
Abstract Daily weather generators are used in many

applications and risk analyses. The present paper ex-

plores the potential of neural network architectures to

design daily weather generator models. Focusing this

first paper on precipitation, we design a collection of

neural networks (multi-layer perceptrons in the pres-

ent case), which are trained so as to approximate the

empirical cumulative distribution (CDF) function for

the occurrence of wet and dry spells and for the pre-

cipitation amounts. This approach contributes to cor-

rect some of the biases of the usual two-step weather

generator models. As compared to a rainfall occur-

rence Markov model, NNGEN-P represents fairly well

the mean and standard deviation of the number of wet

days per month, and it significantly improves the sim-

ulation of the longest dry and wet periods. Then, we

compared NNGEN-P to three parametric distribution

functions usually applied to fit rainfall cumulative dis-

tribution functions (Gamma, Weibull and double-

exponential). A data set of 19 Argentine stations was

used. Also, data corresponding to stations in the Uni-

ted States, in Europe and in the Tropics were included

to confirm the results. One of the advantages of

NNGEN-P is that it is non-parametric. Unlike other

parametric function, which adapt to certain types of

climate regimes, NNGEN-P is fully adaptive to the

observed cumulative distribution functions, which, on

some occasions, may present complex shapes. On-

going works will soon produce an extended version of

NNGEN to temperature and radiation.

1 Introduction

Weather risk management requires the analysis of

large sets of climate observations with long history

records, at least, on daily time scale. Moreover, the use

of stochastic models simulating daily weather condi-

tions with characteristics similar to past observations

(Hutchinson 1986; Woolhiser 1992) makes it possible

to make more accurate risk analysis than data analysis

alone. Such stochastic models are valuable for many

applications such as modeling crop growth, develop-

ment and yields (Sharpley and Willians 1990; Hansen

and Ines 2005), modeling hydrological processes and

river flows (Siriwarden et al. 2002), pricing financial

contracts known as weather derivatives (Caballero

et al. 2001; Jewson 2004) and predicting impact of cli-

mate change (Wilks 1992; Semenov and Barrow 1997).

Abundant literature is dedicated to these stochastic

models, and the reader is referred to Sirkanthan and

McMahon (2001) for an exhaustive review of existing

models. Briefly, Sirkanthan and McMahon (2001) de-
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scribe four classes of daily rainfall stochastic models:

two-part model (e.g. Richardson 1981), transition

probability model (e.g. Allen et Haan 1975; Srikanthan

and McMahon 1983, 1985), resampling model (Lall

et al. 1996; Rajagopalan et al. 1996; Rajagopalan and

Lall 1999) and ARMA (Auto Regressive Moving

Average) model (e.g. Adamowski and Smith 1972;

Hutchinson 1995). These models can be complemented

by conditional rainfall models, which depend on

weather patterns (Hay et al. 1991) or large-scale events

such as the El Niño/Southern Oscillation (ENSO; see

Woolhiser 1992) and/or by a multiple site approach

(Wilson et al. 1992; Wilks 1998, 1999a; Charles et al.

1999).

In the present study, we will focus on the precipita-

tion component of a two-part model (the second part

deals with temperature and radiation; see Richardson

1981) designed for one station only. The precipitation

component will be analyzed as a two-step class model,

i.e. the model first simulates the rainfall occurrence (wet

or dry day) and then the rainfall amount when it rains.

Our Neural Network Based Daily Precipitation Gen-

erator (NNGEN-P) uses a collection of multi-layer

perceptrons to approximate the empirical cumulative

distribution (CDF) function for the occurrence of wet

and dry spells and for the precipitation amounts for each

month and each location. By means of these approxi-

mations and a uniform random generator, we simulate a

random variable that follows the empirical PDF.

Different existing models and those we will consider

for comparison to NNGEN-P are discussed in Sect. 3.

In Sect. 4, we first consider the rainfall occurrence re-

sults based on 19 stations in Argentina. In Sect. 5,

NNGEN-P rainfall simulation is compared to three

parametric distribution models at 19 Argentine sta-

tions. The NNGEN-P performance in other regions of

the world is also presented in Sect. 6. Section 7 shows

that NNGEN-P is able to simulate fairly well extreme

event probabilities as defined in Frich et al. (2002).

Conclusions are presented in Sect. 8.

2 Data

2.1 Argentine data

Daily precipitation time series at 19 Argentine sta-

tions covering the 1959–2001 period are used in this

paper. The Argentine stations analyzed are located

north of 40�S and east of 67�W. The region under

study is part of the La Plata basin, and forms the most

important agricultural and hydrologic center of

Argentina. Figure 1 shows the stations used and Ta-

ble 1 gives their names, provinces, latitude, longitude

and record length. The data used, provided by the

respective National Weather Services, were processed

to obtain consistent homogeneous databases. All sta-

tions selected have less than 10% of entire months

missing for their period of record. Stations were sub-

jected to statistical tests to check for artificial jumps,

outliers and trends in the monthly series (Buishand

1982).
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Fig. 1 Map of Argentina with
the location of the 19 stations
analyzed. Table 1 summarizes
each station location
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2.2 European data

In order to evaluate our method in different climates,

NNGEN-P was applied to daily precipitation data

available on the data server of the European Climate

Assessment and Dataset (ECA&D, http://www.e-

ca.knmi.nl). The ECA dataset contains daily resolution

series of observations at meteorological stations

throughout Europe and the Mediterranean. The series

are quality controlled and individual data that are

‘‘OK’’, ‘‘suspect’’ or ‘‘missing’’ are flagged. Homoge-

neity testing has resulted in classification of series in

‘‘useful’’, ‘‘doubtful’’ or ‘‘suspect’’. These classes hold

only for the particular time intervals for which the tests

were applied. The use of the results of the homogeneity

tests for selecting appropriate series is recommended.

Note that the series have not been homogenized in the

sense that values have not been changed. Analyzed

stations are shown in Table 2.

