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1. Introduction

Since the Little model [1,2] was formulated to describe the computational ability of
an ensemble of simple processing units, appeared to be necessary to reconcile
the biological evidence of a truly continuum of the neural tissue with the descriptions
provided by discrete models inspired in an Ising system.While the empirical evidence
always shows patterns of activity or quiescence involving patches with ¢nite sizes,
the ferromagnetic approach suggests systems with discrete processing units with
no ¢nite dimensions. In spite of this simpli¢cation all the discrete models have been
remarkably successful in providing descriptions of emergent processing abilities that
correspond to stilized facts concerning basic elementary cognitive processes.

In [5] Hop¢eld introduced the well-known two-state neuron model, while in [6] he
extended his model to a continuous range of activities. However, the space of states
describing the patterns of activity remained discrete, in the sense that the number
of units was, at most, countable.

The purpose of the present Letter is to bridge the gap between these discrete
models and the case in which processing units are viewed as points of a continuous
metric space. We also require this generalization not to be made blindly, in order
to preserve the salient features that have made attractive all the discrete models.
In spite of the fact that the corresponding state space is an in¢nite dimensional func-
tional space we require that a basic simple dynamics can be de¢ned having
asymptotic, stationary solutions that can be associated to minima of an energy func-
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tional of Lyapunov type and can be taken to represent the memories that are stored
in the system.

With the above conditions there are a number of questions concerning the
fundamental similarities and the possible differences between the emergent
processing properties of discrete and continuous models. We deal with the nature
of spurious states, the extensions of the Hebb rule and its robustness against the
relaxation of the basic assumption of orthogonality of the memory states, the prob-
lem of estimating the size of the basins of attraction and of the storage capacity.

There is a particular aspect that deserves special attention and this has to do with
the extensions to include ¢nite temperature £uctuations. The biological evidence
indicates that the behaviour of individual neurons involve stochastic processes such
as the release of neurotransmitters into the synaptic cleft. In order to take into
consideration this feature in the continuous case we extend the well known
prescripiton of the non deterministic Glauber dynamics [12] through a path integral
approach.

An extended version of this Letter including detailed proofs will be published
elsewhere. Except for particular cases, we therefore omit detailed proofs.

2. Preliminaries

We assume that v�x; t� describes the activity of a point-like neuron located in x at
time t. This pattern of activity evolves according to:

@v�x; t�
@t
� ÿv�x; t� � gs

Z
O

T�x; y�v�y; t�dy
0@ 1A �1�

with v�x; t� : O� RX 0! R, O � X . X is a metric space, O a compact domain, gs a
sigmoid function, i.e. gs 2 C1�R�, non decreasing and odd and satisfying
limx!�1 gs�x� � �VM, lims!1 gs�x� � sgn�x� 8x 6� 0, j gs�x� j< minfVM; sxg and
g0s�0� � s.

If we call S the set of all possible states v�x� (patterns of activity) of the system, a
solution v�x; t� ful¢lling Equation (1) is a trajectory in S.

From now on we assume, without loss of generality, that VM � 1. As for
T:O� O! R, we assume it is continuous almost everywhere (a.e.) in order to war-
rant that the integral is well de¢ned. As a natural extension of the discrete case
we introduce the local ¢eld on (or net input to) the neuron located in x when
the state of the system is v�y; t�:

hvt �x� 4�
R
O
T�x; y�v�y; t�dy: �2�

In the particular case when t � 0, we write hv�x� 4� hv0�x�: Note that hv is linear in v.
Given an initial condition vm0�x� 4� vm�x; 0� and the solution v�x; t� of Equation (1)

that is associated to it, we say that vm�x� is a memory or an attractor iff:
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(1) vm is an equilibrium point, i.e.

vm�x� � gs

Z
O

T�x; y�vm�y�dy
0@ 1A a:e:

(2) For every t0 X 0 and v0 a di¡erent initial condition that corresponds to the
solution v, there exists d�t0� > 0 such that if k vm ÿ v0 k< d then
k vm��; t� ÿ v��; t� k! 0 when t!1.

