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Abstract

We introduce a neural network with associative memory and a continuous
topology, i.e. its processing units are elements of a continuous metric space
and the state space is Euclidean and in¯nite dimensional. This approach
is intended as a generalization of the previous ones due to Little and Hop-
¯eld. Thus we integrate two levels of continuity: continuous response units
and continuous topology of the neural system, obtaining a more biologi-
cally plausible model of associative memory. A theoretical background is
provided so as to make this integration consistent. We ¯rst present some
general results concerning attractors and stationary solutions, including a
variational approach for the derivation of the energy function. Then we
focus on the case of orthogonal memories, proving theorems on their sta-
bility, size of attraction basins and spurious states. Finally, we get back
to discrete models, i.e. we discuss new viewpoints arising from the present
continuous approach and examine which of the new results are also valid
for the discrete models.

Keywords: associative memory, continuous topology, dynamical systems,
Hop¯eld model, in¯nite dimensional state space, stability.

1 Introduction

In seminal papers, Little [8][9] and Hop¯eld [6] constructed a content-addressable
memory as a dense network of arti¯cial neurons that are represented as elemen-
tary bistable processors. Addressability is guaranteed by the dissipative dynam-
ics of the system. It consists of switching each processor from one of its stable
con¯gurations to the other as a consequence of the intensity of the local ¯eld
acting on it. The memories, corresponding to ¯xed points of the dynamics, are
stored in the system in a distributed manner through the matrix of two-body
interactions (synaptic e±cacies) between the neurons. If this matrix is properly
de¯ned, the above dynamics is enough so as to ensure a monotonic decrease of
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an \energy" function. Thus, starting from an arbitrary con¯guration the system
is led to a local minimum that corresponds to the nearest stored memory.

In a later paper, Hop¯eld [7] aimed at a more realistic model by replacing
bistable neurons by graded response devices. In fact, a classical objection to the
former model [6][8][9] was that a two-state representation of the neural output
is, from a biological point of view, an oversimpli¯cation and that it is neces-
sary to describe relevant neural activity by ¯ring rates, rather than merely by
the presence or the absence of an individual spike1. In either case the retrieval
process is again guaranteed by the nature of the matrix of synaptic e±cacies.
However, in [7] the space of states describing the patterns of activity remained
discrete, in the sense that the number of units was, at most, countable. This
was an open gap in the plausibility of the model. In fact, since the Little model
was formulated to describe the computational ability of an ensemble of simple
processing units, it was necessary to reconcile the biological evidence of a true
continuum of the neural tissue with the descriptions provided by discrete models
inspired in an Ising system. While the empirical evidence always shows patterns
of activity or quiescence involving patches with ¯nite sizes, the ferromagnetic
approach suggests systems with discrete processing units with no ¯nite dimen-
sions. In spite of this simpli¯cation all the discrete models have been remarkably
successful in describing emergent processing abilities that correspond to stylized
facts concerning basic elementary cognitive processes.

In this paper we introduce a neural network with associative memory
whose processing units are elements of a continuous metric space. This model is
intended as a generalization of the previous ones due to Little and Hop¯eld. Our
main purpose is to provide rigorous proofs in the sense that it is actually possible
to formulate a system of associative memory with continuous response units and
a continuous topological structure on the set of such units. We conceive the
network so as to preserve the salient features that made attractive all the discrete
models, especially the levels of continuity that the Hop¯eld model with graded
response [7] added to the discrete one [6]: continuous-valued units and continuous
scale of time, via the transition from discrete to continuous, di®erential equation
dynamics. In spite of the fact that the corresponding space of con¯gurations is
an in¯nite dimensional functional space, we can de¯ne a basic simple dynamics
having asymptotic, stationary solutions which can be associated to minima of an
energy functional of Lyapunov type and can be taken to represent the memories
that are stored in the system.

We have already introduced in a previous paper [12] several of the results
included here, but none of them was supported on rigorous proof. The present
article is devoted to provide a solid theoretical foundation for that sketch. We
place emphasis on a detailed analysis of orthogonal memories, which constitute
a relevant particular case of the general theory (in fact, a deep comprehension
of orthogonal memories is essential to understand the general pseudo-orthogonal

1However, there is at present an increasing agreement that spiking neurons have some
properties for describing certain aspects of neural dynamics not completely covered by rate-
coding models.

3rd Indian International Conference on Artificial Intelligence (IICAI-07)

113



case). However, we also present some other more general results.
Some approaches closely related to ours have appeared in recent years

[10][11]. In particular, the concept of ¯eld computation, introduced by MacLen-
nan, has a similar inspiration in the fact that many neural phenomena can be
conveniently described as a ¯eld, i.e. the distribution of some physical quantity
over a continuous space, with some topology associated to it. On the other hand,
the big number of neurons per square millimeter that can be found throughout
most of the brain cortex, justi¯es the treatment of neural activity as a ¯eld.

All these arguments are related to our approach. However, this is aimed to
a di®erent purpose, which is that of formulating an extended model of associative
memory and theoretically founding it, including justi¯cation of its potential as
a tool for modelling cognitive processes of memory and learning.