2.3 Other data

In order to evaluate our method in different climates,

NNGEN-P was applied to daily precipitation data as

provided by the National Climate Data Center. We

used Version 6 of dataset on line for January 1994–

December 2004. Data are available via http://

www.ncdc.noaa.gov. The on line data files begin in

January 1994. About 8,000 stations’ data are typically

included in the dataset. We selected stations from

United States and the Tropics. Tables 3 and 4 sum-

marize all the analyzed stations.

3 The two-step stochastic model

3.1 Modeling wet/dry periods

As discussed in Sirkanthan and McMahon (2001) and

in Wilks (1999b), the simulation of rainfall occurrence

is modeled either by Markov chains or by alternating

renewal processes. Markov chains simply relate the

Table 1 List of Argentine stations

Stations # Provinces Latitude
(�S)

Longitude
(�W)

Posadas 1 Misiones 27.22 55.58
Corrientes 2 Corrientes 27.39 58.46
Paso de Libres 3 Corrientes 29.68 57.15
Formosa 4 Formosa 26.12 58.14
Paraná 5 Entre Rı́os 31.50 60.31
Gualeguaychú 6 Entre Rı́os 33.00 58.37
Pilar 7 Córdoba 31.40 63.53
Marcos Juarez 8 Buenos Aires 32.42 62.90
Pergamino 9 Buenos Aires 33.56 60.33
Rosario 10 Santa Fe 32.55 60.47
Laboulaye 11 Córdoba 34.08 63.22
Junin 12 Buenos Aires 34.35 60.56
Ezeiza 13 Buenos Aires 34.49 58.32
Nueve de Julio 14 Buenos Aires 35.27 60.53
Pehuajo 15 Buenos Aires 35.49 61.54
Pigue Aero 16 Buenos Aires 37.36 62.23
Mar del Plata 17 Buenos Aires 37.56 57.35
Santa Rosa 18 La Pampa 36.13 65.26
Bahı́a Blanca 19 Buenos Aires 38.44 62.10

Table 2 List of European stations

Stations # Countries Latitude
(�N)

Longitude
(�E)

Dublin Airport 1 Ireland 53.43 –6.25
Madrid/Barajas 2 Spain 40.45 –3.55
Zurich-Kloten 3 Switzerland 47.48 8.53
Lisboa/Gago Coutinh 4 Portugal 38.76 –9.13
Koebenhavn/Kastrup 5 Denmark 55.61 12.66
Helsinki-Vantaa 6 Finland 60.31 24.96
Paris-Aeroport Char 7 France 49.01 2.53
Roma Fiumicino 8 Italy 41.80 12.23
Amsterdam Ap Schiph 9 Holand 52.30 4.76
London Weather Cent 10 United

Kingdom
51.51 –0.11

Budapest/Pestszentl 11 Hungary 47.43 19.18
Bruxelles National 12 Belgium 50.90 4.53
Heraklion (Airport) 13 Greece 35.33 25.18
Warszawa-Okecie 14 Poland 52.16 20.96
Innsbruck-Flughafen 15 Austria 47.26 11.35
Praha/Ruzyne 16 Czech

Republic
50.10 14.28

Vilnius 17 Lithuania 54.63 25.28
Tallinn 18 Estonia 59.38 24.80
Riga 19 Latvia 56.96 24.05
Bratislava-Letisko 20 Slovakia 48.20 17.20
Ljubljana/Brnik 21 Slovenia 46.21 14.48
Luxembourg/Luxembou 22 Luxembourg 49.61 6.21
Larnaca Airport 23 Cyprus 34.88 33.63

Table 3 List of USA stations

Stations # States Latitude
(�N)

Longitude
(�W)

Astoria 1 Oregon 46.15 123.88
Eugene 2 Oregon 44.12 123.22
Portland 3 Oregon 45.60 122.60
Salem 4 Oregon 44.90 123.00
Reno 5 Nevada 39.50 119.78
Minneapolis 6 Mineapolis 44.88 93.22
Rochester 7 Mineapolis 44.00 92.45
St. Cloud 8 Mineapolis 45.58 94.18
Tulsa OK 9 Oklahoma 36.20 95.90
Jackson MS 10 Mississippi 32.32 90.08
Meridian MS 11 Mississippi 32.33 88.75
Atlantic City NJ 12 New Jersey 39.45 74.58
Baltimore MD 13 Maryland 39.18 76.67
New York City NY 14 New York 40.65 73.78
Philadelphia PA 15 Pennsylvania 39.88 75.23
Williamsport PA 16 Pennsylvania 41.25 76.92
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state (wet or dry) of the current day to the states of N

preceding days. The number N of preceding days

considered in the model defines the order of the

Markov chain. Evaluating the optimal order of the

chain is a complex issue, which has been addressed

using either the Akaike information criterion (AIC;

Akaike 1974) or the Bayesian information criterion

(BIC; Schwartz 1978). Although the first-order Markov

model is the most common (Katz 1977; Richardson

1981; Stern and Coe 1984; Wilks 1989, 1992), it may not

produce synthetic time series with very long dry spells

frequently enough (Buishand 1978; Racsko 1991).

Therefore, although the first-order model is adequate

for many locations, a second- or higher order model

may be more appropriate at certain locations or certain

periods of the year. Considering that a major concern

in developing such a model is the parsimony principle,

another class of models, called alternating renewal

process, has been proposed. This class of models con-

siders the daily rainfall data as a sequence of alter-

nating wet and dry spells of varying lengths. Most of

the time the lengths of the consecutive wet and dry

spells are assumed to be independent, and their

respective distributions are different. Various distri-

bution models have been proposed to fit the wet and

dry spell distributions. Although the alternating re-

newal process should be more accurate in simulating

long dry spells (Rackso et al. 1991), Roldan and

Woolhiser (1982), analyzing five US weather stations,

found the first-order Markov process to outperform an

alternating renewal process based on a truncated geo-

metric distribution function for wet spells and a trun-

cated negative binomial distribution function for dry

spells. Moreover, as pointed out by Sirkanthan and

McMahon (2001), a potential disadvantage of this

method is that it may be more difficult to handle the

seasonality in the rainfall occurrence process. Finally,

an important concern when focusing on daily rainfall

stochastic modeling is to ensure that synthetic series

simulated means and variances are also consistent with

observations on monthly and annual time scales.