Thus, attractors are stationary solutions of Equation (1).

Except when indicated, we assume that S=L2�O� and moreover that j O j<1 (O
has ¢nite Lebesgue measure).

We de¢ne the energy of the system at time t0 as:

H v��; t0�� � � ÿ 1
2

Z
O

Z
O

T�x; y�v�x; t0�v�y; t0�dxdy�
Z
O

Zv�x;t0�
0

gÿ1s �s�dsdx �2�

where the notation H v��; t0�� � means that v is viewed as a function of x. Thus, each
element v in S has an energy H(v) associated to it. This is a clear extension of what
has been proposed in [6] for the energy of the (discrete) model with neurons with
graded activation functions (Hop¢eld 1984). The above de¢nition is justi¢ed by
the following:

THEOREM 2.1. If T is symmetric, then H is monotonically decreasing with t and it
reaches its minima at states vte �x� � v�x; te� such that

@v
@t
�x; t�

� �
te

� 0 �3�

a.e. in O, i.e. given a solution v�x; t� the minima of H coincide with the equilibrium
points of the system. The reciprocal is not necessarily true: from the previous
theorem it does not follow that if a solution v�x; t� of (1) satis¢es condition (3)
for some t�, then v�x; t�� is an attractor. For example, the trivial solution v � 0
satis¢es it for all t, but as we will soon see its stability or instability depends on
the slope s of gs at the origin. In general, the possibility to construct non-trivial
memories strongly depends on such parameter.

The sigmoid function gs plays an importat role in determining in which cases the
system has non-trivial stationary solutions. A necessary condition is given by
the following.
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THEOREM 2.2. If s < 1=�M j O j�, being M such that j T�x; y� j WM, then the
unique stationary solution of Equation (1) is v � 0.

Besides having sM j O j X 1 as required by the preceding theorem other con-
ditions have to be ful¢lled in order to warrant the effective existence of non trivial
solutions.

When s!1, the attractors approach the asymptotic bounds of gs. This is proven
by the following

THEOREM 2.3. If for some e > 0 holds that T�x; y�X 0 when j xÿ y j< E, then

lim
s!1 max

v attractors; x2O
minf1ÿ v�x�; 1� v�x�g � 0

3. Orthogonal Memories

The case of storing orthogonal memories is particularly relevant. This can be
achieved through a straightforward generalization of the Hebb rule [3]. Let
fvm�x�g be an orthogonal set of functions in L2�O�, that is �vm; vn� � 0 if m 6� n,
and de¢ne:

T�x; y� � 1
j O j

Xp
m�1

vm�x�vm�y� �4�

Then the following theorem holds:

THEOREM 3.1. The system de¢ned by Equation (1), withT�x; y� as in Equation (4),
may have any ¢nite number p of orthogonal memories taking values in fV�;ÿV�g,
where gs��V3

�� � �V�.

The solutions vm�x� look like the example shown in Figure 1. This kind of
activation patterns agrees with the intuitive generalization of the attractors of
an Ising-type, spin glass discrete neural network model in which patches of full acti-
vation and full quiescence alternate randomly. These can also be viewed as the
vertices of an in¢nite (continuous) dimensional hypercube. In addition, orthogonal
memories ful¢ll the following.

LEMMA 3.2. If the memories are orthogonal, the distance between any two of them is
always the same.

Therefore the following corollaries hold.

COROLLARY 3.3. The orthogonal memories are never dense under the L2�O� norm.
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COROLLARY 3.4. The set of orthogonal memories is at most countable.

