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                                                        ABSTRACT

   An efficient technique for video camera calibration is presented. Unlike the methods
reported up to now, it does not require parameter estimation (lense distortion coefficients,
focal distance, rotation and translation matrices, etc.). The method consists essentially of a
mapping from the camera space onto that of real positions by means of a neural network
(two-layer perceptron) trained with an original algorithm for neural network construction.
This is an approximate technique, i.e. precision increases with the sample size and can be
as large as needed by growing that size and the computing time. We show that it is
possible to obtain good approximations with low computational costs (processor and
memory).
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                                                 1. INTRODUCTION

  We present an efficient technique for the calibration of a video camera, with two main
features:
- Non parametric: in advantage over other reported methods ([1],[2]), it doesn’t require
estimation of parameters (lense distorsion, focal distance, rotation and translation
matrices,etc.).
- Approximate: precision increases with sample size and may grow as much as needed by
increasing this size and the computation time.
   Essentially the method consists of a mapping of camera space onto that of real positions
by means of a neural network (two-layer perceptron) trained by the SAGA algorithm [3].
This is an approximate method, i.e. precision increases with the size of the sample and may
be as high as desired by growing this size and the calculation time spent. It is shown by
experiments that it is possible to obtain good approximations with a little computational
effort and it is proved that the required memory is little too.

                                           2. STEPS OF THE METHOD

    The algorithm has, basically, two steps: 1)sampling and 2) approximation. The first one
consists of obtaining a sequence of 5-uples (x,y,d,θ,h) where:



- x,y are the CCD coordinates;
- d is the distance from the observed point to the CCD;
- θ is the angle of the observed point with respect to the camera and
- h is the height of the point.

The equations relating those values are (for a 256 x 256 pixel CCD):

                                             θ = (α/2) (x-128)/128                            (1)

                                             d = k h f / (y - 128)                                (2)

where f is the focal distance, α is the maximum angle of the camera and k is a normalizing
factor. Hence, fixing h we can determine how θ depends on (x,y), and the same for d. We
obtain:
                                                     θ  = θ (x,y)

                                                     d  = d (x,y)

   The method provides this sampling for different values of h simultaneously.
   As for the second stage, it consists of the approximation of functions  θ and d. To do
that we propose a neural network with a two-layer perceptron architecture, trained by
means of
an original algorithm called SAGA (see below).

                                                       3. SAMPLING

The sampling system consists of a lattice of mx my×  sparkling points, separated by

distances sx and sy respectively. Hence, knowing height h of the lattice with respect to

the center of the camera and distance d to the CCD, we can take, with the same lattice,
mx samples (4-uples of the form (x,y,d,θ)) for each one of the my different heights

defined, i.e., mx my×  5-uples of the form (x,y,d,θ,h).

3.1 Sample uniformity

   Suppose we want to take m samples, uniformly on the domain nx ny× . Then we will

need 1) a point for each n x m/  over the x-axis and 2) a point for each n y m/  over

the y-axis. In order to the first, we divide the x-axis in intervals of size:

                                                          α m nx/

   For the second, and taking account  of  (2), if we want values for y in the form



                                                             n y m/

(for k = 1,..., m ) clearly it will be necessary the following intervals of distance:

                                                      d hf m k ny= /( )            k = 1,..., m

   Nevertheless, it is easy to see that, for the sake of a real application, as distance
increases, calibraton for large angles (those near the limits of maximum opening of the
camera) becomes negligible, since the same scene looked at from a greater distance
encompasses a less angular range.

4. APPROXIMATION

   Once acquired a regular sample of the domain of values (x,y), the method will search for
an approximating function implying the less possible computational cost when physically
implemented. A two-layer perceptron with sigmoid output is a function of the form:

                                             di ai
i

N
x bi y ciφ ( )

=
∑ + +

1
                         (3)

where φ is a differentiable, monotonic non decreasing function such that φ(+∞) = 1 and
(-∞) = -1. Well-known theorems ([4],[5],[6]) assert that such an architecture is able to
approximate any continuous function in a compact domain with as much precision as
desired, properly adjusting the number of terms (hidden units) in the sum and the values of
ai bi ci, ,  and di .