3.1.1 Reference model

In the following, the reference model is the first-order

Markov process. Although high-order Markov models

or either alternating renewal process may outperform

the first-order Markov model, this simple model is of-

ten used and therefore offers a good reference for

validating our methodology. In brief, considering the

transition probabilities from dry-to-wet or wet-to-wet

conditions (P{Xt–1 = 0|Xt = 1} = p01 and P{Xt–

1 = 1|Xt = 1} = p11, together with the complementary

probabilities defined by p00 = 1–p01 and p10 = 1–p11),

the stochastic simulation of state Xt results from

applying the following algorithm where ut is a random

number of value between 0 and 1:

pc ¼
p01 if Xt�1 ¼ 0

p11 if Xt�1 ¼ 1

(

Xt ¼
1 if ut � pc

0 otherwise

(
:

3.1.2 Neural network model

Our model is based on the alternating renewal process,

and we will consider the consecutive wet and dry spells

to be independent. Our approach is non-parametric

and is based on a multi-layer perceptron neural net-

work architecture (see Appendix A). In order to sim-

ulate wet/dry sequences, NNGEN-P aims at fitting two

curves. One is the cumulative distribution function

(CDF) of the number of days of dry sequences. The

other is the CDF of the number of days of wet se-

quences. The MLP architecture necessary for fitting

these curves is simple and represented in Fig. 14. The

input layer has only one input neuron (probability of

the CDF) and one output neuron (the amplitude of the

CDF associated to the probability value). The number

of neurons in the hidden layer is optimized by the

method.

During the training phase, the number of observa-

tions used for the MLP to learn the CDF curve is equal

to the number of observations with different values.

An MLP is optimized for each month at each station.

In the case of wet/dry spells, the number of observa-

tions is the maximum length of the observed wet or dry

spell. While dry spells can be as along as various

months at certain stations, wet spells are much shorter

(5 days or more depending on the station location and

the month of the year). Considering such a small

number of observations (critical for the training

Table 4 List of tropical stations

Stations # Countries Latitude
(�N)

Longitude
(�E)

Bogota/El Dorado 1 Colombia 4.70 –74.13
Iquitos 2 Peru 3.75 –73.25
Puerto Limon 3 Costa Rica 10.00 –83.05
Asuncion/Aeropuerto 4 Paraguay –25.26 –57.63
Manila 5 Philippines 14.58 120.98
Abidjan 6 Liberia 5.25 –3.93
Pretoria 7 South Africa –25.73 28.18
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phase), the CDF is extended up to 60 days with values

equal to one. While adding observations did not affect

the observed CDF, it made possible for the MLP to

smoothly fit the curve. This ability of NN models is

commonly known as generalization capacity: the curve

not only interpolates (in the manner of classical

methods) but also approximates the distribution

smoothly.

Given the problem and the simple architecture, the

method relies in optimizing the number of neurons in

the hidden layer and in avoiding overfitting. With a

sufficient number of neurons, the MLP can reproduce

exactly all the details of any curve. A way to avoid the

overfitting problem is to penalize the MLP with bigger

architectures. This is done using a Bayesian approach

(see Appendix B). We found the optimal number of

neurons in the hidden layer to vary according to the

complexity of the shape to fit. However, the number of

neurons is almost always equal to 3 when fitting the wet

spell distribution, and, in more than 80% of the cases,

this number is lower than 8 neurons when fitting the

dry spell distribution, with a mean value around 7

neurons. Larger number of neurons (up to 14) are

observed in very few cases when the shape of the dis-

tribution gets more complex.

3.1.3 Wet/dry spell generation

Once NNGEN-P is calibrated at a specific station,

time series are generated as follows. Imposing a dry

sequence as the initial condition, a random number

between 0 and 1 is generated, this number is sent as

an entry to the neural network, which output is the

length of the dry spell. The same process is then used

to generate the length of a wet spell, etc. When the

date of the modeled time series falls into another

month, the neural network of that month at this

station is used.

3.2 Modeling the daily precipitation

3.2.1 Reference models

Among the numerous models used to simulate pre-

cipitation in two-step stochastic models, we will con-

sider three for reference: the two-parameter Gamma

distribution (Richardson 1981; Woolhiser and Roldan

1982; Wilks 1989, 1992), the two-parameter Weibull

distribution (Geng et al. 1986; Selker and Haith 1990)

and the Mixed Exponential Distribution (Woolhiser

and Pegram 1979; Woolhiser and Roldan 1982,

1986; Foufoula-Georgiou and Lettenmaier 1987; Wil-

ks 1998; Wilks 1999b). At each site and for each

month, we will compare our neural network-based

model and the three previously cited parametric dis-

tribution models.

The probability density function for each of these

parametric models is as follows (where x is the pre-

cipitation amount):

• Two-parameter Gamma distribution:

f ðxÞ ¼ ðx=bÞ
a�1 exp �x=b½ �
bCðaÞ ; x; a; b[0

• Two-parameter Weibull distribution:

f ðxÞ ¼ ba�bxb�1 exp � x=að Þb
h i

; x; a; b[0

• Three-parameter Mixed Exponential distribution:

f ðxÞ¼ða=b1Þexp � x=b1ð Þ½ �þð1� aÞ=b2 exp � x=b2ð Þ½ �;
x; a; b1;2[0

3.2.2 Neural network model

In the present case, the MLP architecture necessary for

fitting the rainfall amount CDF is simple and repre-

sented in Fig. 14. The input layer has only one input

neuron (CDF probability) and one output neuron

(rainfall amplitude). The number of neurons in the

hidden layer is optimized by the method described in

Sect. 3.1.