The question arises whether the set of orthogonal ¢xed points of Equation (1) can
be in¢nite. Note ¢rstly that it must be countable: the elements vm as they were de¢ned
belong to L2�O�, a separable space; hence every orthogonal set in it must be
countable. However even an in¢nite countable number of orthogonal ¢xed points
is not possible while preserving the integrability of T. Note that if there are km
changes of sign in vm (for example, if vm as in Figure 1, km � 4) then each term
of the form vm�x�vm�y� divides the domain O� O in �km � 1�2 square regions.
Moreover, each region is separated from the next by discontinuity lines because that
term takes the constant values �V2

� or ÿV2
�. If the set of memories is in¢nite, the

number of terms in T that are added is also in¢nite, therefore those discontinuity
lines are dense at least in a neighborhood of some point, and T ceases to be sec-
tionally continuous.

Most of the discussions on discrete models are made in the thermodynamic limit in
which the number of neurons and of memories are taken to tend to in¢nity while their
ratio is kept constant. This possibility is lost in the continuous limit: the number of
memories may be as large as desired but has to be ¢nite, while neurons are in¢nite,
in fact, more than countable. This is certainly not a problem as far as the biological
plausibility of the model is concerned.

3.1. STABILITY OF THE SOLUTIONS

In this section we investigate under which conditions the elements vm, satisfying the
hypothesis of orthogonality, are stable ¢xed points for Equation (1) (i.e. memories
of the system).

Figure 1. A memory in the space S � L2�a; b�.
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THEOREM 3.5. The elements vm are stable ¢xed points of Equation (1) iff

g0s�V3
�� <

1
V2
�

THEOREM 3.6. (Stability of zero) The trivial solution v � 0 is stable iff
g0s�0� � s < 1=V2

�.

We provide a sketch of the proof of theorems 3.5 and 3.6:

The computation of the directional derivatives of H�v� at an arbitrary point yields:

DwH�v� � ÿ 1
j O j

Xp
n�1
�vn; v��vn;w� � �gÿ1s �v�;w� �5�

with w 2 L2�O� and k w k� 1. Now, if v � vm, using the orthogonality condition and
noting that k vm k2� V2

� j O j, it follows that DwH�v� � 0.
Similarly, it is easy to check thatDwH�v� vanishes in general for any element in the

set span vmf gpm�1, i.e. linear combinations of the memories, when those combinations
take values on the set fV�;ÿV�; 0g. The computation of the second directional
derivative yields:

D2
w2H�v� � ÿ 1

j O j
Xp
n�1
�vn;w�2 � @

@v
gÿ1s �v�w;w

� �
But the vn are supposed to be orthogonal. Therefore, the use of Bessel's inequality
yields:

Xp
n�1

�vn;w�2
k vn k2 W k w k2� 1()

Xp
n�1
�vn;w�2 WV2

� j O j

hence

D2
w2H�v�X @

@v
gÿ1s �v�w;w

� �
ÿ V2

�

for any w in S, k w k� 1: Then, a necessary and suf¢cient condition for an element v
in S to be a minimum of H is:

�gÿ10s �v�w;w� ÿ V2
� > 0 8 w 2 S; k w k� 1 �6�

Theorem 3.6 follows directly from the last equation. Applying this equation to the
case in which v � vm and keeping in mind that

gÿ10s �v� �
1

g0s�gÿ1s �v��
;
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the above condition reduces to

w
g0s�gÿ1s �vm��

;w
� �

ÿ V2
� �

w
g0s�V2

�vm�
;w

 !
ÿ V2

� �
1

g0s��V3
��
ÿ V2

� > 0;

that, by virtue of the imparity of gs can be rewritten as:

g0s�V3
�� <

1
V2
�

or g0s�V3
��V2
� < 1 �7�

Let us compare the necessary and suf¢cient condition given by theorem 3.6 for the
stability of zero with the uniqueness condition for the general case (theorem 2.2).
When T is de¢ned according to (4), the vm's being stationary solutions of (1)
and therefore vm�x� 2 fV�; 0;ÿV�g; we have:

j T�x; y� j W pV2
�

j O j �M:

In this case the condition for the origin to be the only solution is that
s < 1=�M j O j� � 1=�pV2

��. This is more restrictive than what follows from theorem
3.6. Therefore, for the case of orthogonal memories there exists an intermediate
range for the values of s (s 2 �1=�pV2

��; 1=�V2
���, which degenerates into a point if

p � 1) for which the trivial solution v � 0 is an attractor, but not necessarily the
only solution of (2.1). Note, in addition, that the conditions derived in theorems
3.5 and 3.6 are independent of p (number of memories) and this is direct consequence
of the orthogonality of the memories.

