear forests are also proper interval graphs), so these corollaries
allow us to conclude that several possible relaxations of our problem are NP-complete for
graphs with thinness 1, and some of them for graphs with proper thinness 1.

The paper also proves that WLBLC is W[1]-hard with respect to k in edgeless graphs,
with q = 1 and without list coloring. So that result also holds for our problem, with
respect to r and restricted to interval graphs.
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4.3 Extending the family of problems solvable on graphs with bounded
proper thinness

We start by the following observation: in a proper k-thin representation of a graph G,
with ordering < of V , namely v1 < · · · < vn, and partition of V into k classes V 1, . . . , V k,
for each pair of vertices vs < vr that are in the same class, N [vs] ∩ {v1, . . . , vs} ⊇ N [vr] ∩
{v1, . . . , vs}. This allows us to handle other kinds of restrictions as for example domination
type constraints.

Namely, if we are considering the subgraph Gs of G induced by {v1, . . . , vs} but we
“keep in mind” that we still need to dominate some of the vertices in {vs+1, . . . , vn} with
vertices of Gs, we can summarize these conditions into at most k of them (each imposed
by vertices of {vs+1, . . . , vn} in each partition class).

For graphs with bounded proper thinness k, when the proper k-thin representation of
the graph is given, we can add now to the instance (with respect to Section 4.1) this kind
of restrictions:

• lij(N) ≤ |Si ∩N(v)| ≤ uij(N) ∀v ∈ Sj , such that lij(N) ∈ {0, 1} and uij(N) ∈ {1,∞}
(it can be i = j), 1 ≤ i, j ≤ r.

• lij[N ] ≤ |Si ∩ N [v]| ≤ uij[N ] ∀v ∈ Sj , such that lij[N ] ∈ {0, 1} and uij[N ] ∈ {1,∞}
(it can be i = j), 1 ≤ i, j ≤ r.

In this way the framework includes domination-type problems in the literature and
their weighted versions, such as minimum weighted independent dominating set,
minimum weighted total dominating set, minimum perfect dominating set and
minimum weighted efficient dominating set, and b-coloring [39] with fixed num-
ber of colors.

We will keep the notation of Section 4.1 and describe how to modify the algorithm in
order to take into account the new restrictions. Now the vertex order and the partition of
G are strongly consistent.

Each state now will be augmented with some new parameters:

• a family of nonnegative parameters {γij}1≤i≤k;1≤j≤r, meaning that the last γij ver-
tices of V i have already a neighbor in Sj (of index higher than them); there are kr
such parameters and each of them may take a nonnegative value at most n− 1.

• a family of nonnegative parameters {γ2ij}1≤i≤k;1≤j≤r, meaning that the last γ2ij ver-

tices of V i have already two neighbors in Sj (of index higher than them); there are
kr such parameters and each of them may take a nonnegative value at most n− 1.

• a family of nonnegative parameters {λijc}1≤i,c≤k;1≤j≤r, meaning that, for each value
1 ≤ c ≤ k, Sj has to contain at least one vertex in the set that is the union over
1 ≤ i ≤ k of the last λijc vertices of V i (if the union is empty, this means no
restriction associated with (c, Sj)); there are k2r such parameters and each of them
may take a nonnegative value at most n− 1.
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The total number of states is then multiplied by at most nk
2r+2kr, that keeps it poly-

nomial in n, since k and r are constant.

The value of all these parameters in the only node of the layer Xn of the digraph is zero.

Now the problems associated with the nodes of X will have the additional constraints
associated with the new restrictions and the parameters {γij}, {γ2ij}, and {λijc}.

Let us describe the additional conditions for the arcs of the digraph, whose labels and
weights are still the same as in Section 4.1.