During the training phase, the number of observa-

tions used for the MLP to learn the CDF is equal to the

number of observations with different values. An MLP

is optimized for each month at each station. The

number of observations is usually in the order of 5–15
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Fig. 2 Probability Distribution Function of the length of dry
spell at Ezeiza in March. The solid curve is the observed PDF.
The dotted curve is the first-order Markov model. The dashed
curve is the NNGEN-P curve. The neural network optimized by
the Bayesian approach makes possible to fit a smooth curve to
the observed PDF and to avoid the risk of overfitting
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per month, meaning that it can reach approximately

500 observations for 50 years of daily data. We found a

minimum number of 10–15 years (around 50–100

observations) to be necessary to ensure a good fit. Here

again, the ability of the NN to smoothly fit the curve

(generalization capacity) is an advantage with respect

to classical interpolation techniques.

The optimization method is the same as the one

described in detail in Sect. 3.1. The Bayesian approach

leads to a selection of different numbers of neurons in

the hidden layer according to the complexity of the

CDF shapes to fit. We found the optimal number of

neurons in the hidden layer to vary according to the

complexity of the shape to fit. However, in more than

90% of the cases, this number is lower than 7 neurons,

with a mean value between 5 and 6 neurons. Larger

number of neurons (up to 14) are observed in very few

cases when the shape of the distribution gets more

complex. Figures 2 and 3 illustrates how the optimized

neural network makes possible to fit the observed CDF

curve and to avoid the overfitting problem.

3.2.3 Rainfall generation

Once NNGEN-P is calibrated at a specific station, time

series are generated as follows. During each wet spell

simulated during the first step, a random number be-

tween 0 and 1 is generated, this number is sent as an

entry to the neural network, whose output is the

amount of daily rainfall. The same process is repeated

as many times as wet days in the modeled time series

during the month. When the date of the modeled time

series extends into another month, the neural network

of the new month at this station is then used.

4 NNGEN results for rainfall occurrence

At each of the 19 Argentine stations and for each

month of the year, we computed first the transition

probability of the first-order Markov chain process.

Then, we computed the observed probability for a wet

or dry sequence starting in a given month for a length

of N days. Each probability distribution was then

processed independently. Each probability distribu-

tion was transformed into a cumulative density func-

tion. Two MLPs (one for wet sequences, the other for

dry sequences) were trained over the entire period for

each month and each station and optimized as ex-

plained in Sect. 3. The input vector is the cumulative

probability to observe a wet (or dry) sequence of N

days. The output vector is the sequence length (N

days).

4.1 Comparison of model fits

Figure 4 displays the PP-plot of the observed dry spell

cumulative distribution function (CDF) against both

the Markov and NNGEN dry spell model CDFs at the

19 Argentine stations for all months of the year. The

gap observed between the two extremes of the wet

spell slope occurs because many stations have short

wet spells (5–6 days). In such cases, the CDF presents a

rather discrete shape as the gap probability of having

1–2 day spells (50–70%) and longer ones is large (gap

of 10–20% in certain cases). The PP-plot makes it

easier to compare observed and model distributions as

the points should be close to a straight line with slope

of one and intercept of zero. Moreover, we can com-

pute both a mean error (sum of the model-data dif-

ference) and a quadratic error (sum of the model-data

squared difference). The mean error tells us whether

the model is biased, while the quadratic error is an

indication of the dispersion of the fit respective to the

straight line. Among the 228 Argentine station-

months, the NNGEN-P model tends to be closer to the

straight line than the Markov model. Indeed, the all-

averaged Argentine station-months quadratic error is

always smaller in both wet or dry sequences. However,

the NNGEN-P mean error is found to be slightly lar-

ger. Similar results were found at all other stations in

the United States of America, Europe and Tropics (not

shown).

4.2 Comparison of model simulations

As pointed out by Wilks (1999), weather generator

simulations of observed interannual variances are

highly desirable and are therefore an interesting vali-

dation test. If one computes the variance of, say, the

daily precipitation in January, this variance can be

written as follows: Var(P) = E(Nwd)r2 + Var(Nwd)l2,

where Nwd is the number of wet days per month, E() is

the averaging operator, Var() is the variance operator

and l and r are respectively the average and standard

deviation of non-zero daily precipitation amounts of

the selected month. In this section, and considering

that both Markov and NNGEN-P simulates the

monthly mean values of Nwd fairly well (not shown),

evaluating the model skill in simulating the interannual

variance of precipitation is therefore equivalent to

evaluating the model skill in simulating the variance of

the number of wet days.

Figure 5 displays the comparison between the stan-

dard deviation of observed number of wet days and

simulated number of wet days (assuming a simulation

as long as the observations; the results may slightly
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vary depending on the simulation due to the stochastic

nature of the weather generator). No significant dif-

ferences between both the Markov and NNGEN-P

models are observed.

However, if we compare the skill of both models in

simulating longest dry and wet spells (Fig. 6); we ob-

serve that the Markov model shows a tendency to

underestimate the longest observed dry periods and

overestimate the longest wet periods. On the contrary,

NNGEN-P has a much better skill in simulating both

types of spells. It is remarkable that NNGEN-P never

overestimates the longest dry spells, although it does

not completely remove the underestimation bias in

simulating the largest dry period. Here, two comments

must be made. First, NNGEN-P fits fairly well the wet/

dry spell CDFs. Therefore, due to its non-parametric

nature, it adjusts smoothly to the observed CDFs,

avoiding overfitting thanks to the Bayesian approach.

As a consequence, NNGEN-P is unlikely to simulate

spells much longer than the one observed. The Markov

two-state probability, however, does not take into ac-

count the actual duration of a previous spell when

computing whether the next day is dry or wet. Overall,

in Argentina, where the probability of maintaining dry

(resp. wet) conditions is close to 0.8 (resp. 0.4), and

where according to the month and the station location

the longest spells can be observed to be short (4–

5 days) or long (15 days), the Markov model (due to its

exponential shape) will tend to overestimate the short

wet/dry spells, but to significantly underestimate the

long wet/dry spells. Therefore, NNGEN-P should

always improve the simulation of wet/dry spells.