3.2. BASINS OF ATTRACTION

The preceeding results allow to measure the basins of attraction with respect to the
L2�O� norm. It is possible to prove that:

THEOREM 3.7. For pX 2, each orthogonal memory vm; 1W mW p, has a basin of
attraction of radius kXV�

��������������j O j=2p
. The equality holds for spherical basins.

In other words, whenever k vm ÿ v0 k< k, the distance k vm��; t� ÿ v��; t� k! 0 when
t!1 (being v0 any initial condition for Equation (1) and v the corresponding
solution).

The proof is based on the computation of the maximum value of k for which
DwH�vm � kw� > 0 8w 2 S; k w k� 1.

Thus we have spherical basins with radius V�
��������������j O j=2p

for each vm and, conse-
quently, also for ÿvm. Figure 2 shows a simpli¢ed two-dimensional sketch.
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3.3. SPURIOUS MEMORIES

As a consequence of the non linearity of the time evolution equation that we con-
sider, additional, uncalled ¢xed points appear that are not stored in the synaptic
operator T through the Hebb prescription. These are called spurious states or
spurious memories.

There are, generally speaking, three questions concerning these memories:

(a) Are they stable?
(b) How many are they? and
(c) Where are they?

Question (b) relates to the rate at which the number of spurious states grows as more
memories are stored while question (c) actually asks how near are the spurious states
to the originally stored memories.

It is possible to distinguish two types of spurious states: mixture and non-mixture
memories. v is said to be a mixture state if it can be expressed as a linear combination

Figure 2. Two orthogonal memories and their inverses, each one with norm V�
���������j O jp

and a
spherical basin of attraction of radius V�

�����
jOj
2

q
.
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of the stored memories: v �Pq
i�1 amiv

mi with qW p, vmi 2 fvmg and ami real constants. A
spurious state for which the set famg does not exist is called a non-mixture state.

We have already mentioned the fact that every mixture state is a ¢xed point if
v�x� 2 fV�;ÿV�; 0g. This may be easily seen by using the linearity of hv:

hv�x� �
Xq
i�1

ami h
vmi �x� �

Xq
i�1

amiV
2
�v

mi �x� � V2
�
Xq
i�1

amiv
mi �x� � V2

�v�x�

It also follows from the proof of theorems 3.5 and 3.6.
Thus, it is clear that only a small subset of span vmf gpm�1 contains spurious states. In

particular, it follows that if vm and vn are memories, then � 1
2 v

m � 1
2 v

n are ¢xed points
of the dynamics. This implies that there exist at least 4 p

2

ÿ �
spurious (mixture) states.

Fortunately, they are unstable in general. This follows from the following

THEOREM 3.8. If v is a mixture spurious memory and there exists x 2 O such that
v�x� � 0, then v is a saddle point of the dynamics.

That leads to the useful

Figure 3. A mixture spurious state. Dotted lines indicate limits for the spherical basins of the
two memories which compose the spurious state.
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COROLLARY 3.9. The basins of attraction for mixture states have zero radius, in
the sense of the L2�O� norm.

EXAMPLE. For q � 2, all combinations of the form v � � 1
2 v

m � 1
2 v

n are actual
spurious states and the situation can be easily illustrated (Figure 3).

The direction of maximum unstability is given by vm ÿ vn and that of maximum
stability is �v (directly towards or from the origin of coordinates).

