
Abstract Evaluating the response of climate to

greenhouse gas forcing is a major objective of the cli-

mate community, and the use of large ensemble of

simulations is considered as a significant step toward

that goal. The present paper thus discusses a new

methodology based on neural network to mix ensem-

ble of climate model simulations. Our analysis consists

of one simulation of seven Atmosphere–Ocean Global

Climate Models, which participated in the IPCC Pro-

ject and provided at least one simulation for the

twentieth century (20c3m) and one simulation for each

of three SRES scenarios: A2, A1B and B1. Our sta-

tistical method based on neural networks and Bayesian

statistics computes a transfer function between models

and observations. Such a transfer function was then

used to project future conditions and to derive what we

would call the optimal ensemble combination for

twenty-first century climate change projections. Our

approach is therefore based on one statement and one

hypothesis. The statement is that an optimal ensemble

projection should be built by giving larger weights to

models, which have more skill in representing present

climate conditions. The hypothesis is that our method

based on neural network is actually weighting the

models that way. While the statement is actually an

open question, which answer may vary according to the

region or climate signal under study, our results dem-

onstrate that the neural network approach indeed al-

lows to weighting models according to their skills. As

such, our method is an improvement of existing

Bayesian methods developed to mix ensembles of

simulations. However, the general low skill of climate

models in simulating precipitation mean climatology

implies that the final projection maps (whatever the

method used to compute them) may significantly

change in the future as models improve. Therefore, the

projection results for late twenty-first century condi-

tions are presented as possible projections based on the

‘‘state-of-the-art’’ of present climate modeling. First,

various criteria were computed making it possible to

evaluate the models’ skills in simulating late twentieth

century precipitation over continental areas as well as

their divergence in projecting climate change condi-

tions. Despite the relatively poor skill of most of the

climate models in simulating present-day large scale

precipitation patterns, we identified two types of

models: the climate models with moderate-to-normal

(i.e., close to observations) precipitation amplitudes

over the Amazonian basin; and the climate models

with a low precipitation in that region and too high a

precipitation on the equatorial Pacific coast. Under

SRES A2 greenhouse gas forcing, the neural network

simulates an increase in precipitation over the La Plata

basin coherent with the mean model ensemble pro-

jection. Over the Amazonian basin, a decrease in
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precipitation is projected. However, the models

strongly diverge, and the neural network was found to

give more weight to models, which better simulate

present-day climate conditions. In the southern tip of

the continent, the models poorly simulate present-day

climate. However, they display a fairly good conver-

gence when simulating climate change response with a

weak increase south of 45�S and a decrease in Chile

between 30 and 45�S. Other scenarios (A1B and B1)

strongly resemble the SRES A2 trends but with weaker

amplitudes.

1 Introduction

In a companion paper (Boulanger et al. 2006), we

presented a statistical method based on neural network

and Bayesian statistics aiming at optimally combining

model simulations involved in the Intergovernmental

Panel on Climate Change (IPCC) Project. We dis-

cussed the projection of future annual mean and sea-

sonal cycle temperature conditions during four 25-year

periods (2001–2005, 2026–2050, 2051–2075, 2076–2100)

and for the three scenarios A1B, A2 and B1. Our

objective is to contribute to one of the major chal-

lenges of the scientific climate community: how to take

advantage of the large ensembles of multi-model sim-

ulations provided by IPCC in the Fourth Assessment

Report. Our work mainly focuses on South America as

a contribution to the CLARIS European Project

(http://www.claris-eu.org).

In Boulanger et al. (2006), the neural network

parameters of the two-layer perceptron are optimized

with Bayesian statistics. The main advantage provided

by this method is that, instead of defining prior dis-

tributions dependent on the nature of the data and

the choice of an expert, here the choice of prior dis-

tributions depends on the neural network architec-

ture. Moreover the use of Bayesian methods to

optimize the neural network architecture avoids the

over fitting problem and allows computing hyperpa-

rameters at each IPCC model entry neuron. Such

hyperparameters (also called model weight indices,

MWIs) are indicators of the contribution of each

model to the IPCC model combination, and can, by

analogy, be considered as an optimal linear combi-

nation of the climate models in condition under which

the models do have some skill in simulating the

studied variable.