Moreover, in another previous paper [13], we have already proposed a
generalization of the nondeterministic, ¯nite temperature Glauber dynamics [3]
to the case of a ¯nite number of graded response neurons (Hop¯eld'84). We did
this by casting the retrieval process of a Hop¯eld model with continuous-valued
units, into the framework of a di®usive process governed by the Fokker-Plank
equation. We thus provided a description of the transitional regime that prevails
during the retrieval process, which is currently disregarded. In other words, we
uni¯ed the graded response units model [7] and the stochastic approach, ob-
taining a description of the retrieval process at both the microscopic, individual
neuron level and the macroscopic level of time evolution of the probability den-
sity function over the space of all possible activation patterns, i.e. an equation
describing, for each possible pattern, how, given an initial probability for the
system being in it, this probability changes upon time.

The paper is organized as follows. In Section 2 we give some basic concepts
and de¯nitions. Section 3 provides some general results concerning attractors
and stationary solutions, including a variational approach for the derivation of
the energy function. In Section 4, we focus on the orthogonal case, proving
theorems on the stability of the memories and of the origin. Section 5 presents
a result on the size of basins of attraction and Section 6 analyses the question of
spurious states. Finally, in Section 7 we get back to discrete models, i.e. discuss
new viewpoints arising from the present continuous approach and examine which
of the new results are also valid for the discrete models.

2 Basic de¯nitions and ¯rst results

Assume that v(x; t) describes the activity of a point-like neuron located in x at
time t. This pattern of activity evolves according to:

@v(x; t)

@t
= ¡v(x; t) + g¾

0
@
Z

K

T(x; y)v(y; t)dy

1
A (1)

with v(x; t) : K £ R¸0 ! R, K ½ X. X is a metric space, K a compact
domain, g¾ a sigmoid function, i.e. g¾ 2 C1(R), non decreasing, odd and sat-
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isfying limx!§1 g¾(x) = §VM, lim¾!1 g¾(x) = sgn(x) 8x 6= 0, j g¾(x) j<
minfVM; ¾xg and g0¾(0) = ¾.

Let S be the set of all possible states v(x) (patterns of activity) of the
system. Then a solution v(x; t) ful¯lling (1) is a trajectory in S.

We can assume that VM = 1. As for T:K £ K ! R, we assume it is
continuous almost everywhere (a.e.) in order to ensure that the integral is well
de¯ned. As a natural extension of the discrete case we introduce the local ¯eld
on (or net input to) the neuron located in x when the state of the system is
v(y; t):

hv
t (x) =

Z

K

T(x; y)v(y; t)dy

For t = 0 we write hv(x) = hv
0 (x): Note that hv is linear in v.

Let v¹0 (x) = v¹(x; 0) be an initial condition and v(x; t) the solution of (1)
associated to it. We say that v¹(x) is a memory or an attractor if and only if:

1) v¹ is an equilibrium point, i.e. v¹(x) = g¾(hv¹

t (x)) a:e:
2) For every t0 ¸ 0 and v0 a di®erent initial condition corresponding

to the solution v, there exists ±(t0) > 0 such that if k v¹ ¡ v0 k< ± then
k v¹(¢; t)¡ v(¢; t) k! 0 when t!1.

Hence, attractors are stationary solutions of (1). Assume that S=L2(K)
and that j K j<1 (K has ¯nite Lebesgue measure).

We de¯ne the energy of the system at time t0 as the functional:

H [v(¢; t0)] = ¡1

2

Z

K

Z

K

T(x; y)v(x; t0)v(y; t0)dxdy +

Z

K

v(x;t0)Z

0

g¡1
¾ (s)dsdx (2)

where H[v(¢; t0)] means that v is viewed as a function of x. Thus, each v in S
has an energy H(v). This is an extension of the energy as de¯ned in [7] for the
(discrete) model with graded response functions.

2.1 Attractors and stationary solutions

We begin by proving a useful property:

Lemma 2.1: if v(x; t) is a general solution (for some initial condition) of (1),

then it holds that:

@hv
t (x)

@t
= ¡hv

t (x) +

Z

K

T(x; y)g¾ (hv
t (y)) dy

Proof: straightforward, noting that

@hv
t (x)

@t
=

@

@t

2
4
Z

K

T(x; y)v(y; t)dy

3
5 =

Z

K

T(x; y)
@v(y; t)

@t
dy
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and using (1).

From now on we assume that T is symmetric.

