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Abstract. A neural network model of associative memory is presented which unifies the two
historically more relevant enhancements to the basic Little-Hopfield discrete model: the gra-
ded response units approach and the stochastic, Glauber-inspired model with a random field

representing thermal fluctuations. This is done by casting the retrieval process of the model
with graded response neurons, into the framework of a diffusive process governed by the
Fokker-Plank equation, which leads to a Langevin system describing the process at a micro-

scopic level, while the time evolution of the probability density function is governed by a mul-
tivariate Fokker Planck equation operating over the space of all possible activation patterns.
The present unified approach has two notable features: (i) greater biological plausibility and
(ii) ability to escape local minima of energy (associated with spurious memories), which makes

it a potential tool for those complex optimization problems for which the previousmodels failed.
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1. Introduction

In seminal papers, Little [9, 10] and Hopfield [5] constructed a content addressable

memory as a dense network of artificial neurons that are represented as elementary

bistable processors. Addressability is guaranteed by the dissipative dynamics of the

system. It consists of switching each processor from one of its stable configurations

to the other as a consequence of the intensity of the local field that acts upon it. The

memories, that correspond to fixed points of the dynamics, are stored in the system

in a distributed manner through the matrix of synaptic efficacies between the neu-

rons. If this matrix is properly calculated, the above dynamics is enough to ensure

a monotonic decrease of an ‘energy’ function. Thus, starting from an arbitrary con-

figuration the system is led to a local minimum that corresponds to the closest stored

memory.

In a later paper, Hopfield [6] aims at a more realistic model by replacing bistable

neurons by graded response devices. In fact, the stronger objection to the plausibility

of the former model [5, 9, 10] was that a two-state representation of the neural output
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is, from a biological point of view, an oversimplification and that it is necessary to

describe relevant neural activity by firing rates, rather than merely by the presence

or the absence of an individual spike. In either case the retrieval process is again

guaranteed by the nature of the matrix of synaptic efficacies.

On the other hand, on a separate line of thought, a number of later investigations

[4, 11] have considered more realistic pictures of the neuron response by assuming

that the transition between the two stable states of individual neurons is affected

by a random field representing thermal fluctuations. However, in this model the ran-

dom updating of individual neurons prevents them from reaching the exact confi-

guration that corresponds to the fixed point of the dynamics.

In both frameworks the retrieval process has traditionally been analyzed and

described making use only of numerical tools or considering configurations that

are in thermodynamic equilibrium. A numerical, microscopic description of thermal

fluctuations is impractical for models involving graded response neurons, and this is

the reason why thermal fluctuations were omitted from these models. On the other

hand, a statistical approach emphasizes the role of equilibrium and therefore dis-

regards the transitional pattern that prevails during the retrieval process.

The aim of the present paper is to show that it is possible to merge the advantages

of both the graded response neurons approach and the stochastic dynamics

approach, getting a model of associative memory that takes account of both the gra-

ded response of individual neurons in terms of firing rates and the stochastic beha-

vior of the thermal fluctuations affecting state transitions.

We do this by casting the retrieval process of a Hopfield model with graded

response neurons, into the framework of a diffusive process governed by the

Fokker-Plank (F-P) equation. We thus provide a description of the transitional

regime that prevails during the retrieval process, that is currently disregarded. The

possibility of generalizing the non-deterministic, finite temperature Glauber dyna-

mics [2] to the case of graded response neurons has been discussed in [12]. This

was attempted for the case in which the network consisted of a non-countable num-

ber of neurons organized in a continuous metric space. That approach formally leads

to a functional F-P description of the retrieval dynamics but makes very difficult any

further analytical treatment.

In the present paper we concentrate on the Hopfield model with a finite number of

graded response neurons [6]. Within this framework the individual updating process

is formally equivalent to a Langevin process. In addition, a probability density can

be defined that represents the average excitation pattern of the ensemble of neurons.

This in turn allows a description of its evolution through a multivariate F-P equation

whose structure depends upon the temperature of the thermal bath and the pattern

of memories stored in the network.

We find that this approach provides a finite temperature description of the retrie-

val process that agrees with what one would intuitively think. For instance, the

average excitation pattern of the system is given by a Gaussian peak in a multidimen-

sional space spanned by the response of all neurons, that is located at the retrieved
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memory. Its width is given by the temperature of the heat bath and therefore exact

retrieval is prevented except for zero temperature.