We demonstrated in the case of temperature that

both the neural network and linear projections had

some skill to represent twentieth century observa-

tions. Moreover, we found that the neural network,

when used as an extrapolator for twenty-first century

temperature change, was underestimating systemati-

cally the raw model projections, and that the multi-

plicative factor between the neural network

projection and the linear ensemble projection had a

confidence level between 0 and 1. Similarly to Tebaldi

et al. (2005), we demonstrated that such a confidence

level actually resulted from a combination of two

criteria: the bias criterion (differences between the

linear combination and observations) and the diver-

gence (IPCC inter-model variance). Before applying

the same method to another field such as precipita-

tion, one should naturally consider whether the same

kind of results should be expected. In fact, many

differences between temperature and precipitation

should be considered.

All climate models simulate fairly well the large-

scale temperature patterns and amplitudes, while very

few have skill in simulating precipitation patterns and

amplitudes. For this reason, the linear combination of

climate models based on the MWIs is unlikely to

reproduce observations as well for precipitation as for

temperature. Moreover, the model low skill in simu-

lating large-scale precipitation patterns is a strong ca-

veat in any climate change projection, and should be

kept in mind when interpreting precipitation change

projection.

All climate models simulate a large increase of

temperature with a relatively high coherence between

the models. As a consequence, the future temperature

values are out of the range of observations, and so of

the neural network training data set. That is why it was

relatively easy in Boulanger et al. (2006) to ‘‘linearize’’

the network projection and interpret its results as the

product of a linear combination of climate models

using a confidence level. As we will show, the simula-

tion of precipitation strongly diverges from one model

to another making more difficult to evaluate a linear

MWI based projection.

Because of the above, it is likely that the linear

combination will have no significant skill for precipi-

tation, and that the network will not be ‘‘linearizable’’.

Thus, we will analyze the network projections consid-

ering criteria different from those introduced in Boul-

anger et al. (2006).

Before presenting the method and results, it is

important to note that our method is actually based

on a statement and an hypothesis. The statement is

that the weight given to a model when computing the

mix of their twenty-first climate conditions should

depend on its skill in representing present climate
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conditions. The hypothesis is that our method based

on neural network is actually weighting the models

that way. While the statement is actually an open

question, which answer may vary according to the

region or climate signal under study, our results will

demonstrate that the neural network approach indeed

allows to weighting models according to their skills.

As such, our method is an improvement of existing

Bayesian methods developed to mix ensembles of

simulations (e.g., Tebaldi et al. 2005). However, the

general low skill of climate models in simulating

precipitation mean climatology implies that the final

projection maps (whatever the method used to com-

pute them) may significantly change in the future as

models improve. Therefore, the projection results for

late twenty-first century conditions are presented as

possible projections based on the ‘‘state-of-the-art’’ of

present climate modeling, but the reader should be

cautious that the statistical optimization of the

ensemble mix does not mean that the projection maps

are more likely to be representative of the climate

changes to be observed in the future.

Data, models and scenarios used in the present study

are described in Sect. 2. In Sect. 3, we discuss the

method. In Sect. 4, we present the calibration on

twentieth century observations. In Sect. 5, climate

change projections are analyzed for precipitation mean

state and seasonal cycle for the three scenarios A2,

A1B and B1. In Sect. 6, we conclude and discuss the

results summarizing the regional impacts of mean state

and seasonal cycle changes.

2 Data, models and scenarios

2.1 Data

The CRU TS 2.0 dataset comprises 1,200 monthly

grids of observed climate and covers the global land

surface at 0.5� resolution. There are five climatic vari-

ables available: cloud cover, DTR, precipitation, tem-

perature and vapor pressure. The precipitation data set

is the CRU TS 2.0 dataset, which comprises

1,200 monthly grids of observed climate (from 1901 to

2002) and covering the global land surface at 0.5�
resolution. The authors have already used a previous

version (New et al. 2000) of this dataset (Boulanger

et al. 2005), and showed that at least for precipitation

the comparison to satellite-based rainfall in South

America was relatively good. Considering that we are

mainly interested by large-scale patterns, the data are

interpolated onto a 2.5� · 2.5� grid.

2.2 Models

The seven Atmosphere–Ocean Global Climate Models

(AOGCMs) also analyzed in Boulanger et al. (2006)

are listed in Table 1. All the model outputs are inter-

polated over the 2.5� · 2.5� grid defined for the

observations. Some models have finer resolutions,

others have coarser resolutions, but overall the 2.5�
resolution grid is a good compromise, which does not

affect the large-scale patterns, and which allows a

reasonable level of regional description.