Theorem 2.2: H is monotonically decreasing with t and reaches its minima at
vte(x) = v(x; te) such that

·
@v

@t
(x; t)

¸

te

= 0 (3)

a.e. in K (in words, given a solution v(x; t) corresponding to some initial con-
dition, the minima of H are equilibrium points of the system). This theorem,
as well as its proof, generalizes the classical equivalent result for the discrete
Hop¯eld model with graded response neurons [7] (see for example [1][5]).
Proof: let v(x; t) be a solution of (1) and assume it has a derivative a.e. First

observe that @
@t

"
v(x;t)R

0

g¡1
¾ (s)ds

#
= hv

t (x)@v(x;t)
@t . Di®erentiating H with respect

to t (under the integral sign) yields:

@H(v(x; t))

@t
= ¡

Z

K

@v(x; t)

@t

2
4
Z

K

T(x; y)v(y; t)dy ¡ hv
t (x)

3
5dx (4)

Noting that @v(x;t)
@t

= g0¾ (hv
t (x)) @h

v
t (x)
@t

and using lemma 2.1 we obtain:

@H(v(x; te))

@t
= ¡

Z

K

g0¾ (hv
t (x))

µ
@hv

t (x)

@t

¶2

dx · 0

Then, H is monotonic. It always decreases with t, except when it reaches a
minimum, i.e. at some te:

@H(v(x; te))

@t
= 0() @hv

t (x)

@t
jte= 0 a:e: in K

since g0¾ > 0: But

@v

@t
(x; te) = g0¾

¡
hv
te

(x)
¢ @hv

t (x)

@t
jte=)

@H

@t
(v(x; te)) = 0() @v

@t
(x; te) = 0 a:e: in K

Memories or attractor states, as de¯ned in this section, satisfy the above
conditions. However, the reciprocal implication is not necessarily true: from
the previous theorem it does not follow that if a solution v(x; t) of (1) satis¯es
condition (3) for some t¤, then v(x; t¤) is an attractor. For example, the trivial
solution v´ 0 satis¯es it for all t but, as we soon will see, its stability or instability

3rd Indian International Conference on Artificial Intelligence (IICAI-07)

116



depends on the slope ¾ of g¾ at the origin. In general, the possibility to construct
nontrivial memories strongly depends on such parameter.

The sigmoid function g¾ plays an important role in determining in which
cases the system has nontrivial stationary solutions. A necessary condition is
given by the following

Theorem 2.3: (existence and uniqueness of the solution) If ¾ < 1
MjKj , being M

such that j T(x; y) j·M, then the unique stationary solution of (1) is v´ 0.

Proof: by de¯nition of g¾, ¾ is a Lipschitz constant for it. Then, assuming that
v1 and v2 are two ¯xed points of the operator A de¯ned as

Av = g¾

2
4
Z

K

T(x; y)v(y)dy

3
5

we get (using the L2 norm):

j Av1(x)¡Av2(x) j=j g¾(

Z

K

T(x; y)v1(y)dy)¡ g¾(

Z

K

T(x; y)v2(y)dy) j

· ¾ j
Z

K

T(x; y)v1(y)dy ¡
Z

K

T(x; y)v2(y)dy j· ¾M j K j 12 k v1 ¡ v2 k

being M an upper bound for j T(x; y) j (which exists since T is continuous and
K is compact). Finally:

k Av1 ¡Av2 k·j K j 12 sup
x2K
j Av1(x)¡Av2(x) j< ¾M j K jk v1 ¡ v2 k

Then A is a contraction and has a unique ¯xed point provided ¾ < 1
M jKj .

Besides the condition ¾M j K j¸ 1, other ones (see next section) have to
be ful¯lled in order to ensure the actual existence of nontrivial solutions.

2.2 A variational approach

Historically, the function H as presented in [6] and [7] is probably a late innova-
tion in the formulation of the corresponding dynamics. We may conjecture that
the sequence of concepts at the genesis of the Hop¯eld model was as follows:
i) A stability condition is imposed (1 · i · N):

Si = sgn

0
@X

j

TijSj

1
A [6] or Vi = g¾

0
@X

j

TijVj

1
A [7]
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ii) A dynamics is proposed such that its equilibria are the states satisfying i):

Si(t+ 1) = sgn

0
@X

j

TijSj(t)

1
A [6]) or

@Vi
@t

= ¡Vi + g¾

0
@X

j

TijVj

1
A [7]

iii) A \Lyapunov function" is constructed whose minima are the attractors for
the dynamics ii):

H [S] = ¡1

2

X

ij

TijSiSj [6] or H [V ] = ¡1

2

X

ij

TijViVj +
X

i

ViZ

0

g¡1
¾ (V )dV [7]

In our case (in¯nite dimensional state space S), step i) is given by the condition
v¹(x) = g¾

¡
hv¹(x)

¢
a.e. in K while ii) corresponds to equation (1) and iii) to

the functional H as de¯ned by (2).
It is easy to go from i) to ii). As for deriving iii) from ii), it can be suggested that
the main source of Hop¯eld's and Little's works was statistical mechanics. In
our case, however, it is possible to obtain the same model through a variational
approach. We will prove, by computing the variation of H (considered as a func-
tional from L2(K;R) onto R), that every minimum of H is also an equilibrium
for the dynamics. Let us consider a function ' : K ¡! R continuous such that
' j@K= 0.