Second, the question remains of why NNGEN-P can

underestimate the longest spells. The answer is in the

stochastic nature of the weather generator. In one

specific simulation of 40 years, the probability for

NNGEN-P to simulate exactly all the same lengths of

observed dry or wet spells are relatively small. The

most interesting point is that the station/month, where,

in Fig. 6, NNGEN-P underestimates the longest spells,

change from one simulation to another confirming the

stochastic explanation of the apparent bias detected by

the non-zero mean error.

5 NNGEN results for rainfall amounts

5.1 Comparison of model fits

As shown in Fig. 7, the skill of the parametric functions

in fitting the observed rainfall CDFs varies from one

month to another or according to the station location

i.e. the local climate regimes. In certain cases, we found

that all the three parametric functions as well as

NNGEN-P fit the data perfectly (Fig. 7a). In other

cases, the differences may be very significant (Fig. 7b).

Overall, unlike Gamma, Weibull or double-exponen-

tial functions, NNGEN-P did not depend either on the

months, nor on the station location and always fitted

the observed CDFs.

In order to demonstrate this result, we first plotted

the PP-plot of the observed and modeled CDFs for

Gamma, Weibull, Double Exponential and NNGEN-P

(Fig. 8). The root-mean square of the error for each of

the three parametric models is about ten times larger

than the root-mean square error for NNGEN-P. In all

cases, the absolute value of the mean error is high

compared to NNGEN-P. The major strength of

NNGEN-P, as already stated, is that it can fit any kind

of function, and unlike the other three it is not con-

strained by a parametric-family shape. It can be seen in

Fig. 8 that both Gamma and Weibull tend to overesti-

mate the probability of the weak precipitation ampli-

tudes and to underestimate the others with probabilities

in the range 0.4–0.8. The Double Exponential function

is actually much closer to the straight line, and it shows

a much smaller error. However, while NNGEN-P

shows more discrepancies for the smallest probabilities

(inferior to 0.1), the fit gets better as the probability gets

larger. This is coherent with the fact that NNGEN-P fits

the high precipitation amount probability indepen-

dently of the small amounts, contrary to the parametric

functions. This result is further confirmed by Figs. 9 and
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Fig. 3 Probability Distribution Function of the daily precipita-
tion at Ezeiza in March. The solid curve is the observed PDF.
The dotted curve is the Weibull model. The dashed curve is the
NNGEN-P curve. The neural network optimized by the
Bayesian approach makes possible to fit a smooth curve to the
observed PDF and to avoid the risk of overfitting
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10 which displays the QQ-Plot of the precipitation

amounts. The root-mean square error for each of the

three parametric models is about ten times larger than

the root-mean square error for NNGEN-P. The major

strength of NNGEN-P, as already stated, is that it can

fit any kind of function, and is not constrained, like the

other three, by a family shape. In some cases, Gamma,

Weibull or Double exponential functions were found to

get close to NNGEN-P, but in general, their parametric

shapes prevent them from fitting all the observed

rainfall CDFs. Errors tend to get larger as the precipi-

tation amplitude increases. It is worth noting that both

Gamma and Double Exponential may underestimate

the large amplitudes, while the Weibull function tends

to overestimate them. NNGEN-P does not have any of

these biases and offers a very good fit to the observed

CDFs.

5.2 Comparison of model simulations

As pointed earlier, an interesting validation test is to

compare the model skill in simulating the interannual

rainfall standard deviation for each month at each

station. We performed the analysis on simulations

(Table 5) as long as observations (1959–2001). Four

simulations use the Markov model to compute the

wet/dry day occurrence, and the other four use the

NNGEN-P component. Finally, for each case, we

simulate precipitation amounts using either the

Gamma, Weibull, Double Exponential and NNGEN-

P models. First, it is apparent that there is no signif-

icant difference between Markov or NNGEN-P to

simulate the wet/dry day condition. This result is

coherent with results shown in Sect. 4 where we found

that the major difference occurred in the skill in

simulating the longest dry/wet spells. Second, focusing

on the simulations using NNGEN-P for the wet/dry

conditions, both the Gamma and Double Exponential

functions tend to underestimate the interannual stan-

dard deviation (strong positive bias, in consequence

the AVO is bigger). The Weibull function underesti-

mates the interannual standard deviation of weak

precipitation variability and overestimates the ampli-

tude of the interannual variability when it is large.

Fig. 4 PP-plot of the observed and simulated dry and wet spells.
Simulated quantiles are obtained by either a two-state probabil-
ity Markov model or NNGEN-P. As a reminder, a PP-plot is
built as follows. To each probability of the observed CDF is
associated a certain wet or dry sequence length. For each such
wet or dry sequence length, we can associate a probability of the

observed and CDFs. Such probabilities are then plotted as a
scatter plot. Cumulative probabilities are in the range 0–1. The
straight line crossing both axes at zero represent a perfect fit. For
each plot, we computed a mean algebraic error and the root-
mean square of the model-data error misfit
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This contrary behavior explains a small mean error

(compensation of errors). However, the error remains

very similar to the one of the other two distributions.

NNGEN-P however has a fairly good fit between

observed and simulated interannual standard devia-

tion. NNGEN-P is slightly biased toward an under-

estimation of the interannual variability and a

quadratic error which is much smaller than in the

other three parametric functions.

A final word on model validation: we compared, as

in Wilks (1999), the largest simulated amplitude with

the largest observed amplitude. Taking the largest

amplitude (associated to a probability of 1) to be

infinity for each of the three parametric functions,

the largest value is the one associated to a proba-

bility (N–1/3)/(N + 1/3) where N is the number of

observations used to construct the observed CDFs.