2.3 Scenarios

A detailed description of the IPCC SRES (Special

Report on Emissions Scenarios) scenarios is given in

Boulanger et al. (2006).

3 Method

The reader is referred to Boulanger et al. (2006) for a

full discussion on the methodology. Briefly, the prob-

lem we want to solve is to compare spatial maps of a

multi-model set to observations. Therefore, we use a

two-layer perceptron (MLP) defined by:

• In the input layer: one neuron for the longitude

position, one neuron for the latitude position and as

many additional neurons as models (in our case 7).

• In the output layer: one neuron for observations.

• In the hidden layer: a number of neurons to opti-

mize.

Moreover, the method computes hyperparameters

(Boulanger et al. 2006; Nabney and Netlab 2002),

which allow computing MWI values comprised be-

tween 0 and 1. The MWI values could, by analogy, be

compared to a linear weight applied to each model

when combining them linearly. Whether such a linear

combination has any skill in representing observations

depends on the models used to compute it. For pre-

cipitation, we found these MWI values do not add

much to the discussion.

As explained in Boulanger et al. (2006), we opti-

mized the MLP for different architectures (number of

neurons in the hidden layer). For each architecture

(from 1 to 15 neurons), we selected two ‘‘best’’ net-

works based either on a Bayesian [best evidence value;

see Boulanger et al. (2006)’s appendix] or classical

criterion (minimum error when comparing the network

projection to observations over a test period, 1951–

1975, different from the training period). Figure 1

displays the training and test errors based on the mean
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annual precipitation fields. Our sensitivity results are

similar whether we study the seasonal precipitation

fields or the mean annual field. In the case displayed in

Fig. 1, both the training and test errors decrease from 1

to 5 neurons and then remain relatively stable thanks

to the MLP parameter optimization evidence proce-

dure, which avoids the over fitting of the MLP to the

data. As our results (twenty-first century precipitation

projections) were not found to be sensitive at 15 neu-

rons or more, only the architectures between 3 and 15

neurons selected by the Bayesian or classical approach

are taken into account in the present study.

4 Calibration to twentieth century observations

4.1 Precipitation mean state

4.1.1 Model–data comparison

Figure 2 compares the annual mean observations to

the seven models. It should be noted here that CRU

data are considered as reference for the sake of

describing the methodology. Further analysis with

more IPCC models should also take into account the

uncertainty on the ‘‘observed’’ datasets used to evalu-

ate the twentieth century model skills. The models

strongly differ from each other and from observations.

However, among these seven models, we can identify

two types. The first-type model (CNRM, MPI, UKM,

NCAR) displays a Northwest–Southeast precipitation

axis over the Amazonian basin characteristics of the

South American Monsoon (Zhou and Lau 1998)

comparing relatively well to observations. The second-

type models (IPSL, GFDL, MIROC) simulate a much

weaker precipitation in that region, but very strong

Table 1 General description of the analyzed seven global climate models

Model name
and institute

Ocean model Atmosphere model Land model Ice model References

ipsl_cm4
IPSL

OPA8.1
2·2L31

LMDZ.3-96·72·19 ORCHIDEE1.3 LIM

cnrm_cm3
Météo-France

OPA8.1
2·2L31

Arpege-Climat v3
(T42L45, cy 22b+)

TRIP Gelato 3.10 Salas-Mélia et al. (2004)

mpi_echam5
MPI

(1·1L41) ECHAM5 (T63L32) ECHAM5 Roeckner et al. (2003)
Marsland et al. (2003)
Haak et al. (2003)

ukmo_hadcm3
UKMO

1.25 · 1.25 2.5 · 3.75 MOSES1 Gordon et al. (2000)
Johns et al. (1997)

ncar_ccsm3_0
NCAR

POP1.4.3, gx1v3 CAM3.0, T85L26 CLM3.0, gx1v3 CSIM5.0, T85 Collins et al. (2006)

gfdl_cm2_1
GFDL

OM3.1
(mom4p1p7_om3p5,
tripolar360x200L50)

AM2.1 (am2p13fv,
M45L24)

LM2 SIS Delworth et al. (2006)
Gnanadesikan et al. (2006)
Wittenberg et al. (2006)
Stouffer et al. (2006)

miroc3_2_medres
MIROC

COCO3.3
256·192 L44

AGCM5.7b, T42 L20 MATSIRO T42 COCO3.3,
256·192 L44
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Fig. 1 Sensitivity of the evidence (upper panel), training error
variance (middle panel, in �C2) and test error variance (lower
panel, in �C2) to the number of neurons in the hidden layer. The
training error variance is computed over the training period
(1976–2000). The test error variance is computed over the 1951–
1975 period. Solid lines represent the values for the networks
selected using the classical approach. The dashed lines represent
the values for the networks selected using the Bayesian approach
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precipitations along the equatorial Pacific coasts.