@H(v + "')

@"
j"=0= ¡1

2

Z

K

Z

K

@

@"
T(x; y)[v(x) + "'(x)][v(y) + "'(y)]dxdy j"=0

+

Z

K

@

@"

v(x)+"'(x)Z

0

g¡1
¾ (s)dsdx j"=0

=

Z

K

2
4¡
Z

K

T(x; y)v(y)dy + g¡1
¾ (v(x))

3
5'(x)dx

In order for v being a minimum for H, that quantity must vanish for every ' in
the above conditions, which forces the term between brackets to vanish a.e. in

K, i.e. v(x) = g¾

µR
K

T(x; y)v(y)dy

¶
a.e. in K. Thus, the following theorem

holds:

Theorem 2.4: if v 2 L2(K) is a local minimum for H then it is an equilibrium
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point of (1).
This result is obtained without using the fact that H is decreasing (theo-

rem 2.2). Adding that property, it is possible to conclude:

Corollary 2.5: v 2 L2(K) is a local minimum for H if and only if it is an
attractor for (1).

2.3 A general feature of attractor memories

On the base of the previous results, it can be proved that when ¾ ! 1, the
attractors approach the asymptotic bounds of g¾:

Theorem 2.6: if for some " > 0 it holds that T(x; y) ¸ 0 when j x ¡ y j< ",
then

lim
¾!1

max
v attractors; x2K

minf1¡ v(x); 1 + v(x)g = 0

Proof: consider an attractor v(x) (keeping in mind that this notation stands for
v(x; te) for some solution of (1) at time te). Note that, by virtue of theorem 2.4
and corollary 2.5, if v(x) is an attractor (a memory), then it is a local minimum
of H. First remark that

Z

K

v(x)Z

0

g¡1
¾ (v)dvdx =

1

¾

Z

K

v(x)Z

0

g¡1(v)dvdx!¾!0 0 a:e:

independently of v(x). We then need to consider only the quantity

H1 = ¡1

2

Z

K

Z

K

T(x; y)v(x)v(y)dxdy

Suppose that v 2 L2(K) is a minimum and there exists an element x¤ 2 K
such that v(x¤) 2 (¡1; 1). Then, from the piecewise continuity of the solutions,
there exists a closed neighborhood U of x¤such that v(y) 2 (¡1; 1) 8 y 2 U and
we may write:

H1 = ¡1

2
f
Z

K¡U

Z

K¡U

T(x; y)v(x)v(y)dxdy +

Z

U

Z

K¡U

T(x; y)v(x)v(y)dxdy

+

Z

K¡U

Z

U

T(x; y)v(x)v(y)dxdy +

Z

U

Z

U

T(x; y)v(x)v(y)dxdyg

Let us name A, B, C and D the four terms in H1 from left to right. D is
positive since T(x; y) ¸ 0 when j x¡ y j< " (choosing U small enough). A does
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not depend on values in U(x¤): Finally, B and C are equal and reduce to:

2

Z

U

v(x)

2
4
Z

K¡U

T(x; y)v(y)dy

3
5 dx = 2 j U j v(»)

Z

K¡U

T(»; y)v(y)dy

for some » 2 U . Then, rede¯ning v in U as

v(x) = sgn

0
@
Z

K¡U

T(x; y)v(y)dy

1
A if x 2 U (5)

B + C increases (while A remains unchanged and D also increases). Then H1

decreases and hence H decreases as well. This is a contradiction, due to the
assumption that v as de¯ned initially was a minimum.

Remark: the last step of the proof (5) can naturally be regarded from the point
of view of a ferromagnetic model (with an in¯nite number of elements in this
case). Every state change that implies the alignment of one (or more) elements
according to the local magnetic ¯eld acting on it, decreases the total energy of
the system.

3 Orthogonal memories, Hebbian synapses

The case we are specially interested in is the storage of orthogonal memories
when the matrix of synaptic weights is Hebbian. This can be achieved through
a straightforward generalization of the Hebb rule [4]. Let fv¹g be an orthogonal
set of functions in some space S(K), that is to say (v¹;vº) = 0 if ¹ 6= º. In
principle, S(K) may be noncountable and hence we can de¯ne in general:

T(x; y) =
1

j K j

Z

P

v½(x)v½(y)d½

for ½ 2 P some index set. In the case fv¹g is an orthogonal set in L2(K), it is
at most countable (provided the separability of L2(K)). Therefore it is natural
to restrict to the case in which P is countable:

T(x; y) =
1

j K j
pX

¹=1

v¹(x)v¹(y) (6)

Then the following theorem holds:

Theorem 3.1: The system (1), with T(x; y) de¯ned as in (6), may have any
¯nite number p of orthogonal memories taking values in fV¤;¡V¤g, where
g¾(§V3

¤) = §V¤.
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Proof: let p be a positive integer number and fv¹gp¹=1 ½ L2(K); (v¹;vº) = 0 if
¹6= º; v¹(x) 2 f¡V¤; V¤g ; 1 · ¹ · p; x 2 K, being V¤ the number such that
g¾(§V 3

¤ ) = §V¤ (which exists and depends on ¾): De¯ning T according to (6)
it holds that, for any ¹:

g¾(h¹(x)) = g¾(

Z

K

T(x; y)v¹(y)dy) = g¾(

Z

K

1

j K j

pX

º=1

vº(x)vº(y)v¹(y)dy)

Since the integrals are ¯nite, we can interchange the sum and the integration,
thus obtaining:

g¾(
1

j K j

pX

º=1

vº(x)±º¹ k v¹ k2) = g¾(
v¹(x) V 2

¤ j K j
j K j ) = v¹(x)

Then, v¹(x; t) = v¹(x) 8 t > 0 is a ¯xed point of equation (1).