Let w be a node with parameters (1, . . . , {γij}, {γ2ij}, {λijc}).
Let 1 ≤ ` ≤ k such that v1 ∈ V `. For each J̃ ∈ L(v1) (in particular J̃ ⊆ {1, . . . , r})

satisfying 1.1–1.5, and such that:

1.6 For each 1 ≤ i ≤ r, j ∈ J̃ , such that lij(N) = 1, γ`i > 0.

1.7 For each i 6∈ J̃ , j ∈ J̃ , such that lij[N ] = 1, γ`i > 0.

1.8 For each 1 ≤ i ≤ r, j ∈ J̃ , such that uij(N) = 1 or uij[N ] = 1, γ2`i = 0.

1.9 For each i, j ∈ J̃ , such that uij[N ] = 1, γ`i = 0.

1.10 For each j 6∈ J̃ and for each 1 ≤ c ≤ k, λ`jc = 0.

We add an arc from x0 to w, labeled by J̃ and of weight
∑

1≤i≤t;j∈J̃ cijwi(v1). If no J̃
satisfies conditions 1.1–1.10, no arc ending in w is added. If more than one arc x0w was
added, we can keep only the one with maximum (resp. minimum) weight if we are solving
a maximization (resp. minimization) problem.

Note that if we add the arc x0w labeled by J̃ , then the solution Sj = {v1} for j ∈ J̃ ,
Sj = ∅ for j 6∈ J̃ has weight

∑
1≤i≤t;j∈J̃ cijwi(v1) and satisfies the state described by w:

conditions 1.1–1.5 ensure the properties required in Section 4.1; conditions 1.6–1.9 ensure
the validity of the two new families of restrictions about lower and upper bounds of neigh-
bors of vertices of one set in other set, and condition 1.10 ensures that the restrictions
imposed by the parameters {λijc} are satisfied.

Let w be a node with parameters (s, {liJ∩}, {uiJ∩}, {liJ∪}, {uiJ∪}, {αij}, {βij}, {γij},
{γ2ij}, {λijc}), 1 < s ≤ n.

Let 1 ≤ ` ≤ k such that vs ∈ V `. For each J̃ ∈ L(vs) satisfying s.1–s.4, and such that:

s.5 For each 1 ≤ i ≤ r, j ∈ J̃ , such that uij(N) = 1 or uij[N ] = 1, γ2`i = 0.

s.6 For each i, j ∈ J̃ , such that uij[N ] = 1, γ`i = 0.

s.7 For each j 6∈ J̃ and for each 1 ≤ c ≤ k, either λ`jc = 0, or λ`jc > 1, or there exists
1 ≤ i ≤ k, i 6= `, such that λijc > 0 (i.e., the union over 1 ≤ i ≤ k of the last λijc
vertices of V i is not {vs}).

s.8 For each 1 ≤ i ≤ r such that γ`i = 0 and there exists j ∈ J̃ such that lij(N) = 1,
N(vs) ∩ {1, . . . , s− 1} 6= ∅.
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s.9 For each i 6∈ J̃ such that γ`i = 0 and there exists j ∈ J̃ such that lij[N ] = 1, N(vs) ∩
{1, . . . , s− 1} 6= ∅.

Let {λ0ijc}1≤i,c≤k;1≤j≤r be defined this way: for every j ∈ J̃ and every 1 ≤ c ≤ k such

that λ`jc > 0, let λ0ijc = 0 for every 1 ≤ i ≤ k; for every j ∈ J̃ and every 1 ≤ c ≤ k such

that λ`jc = 0, let λ0ijc = λijc for every 1 ≤ i ≤ k; for every j 6∈ J̃ and every 1 ≤ c ≤ k, let

λ0`jc = max{0, λ`jc − 1} and let λ0ijc = λijc for every 1 ≤ i ≤ k, i 6= `.

Let {λ1jc}1≤c≤k;1≤j≤r be defined as λ1jc = 0 if λ0ijc = 0 for every 1 ≤ i ≤ k, λ1jc = 1
otherwise.