Figure 11 confirms the results found previously. Both

Gamma and Double Exponential functions strongly

underestimate the maximum observed amplitude

(strong positive bias). The Weibull function does not

show such a bias, but displays a relatively large

scatter on both sides of the straight line. Finally,

NNGEN-P largely coincides with observations con-

firming the high potential that neural network

architectures provide for the design of weather gen-

erators.

6 Validation against stations in different regions

of the world

As stated above, the major strength of NNGEN is that it

is fully adaptable to any kind of cumulative distribution

function. As such, its skill in simulating daily precipita-

tion should not depend on the station location as it is the

case for each of the three parametric functions analyzed

in the present paper. To confirm that point, we analyzed

daily rainfall stations from different regions of the globe

(United States of America, Europe and the Tropics).

We found as in Argentina NNGEN-P to reproduce

better the longest dry/wet spells (not shown). Moreover,

it simulates well the precipitation amount distribution

and to illustrate this point, we present the QQ-plots at

stations in the United States (Fig. 11), in Europe

(Fig. 12) and in the Tropics (Fig. 13) for the three

parametric functions (Gamma, Weibull and Double

Exponential) and NNGEN. As in Argentina, NNGEN-

P presents a very good fit with observations character-

ized by a very small mean and quadratic error.
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7 Simulation of extreme event probabilities

Another important weather generator validation test is

the evaluation of its capacity to represent extreme event

probabilities. Considering that climate series are usually

relatively too short to study extreme event changes, the

use of a well-calibrated weather generator can poten-

tially compensate for this by running long simulations.

This is also important if weather generators are cali-

brated to future climate change conditions as they can

provide a much more efficient tool to study extreme

event changes than direct climate model outputs. In the

present section, we decided to compare the skills of

NNGEN-P and the three other parametric functions in

simulating extreme precipitation probabilities. Thus,

following Frich et al. (2002), we computed the five ex-

treme event indices related to rainfall. These indices are:

• R10 is the number of days with precipitation

‡10 mm/day (units are in days).

• CDD is the maximum number of consecutive dry

days defined as precipitation lower than 1 mm

(units are in days).

• R5d is the total of the largest 5 days of precipitation

(units are in 0.1 mm).

• SDII is the simple daily intensity index fined as the

annual total divided by the number of days with

precipitation larger than 1 mm/day (units are in

0.1 mm/day).

• R95T is the fraction of annual total precipitation

due to events exceeding the 1961–1990 95th per-

centile (units are in %).

The indices were computed each year both for

the observations and the models. Then we computed

the CDF of each index both for observations and

models at each station. The quadratic error and mean

error for each extreme event index are shown in

Table 6.

R10 We can observe that the Gamma distribution is

biased often overestimating the number of days

with precipitation of more than 10 mm/day. The

other three models are similar although the Weibull

model is slightly better both in mean and quadratic

error.
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Fig. 8 PP-plot of the
observed and modeled
rainfall amount CDFs.
Simulated quintiles are
performed by the Gamma (a),
Weibull (b), Double
Exponential (c) and
NNGEN-P (d) models. The
mean error and the root-
mean square of each model-
data misfit are indicated
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CDD Considering that the dry/wet day occurrence

model is the same for all four simulations (we use

NNGEN-P), the differences between the four models

can only result from their skill in representing the

adequate probability for precipitation lower than

1 mm/day. Here again, we obtain poorer results with

the Gamma function. The Weibull model tends a little

to underestimate such long dry periods. Both NNGEN-

P and Double Exponential have the same quadratic

error, with a slightly weaker bias from the latter.

R5d NNGEN-P represents relatively well the inter-

annual distribution of the total precipitation of the five

most rainy days. The quadratic error is smaller than the

other models and the mean error is close to zero. This

result confirms the skill of NNGEN-P in fitting both

the low amplitude and large amplitude precipitation

amounts.

SDII All models have skill in representing the mean

precipitation on rainy days. This was probable as all

the models tend to simulate the mean climatological

rainfall (not shown) at each station.

R95T NNGEN-P represents better the interannual

distribution of the fraction of annual total precipitation

due to events exceeding the 1961–1990 95th percentile.

This result is coherent with the result found for R5d.

Here, NNGEN-P has barely any bias and its quadratic

error is much weaker than all other models.

To conclude, the analysis of five extreme precipita-

tion events suggested by Frich et al. (2002) and used

for IPCC (Intergovernmental Panel on Climate

Change) model output analysis shows that NNGEN-P

has more skill in representing these five indices than

any other parametric model. This gives confidence in

the analysis of the evolution of such indices simulated

by NNGEN-P once calibrated to 21st century climate

conditions.

8 Conclusion/discussion

The present study describes a new generation of

weather generators based on neural network architec-

ture. After presenting the methodology and the opti-

mization of the selected network architectures, it

Fig. 9 QQ-plot of the observed and simulated rainfall amount
CDFs. Simulated quintiles are performed by the Gamma (a),
Weibull (b), Double Exponential (c) and NNGEN-P (d) models.
The mean error and the root-mean square of each model-data
misfit are indicated. As a reminder, a QQ-plot is built as follows.
To each probability of the CDF (both observations and
simulations have the same number of points, and thus the same

bins of the CDF), we can associate a rainfall amount for
observed or simulated series. The two series are then plotted as a
scatter plot. Daily rainfall is in the range 0.1–200 mm. The
straight line crossing both axes at zero represent a perfect fit. For
each plot, we computed a mean algebraic error and the root-
mean square of the model-data error misfit

318 J.-P. Boulanger et al.: Neural network based daily precipitation generator (NNGEN-P)

123



presents the application of the weather generator for

daily precipitation called NNGEN-P to a large set of

stations located in Argentina, as well as in the United

States, Europe and the Tropics.

Like other classical daily rainfall generators,

NNGEN-P separates the simulation of the wet/day

nature of each day from the simulation of the rainfall

during a wet day. Consequently, its evaluation and

comparison to other models is divided in two steps.