Besides its biological plausibility, the present approach has the ability to escape

spurious states. In fact, if the matrix of synaptic weights and the energy function

are defined in the usual way [5, 6], the presence of spurious metastable memories

(most of them as combinations of an odd number of stored memories) is unavoid-

able. However, in the present model the asymptotic probability distribution is pro-

ven to always have a peak in a stored memory, which ensures that the system will

not get stuck in a spurious memory (remember that these states, being local minima,

have higher energy than stored memories). This advantage over the deterministic,

graded response Hopfield model [6] is similar to that of the stochastic, Glauber based

approaches with bistable units [4, 11] over the discrete Little-Hopfield model (from

now on, the ‘Hopfield model’). In fact, in those models the equilibrium distribution

at finite (non-zero) temperature is the Boltzmann distribution.

Thus, this unified approach can be tried as a technique for those complex optimi-

zation problems in which the application of the previous models of associative mem-

ory have not been very successful. One of the classical applications of a neural

network with associative memory to a complex optimization problem was due to

Hopfield and Tank [7], who applied the continuous activation model [6] to the Tra-

velling Salesman Problem, an archetypical NP-complete combinatorial problem. Its

performance was not competitive with respect to other classical stochastic techniques

such as the Simulated Annealing nor even in comparison with some deterministic

ones, due precisely to its tendency to get stuck in local, sub-optimal solutions asso-

ciated with spurious states of the energy surface. This suggests the potential value,

for the treatment of complex optimization problems, of joining together in the same

algorithm the continuity of the function activation and the stochasticity of the over-

all dynamics.

This paper is organized as follows. In Section 2 we review some basic concepts

and definitions (it can be omitted by readers familiar with the Hopfield models).

In Section 3 we derive the Langevin approach for the updating dynamics of the neu-

rons and, in 4, the associated multivariate F-P equation. In Section 5 the stationary

solutions are analyzed while the dynamics is studied in Section 6, showing the

asymptotic stability for an initial Gaussian distribution. Finally, in Section 7 we gen-

eralize this result taking advantage of the fact that the initial excitation pattern of the

neural network can always be expanded as a superposition of Gaussian distributions.

2. Preliminaries

2.1. ASSOCIATIVE MEMORY. THE ORIGINAL HOPFIELD MODEL

The problem of associative memory is that of storing a set of p patterns

xmðm ¼ 1; 2; . . . ; pÞ in such a way that when presented with a new element z as input,
the system output is the xm that most resembles z. In both the Little [9, 10] and the
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Hopfield [6] model, each xm (m ¼ 1; 2; . . . ; p) belongs to the set f1;�1gN of all

N-tuples whose elements can take on the values 1 (active neuron) or �1 (inactive

neuron). The dynamics of the network is

Siðnþ 1Þ ¼ sgn
X
j

TijSjðnÞ 14 i4N ð1Þ

where SiðnÞ stands for the state of the i-th unit of the system at time n, Tij is the

synaptic weight between neurons i and j and

sgnðxÞ ¼
1 if x5 0

�1 if x < 0

�

The stability condition for an element x is

xi ¼ sgn
X
j

Tijxj 14 i4N

and the energy function is

H S½ 	 ¼ �
1

2

X
ij

TijSiSj

In [5] it is proven that if the xm are generated pseudo-orthogonally, i.e. from a

probability distribution such that hxmxni ¼ 0 whenever m 6¼ n, the cardinality of p
doesn’t exceed a critical value pc and the weight matrix is computed following the

Hebb rule, i.e. as Tij ¼
1
N

Pp
m¼1 x

m
i x

m
j , then the system has the property of associative

memory. The energy decreases as the system evolves (provided T is symmetric), hav-

ing as minima the stored xm (called attractors of the dynamics).

2.2. CONTINUOUS TRANSFER FUNCTIONS: HOPFIELD’84

In [6] Hopfield introduces the following dynamics:

_xi ¼ �xi þ ggðh
x
i Þ 14 i4N ð2Þ

where gg is a sigmoid function, i.e. gg 2 C
1ðRÞ, non-decreasing and odd and satisfying

limx!�1 ggðxÞ ¼ �1, limg!1 ggðxÞ ¼ sgnðxÞ8x 6¼ 0; jggðxÞj < minf1; gxg and g0gð0Þ ¼
g and hxi D

PN
i¼1Tijxj is the net input to neuron i when the state of the system is x.