Whether such model types can be generalized will re-

quire further analysis of all the models available in the

IPCC database. Such an analysis goes beyond the

scope of the present study.

Over the La Plata basin, most of the models

underestimate the precipitation and do not simulate

the precipitation amplitude from 15 to 35�S along the

Atlantic coast. However, south of 35�S, the models do

not reproduce the very weak annual precipitation

amplitude and they overestimate precipitation on both

the Chilean and Argentinean sides of the southern tip.

Summarizing the characteristics of the seven-model

ensemble (Fig. 3), the model mean bias relative to

observations is characterized by weaker precipitation

in northern South America (Colombia, Venezuela,

Guyana, Brazil) and over the La Plata basin, and by

stronger precipitation in Nordeste (Brazil) and along

the Pacific coast and the southern tip south of 35–40�S.

The median is very similar to the mean suggesting the

extremes do not strongly affect the mean value. The

minimum difference to observations displays negative

values almost everywhere except along the Chilean

coasts and the southern tip. The existence of positive

minimum difference values is indicative of the strong

bias of the models in those regions. The maximum

difference displays negative values in northern South

America and in the La Plata basin in agreement with

the common bias of the models and positive values

near Bolivia and in Nordeste. Overall, the divergence

between the models shows strong values in Nordeste,

Bolivia, the Pacific coast and the southern tip of the

continent. To conclude, each region of South America

either presents a strong bias or a strong divergence,

both representative of the overall low skill of the

ensemble in representing precipitation patterns and

amplitudes.

4.1.2 Precipitation model index

In order to quantify, which models better represent

observations, we computed the square of the model–

observation difference averaged over the entire conti-

nent (Fig. 4a), north of 35�S (Fig. 4b) and south of

35�S (Fig. 4c). Such a separation makes it possible to

identify skills in the tropical region vs. the southern tip

of the continent. All the results are scaled by the

square of the observations averaged over the same

regions. As discussed previously, the amplitudes of the

model errors are larger in the southern region than in
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Fig. 2 Annual mean precipitation for observations and each of the seven models computed over the 1976–2000 period. Contours are
every 1 mm/day
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the northern. Overall, the models, which agree better

with observations and in the two regions, are CNRM,

MPI, UKMO and NCAR (although MIROC displays a

better agreement in the Tropics). Interestingly, these

are also the models, which better simulate the South

American Monsoon System (Fig. 2).

4.2 Precipitation seasonal cycle

4.2.1 Model–data comparisons

The departure of the four seasons (December–Febru-

ary, DJF; March–May, MAM; June–August, JJA;

September–November, SON) from the mean state are

displayed in Figs. 5, 6, 7 and 8 for observations and the

seven models.

In austral summer (DJF; Fig. 5), observations are

characterized by negative anomalies (deficit in pre-

cipitation) over the northernmost part of South

America, and heavier precipitation along a west–east

band around 10�S from the Pacific coast to 50�W,

where we can observe the northwest–southeast axis

typical of the South American Monsoon. Models such

as CNRM, MPI or UKMO do simulate too zonal an

axis of heavy precipitation. MIROC and NCAR sim-

ulate very large precipitation over Nordeste. Despite

models with very big amplitudes in the tropical

southeast region, the model mean bias (not shown) to

observations is characterized by a deficit in precipita-

tion over most of the Amazonian basin as well as along

the Andes on their eastern side from 15 to 35�S, and by

too strong precipitation along the Pacific coast and in

Nordeste. The divergence between the models is strong

over most of the tropics, and weakens south of 30�S.