First, NNGEN-P has been designed to simulate

the length of the following dry or wet spell. When

compared to a classical two-state Markov model, we

found the NNGEN-P results similar in mean number

of wet days per month and interannual variation of

number of wet days for each month of the year.

However, the major improvement of NNGEN-P is to

simulate with great accuracy the longest observed wet/

dry spells. This feature is important when using

weather generators to force crop models. Indeed, an

underestimation or overestimation of the risks of dry/

wet spells can strongly affect plant growth and there-

fore its simulated yields.

Second, NNGEN-P has been used to simulate rain-

fall during wet days. We compared NNGEN-P results

to three parametric models usually applied to fit rain-

fall distribution (Gamma, Weibull and Double Expo-

nential). We found that each of these parametric

functions may actually give good results during certain

months at certain stations, but overall are unable to

offer a good fit to any kind of climate regime. This is

simply due to the parametric nature of these functions,

which defines the shape of the family of each of these

functions, whatever the parameters used. On the con-

trary, the non-parametric adaptive nature of NNGEN-

P allows it to fit any kind of distributions and simulate

it with a much higher accuracy. It is important to note

here that the procedure to optimize NNGEN-P avoids

the overfitting problem. NNGEN-P simulated CDFs
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Fig. 10 Relationships
between the largest observed
daily precipitation amounts
(vertical) and the
corresponding model derived
extremes for the four models
(Gamma, Weibull, Double
Exponential and NNGEN-P)

Table 5 Monthly standard deviation

Ocurrence
model

Amount
model

AVO
(%)

RVO
(%)

Markov Gamma 13.25 13.19
Markov Weibull 3.07 13.88
Markov Double exponential 16.62 18.04
Markov NNGEN-P 4.89 7.14
NNGEN-P Gamma 13.48 13.97
NNGEN-P Weibull 3.25 14.66
NNGEN-P Double exponential 16.95 19.55
NNGEN-P NNGEN-P 5.13 7.63

In this table, we can see the Average Variance Overdispersion
(AVO) and the Standard Deviation Variance Overdispersion
(RVO) relative to the capacity of each model in reproduce the
interannual rainfall standard deviation for each month at each
station
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Fig. 11 Same as Fig. 9
but for stations located in the
United States of America
(see Table 3)

Fig. 12 Same as Fig. 9 but for stations located in Europe (see Table 2)
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are a smoothed version of the observed CDFs. The

major strength of NNGEN-P is that the non-linear

adaptive nature of the neural network allows to fit

complex CDF shapes such as are often observed during

austral winter.

Finally, when comparing the skill of NNGEN-P and

the other three models (Gamma, Weibull and Double

Exponential) in simulating five extreme precipitation

event indices defined by Frich et al. (2002) and used to

evaluate IPCC model outputs, we found NNGEN-P to

be the most consistent model for all five indices.

NNGEN-P has much larger skills in simulating the

indices associated to extreme rainfall amounts in par-

ticular. This gives us confidence in analyzing the sim-

ulation of such extreme indices using NNGEN-P when

calibrated to 21st century climate conditions. This will

be done in a forthcoming paper.

Finally, the results described in the present paper

encourage us to develop a full weather generator

including temperature and radiation, the validation

results of which will be presented in another paper.
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9 Appendix A: the multi-layer perceptron

The multi-layer perceptron (MLP) is probably the

most widely used architecture for practical applications

of neural networks (Nabney 2002). From a computa-

tional point of view, the MLP can be described as a set

of functions applied to different elements (neurons)

using relatively simple arithmetic formulae, and a ser-

ies of methods to optimize these functions based on a

set of data. In the present study, we will only focus on a

two-layer network architecture (Fig. 14). Its simplest

element is called a neuron and is connected to all the

neurons in the upper layer (either the hidden layer if

the neuron belongs to the input layer or the output

layer if the neuron belongs to the hidden layer). Each

neuron has a value, and each connection is associated

to a weight.

As shown in Fig. 14, in the MLP case we consid-

ered, the neurons are organized in layers: an input

layer (the values of all the input neurons except the

bias are specified by the user), a hidden layer and an

output layer. Each neuron in one layer is connected to

all the neurons in the next layer. More specifically, in

the present case, the MLP architecture has one input

neuron (I), H neurons in the hidden layer (value to be

estimated by the method) and one output neuron (O).

The first layer of the network forms H linear combi-

nations of the input vector to give the following set of

intermediate activation variables: hj
(1) = wj

(1)I + bj
(1)

j = 1,...,H where bj
(1) corresponds to the bias of the

input layer. Then, each activation variable is trans-

formed by a non-linear activation function, which in

most cases (including ours), is the hyperbolic tangent

function (tanh):vj = tanh(hj
(1)) j = 1,...,H. Finally, the

vj are transformed to give a second set of activation

variables associated to the neurons in the output

layer: Oð2Þ ¼
PH
j¼1

w
ð2Þ
j vj þ bð2Þ where b(2) corresponds to

the bias of the hidden layer.

The weights and biases are initialized by random

selection from a zero mean, unit variance isotropic

Gaussian where the variance is scaled by the fan-in of

the hidden or output units as appropriate. During the

training phase, the neural network compares its out-

puts to the correct answers (a set of observations used

as output vector), and it adjusts its weights in order to

minimize an error function. In our case, the weights

and biases are optimized by back-propagation using

the scaled conjugate gradient method.

Such an architecture is capable of universal

approximation and given a sufficiently large number of

data, the MLP can model any smooth function. Finally,

the interested reader can find an exhaustive description

of the MLP network, its architecture, initialization and

training methods in Nabney (2002). Our study made

use of the Netlab software (Nabney 2002).