The stability condition is rewritten as xi ¼ ggð
P

j TijxjÞ; 14 i4N. Equation 2 is a

straightforward differential extension of the difference equation that represents the

dynamics of the discrete model (Equation 1). The energy function is now

H x½ 	 ¼ �
1

2

X
ij

Tijxixj þ
X
i

Z xi

0

g�1g ðxÞdx

and is minimized by the dynamics (Equation 2). Moreover, when g ! 1, the attrac-

tors tend to be located on the vertices of the hypercube ½�1; 1	N, coinciding with

those produced by the discrete model [5] for the same T. The existence of spurious

attractors is known also in this case.
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Hopfield and Tank [7] proposed an application of this model to the Travelling

Salesman Problem, the NP-complete problem consisting of finding the shortest tour

calling at N cities once and only once each one. However, it is worth noting that the

performance was limited precisely by the presence of spurious states coinciding with

non-optimal solutions. This strengthes the conjecture about the potential benefit, for

the treatment of complex optimization problems, of enhancing its dynamics with

some kind of parameter-controllable, theoretically well-founded stochasticity.

2.3. ROLE OF NOISE IN ASSOCIATIVE MEMORIES. THE GLAUBER FORMALISM

It is well known that, no matter how many memories are stored in a Hopfield-type

associative memory (either discrete or continuous), provided they are more than two,

spurious, undesired attractor states appear, introducing the possibility of an error in

recall. The probability of retrieving a spurious state instead of a stored memory

increases with the number of these memories, until a critical ratio between this num-

ber and the size of the network is reached. Then, a ‘phase transition’ takes place: the

number of spurious states exponentially increases and the capability of the memory

is lost. The system is overload. This phase is called the ‘confusion phase’.

These spurious states have commonly higher energy than stored memories but

they are nevertheless local minima. Since the dynamics in the Hopfield model is

always ‘dissipative’, in the sense that the energy is monotonically decreasing, they

cannot be escaped (they are surrounded by energy barriers). However, this determi-

nistic conception of neural dynamics is not very biologically plausible: most biolo-

gists currently consider that noise and randomness are almost universal in living

systems. Then, if the neuronal dynamics is stochastic, neurons can make transitions

into states which are opposed to the direction of their presynaptic potential (PSP) [1],

due to several factors such as the level of the noise and the actual difference between

the PSP and the threshold. Some speculations have been made concerning the impor-

tance of noise for the sake of making associative memories suitable as models of cer-

tain brain disorders [1].

Several authors [4, 11] have introduced noisy dynamics into the discrete Hopfield

model via the Glauber formalism. In this approach, the probability distribution of

the state of the ith processing unit Si at an instant nþ 1 is given by

PðSiðnþ 1Þ ¼ �1Þ ¼
1

1þ expð�2bhSðnÞi Þ

This allows control of the level of noise by means of a unique parameter b, called the
‘inverse temperature’. In fact, for high values of b (low temperature), the noise is not
too high, hence the system behaves quasi-deterministically and the spurious states

persist. On the other hand, for low b (high temperature), the dynamics is purely ergo-
dic, so there are no attractors at all, either spurious or not. But for some medium

range of values of b, it is possible to destabilize the spurious attractors while, at
the same time, getting few errors in the retrieval of stored memories.
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The activity pattern of the system is defined through a Markov process that can be

formulated as a Master equation [1]:

Pðx; nþ 1Þ ¼ Pðx; nÞ þ
X
z 6¼x

½Wbðx j zÞPðz; nÞ �Wbðz j xÞPðx; nÞ	

where

Wbðx j zÞ ¼
YN
i¼1

1

expf�bxih
z
i g þ 1

and n represents a discrete time. This equation reflects the temporal evolution of

the probability distribution associated with the discrete Hopfield model, i.e. Pðx; nÞ
is the probability of the system to be in a certain excitation pattern at the nth step

of the evolution process.