In austral fall (MAM; Fig. 6), heavy precipitations

are observed over northeastern equatorial South

America with a relatively zonal band separating

northern equatorial region and southern South

America. Most of the models represent this large-scale

pattern, although they often overestimate the negative

anomalies near 15�S. Moreover, most of the models

simulate the heavy precipitation at the Atlantic coast

south of the equator, when it is observed slightly north

or at the equator in the observations. The divergence

between the models along the zonal precipitation axis

is strong (not shown).
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Fig. 3 Indices computed on
the annual mean precipitation
of each model scaled by the
annual mean observed
precipitation: mean bias
(difference between the
models mean and
observations); median
(median of the difference);
minimum difference
(minimum value of the
differences between each of
the seven model ensemble
and observations at each
point of the grid); maximum
difference (maximum value of
the differences between each
of the seven model ensemble
and observations at each
point of the grid); divergence
(standard deviation of the
model–observations
differences at each grid
point). All contours are every
0.1 U. Values larger or
smaller than 1 are not plotted
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In austral winter (JJA; Fig. 7), the patterns are rel-

atively symmetric respective to austral summer condi-

tions both in observations and in models.

Finally, in austral spring (SON; Fig. 8), the observed

and simulated patterns are not anti-symmetric to the

MAM patterns, except in the equatorial Atlantic

coastal regions. The models have difficulties in repre-

senting the patterns during that season, except UKMO

and MIROC, which capture most of the patterns and

their amplitudes.

4.2.2 Precipitation model index

As previously, we computed the model errors to

observations, but we present only the continentally-

averaged index (Fig. 9). In agreement with the previ-

ous model–data comparison, the models, which agree

better with data during the four seasons are the MPI,

UKMO and MIROC models.

4.3 Neural network validation

Figure 10 compares the neural network (MLP hereaf-

ter) projection to observations during the training

period (1976–2000) and the test period (1951–1975).

First, the MLP projection during the training period

displays less biases than the linear ensemble mean

(Fig. 3) or any model in particular (not shown), con-

firming that the MLP is able to build a transfer function

based on all the models to correct most of their biases.

The MLP projection during the test period displays

basically the same patterns and amplitudes as during

the training period leading to large differences with

observations. Indeed, precipitation amplitudes have

been observed to change before and after the 1970s.

Actually, no model simulates such changes (Fig. 11)

explaining why the MLP does not simulate them ei-

ther. We can also observe that the MLP ensemble

variance (computed on 26-member ensemble) is rela-

tively weak suggesting good coherence between all the

network projections. It is interesting to note that the

four-season average represents the same patterns as

the annual mean projection, although the differences

to observations are slightly weaker (not shown).

When comparing observations and MLP fit for each

season (Fig. 12), it also appears that the MLPs are

relatively good in correcting the model biases in order

to recover the large scale observed patterns. However,

the ensemble error is larger especially in austral winter

in the equatorial band when precipitation is the largest.

5 Twenty-first century projection

5.1 Precipitation mean state

The MLP optimized in the previous section is used as a

function transfer to combine simulated twenty-first

century climate change conditions.

5.1.1 Model–projection comparison

In a first step, we compared the mean precipitation

projection given by the method when mixing the seven

model outputs for the three scenarios A2, A1B and B1

and for the four 25-year periods (2001–2005, 2026–

2050, 2051–2076 and 2076–2100). For the sake of sim-

plicity, we will only consider such a comparison for

scenario A2 during 2076–2100 (Figs. 13, 14).

First, the ensemble of models simulate an increase

of precipitation on the equatorial Pacific coasts

(Figs. 13, 14). The ensemble of models simulate a de-

crease of precipitation over Colombia and Venezuela

with a potential extension to the Amazons mouth

(Figs. 13, 14). However, the models strongly disagree

on the evolution of precipitation over the Amazon

forest. While the minimum displays a strong decrease
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Fig. 4 Precipitation model index representing the scaled rms
difference between each model and observations: top, for the
entire continent; middle, for the region north of 35�S; bottom, for
the region south of 35�S
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Fig. 5 Same as Fig. 2 but for the DJF season. Contours are every 1 mm/day
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Fig. 6 Same as Fig. 5 but for the MAM season
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Fig. 7 Same as Fig. 5 but for the JJA season
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Fig. 8 Same as Fig. 5 but for the SON season