   In our case

φ( ) tanh( )x x=                             (4)

   Previous experiments demonstrated that the computing time required by a 80486
microprocessor for a function in the form of  (3) and (4) with 10 terms is about 0.3 msec.
However, the number of 10 is a bad-case estimation and the simulations show that it is
possible to obtain good approximations (on the order of under 5 % of mean relative error)
with 5 terms, in which case the estimated time for the complete computation is in the
order of 0.3 msec (0.15 for estimating the distance and 0.15 for estimating the angle).
   As for the necessary amount of memory to store the perceptron parameters, it will be, if
N is the number of hidden units:

                                                               m = 8 N

memory positions (words), since 4 values are needed for each term of the two
perceptrons.
For N = 5 it would be m = 40, a negligible memory cost.



4.1 Perceptron parameters

   In order to compute the adequate parameters (N and the ai bi ci, ,  and di  for i = 1,...,N)

basically two classical strategies were tried: Backpropagation [7] and Simulated annealing
([8],[9]). The results of those approaches not being satisfactory, a hybrid algorithm was
proposed, called SAGA (Simulated Annealing + Gradient descent + Adaptive growing).
SAGA [3] has a basic SA structure concerning iterativeness and stochastic acceptance of
changes to the variables in state space (in our case, the perceptron parameters), but it uses
the method of gradient descent to propose the changes and an adaptive strategy for
growing the net (i.e. to add hidden units).
    More precisely, the SAGA algorithm consists of a SA where parameter changes are
proposed according to the direction that maximizes the gradient. The acceptance, on the
other hand, is subjected to the classical criterium of Boltzmann distribution ([8],[9]). As
for N, it increases as the number of hidden units becomes inefficient to reduce the
approximation error, according to a tolerance parameter.

                                       5. EXPERIMENTAL RESULT S

   We show approximations found by SAGA for a training set of 255 points, with h = 2
cm., tested on a regular lattice of points. In the case of the distance, the mean relative
error was 3.4 % with N = 5 (see fig. 1). For the angle, it was 8.7 % with N = 6 (fig. 2).
The difference between both errors may be explained by the greater linearity of  θ (x,y),
for
which a nonlinear function as the proposed φ is more difficult to adapt.

                                                   6. FUTURE WORK

   First of all, it would be interesting to make the algorithm capable to find the proper
correction for x and y, i.e. to which values of x and y would correspond, for an ideal
camera, θ  and d.
   Another interesting question concerns the robustness of the method under errors in the
acquisition of data (for example, those due to distances measured with a certain error or to
the image digitalization in the CCD). It seems necessary an analysis of the effect of those
errors on the final approximation, and of the ranges of tolerance for them, without
significant effects when propagated over the final result (in comparison to the desired
error
for the approximation).
   At present, we are also working on the improvement of the precision of the technique.

                                                   7. CONCLUSIONS

   We have presented an efficient technique for video camera calibration that, in advantage
over conventional methods ([1],[2]), does not require the estimation of parameters (lense
distortion coefficients, focal distance, rotation and translation matrices,etc.).



   Essentially, the method consists of a mapping of the camera space onto that of real
positions by means of an artificial neural network (two-layer perceptron), trained with the
SAGA algorithm.
   Besides of non parametric, the calibration is approximate, that is, the precision increases
with the number of examples and may be as high as desired by increasing that number and
the computation time. The experiments show that it is possible to obtain good
approximations with a little computational cost, and it is proved that the required memory
is little too.
   The precision of the method may be improved. However, for many applications (such as
vehicle navigation in a multitasking environment, for which the technique was initially
intended), a mean relative error on the order of 3 %, as obtained for the distance, is very
good.
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