3. Langevin Processes and the Hopfield Model

As pointed out in the Introduction, in this paper we are interested in a finite tempera-

ture dynamics for the associative memory with graded-response units. In other

words: would it be possible to find some equivalent equation expressing the evolu-

tion of the probability distribution associated to a Hopfield model with graded

response neurons and stochastic, noisy dynamics?, that is, a set of processing units

labeled as xi; i ¼ 1; . . . ;N; each one obeying the dynamics:

_xi ¼ �xi þ ggðh
x
i Þ þ LiðtÞ

where gg is a sigmoid function (see Section 2.2), h
x
i is the local field on neuron i when

the state of the system is x and LiðtÞ is a stochastic Gaussian process (identical and
independent for each i). Consider the equation:

_v ¼ �rvþ LðtÞ

which describes the motion of a Brownian particle when its mass is taken to be unity

[8]. v is the velocity of the particle and the right hand side expresses the force exerted

on it, consisting of a damping term linear in v plus the noise LðtÞ. Assume that the

following three conditions are satisfied:

1. LðtÞ is a stochastic process. This means that its properties averaged over a system

of many uncorrelated particles (because, for example, their mutual distances are

so large that they do not influence each other) are the same as if it were observed

acting successively on the same particle (at long enough time intervals). In other

words, the system is assumed to be ergodic.

2. LðtÞ is independent of v, so that LðtÞ acts as an external force. Moreover

hLðtÞi ¼ 0.

3. LðtÞ varies rapidly: hLðtÞLðt0Þi ¼ Gdðt� t0Þ.

Then the above equation is called the Langevin equation and the term LðtÞ, which

describes the fluctuations in the system, is a Langevin force. It can be extended to
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the case of a system with a nonlinear equation of motion _v ¼ AðvÞ. The correspond-

ing Langevin equation is

_v ¼ AðvÞ þ LðtÞ

also known as the quasilinear Langevin equation. On the other hand, recall from

Section 2.2 that in the Hopfield neural network with graded response units, each

of them obeys the dynamics given by Equation (2), and assume there is an external

force acting on each unit and producing stochastic fluctuations in its state. Then we

have a system of stochastic equations

_xi ¼ �xi þ ggðh
x
i Þ þ LiðtÞ i ¼ 1; . . . ;N ð3Þ

We assume that the parameter G is the same for all units. Thus we are describing the
dynamics of the network and representing, at the same time, a multidimensional

Langevin process. As we will see, the parameter G plays the role of temperature

(and that is the reason why it can be considered to be the same for all neurons) in

the form of an additive noise.

4. The Fokker-Planck Equation

The well-known one-dimensional Fokker-Planck equation has the form:

@Pð y; tÞ

@t
¼ �

@

@y
fað1Þð yÞPg þ

1

2

@2

@y2
fað2Þð yÞPg

with

aðnÞð yÞ ¼

Z 1

�1

rnWð y; rÞdr

where Wð y; rÞ is the transition probability matrix of a jump of size r taking place

from the state y and hence aðnÞðyÞ is the moment of order n of such a distribution
of jumps.

This equation is a type of master equation, often used as a model for Markov pro-

cesses. The first term on the right hand side is called the ‘transport term’ and the

second, the ‘diffusion term’. The following result is crucial in what follows.

THEOREM [8]. The Langevin equation _y ¼ Að yÞ þ LðtÞ with Gaussian noise defined

by hLðtÞLðt0Þi ¼ Gdðt� t0Þ represents the same Markov process as the F-P equation

@Pðy; tÞ

@t
¼ �

@

@y
fAðyÞPg þ

G
2

@2

@y2
P

For a detailed proof, see [8], ch. IX. &

The condition that LðtÞ be Gaussian is essential, in order to implicitly specify the

moments of LðtÞ of order higher than two, so as to let the Langevin equations fully

determine the stochastic process yðtÞ, just as the F-P equation does.
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The F-P equation can be generalized for the case of a multidimensional state

space:

@Pðy; tÞ

@t
¼ �

XN
i¼1

@

@yi
fAiðyÞPg þ

1

2

XN
i¼1; j¼1

@2

@yi@yj
fBij ðyÞPg

with y ¼ ðy1; . . . ; yNÞ;Ai;Bij real differentiable functions, B symmetric and positive

semi-definite (xTBx5 0 8x 2 RN). These conditions are satisfied if we use

AiðyÞ ¼

Z 1

�1

riWðy; rÞdr

and

BijðyÞ ¼

Z 1

�1

ðri � AiðyÞÞðrj � AjðyÞÞWðy; rÞdr

i.e. the jump moments of first and second order respectively (here r stands for

ðr1; r2; . . . ; rNÞ, dr ¼ dr1dr2 . . . drN and the integration is meant in N real variables).