J.-P. Boulanger et al.: Projection of future climate change conditions 263

123



 IPSL  CNRM  MPI UKMO  NCAR  GFDL  MIROC
0.2

0.3

0.4

0.5

 IPSL  CNRM  MPI UKMO  NCAR  GFDL  MIROC
0.2

0.4

0.6

0.8

1

 IPSL  CNRM  MPI UKMO  NCAR  GFDL  MIROC
0.4

0.6

0.8

1

1.2

 IPSL  CNRM  MPI UKMO  NCAR  GFDL  MIROC

0.8

1

1.2

1.4

1.6

DJF MAM

JJA DJF

Fig. 9 Same as Fig. 4 but for
the four seasons and only for
the entire continent

Observations

1 3 5 7 9

Ensemble

1 3 5 7 9

Difference

-1.6 0.8 0 0.8 1.6

Ensemble Variance

Observations Ensemble Difference Ensemble Variance

0.1 0.3 0.5 0.7 0.9

 -1.6 -0.8 0 0.8 1.6  -1.6 -0.8 0 0.8 1.6  -1.6 -0.8 0 0.8 1.6 0.1 0.3 0.5 0.7 0.9

80°W 60°W 40°W
60°S

45°S

30°S

15°S

0°

15°N

80°W 60°W 40°W
60°S

45°S

30°S

15°S

0°

15°N

80°W 60°W 40°W
60°S

45°S

30°S

15°S

0°

15°N

80°W 60°W 40°W
60°S

45°S

30°S

15°S

0°

15°N

80°W 60°W 40°W
60°S

45°S

30°S

15°S

0°

15°N

80°W 60°W 40°W
60°S

45°S

30°S

15°S

0°

15°N

80°W 60°W 40°W
60°S

45°S

30°S

15°S

0°

15°N

80°W 60°W 40°W
60°S

45°S

30°S

15°S

0°

15°N

Fig. 10 Upper panels (from left to right): Annual mean
observations (1976–2002 mean; contours are every 1 mm/day);
neural network projection of the seven models annual mean
precipitation (contours are every 1 mm/day); differences
between the neural network projection and observations (con-
tours are every 0.4 mm/day); ensemble variance (computed with
all the neural network projections based on 3 to 15 neurons in the
hidden layer; contours are every 0.1 mm/day). Lower panels

(from left to right): differences between (1976–2000) and (1951–
1975) averaged observed precipitation (contours are every
0.4 mm/day); same for the neural network projection (contours
are every 0.4 mm/day); differences between the first two panels
(contours are every 0.4 mm/day); ensemble variance (computed
with all the neural network projections of the 1951–1975 period;
contours are every 0.1 mm/day)
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(due to the UKMO mode, Fig. 14), the maximum dif-

ference is positive and the divergence is large. Finally,

most of the models simulate a positive increase of

precipitation over the La Plata basin along the Atlantic

coast from southern Brazil to 35�S (positive mean and

low divergence value). Moreover, in the southern tip of

the continent, the models display a relatively good

agreement projecting an increase south of 50�S and a

decrease in precipitation between 30 and 50�S over

Chile.

Interestingly, the MLP projection (Fig. 13) is in

good agreement with the mean changes described in

Fig. 14. The major disagreement between the two

methods, and therefore the potential contribution of

the neural network to the climate change projection, is

over the Amazon basin where the MLP projection

displays a strong decrease of precipitation. When

comparing the MLP pattern to each of the model

patterns (Fig. 13), it is clear that this result is strongly

influenced by the UKMO response to greenhouse ga-

ses. It is worth noting that the UKMO model is also

one of the models, which best-simulated present-day

climate conditions. This result confirms the fact that

the MLP weights the models according to their skill in

simulating present-day climate. Whether a model with

skill in simulating observations will have skill in sim-

ulating climate change under greenhouse gas forcing is

an open question. Anyway, due to the satisfactory

comparison between the MLP projection and the

model mean projection (which weights all models the

same), we will only focus in the following on the MLP

projection considering that the MLP is actually skilful

in projecting climate model precipitation projections.

5.1.2 Twenty-first century projection

Figure 15 displays the twenty-first century SRES A2

projected mean precipitation changes for the four 25-

year periods (2001–2025, 2026–2050, 2051–2076 and

2076–2100). It clearly appears that the patterns dis-

played during each 25-year period are very similar and

that they mainly differ in their amplitudes. As has al-

ready been pointed out the ensemble variance is rela-

tively weak and therefore not shown. The major results

show that:

• The positive trend already observed during the last

30 years over the La Plata basin (Boulanger et al.

2005) could continue and expand during the

twenty-first century.
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Fig. 11 Same as Fig. 2 but for the differences of both observed and simulated precipitation averaged between the 1976–2001 and 1951–
1975 periods (contours are every 0.4 mm/day)
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Fig. 12 Observation, neural network projection, difference
between the two and neural network ensemble variance for
each seasonal mean. From top to bottom: December–January–
February (DJF), March–April–May (MAM), June–July–August

(JJA) and September–October–November (SON). Contours are
every 1 mm/day for both observations and neural network
projection, 0.4 mm/day for the difference and 0.1 mm/day for
the ensemble variance
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• The negative trend observed in Chile would also

continue and be amplified by the end of the cen-

tury.