These solutions v¹(x) look like the example depicted in Figure 1. Activa-
tion patterns of this kind agree with the intuitive generalization of the attractors
of an Ising-type, spin glass discrete neural network in which patches of full acti-
vation alternate randomly with those of full quiescence. They can also be viewed
as the vertices of an in¯nite (noncountable) dimensional hypercube.

A question arising is whether the set of orthogonal ¯xed points of (1) can
be in¯nite. Note ¯rst that it is countable: the elements v¹ as they were de¯ned
belong to L2(K), a separable space; hence every orthogonal set in it must be
countable. However even an in¯nite countable number of orthogonal ¯xed points
is not possible while preserving the integrability of T. Observe that if there are
k¹ changes of sign in v¹ then each term of the form v¹(x)v¹(y) divides the
domain K £K in (k¹ + 1)2 square regions. Moreover, each region is separated
from the next by discontinuity lines because such term takes the constant values
+V2
¤ or ¡V2

¤. If the set of memories is in¯nite, the number of terms in T that
are added is also in¯nite, therefore those discontinuity lines are dense at least in
a neighborhood of some point, and T ceases to be piecewise continuous.

Note that theorem 3.1 implies a qualitative di®erence between discrete
and continuous models. Since the memory capacity is now unbounded, there is
nothing like a \phase diagram" in which, for a domain K and above some critical
number pc of memories, a transition to a \confusion phase" takes place, implying
a rapid degradation of the retrieval ability. While in discrete models the size of
the domain is determined by the dimension of the state space (pc = ®cN), in
the present case this dimension is in¯nite and hence there is no pc.

Discussions on discrete models are mostly made in the thermodynamic
limit in which either the number of neurons and the number of memories are
taken to tend to in¯nity while their ratio is kept constant. This possibility is
lost in the continuous limit, but this is certainly not a problem as far as the
biological plausibility of the model is concerned.

We end this section with the following results that are easy to check.
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Figure 1: A memory in the space S=L2[a; b].

Lemma 3.2: If the memories are orthogonal, the distance between any two of
them is always the same.

Corollary 3.3: Orthogonal memories are never dense in L2(K).

4 Stability of the solutions

We will now derive conditions for the elements v¹, as de¯ned in Section 3, to be
stable equilibria (i.e. memories) for equation (1).

Theorem 4.1: The elements v¹ are stable ¯xed points of (1) if and only if
g0¾(V3

¤) <
1

V2¤
.

Theorem 4.2 :(Stability of the origin) The solution v´ 0 is stable if and only
if g0¾(0) = ¾ < 1

V2¤
.

Proof (both theorems): the computation of the directional derivatives of H(v)
at an arbitrary point yields:

DwH(v) = ¡ 1

j K j
pX

º=1

(vº ;v)(vº ; w) + (g¡1
¾ (v); w)

with w 2 L2(K) and k w k= 1. Now, if v = v¹, using the condition of or-
thogonality and noting that k v¹ k2= V2

¤ j K j, it follows that DwH(v) = 0.
Similarly, it is easy to check that DwH(v) vanishes in general for any element
in the set span fv¹gp¹=1, i.e. linear combinations of the memories, when those
combinations take values on fV¤;¡V¤; 0g.

D2
w2H(v) = ¡ 1

j K j
pX

º=1

(vº ; w)2 + (
@

@v
g¡1
¾ (v)w;w)
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But the vº are supposed to be orthogonal. Therefore, the use of Bessel's in-
equality yields:

pX

º=1

(vº ; w)2

k vº k2 ·k w k
2= 1()

pX

º=1

(vº ; w)2 · V2
¤ j K j

hence

D2
w2H(v) ¸ (

@

@v
g¡1
¾ (v)w;w)¡V2

¤

for any w in S, k w k= 1: Then, a necessary and su±cient condition for an
element v in S to be a minimum of H is:

(g¡10
¾ (v)w;w)¡V2

¤ > 0 8 w 2 S, k w k= 1

Theorem 4.2 follows directly from the last equation. Applying this equation to
the case in which v = v¹ and keeping in mind that g¡10

¾ (v) = (g0¾(g¡1
¾ (v)))¡1

the above condition reduces to

(
w

g0¾(g¡1
¾ (v¹))