On the other hand, note that in Equation (3), which governs the dynamics of each

processing unit, _xi represents the jump per unit time. Then in our case

AiðxÞ ¼ hrii ¼ �xi þ ggðh
x
i Þ

as hLðtÞi ¼ 0 by condition 2 (Section 3).

BijðxÞ ¼
Z1

�1

ðri � AiðxÞÞðrj � AjðxÞÞWðx; rÞdr

¼ hðri � AiðxÞÞðrj � AjðxÞÞir ¼ hLiðtÞLjðtÞi ¼ Gdij

Therefore

@Pðx; tÞ
@t

¼ �
XN
i¼1

@

@xi
fð�xi þ ggðh

x
i ÞÞPg þ G

XN
i¼1

@2

@x2i
P ð4Þ

is the F-P equation for the Hopfield model with continuous activation functions,

macroscopic equivalent of Equation (3).

5. Stationary Solution

5.1. ONE MEMORY

From now on we will assume the synaptic matrix is constructed following the Hebb

rule ( just as in [5] and [6]) with zero diagonal:

Tij ¼
1

N
ð1� dijÞ

Xp
m¼1

xmi x
m
j
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where fxmgpm¼1 is the set of p patterns to be stored. Let us consider first the case when
only one memory, say xn, has been stored in the network, i.e. Tij ¼ 1

N ð1� dijÞx
n
i x

n
j .

We define

PsðxÞ ¼
1

ð2pGÞ
N
2

exp

�
�
PN

i¼iðxi � xni Þ
2

2G

�
ð5Þ

that is, a normal (or Gaussian) probability density with parameters (xn;G). This is
our candidate stationary solution of Equation (4). Substituting Ps by P in the

right-hand side of Equation (4):

NPs þ
XN
i¼1

ð�xi þ ggðh
x
i ÞÞ

ðxi � xni Þ
G

PsðxÞ þ G
XN
i¼1

�
1

G
þ
ðxi � xni Þ

2

G2

� �
PsðxÞ

¼
1

G

XN
i¼1

ðggðh
x
i Þ � xni Þðxi � xni ÞP

sðxÞ ð6Þ

using the hypothesis Tii ¼ 0, which implies that h
x
i does not depend on xi.

In addition

hxi ¼
XN
j¼1

Tijxj ¼
XN
j¼1; j 6¼i

1

N
xni x

n
j xj ¼ xni

1

N

XN
j¼1; j6¼i

xnj xj �!
N!1

xni hx
n
j xjij

Note that xn must satisfy xni ¼ �V� for each i, being V� 2 ð0; 1Þ the number such that

ggðV
3
�Þ ¼ V� (which exists and depends on g). The necessity of this condition is

derived from the fact that

hx
n

i ¼
XN
j¼1

Tijx
n
j ¼

XN
j¼1; j6¼i

1

N
xni x

n
j x

n
j ¼ xni

1

N

XN
j¼1; j 6¼i

ðxnj Þ
2
¼ xni kx

n
k2

for largeN. Hence, for the stability condition ggðh
xn

i Þ ¼ xni being satisfied, it is required
that xni ¼ �V� with V� as indicated above. Then xni hx

n
j xjij ¼ V

2
�x

n
i and therefore

hhxi i ¼ �V3�. Finally ggð�V
3
�Þ ¼ ggðhh

x
i iÞ ¼ xni and expression (6) vanishes, yielding

the stability of Ps. It must be remarked that this is an ‘average’ stability, in the sense

of ensemble averages, i.e. under the assumption of a very large number N of units in

the system, and it is in this sense that we will understand stability from now on.

Note that the variance G, that determines the width of Ps, also represents the
amplitude of the stochastic field in the Langevin equation and, in the neural network

model, is related to the temperature of the system. This is the reason why we have

assumed the same G for all units, and we will use this fact from now on.