We add an arc from u to w, labeled by J̃ and of weight
∑

1≤i≤t;j∈J̃ cijwi(vs), where u

has parameters (s − 1, {l′iJ∩}, {u′iJ∩}, {l′iJ∪}, {u′iJ∪}, {α′ij}, {β′ij}, {γ′ij}, {γ2
′
ij}, {λ′ijc}),

satisfies conditions s′.2–s′.6, and:

s′.7 For each 1 ≤ i ≤ r such that γ`i = 0 and there exists j ∈ J̃ such that lij(N) = 1, if

λ1i` = 0, then λ′j′i` = |N(vs) ∩ V j′ ∩ {1, . . . , s − 1}| for each 1 ≤ j′ ≤ k; otherwise,

λ′j′i` = λ0j′i` for every 1 ≤ j′ ≤ k (recall that, by the observations above about proper

thinness, λ0j′i` = min{λ0j′i`, |N(vs) ∩ V j′ ∩ {1, . . . , s− 1}|}).

s′.8 For each i 6∈ J̃ such that γ`i = 0 and there exists j ∈ J̃ such that lij[N ] = 1, if λ1i` = 0,

then λ′j′i` = |N(vs) ∩ V j′ ∩ {1, . . . , s− 1}| for each 1 ≤ j′ ≤ k; otherwise, λ′j′i` = λ0j′i`
for every 1 ≤ j′ ≤ k.

s′.9 For each i, j, c not comprised in conditions s′.7 and s′.8, λ′ijc = λ0ijc.

s′.10 Let 1 ≤ j ≤ r. If there exists j′ ∈ J̃ satisfying at least one of the following:

• Mjj′ = 0

• (ujj′(N) = 1 or ujj′[N ] = 1) and γ`j > 0

• j ∈ J̃ and ujj′[N ] = 1

then, β′`j = max{β`j − 1, |N(vs) ∩ V ` ∩ {1, . . . , s − 1}|}, and for 1 ≤ i ≤ k, i 6= `,

β′ij = max{βij , |N(vs) ∩ V i ∩ {1, . . . , s− 1}|}. Otherwise, β′`j = max{0, β`j − 1}, and
for 1 ≤ i ≤ k, i 6= `, β′ij = βij .

s′.11 For each j ∈ J̃ : if |N(vs) ∩ V ` ∩ {1, . . . , s − 1}| ≥ γ`j − 1, then γ′`j = |N(vs) ∩ V ` ∩
{1, . . . , s − 1}| and γ2

′
`j = max{0, γ`j − 1}; otherwise, γ′`j = max{0, γ`j − 1} and

γ2
′
`j = max{γ2`j − 1, |N(vs) ∩ V ` ∩ {1, . . . , s− 1}|}.

s′.12 For each j ∈ J̃ , 1 ≤ i ≤ k, i 6= `: if |N(vs) ∩ V i ∩ {1, . . . , s − 1}| ≥ γij , then

γ′ij = |N(vs) ∩ V i ∩ {1, . . . , s − 1}| and γ2
′
ij = γij ; otherwise, γ′ij = γij and γ2

′
ij =

max{γ2ij , |N(vs) ∩ V i ∩ {1, . . . , s− 1}|}.

If no J̃ satisfies conditions s.1–s.9, no arc ending in w is added. If more than one arc
from the same vertex u to w was added, we can keep only the one with maximum (resp.
minimum) weight if we are solving a maximization (resp. minimization) problem.

That is, if an arc is added, the arc corresponds to the choice of adding the vertex vs to
the sets {Sj}j∈J̃ , the conditions required imply that the choice is valid for w in the case
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that the state described by u admits a solution, the label of the arc keeps track of the
choice made, and the cost corresponds to the weight that the choice adds to the objective
function.

Note that if we add the arc uw labeled by J̃ , then for a solution {S′j}1≤j≤r for Gs−1
satisfying the state described by u, then the solution {Sj}1≤j≤r for Gs such that Sj =
S′j ∪ {vs} for j ∈ J̃ , Sj = S′j for j 6∈ J̃ satisfies the state described by w.

Condition s′.10 ensures on one hand that the conditions imposed by the parameters
{βij , uij(N), uij[N ]} in w are satisfied by the solution of u, and, on the other hand, that

if j′ ∈ J̃ and 1 ≤ j ≤ r are such that Mjj′ = 0 then no neighbor of vs belongs to S′j ,
as required. Conditions s′.7–s′.9 together with s.7–s.9 define parameters {λ′ijc} in u in
order to guarantee in w both the conditions imposed by the lower bounds {lij(N), lij[N ]}
and those imposed by the parameters {λijc}. Finally, conditions s′.11 and s′.12 properly

update the definition of parameters {γ′ij , γ2
′
ij} according to the choice J̃ for vs. Conditions

s′.2–s′.6 were analyzed above in Section 4.1.
As in that case, the difference of weight of the solution {Sj}1≤j≤r with respect to

{S′j}1≤j≤r is exactly
∑

1≤i≤t;j∈J̃ cijwi(vs).