Unlike the case of mixture memories, which can be calculated analytically, the
non-mixture spurious states are very dif¢cult to ¢nd. Indeed, at the limiting case
p!1, the following property is evident, and holds independently of the prescrip-
tion used to de¢ne T:

LEMMA 3.10. If fvmg1m�1 is complete and p!1, there are no non-mixture spurious
memories. (The set fvmg is said to be complete in L2�O� iff the minimal subspace of
L2�O� which contains it is the entire space L2�O�).

Since here we use S=L2�O�, a question about the sense of lemma 3.10 may arise, i.e.
is there some basis of L2�O� whose elements take on only two values, say �V�? The
answer is yes. The relevant example for O � R (that can be extended to Rn) are
the Haar wavelets. These are an orthonormal and complete basis in
L2�ÿ1;�1�. They are bi-valued, but since they are normalized, such values change
from one function to another. If normality is relaxed, it is possible to force them to
take values in fV�;ÿV�g. If restricted to a bounded interval O � R, they form
an orthogonal (but not orthonormal) and complete set in L2�O�. However, in case
we construct T according to (4), this completeness can be only asymptotical: as
we already saw, the number of orthogonal memories can be as large as desired,
but it cannot be in¢nite.

4. Modi¢ed Hebb Rules

Until now the metrics onX , the space of processing units, has not been speci¢ed. This
is not necessary, because the contribution of each neuron to the generation of hvt �x�
for any x 2 O is independent of any distance, just as in the discrete cases [5,6].

Thus, provided the memories are orthogonal, we have a memory of unbounded
`resolution' in the sense that the patches of activation and quiescence can be as small
as desired. Any function v�x� : O! fÿV�;V�g with a set of discontinuities of zero
Lebesgue measure can be memorized by the system. In the case O � R, this implies
that the set of discontinuities must be countable. For example, the Dirichlet function,
valuing 1, or V�, on every rational point and 0, or ÿV�, on every irrational point,
cannot be a memory.

It is clear that a realistic model must have some lower bound for such `resolution'
at least to take into account the ¢nite size of individual neurons. We will brie£y

138 ENRIQUE CARLOS SEGURA AND ROBERTO P. J. PERAZZO



mention two ways to tackle this problem (a more detailed description will be pub-
lished soon). Both imply some modi¢cation on the Hebb rule to de¢ne the synaptic
operator T:

(i) Introducing a probability distribution on the size of the patches of activity of the
memories. A natural way of doing this is characterizing the memories by the
average length l of their connected regions or `patches' with equal sign and intro-
ducing a distribution in which memories with vanishing l have zero probability.
The properties of the associative memory are well preserved, without imposing
too rigorous conditions on the distribution (it su¤ces by requiring that the
memories vm be independent, identically distributed and such that
E vm�x�� � � 0 8m; a:e: in O).

(ii) Rede¢ning the synaptic operator T, by modulating it with a range cut-o¡ function
that decreases with the distance between neurons. It is worth mentioning that the
properties of the associative memory are preserved only when such cut-o¡ func-
tion takes both positive and negative values, as the well known mexican hat func-
tion that has been used to model lateral inhibition in the cortex.This fact has the
pleasant feature of being in agreement with the neurophysiological evidences
of the modular organization of the brain cortex [8]. This modulation in which
only the interaction of neurons with its nearest neighbours is preserved causes
a degradation of retrieval capacity, increasing the crosstalk terms between mem-
ories.

These two ways of limiting the `resolution' are complementary in the sense that,
while in the case in which memories are directly affected without changing the
Hebbian operator, the stability of the system grows with l, when modulating T with
lateral inhibition, the effect is the inverse: retrieval gets better for increasing l.