5.2. MANY MEMORIES

Now suppose there are p pseudo-orthogonal memories xm; m ¼ 1; . . . ; p to store. Let

us call
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Pxm ;G ðxÞ ¼
1

ð2pGÞ
N
2

exp

�
�

PN
i¼iðxi � xmi Þ

2

2G

�

that is, a Gaussian function centered at memory xm with variance G.
Now define

PðxÞ ¼
Xp
m¼1

lmPxm;GðxÞ

with the constraint
Pp

m¼1 lm ¼ 1. PðxÞ is an extension to many memories of the prob-
ability distribution function defined by Equation (5): a convex superposition of

Gaussians, each one centered in a different memory. We will show that PðxÞ cannot,
in general, be a stationary solution of Equation (4). Substituting P in the right-hand

side of Equation (4) we obtain now:

1

G

Xp
m¼1

lm
XN
i¼1

ðggðh
x
i Þ � xmi ÞPxm;GðxÞ

In order for this expression to vanish, we need
$

hhxi i ¼ V
2
�x

m
i ¼ �V3�:

On the other hand hxji ¼
Pp

m¼1 lmx
m
j .

But

hxi ¼
XN
j¼1

Tijxj ¼
XN
j¼1; j 6¼i

1

N

Xp
m¼1

xmi x
m
j xj ¼

Xp
m¼1

xmi
1

N

XN
j¼1; j 6¼i

xmj xj

whose mean value (N! 1) will never equal �V3� (since hxji is a convex combination
of the xmj ’s) unless ln ¼ 1 for some n and lm ¼ 0 8m 6¼ n. If this is the case, we have:

hxi ¼ xni
1

N

XN
j¼1; j 6¼i

xnj xj

 !
þ

Xp
m¼1;m 6¼n

xmi
1

N

XN
j¼1; j6¼i

xmj xj

 !

The first term between parentheses tends to V2� when N! 1 whilst the second van-

ishes, provided xm are pseudo-orthogonal. Hence we have hhxi i ¼ V
2
�x

m
i ¼ �V3�. We

conclude that a linear (non trivial) combination of Gaussian functions centered in

the memories cannot be a stationary solution of Equation (4).

6. Dynamics

From the previous section we know that each Pxm;G; m ¼ 1; . . . ; p, is a stationary

solution of Equation (4). In this section we investigate their stability.

$Here again xm should satisfy xmi ¼ �V� for each i. But in this case (p > 1), the equality h
xm

i ¼ V2�x
m
i , which

implies xmj ¼ �V� for each j (without average brackets) only holds if the memories xm are orthogonal, since
only in that case do the crosstalk terms in hx

m

i vanish. Therefore the condition on the x
m’s is now relaxed to

hxmi i ¼ �V�.
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Assume that the probability density function Pðx; tÞ is, at t=0 (or at any fixed
t > 0), a normal density function with parameters ðz; s2Þ.

LEMMA. If P is Gaussian with parameters ðz; s2Þ, the F-P equation ðEquation 4Þ has
the form:

@P

@t
¼ 2ðG� s2Þ

@P

@s2
þ
XN
i¼1

ðggðh
x
i Þ � ziÞ

@P

@zi

Proof. Differentiating P with respect to its parameters we obtain:

@P

@s2
¼
1

2
�
N

s2
þ

PN
i¼1ðxi � ziÞ

2

s4

( )
P

and

@P

@zi
¼

ðxi � ziÞ
s2

P

yielding

@P

@t
¼ �

GN
s2

þNþ
G
s4
XN
i¼1

ðxi � ziÞ
2
þ
1

s2
XN
i¼1

ðggðh
x
i Þ � xiÞðxi � ziÞ

( )
P

On the other hand, substituting P in the right-hand side of (2), the same result is

obtained. &

The previous lemma states that for a Gaussian P the right hand side of the F-P

equation can be rewritten as a function of the partial derivatives of P with respect

to its parameters. This means that we have expressed Pðx; tÞ as Pðx; zðtÞ; s2ðtÞÞ.
Then the following expression is valid for the total derivative of P with respect

to t:

dP

dt
¼

@P

@s2
@s2

@t
þ
XN
i¼1

@P

@zi

@zi
@t

In other words, P depends on t only through its parameters z and s. Comparing the
last expression with the previous lemma, it follows that ð@s2=@tÞ ¼ 2ðG� s2Þ and
ð@zi=@tÞ ¼ ggðh

x
i Þ � zi.