• The extreme southern tip of the continent could

experience a weak increase in precipitation.

• The equatorial Pacific coastal regions could expe-

rience a strong increase in precipitation in the sec-

ond half of the century.

• The equatorial Atlantic coastal regions could see a

strong decrease in precipitation during the second

half of the century. Whether the opposite signals on

both sides of the equatorial continent are connected

should deserve further analysis.

• Finally the Amazon basin could experience a neg-

ative trend during the century. As pointed out

previously, all these results projected by the MLP

are consistent with the mean projection changes.

Only the evolution in the Amazon basin differs due

to the stronger weight given by the MLP to the

UKMO model.

The same projection for the other scenarios A1B

and B1 for the last 25-year period is displayed in

Fig. 16. We find the method to be relatively consistent

as the patterns are very similar to the ones projected

for scenario A2. The figures only differ in amplitude.

SRES A1B amplitude pattern is intermediate be-

tween the 2051–2075 and 2076–2100 SRES A2 pat-

terns. SRES B1 amplitude pattern is intermediate

between the 2026–2050 and 2050–2076 SRES A2

patterns.

5.2 Precipitation seasonal cycle

For sake of clarity and brevity, we do not present here

the comparison between the ensemble and the evolu-

tion of each model precipitation patterns for each

25-year period and each of the four seasons. We con-

centrate rather on the description of the late twenty-

first century projection under SRES A2 greenhouse gas

forcing.

Figure 17 displays late twenty-first century SRES

A2 projection for each season analyzing the changes in

the departures from the annual mean field. Some

striking large-scale patterns can be observed:

1. First, in DJF, the largest increase (0.5 mm/day) is

observed north of the equator, and the largest

decrease (–0.5 mm/day) is observed in the area of

influence of the South American Monsoon and of
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Fig. 13 2076–2100 SRES A2 annual mean precipitation change projected by the neural network method compared to the annual mean
precipitation change simulated by each model. Contours are every 0.5 mm/day
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the low-level jet (along the Andes between 15 and

35�S).

2. In MAM, major patterns of precipitation increase

are observed along the equatorial Atlantic coast

and east of the Andes between 15 and 40�S in the

semi-arid region where a strong positive precipi-

tation jump in that season has been observed

during the last 30 years (Minetti and Vargas 1997,

1999; Boulanger et al. 2006). The largest decrease

is observed at the equator on the Atlantic side

between 20 and 30�S.

3. In JJA, precipitation increases strongly on the

equatorial Pacific coast and weakly near the

equator over the eastern Amazon basin. A strong

decrease is observed near the equator and 60�W in

a region of strong southern gradient. This value

may thus only result in a latitudinal change in the

position of strong precipitation, located north of

the equator at this season.

4. Finally in SON, the patterns are characterized by

a decrease of precipitation over most of the

Amazon basin, the northern South America and

the equatorial Pacific coastal region. Nordeste and

the Brazilian Atlantic coasts could experience

positive anomalies.

As pointed out earlier the large-scale patterns for

changes in seasonal anomalies under SRES A1B and

SRES B1 are weaker and quite similar to SRES A2

(not shown).

6 Conclusion and discussion

The present study aims at projecting South American

climate change conditions during the twenty-first cen-

tury for three different economic scenarios (A2, A1B

and B1). In a companion paper, we analyzed the pro-

jection of temperature mean state and seasonal cycle

demonstrating how neural networks optimized by

Bayesian methods provided useful information. Here,

we analyze annual mean and seasonal cycle of pre-

cipitation. Many differences exist between temperature

and precipitation. First, climate models represent fairly
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Fig. 14 Indices computed on
2076–2100 SRES A2 annual
mean precipitation change
simulated by the seven
models (relative to 1976–2000
simulated conditions): mean
(mean projection of the
ensemble; contours are every
0.5 mm/day); median of the
ensemble (contours are every
0.5 mm/day); minimum value
of the ensemble (contours are
every 0.5 mm/day); maximum
value of the ensemble
contours are every 0.5 mm/
day); divergence (standard
deviation of the ensemble
differences contours are every
0.2 mm/day)
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well the general spatial patterns of temperature, while

they fail in representing properly precipitation. Such

a contrast impedes combining linearly the climate

models as we did for temperature in Boulanger et al.