5. Finite Temperature Considerations

Until now we where mainly concerned with what is, thermodynamically speaking, a
zero temperature dynamics, i.e. a deterministic law of evolution. In the present sec-
tion we will formulate a ¢nite temperature version of the continuous system that
we have introduced, in the same fashion as the stochastic versions [10, 11] of
the discrete Hop¢eld model. In that approach, which is based on the Glauber ther-
modynamical model [12], the probability distribution of the state of the ith
processing unit Si at an instant n� 1 is given by

P�Si � �1� � 1
1� exp��2bhi�

As usual hzi �
PN

i�1 Tijzj is the local ¢eld on site i when all neurons have activities
labelled by z at time n. The parameter b represents the inverse temperature (we
set the Boltzmann constant equal to 1).
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The activity pattern of the system is therefore de¢ned through a Markov process
that can be formulated as a Master equation [4]:

P�x; n� 1� � P�x; n� �
X
z 6�x
�Wb�x j z�P�z; n� ÿWb�z j x�P�x; n�� �8�

where

Wb�x j z� �
YN
i�1

1

expfÿbxihzi g � 1
�9�

In our case, x and z are elements in the (normed) state space S and
Wb : S� S7 ÿ!�0; 1� is the transition probability matrix.

Being S continuous in¢nite dimensional it is no longer possible to construct
Wb�x j z� from point transition probabilities. This problem can be circumvented with
a proper de¢nition of Wb. Equation (9) can be formally rewritten in the continuous
time limit as the differential form of the Chapman^Kolmogorov equation [9]

@P�x; t�
@t

�
Z
S

fWb�x j z�P�z; t� ÿWb�z j x�P�x; t�gdz �10�

The integration has to be taken over the whole set S of possible activation
patterns. In the present framework in which processing units are assumed to be
a continuous metric space this integration has to be expressed as a Feynmann path
integral [7]. Assuming for simplicity that O � �a; b� � R and S � L2�O�, we de¢ne:Z

S

fWb�x j z�P�z; t� ÿWb�z j x�P�x; t�gdz

4
�

Zz�b�
z�a�

fWb�x j z�P�z; t� ÿWb�z j x�P�x; t�gDz�t�

which is a functional integral over all z 2 L2��a; b��.
Let us express Wb as a function of the jump r and of the initial state:

Wb�x j z� �Wb�z; r�

with r � xÿ z. This leads to the following expression for the master equation:

@P�x; t�
@t

�
Z
S

Wb�xÿ r; r�P�xÿ r; t�Drÿ P�x; t�
Z
S

Wb�x;ÿr�Dr

where the integrals are to be also understood as path integrals, now computed over
all possible jumps r 2 S.
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Now assume:

(i) Only small values of the jump contribute to Wb , i.e. Wb �z; r� � 0 for
k r k> d > 0,

(ii) Wb depends smoothly on z, that is Wb �z� Dz; r� �Wb �z; r� for k Dz k< d and
(iii) The solution P�x; t� of (10) also varies slowly with x.

Then we can expand the ¢rst integral of the last equation up to second order in x [9]:

@P�x; t�
@t

�
Z
S

Wb�x; r�P�x; t�Drÿ
Z
S

fWb�x; r�P�x; t�g0�r�Dr�

� 1
2

Z
S

fWb�x; r�P�x; t�g00�r; r�Drÿ P�x; t�
Z
S

Wb�x;ÿr�Dr

where fWb�x; r�P�x; t�g�n� stands for the nth order derivative of fWb�x; r�P�x; t�g at x
applied to the element �r; . . . ; r� in S� . . .� S � Sn (being this nth order derivative
a linear application from Sn onto R). The ¢rst and fourth terms of the sum cancel.
Then, the equation takes on the form

@P�x; t�
@t

� ÿa1�x;P� � 1
2
a2�x;P� �11�

with

an�x;P� �
Z
S

fWb�x; r�P�x; t�g�n��r; . . . ; r�Dr �r; . . . ; r� 2 Sn

We have obtained an expression for the time evolution of the probability
distribution P which has the form of a Fokker^Planck equation in an in¢nite
dimensional normed space. In fact, for the case S � R we get the well-known
one-dimensional Fokker^Planck equation:

@P�x; t�
@t

� ÿ @

@x
fa1�x�Pg � 1

2
@2

@x2
fa2�x�Pg

with

an�x� �
Z
S

rnW�x; r�dr

The interpretation of the Fokker^Plank equation is simple. The (functional)
probability density P�x; t� is de¢ned on the space of all possible activation patterns
x�x� and describes the evolution involved in the `retrieval' process of some particular
activation pattern starting from a given initial (arbitrary) con¢guration. The
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transition probability matrix Wb�x; r� governs this evolution through the `moments'
involved in the Fokker^Plank equation. Upon retrieval, the (stationary) probability
density reached when t goes to in¢nity is expected to be peaked in the neighborhood
of the recalled memory. This ¢nal activation pattern is however not expected to
be d-like due precisely to the ¢nite temperature £uctuations. A pure deterministic
case can only be recovered by letting b go to in¢nity.

Note that this derivation of the ¢nite temperature dynamics for the continuous
system is a natural extension of the master equation (8) based on the transition
probability matrix (9). Therefore, it could have been applied to the analog Hop¢eld
model [6] in a direct way, since that case would have required only a simple multi-
variate formulation of (11) in the form

@P�x; t�
@t

� ÿ
XN
i�1

@

@xi
fai1�x�Pg �

1
2

XN
i�1;j�1

@2

@xi@xj
faij2 �x�Pg

being now ai1 the usual ¢rst order moment for the ith coordinate, aij2 the element �i; j�
of the covariance matrix and N the number of processing units.

6. Conclusions

We have analyzed an extension of the Little^Hop¢eld model of associative memories
to an in¢nite continuous dimensional state space. With the only assumption that the
synaptic weight matrix T is symmetric and with non-negative diagonal elements, we
derived several results that are generalizations of well known properties of discrete,
Ising-type models. Two basic conditions have been analyzed: the case of orthogonal
memories and the construction of the synaptic operator following the
autocorrelation (Hebb) rule. The more relevant results that follow from these
assumptions are:

. The number of memories is not bounded.

. The necessary and suf¢cient conditions for the memories and the zero to be
stable, are derived in terms of the relation between the parameters of the
transfer function gs.

. All memories have a basin of attraction with the same radius, positive in the L2

norm.
. If a spurious memory vanishes at some point of the space, then its basin of

attraction has zero radius in the L2 norm and it is a saddle point of the
dynamics.

. It is possible to impose a `¢nite resolution' to the stored memories by limiting
the minimum size of the activity patches. We have brie£y indicated two possible
alternatives for doing this.
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We have also shown that a continuous model can be extended to the case in which
the evolution law is non deterministic, in the same way as the Hop¢eld, discrete
model is extended to include ¢nite temperature effects through the Glauber
dynamics. We have shown that this leads to a Fokker^Planck equation (in an in¢nite
dimensional normed space) that governs the time evolution of the probability density
distribution de¢ned in the space of functions describing all possible activity patterns.

We believe that the system of associative memory presented and studied here is a
fruitful tool for modelization in biology and neurophysiology. This model retains
all the stylized facts that have made so attractive the Hop¢eld neural network model
and its modi¢cations, yet giving the possibility of modelization of the brain cortex as
a continuous space. In fact, several neurophysiological evidences at a mesoscopic
level have shown that it is not conceivable a `discrete' regime for the activation
of the cortex neurons. The realistic features of the present model are also reinforced
by the robustness of the associative memory when the synaptic operator is
modulated with a lateral inhibition function (mexican hat function). This feature
is in agreement with the neurophysiological evidences in favour of the modular struc-
ture of the brain cortex.

We are con¢dent that the results derived here can also be useful when performing
something like the reverse track of what we have done, namely to reconsider the
discrete case on the light of the knowledge of what happens if the state space is
continuous.
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