; w)¡V2
¤ = (

w

g0¾(V2¤v¹)
; w)¡V2

¤ =
1

g0¾(§V3¤)
¡V2

¤ > 0

Since g¾ is odd, this can be rewritten as:

g0¾(V3
¤) <

1

V2¤
or g0¾(V3

¤)V
2
¤ < 1

Let us compare the necessary and su±cient condition given by theorem
4.2 for the stability of the origin with the uniqueness condition for the general
case (theorem 2.3). When T is de¯ned according to (6), the v¹'s being stationary
solutions of (1) and therefore v¹(x) 2 fV¤; 0;¡V¤g; we have:

j T(x; y) j· pV2
¤

j K j = M:

In this case the condition for the origin to be the only solution is that
¾ < 1

MjKj = 1
pV2¤

. This is more restrictive than what follows from theorem

4.2. Therefore, for the case of orthogonal memories there exists an intermediate
range for the values of ¾ (¾ 2 [ 1

pV2¤
; 1

V2¤
], which degenerates into a point if p = 1)

for which the trivial solution v´ 0 is an attractor, but not necessarily the only
solution of (1). Note, in addition, that the conditions derived in theorems 4.1 y
4.2 are independent of p (number of memories); this is a direct consequence of
the orthogonality of the memories.
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5 Basins of attraction

On the base of the preceeding results, we can now estimate the size of the basins
of attraction.

Theorem 5.1: for p ¸ 2, the largest sphere contained in the basin of attraction

of an orthogonal memory v¹; 1 · ¹ · p, has a radius k = V¤
q
jKj
2 .

In other words, whenever k v¹¡v0 k< k, the distance k v¹(¢; t)¡v(¢; t) k!
0 when t ! 1 (being v0 any initial condition for (1) and v the corresponding
solution).

Proof: the radius of the basin will be the largest number k > 0 such that
DwH(v¹ + kw) > 0 8w 2 S; k w k= 1: We know that

DwH(v) = ¡ 1

j K j

pX

º=1

(vº ;v)(vº ; w) + (g¡1
¾ (v); w)

Then:

DwH(v¹ + kw) = ¡ 1

j K j

pX

º=1

(vº ;v¹ + kw)(vº; w) + (g¡1
¾ (v¹ + kw); w)

= ¡ 1

j K j

(
V 2
¤ j K j (v¹; w) + k

pX

º=1

(vº; w)2

)

+(g¡1
¾ (v¹ + kw); w)

which is positive if and only if

(g¡1
¾ (v¹ + kw); w) >

1

j K j

(
V 2
¤ j K j (v¹; w) + k

pX

º=1

(vº; w)2

)

for every direction w. By virtue of Bessel's inequality:

pX

º=1

(vº; w)2

k vº k2 ·k w k
2= 1

and, consequently (remembering that k vº k2= V 2
¤ j K j), the condition is

satis¯ed by imposing (g¡1
¾ (v¹ + kw); w) > (g¡1

¾ (v¹); w) + kV 2
¤ or equivalently

Z

K

g¡1
¾ (v¹(x) + kw)¡ (g¡1

¾ (v¹(x))

k
w(x) dx > V 2

¤ (7)

In order to prove that inequality (7) holds no matter the direction w, let us take
the worst case: w pointing to a di®erent memory, say vº , i.e. w = vº¡v¹

kvº¡v¹k . It is

easy to check that vº ¡v¹ can take only values 0 and §2V¤ and that, by virtue
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Figure 2: Two orthogonal memories and their inverses, each one with norm

V¤
p
j K j and a spherical basin of attraction of radius V¤

q
jKj
2 .

of the orthogonality, it is 0 exactly on one half of the domain K and §2V¤ on the

other half. Then w is 0 on a subdomain of size jKj2 and
q

2
jKj on the remaining

subdomain of equal size. Thus, condition (7) may be rewritten as

j K j
2

g¡1
¾ (v¹(x) + k

q
2
jKj )¡ (g¡1

¾ (v¹(x))

k
q

2
jKj

2

j K j > V 2
¤

(multiplying numerator and denominator by
q

2
jKj ), which holds if

k

s
2

j K j < V¤ () k < V¤

r
j K j

2

Finally, the largest spherical basin of attraction has a radius equal to V¤

q
jKj
2

,

since otherwise the basins would not be disjoint, because the distance between
any two v¹ and vº is twice that quantity.

Note that this result does not imply that the basins of attraction are
spherical. It only limits the radius of spherical basins for memories v¹ and,
consequently, for ¡v¹ as well. Figure 2 shows a simpli¯ed bidimensional sketch.
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6 Spurious memories

As a consequence of the nonlinearity of the dynamics under consideration, un-
desired ¯xed points appear in addition to those purposely stored in the synaptic
operator T with the Hebb prescription. These are called spurious states or
spurious memories.

It is possible to distinguish two types of spurious states: mixture and
non-mixture memories. v is said to be a mixture state if it can be expressed

as a linear combination of the stored memories: v =
qP
i=1

®¹iv
¹i with q · p,

v¹i 2 fv¹g and ®¹i real constants. A spurious state for which no such f®¹g
exists is called a non-mixture state.