In that way, a directed path in the digraph corresponds to an assignment of vertices
of the graph to lists of sets and its weight is the value of the objective function for the
corresponding assignment.

The digraph has a polynomial number of nodes and can be built in polynomial time.
Since it is acyclic, both the longest path and shortest path can be computed in linear time
in the size of the digraph by topological sorting.
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We described a wide family of combinatorial optimization problems that can be solved in
polynomial time on classes of bounded thinness and bounded proper thinness. We think
that some restrictions can be further generalized (especially the domination type ones),
with more involved sets of parameters and transition rules. We tried to keep it as simpler
as possible, yet including many of the classical combinatorial optimization problems in the
literature.

We also proved a number of theoretical results, some of them related to the recognition
problem for the classes, others relating the concept of thinness and proper thinness to other
known graph parameters, and analyzing their behavior under the graph operations union,
join, and Cartesian product (this last result has been extended to other graph products
in a subsequent work).

Some open problems are the following.

• Characterize (proper) k-thin graphs by minimal forbidden induced subgraphs (or at
least within some graph class, we did it for thinness in cographs).

• Find sufficient conditions, for instance a family subgraphs to forbid as induced sub-
graphs, for a graph to be (proper) k-thin, even if these graphs are not necessarily
forbidden induced subgraphs for (proper) k-thin graphs. These kind of results have
been obtained for MIM-width in [41].

• Study the behavior of thinness under other graph operators like, for example, graph
powers and the clique graph.

• What is the complexity of computing the (proper) thinness of a graph? Or deciding
if it is at most k for some fixed values k?

• Can we develop some randomized algorithm to test just a subset of vertex orderings
and obtain with high probability an approximation of the (proper) thinness?

• Given a partition of the vertex set into a fixed number k of classes, what is the
complexity of deciding if there is a (strongly) consistent order for the vertices w.r.t.
that partition (and finding it)? (We have proved that for an arbitrary number of
classes the problems are NP-complete, and we have solved in polynomial time the
symmetric problem, i.e., given the ordering, find a minimum (strongly) consistent
partition.)

29
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[43] P. Klav́ık, Y. Otachi, and J. Šejnoha. On the classes of interval graphs of limited
nesting and count of lengths. In Seok-Hee Hong, editor, 27th International Symposium
on Algorithms and Computation (ISAAC 2016), volume 64 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 45:1–45:13, Dagstuhl, Germany, 2016.

[44] R. Leibowitz, S.F. Assmann, and G.W. Peck. The interval count of a graph. SIAM
Journal on Algebraic and Discrete Methods, 3:485–494, 1982.

[45] T. Lengauer. Upper and lower bounds on the complexity of the min cut linear arrange-
ment problem on trees. SIAM Journal on Algebraic and Discrete Methods, 3:99–113,
1982.

[46] Z. Lonc. On complexity of some chain and antichain partition problems. In G. Schmidt
and R. Berghammer, editors, Proceedings of the International Workshop on Graph-
Theoretic Concepts in Computer Science 1991, volume 570 of Lecture Notes in Com-
puter Science, pages 97–104. Springer, Berlin, Heidelberg, 1992.



34 Bibliography

[47] P. Looges and S. Olariu. Optimal greedy algorithms for indifference graphs. Com-
puters & Mathematics with Applications, 25:15–25, 1993.

[48] C. Mannino, G. Oriolo, F. Ricci, and S. Chandran. The stable set problem and the
thinness of a graph. Operations Research Letters, 35:1–9, 2007.

[49] H. Meyniel. A new property of critical imperfect graphs and some consequences.
European Journal of Combinatorics, 8:313–316, 1987.

[50] N. Nisse, 2010. Personal communication.
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