(2006). Second, climate models are relatively coherent

in their twenty-first century projections simulating a

strong warming of the entire continent with larger

amplitudes in the Tropics than in the southern regions.

Such future values are beyond the range of the dataset

used for training the neural network making its

extrapolation skill questionable.

Climate models, however, display strong divergence

and bias in modeling present-day precipitation condi-

tions. Moreover, they do not simulate similar patterns of

precipitation changes during twenty-first century. De-

spite these differences with the temperature analysis

(Boulanger et al. 2006), results on twentieth and

twenty-first century climate simulated by the models

converged on the following items:

Our set of climate models can be roughly divided

into two model-types. The first-type models simulate

fairly well the heavy precipitation characteristics of the

South American Monsoon System (SAMS). The sec-

ond-type models simulated poorly the patterns and/or

amplitude of the SAMS and overestimated the
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Fig. 15 SRES A2 annual mean precipitation projections for
each period 2001–2025, 2026–2050, 2051–2075 and 2076–2100
(contours are every 0.25 mm/day)
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Fig. 16 2076–2100 projections respectively for SRES A1B and
SRES B1 (contours are every 0.25 mm/day)
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Fig. 17 Seasonal anomalous precipitation changed for SRES A2
2076–2100 neural network projection (contours are every
0.25 mm/day)
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precipitation along the Pacific equatorial coasts sug-

gesting a potential relationship between these two

biases.

Under SRES A2 greenhouse gas forcing, the models

converged fairly well in projecting weaker precipita-

tion in northern South America and in southern Chile,

stronger precipitation along the Pacific equatorial

coasts and in the La Plata basin. The only divergence

found (which is also a difference between the model

ensemble mean change and the neural network pro-

jection) is about precipitation change over the Amazon

basin. While the neural network gives more weight to

the UKMO model and projects a decrease in precipi-

tation, the mean projection (all models are weighted

the same) has a near-zero value. The analysis of a

larger set of models will be required.

We found that the three scenarios (A2, A1B and

B1) display similar patterns and differ only in ampli-

tude confirming results obtained by Ruosteenoja et al.

(2003) and Boulanger et al. (2006) for temperature.

However, SRES A1B differ from SRES A2 mainly in

the late twenty-first century reaching more or less 90%

amplitude respective to SRES A2. SRES B1, however,

diverges from the other two scenarios as soon as 2025

(not shown). In late twenty-first century, SRES B1

displays amplitude about half the ones of SRES A2.

In the northern part of South America, anomalous

seasonal precipitation increases in summer and de-

creases in winter. During austral summer, the South

American Monsoon would be weaker. Nordeste in

Brazil would receive less precipitation in austral sum-

mer, but more precipitation in winter and spring. Other

scenarios (A1B and B1) strongly resemble the SRES

A2 trends but with smaller amplitudes as previously

stated.

Before concluding, it is important to highlight that

climate models present significant errors in simulating

the patterns and amplitudes of present-day climate

conditions. Therefore, despite the convergence in fu-

ture changes shown by various models, the projection

maps presented here must be taken with caution.

There is no doubt that the improvements in particular

of land-surface models will contribute to a significant

increase in model skills in simulating observations and

the major climate processes at work in South Amer-

ica.

To conclude, our objective was to demonstrate

that the use of a neural network optimized by a

Bayesian method allowed to mix ensemble of climate

simulations weighting each model according to its

skill in simulating twentieth century climate condi-

tions. Therefore, our method is a contribution and an

improvement of existing Bayesian methods devel-

oped to mix ensembles of simulations (e.g., Tebaldi

et al. 2005). However, it must be highlighted that the

general low skill of climate models in simulating

precipitation mean climatology implies that the final

projection maps (whatever the method used to

compute them) may significantly change in the future

as models improve. Therefore, the projection results

for late twenty-first century conditions are suggestive

of possible projections based on the ‘‘state-of-the-

art’’ of present climate modeling. Finally, a major

hypothesis of our method as well as many other

statistical methods used to project model ensembles

is that the weight given to each model when pro-

jecting twenty-first century changes depends on the

model skill in simulating the twentieth century

conditions. We believe this hypothesis is actually a

field of new investigation as the physics of response

to greenhouse gas forcing is likely to be different

from the physics of present-day climate natural

variability.
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