6.1 Mixture spurious states

First note that, just like in the known discrete models, for every memory v¹, ¡v¹

is also a memory. In the simple case when p = 1, there exist only two spurious
states: the origin (v ´ 0) and the inverse of the (unique) stored memory. Thus,
there are no non-mixture states for p = 1. If p ¸ 2, the analysis gets considerably
harder.

We have already mentioned the fact that every mixture state is a ¯xed
point if v(x) 2 fV¤;¡V¤; 0g 8x 2 !. This may be easily seen either by using
the linearity of hv or from the proof of theorems 4.1 and 4.2. It is also clear that
only a small subset of spanfv¹gp¹=1 contains spurious states. In particular, it

follows that if v¹ and vº are memories, then § 1
2v¹ § 1

2vº are ¯xed points of

the dynamics. This implies that there exist at least 4

µ
p
2

¶
spurious (mixture)

states. These are in general unstable, as stated by the following

Theorem 6.1: If v is a mixture spurious memory and there exists x 2 K such
that v(x) = 0, then v is a saddle point of the dynamics.

Proof: let v =
qP

¹=1
®¹v¹, 1 · q · p (renaming memories if necessary). v is

piecewise constant (since so are the v¹¶s, and there is a ¯nite number of them).
Therefore, if v(x) = 0 then it vanishes in a neighborhood U of x and it holds that

0 <
IP
i=1

®¹iv
¹i = ¡

JP
j=1

®¹jv
¹j at every point in U , being fv¹igIi=1 [fv¹igJj=1 =

fv¹igq¹=1

Let us choose w =
IP
i=1

®¹iv
¹i ¡

JP
j=1

®¹jv
¹j (we can neglect the normalizing

constant). Then w = 2
IP
i=1

®¹iv
¹i in U . Now compute

g¾(hv+"w(x)) = g¾(hv(x) + "hw(x))
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Keeping in mind that hv(x) = V 2
¤ v(x) (by hypothesis and by virtue of the

linearity of hv) and computing

hw(x) =

qX

¹=1

®¹h
v¹(x) = V 2

¤

qX

¹=1

®¹v¹(x) = 2V 2
¤

IX

i=1

®¹iv
¹i(x)

(which holds for every x 2 U), we obtain

g¾(hv+"w(x)) = g¾(V 2
¤ v(x) + 2"V 2

¤

IX

i=1

®¹iv
¹i(x))

in U: The dynamics at v + "w is (always in U ½K):

@(v + "w)

@t
= ¡2"

IX

i=1

®¹iv
¹i + g¾(2"V 2

¤

IX

i=1

®¹iv
¹i)

No matter the sign of
IP
i=1

®¹iv
¹i , the stability condition at v+"w is g¾(2"V 2

¤
IP
i=1

®¹iv
¹i) <

2"
IP
i=1

®¹iv
¹i which is equivalent to ¾ = g0¾(0) < 1

V 2¤
which is false since, by hy-

pothesis, g¾(§V 3
¤ ) = g¾V 2¤ (§V¤) = §V¤ (otherwise, g¾ would not have any ¯xed

point apart from the origin). Then v is unstable in the direction w.
Now let us choosew = v. With a similar reasoning, we get g¾(hv+"w(x)) =

g¾(V 2
¤ v(1+")) and the stability condition at v+"w is g¾(V 2

¤ v(1+")) < v(1+"):
Remembering that v = g¾(V 2

¤ v), the condition for the system to be stable at
v + "w is g0¾(V 3

¤ ) < 1
V 2¤

, which always holds since the memories v¹ are minima

of H (cf. Section 2).

This leads to the useful

Corollary 6.2: The basins of attraction for mixture states have zero radius, in
the sense of the L2(K) norm.

Example: for q = 2, all combinations of the form v = §1
2v¹ § 1

2vº are actual
spurious states and the situation can be easily illustrated (Figure 3). The direc-
tion of maximum unstability is given by v¹ ¡vº and that of maximum stability
is §v (directly towards or from the origin of coordinates).

6.2 Non-mixture spurious states

Unlike mixture spurious states, which can be calculated analytically, the non-
mixture ones are di±cult to ¯nd. Indeed, in the limit p ! 1, the following
property holds, no matter how T is de¯ned.
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Figure 3: A mixture spurious state. Dotted lines indicate limits for the spherical

basins of the two memories which compose the spurious state.

Lemma 6.3: if fv¹g1¹=1 is complete2 and p ! 1, there are no non-mixture
spurious memories.

Remark: since S=L2(K) here, a question about the meaning of lemma 6.3 may
arise, i.e. is there some basis of L2(K) whose elements take on only two values,
say §V¤? The answer is yes. The relevant example for K ½ R (that can be
extended toRn) are the Haar wavelets, which form an orthonormal and complete
basis in L2(¡1;+1). They are bi-valued, but since they are normalized, such
values change from one function to another. If normality is relaxed, it is possible
to force them to take values in fV¤;¡V¤g. If restricted to a bounded interval
K ½ R, they form an orthogonal (but not orthonormal) and complete set in
L2(K). However, if we construct T according to (6), this completeness can be
only asymptotical: as we already saw, the number of orthogonal memories can
be as large as desired, but it cannot be in¯nite.