These identities are true, of course, at the time t when we have assumed P is Gaus-

sian. If we could prove that the dynamics determined by the F-P equation evolves

Gaussian distributions onto Gaussian distributions, the above identities would be

true for any t and we could solve them as ordinary differential equations, yielding

sðtÞ ¼ G� expð�2tÞðG� s0Þ and ziðtÞ ¼ xmi � expð�tÞðx
m
i � ziðt0ÞÞ for some large

enough t0 (keeping in mind that ggðh
x
i Þ �!
t!1

xmi for some stored memory xmi ). Then,
it remains to be proved that, if P is a Gaussian distribution at time t, then at time
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tþ Dt it will also be a Gaussian distribution (with slightly different parameters z and
s2). Discretizing t, our lemma can be restated as

PðtþDtÞ ¼PðtÞþDt 2ðG�s2Þ
@P

@s2
þ
XN
i¼1

ðggðh
x
i Þ� ziÞ

@P

@zi

( )

¼PðtÞ 1þDt 2ðG�s2Þ
1

2
�
N

s2
þ

PN
i¼1ðxi� ziÞ

2

s4

( )((

þ
XN
i¼1

ðggðh
x
i Þ� ziÞ

ðxi� ziÞ
s2

))

We know that P is a Gaussian with parameters z and s2. As for the rest of the above
expression, it has the form 1þ DtFðtÞ, which can be approximated to first order as
expðDtFðtÞÞ.
Therefore the last expression becomes, to first order in t:

exp �
N

2
logð2ps2Þ �

PN
i¼iðxi � ziÞ

2

2s2
þ Dt 2ðG� s2Þ

1

2
�
N

s2
þ

PN
i¼1ðxi � ziÞ

2

s4

( )((

þ
XN
i¼1

ðggðh
x
i Þ � ziÞ

ðxi � ziÞ
s2

))
ð7Þ

Then we should prove that the whole exponent of the last expression has the form

�
N

2
logð2ps02Þ �

PN
i¼iðxi � z0iÞ

2

2s02

i.e. the exponent of a Gaussian distribution with parameters z0 ¼ zðtþ DtÞ and
s02 ¼ s2ðtþ DtÞ.
But expanding it to first order in t yields precisely the exponent of (7).

It can be concluded that if a solution is Gaussian at a certain time, then it will

remain Gaussian. Moreover, for any Gaussian initial condition, the corresponding

stationary solution of Equation (4) (in the sense of the ‘ensemble average’) is

Pxm;GðxÞ where x
m is a stored memory. In the next section we analyze how this final

asymptotical distribution is reached.

6.1. MULTI GAUSSIAN INITIAL DISTRIBUTION

Now let us consider an initial condition of the form:

PðxÞ ¼
XM
m¼1

amPxm;s2mðxÞ

with the constraint
PM

m¼1 am ¼ 1.

This initial condition represents a generalization of the Gaussian initial condition

assumed in the previous section, e.g. if the xm’s are far away enough from each other,
the initial probability distribution has a local maximum at each of those points.
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It is easy to see that in this case the right hand side of Equation (4) is the sum of

M terms, each of them consisting of a derivative with respect to s2m and a sum
of derivatives with respect to the xmi ’s. We can reasonably assume s

2
m ¼ s2 8m, giv-

ing s2 the meaning of a temperature or thermal noise (it is plausible to consider it as
being the same for all units). Therefore, by virtue of the linearity of Equation (4), the

terms involving the derivative with respect to s2m do not change. As for the deriva-
tives with respect to the xmi ’s, note that each term has the form:

am
XN
i¼1

ðggðh
x
i Þ � xmi Þ

@Pxm;s2m

@xmi
ð8Þ

At any given time, it holds that

hxji ¼
XM
m¼1

amx
m
j

where hxji stands for the jth coordinate of the mean value of PðxÞ. On the other hand:

hxi ¼
XN
j¼1

xmi C
m

with Cm ¼ hxmj xjij ¼
1
N

PN
j¼1 x

m
j xj. The C

m’s act in the manner of ‘Fourier coefficients’

of the distribution of x with respect to the pseudo-orthogonal system fxmg. We know
that j Cm j4V2� and it holds C

m ¼ �V2� if and only if x is distributed around a par-
ticular xm. Generally speaking, Cm is a measure of the proximity of hxi ¼