10 Appendix B: Bayesian approach to optimize
the MLP architecture

When optimizing a model to the data, it is usual to

consider the model as a function such as: y = f (x,

w) + �, where y are the observations, x the inputs, f the

model, w the parameters to optimize (or the weights in

our case) and � the remaining error (model-data mis-

fit). The more complex the model to fit (i.e. the number

of parameters), the smaller the error, with the usual

drawback of overfitting the data by fitting both the

‘‘true’’ data and its noise. Such an overfit is usually

detected due to a very poor performance of the model

on unseen data (data not included in the training

phase). Therefore, optimizing the model parameters

through minimizing the residual � may actually lead to

a poor model performance. One way to avoid this

problem is to consider also the errors on the model

parameters. The use of a Bayesian approach is very

helpful to deal with this difficulty. Although two kinds

of Bayesian approaches have been demonstrated to be

effective (Laplace approximation and Monte Carlo

techniques), in the following we will only consider the

first one. Nabney (2002) offers an exhaustive discussion

on this subject. And, for the reader to understand our

approach, we believe important to present a summary.

First of all, following the same notations as in

Nabney (2002), let’s consider two models M1 and M2

(in our case two MLPs which only differ by the number

of neurons in the hidden layer and with M2 having

more neurons than M1). Using Bayesian theorem, the

posterior probability or likelihood for each model is:

pðMijDÞ ¼ pðDjMiÞpðMiÞ
pðDÞ : Without any a priori reason to

prefer any of the two models, the models should

actually be compared considering probability p(D|Mi),

which can be written (MacKay 1992) as pðDjMiÞ ¼Z
pðDjw;MiÞpðwjMiÞÞdw: Considering that for either

model, there exists a best choice of parameters ŵi for

which the probability is strongly peaked, then the

previous equation can actually be simplified:

pðDjMiÞ � pðDjŵi;MiÞpðŵijMiÞDŵ
posterior
i where the
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last term represents the volume (in the space of the

parameters) where the probability is uniform. Assum-

ing that the prior probability pðŵijMiÞ has been ini-

tialized so that it is uniform over a certain volume of the

prior parameters, we can rewrite the previous equation

as: pðDjMiÞ � pðDjŵi;MiÞðDŵ
posterior
i =Dŵ

prior
i Þ. The

new equation is the product of two terms evolving in

opposite directions as the complexity of the model in-

creases. The first term on the right-hand side increases

(i.e. the model-data misfit decreases) as the model

complexity increases. The second term is always lower

than 1 and is approximately exponential with param-

eters (Nabney 2002), which penalizes the most complex

models. In conclusion, taking into account the weight

uncertainty should reduce the overfitting problem. We

will now explain how this can be done.

For a given number of units in the hidden layer, an

optimum set of weights and biases can be calculated

using the maximum likelihood to fit a model to data. In

this case, the optimum set of parameters (weights and

biases) is the one, which is most likely to have gener-

ated the observations. A Bayesian approach (or quasi-

Bayesian approach due to difficulties in using Bayesian

inference caused by the non-linear nature of the neural

networks) may be valuable to infer these two classes of

errors: model-data misfit and parameter uncertainty.

According to Bayesian theorem, for a given MLP

architecture, the density of the parameters (noted w)

for a given dataset (D) is given by:

pðwjDÞ ¼ pðDjwÞpðwÞ
pðDÞ :

In a first step, let’s only consider the terms

depending on the weights. The negative log like-

lihood is given by E = -Log(p(w|D)) = -Log(p(D|w))-

Log(p(w)).

The likelihood p(D|w) represents the model-data fit

error, which can be modeled by a Gaussian function

such as:

pðDjwÞ ¼ b
2p

� �N=2

exp � b
2

XN

n¼1

f ðxn;wÞ � ynf g2

 !

¼ b
2p

� �N=2

exp � b
2

ED

� �

where b represents the inverse variance of the model-

data fit error.

The requirement for small weights (i.e. avoiding the

overfitting) suggests a Gaussian distribution for the

weights of the form:

pðwÞ ¼ a
2p

� �W=2

exp � a
2

XW
i¼1

w2
i

 !

¼ a
2p

� �W=2

exp � a
2

EW

� �
where a represents the inverse variance of the weight

distribution. a and b are known as hyperparameters.

Therefore, to compare different MLP architectures, we

need first to optimize the MLP weights, biases and

hyperparameters for any given architecture. Such an

optimization can be reached using the evidence pro-

cedure, which is an iterative algorithm. Here again, we

refer the reader to Nabney (2002). Briefly, if we con-

sider a model to be determined (for any given archi-

tecture) by its two hyperparameters, we can write (as

previously) that two models may be compared through

their respectively maximized evidence p(D|a,b), log

evidence of which can be written as:

ln pðDja;bÞ ¼ �aEw � bED �
1

2
ln Aj j þW

2
ln a

þN

2
ln b�W þN

2
lnð2pÞ

where A is the Hessian matrix of the total error func-

tion (function of a and b).

Based on the previous equation, the evidence pro-

cedure is used to optimize the weights and hyperpa-

rameters for any given architecture, and the model

optimized log evidence is calculated. We then compare

the computed log evidence for different architectures,

Fig. 14 Schematic representation a two-layer MLP as used in this
study. In the input layer, one neuron represents the probability
value of the CDF under study (wet spell, dry spell, rainfall
amount). The number of neurons in the hidden layer is optimized
by the method. In the output layer, one neuron represents the
amplitude of the CDF associated to the input probability (length
of the wet spell, length of the dry spell or amount of rainfall). The
units or neurons called bias are units not connected to a lower
layer and whose value is always equal to –1. They actually
represent the threshold value of the next upper layer

J.-P. Boulanger et al.: Neural network based daily precipitation generator (NNGEN-P) 323

123



and we finally chose the smallest architecture giving

the minimum negative log evidence.

Applying this Bayesian approach, different numbers

of neurons in the hidden layer was found according to

the complexity of the CDF shapes to fit. We found this

number to range from 3 to 14 neurons, with larger

numbers mainly found when fitting the dry spell CDF

(the longest wet spells do not exceed 15 days and are

often in the range of 5–6 days, while dry spells can be as

long as a few months).
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