7 Back to the discrete domain

In order for the results of Section 2 to be valid, the only condition on X is to be a
metric space (continuous or discrete). Therefore, all theorems of Section 2 hold
for the discrete Hop¯eld model with continuous ranges of activity [7], provided
that we replace the L2(K) norm with the usual euclidean norm and j K j with
N (number of neurons).

As for the results of Section 3, the situation is di®erent. Clearly, theorem
3.1 is no longer true and the same happens, in general, for lemmas and corollaries

2The set fv¹g is said to be complete in L2(K) if and only if the minimal subspace of L2(K)
which contains it is the entire space L2(K):

3rd Indian International Conference on Artificial Intelligence (IICAI-07)

128



based on the possibility of memories with an unbounded number of discontinu-
ities, such as corollary 3.3 (which has no meaning for the discrete case). Instead,
results concerning stability (Section 4) and size of attraction basins (Section
5) remain valid, with slight changes. The same is true for Section 6 (spurious
states), except for theorem 6.3 (non-mixture spurious memories), which has no
meaning for the discrete model.

Concerning the Hop¯eld model with discrete activities [6], ¯rst it must
be remarked that its metrics based on the Hamming distance is not euclidean.
However, being this metrics the discrete version of the L1 norm, which is equiv-
alent3 to the quadratic L2 norm, some results remain qualitatively true. This is
the case for theorems 2.2 and 2.4 and corollary 2.5 (as it is well known), but the
mathematical tools used here are of no help to obtain them. And, on the other
hand, the results of Sections 3 to 6 have no meaning in general (when based
on concepts of euclidean distance and directional derivatives, which are of no
application in the discrete case).

8 Conclusions

We introduced a neural network with associative memory in which processing
units are elements of a continuous metric space. This approach is intended as a
generalization of the previous ones due to Little and Hop¯eld. Our main pur-
pose was to provide a mathematical foundation in the sense that it is actually
possible to formulate a system of associative memory with graded response units
and a continuous topological structure on the set of such units, obtaining a more
biologically plausible model of associative memory. This general aim is what dis-
tinguishes the present proposal from other ones introduced in the literature and
closely related to it, especially that of MacLennan [10][11] (see the Introduction).

On the other hand, our approach preserves the salient features that made
attractive all the discrete models, especially the levels of continuity that the
second Hop¯eld model [7] added to the discrete one [6]: graded response of the
activation functions and continuous scale of time, via the transition from discrete
to continuous, di®erential equation dynamics.

Firstly (Section 2) general results were proved assuming only a symmet-
ric weight matrix T with non-negative diagonal elements. These results are
generalizations of well known properties of discrete, Ising-type models.

Then (Sections 3 to 6) we analyzed the case when the memories are or-
thogonal and the synaptic operator is constructed following the autocorrelation
(Hebb) rule. We proved:

² Hebb rule : it can be naturally extended to the in¯nite dimensional case.

² Capacity : any ¯nite set of orthogonal memories can be stored and re-
trieved. However there are, concerning capacity, some di®erences with
regard to discrete approaches.

3Two norms k ¢ k and k ¢ k0 on a vector space V are said to be equivalent norms if there
exist positive real numbers c and d such that c k x k·k x k0· d k x k 8x 2 V:
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² Stability : there exist necessary and su±cient conditions for the memories
and the origin to be stable, in terms of the relation between parameters of
the transfer function g¾.

² Basins of attraction: they have the same radius for all memories, positive
in the L2 norm.

² Spurious memories : they exist. If a spurious state vanishes at some point,
then its basin of attraction has zero radius with the L2 norm and it is a
saddle point of the dynamics.

We discussed also the validity of these results when applied to the clas-
sical, discrete models of associative memory [6][7]. Such application looks more
natural for the Hop¯eld model with graded response [7], since in this case the
concepts of euclidean distance and directional derivatives remain valid, while
in the discrete case [6] only some general, well known properties (concerning
stability and convergence to attractors) are preserved, maintaining anyhow the
qualitative similarity with the in¯nite dimensional system.

We think that this approach can be useful for modelling in biology and
neurophysiology. It retains all the stylized facts that have made attractive the
Hop¯eld neural network model and its modi¯cations, yet giving the possibility
of modelling the brain cortex as a continuous space. In other words, it integrates
two levels of continuity:

² Continuous response units, which was already present in [7] and permits
description of relevant neural activity by ¯ring rates, rather than merely
by the presence or the absence of an individual spike (although nowadays,
as pointed out in the Introduction, it is widely accepted that spiking neu-
rons have also important properties for describing certain aspects of neural
dynamics).

² Continuous topology of the neural system, obtaining a model of associative
memory that reconciles biological evidence of a continuum of the neural
tissue with descriptions provided by discrete models inspired in Ising sys-
tems.

In addition, the results proved here can also be useful, with the limitations
pointed out in Section 7, when performing the reverse track of what we have
done, namely when reconsidering the discrete case in the light of the knowledge
of what happens if the state space is continuous.
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