PM
m¼1 amx

m
j

to memory xm. Thus, hx is the projection of x onto the pseudo-orthogonal set
fx1; . . . ; xpg and, provided gg is monotonical, ggðhxÞ � xm measures how near to that
projection is xm. Note that the quantity expressed by (8) represents the derivative of
Pxm;s2m (with respect to its parameter x

m) in the direction of ggðh
xÞ � xm. Then each xm

attracts xm with a ‘strength’ proportional to the resemblance between ggðhxÞ and xm.
For instance, if at a given time x has a mean value very close to a particular xm, then
we have (provided N is large enough) hhxi � xmV2� and hence ggðh

xÞ � xm; then each
xm will tend to xm. In more precise terms, the only way to cause each of the M terms

of the Equation (4) to vanish, so as to obtain an equilibrium solution, is to make

hxi ¼ xm so that ggðh
xÞ ¼ xm and xm ¼ xm 8m ¼ 1; . . . ;M (besides, of course,

s2 ¼ G). In conclusion, all xm are attracted by the same xm (note that ggðhxÞ does
not vary from one term to another).

7. Gaussian Functions as Universal Approximators

We have seen that, given an initial condition in the form of a linear combination of

Gaussians, the system evolves according to Equation (4) approaching an equilibrium

Gaussian distribution whose mean coincides with one of the p stored memories and

whose variance is G, the parameter of the stochastic process affecting the dynamics
of each individual unit. In this section we will prove that the same result holds for

any arbitrary initial distribution, provided it is continuous.
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The capacity of Gaussian functions as universal approximators for continuous

functions (and, in particular, of neural networks with Gaussian activation functions)

has been widely studied. We will refer here to the approach of [3]. Let K be a com-

pact convex subset of RN and define a two-parameter family of restricted Gaussians

as follows:

F ¼ fz;s2ðxÞ : K! R; fz;s2 ðxÞ ¼ exp
�k x� z k2

s2

� �
; s2 > 0; z; x 2 K

� �

In [3] it is noted that L, the set of all finite linear combinations of elements in F and

real coefficients, is an algebra of Gaussians on K (it is closed with respect to multi-

plication), that L separates points of K and that L does not vanish at any point of K.

In those conditions, it is concluded by applying Stone’s theorem, that the uniform

closure of L contains all real valued continuous functions on K. Moreover, it also

follows that L is dense in CðKÞ and, as a corollary, that any element of CðK Þ (the

set of all continuous functions in K) can be uniformly approximated with an arbi-

trary precision by elements of span(F).

It is easy to see that the uniform approximability extends to every function in

CðRNÞ, provided it is integrable. Take, for example, K ¼ SD the N-dimensional

sphere of radius D and note thatZ
RNnSD

fðxÞdx �!
D!1

0

if f is continuous and integrable over RN. Then, in particular, any continuous initial

condition for Equation (4) is arbitrarily close, in the uniform topology, to a linear,

finite combination of Gaussians. Finally, by virtue of the continuity of equation 4,

the system will reach its equilibrium at a Gaussian distribution whose mean coincides

with one of the p stored memories, no matter the initial distribution.

8. Conclusions

We have presented a neural network model of associative memory that unifies the

two historically more relevant enhancements to the basic Hopfield discrete model

[5]: the graded response units approach [6] and the stochastic, Glauber inspired

model with a random field representing thermal fluctuations.

A finite temperature dynamics was introduced for the Hopfield model of associa-

tive memory with graded-response units, in the same way as the Hopfield discrete

model is extended as to include finite temperature effects through the Glauber

dynamics [4, 11]. This leads, in the present case, to a Langevin system describing

the process at a microscopic level, while the time evolution of the probability density

distribution is governed by a multivariate Fokker-Planck equation operating over

the space of all possible activation patterns.

In practical terms, the present unified approach has two notable features: (i)

greater biological plausibility, resulting from the conjunction of the graded response
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transfer function for individual units and the stochastic, noisy dynamics of the whole

system; (ii) usefulness as a global optimization technique, since it can escape spurious

memories, due to the form of equilibrium probability distributions, that assign max-

imum probability to stored memories.

Although the results presented here from a theoretical point of view are suffi-

ciently rigorous by themselves, it will be interesting to carry out a computational

simulation of the whole recall process, simultaneously at both the microscopical level

(retrieval of a stored memory from an arbitrary initial state) and the macroscopical

one (convergence to equilibrium from an initial distribution). This work is currently

in progress. It will also be worthwhile to try this approach on concrete, complex opti-

mization problems.
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